
Elements of Computational Fluid Dynamics

M. Ramakrishna
Department of Aerospace Engineering

Indian Institute of Technology Madras

Chennai 600 036 India

A Golden Jubilee Publication

Published 2011
Elements of Computational Fluid Dynamics
Ramakrishna Mokkapati, PhD
Department of Aerospace Engineering
Indian Institute of Technology Madras
Chennai 600 036

ISBN 978-93-80689-05-0

Revision Number: TAB20160217

c©2011 by Ramakrishna Mokkapati,
Department of Aerospace Engineering
Indian Institute of Technology Madras
Chennai 600 036

To

everyone who has taught me

Contents

Preface 8

Introduction 16
What is Computational Fluid Dynamics? 16
Modelling the Universe 18
How do we develop models? 22
Example I - Air 24
Example II - A Nozzle 26
Modelling on the Computer 32
Important ideas from this chapter 43

Representations on the Computer 45
Representing Numbers on the Computer 46
Machine Epsilon 50
Representing Matrices and Arrays on the Computer 58
Representing Intervals and Functions on the Computer 64
Vector Algebra 68
Functions as a Basis: Box Functions 74
Box Functions 75
Polynomial on the Interval [0, 1] 86
Linear Approximations: Hat Functions 89
Higher Order Approximations 109
Linear Interpolants on an Interval 116
Local Error Estimates of Approximations 119
Representing Derivatives - Finite Differences 125
Differential Equations 141

Grid Generation I 144
Important ideas from this chapter 147

Simple Problems 149
Laplace’s Equation 149
Convergence of Iterative Schemes 169
Contraction Maps and Fixed Point Theory 172
Properties Of Solutions To Laplace’s Equation 180
Accelerating Convergence 182
Successive Over Relaxation - SOR 186
Neumann Boundary Conditions 194
First Order Wave Equation 197
Numerical Solution to Wave Equation: Stability Analysis217
Courant number or CFL number 227
Numerical Solution to Wave Equation:Consistency 228
Numerical Solution to Wave Equation:Dissipation, Dispersion235
Solution to Heat Equation 251
A Sampling of Techniques 258
Boundary Conditions 266
A Generalised First Order Wave Equation 272
The “Delta” form 279
The One-Dimensional Second Order Wave Equation 287
Important ideas from this chapter 291

One-Dimensional Inviscid Flow 293
What is one-dimensional flow? 295
The Governing Equations 299
Analysis of the One-dimensional Equations 302
A Numerical Scheme 320
Stability Analysis 321

Boundary Conditions 322
The Delta Form 327
Boundary Conditions Revisited 333
Boundary Conditions - a compromise 341
Running the Code 344
Preconditioning 346
Finite Volume Method 353
Roe’s Averaging 355
Quasi-One-Dimensional Flow 360
Important ideas from this chapter 361

Tensors and the Equations of Fluid Motion 363
Laplace Equation Revisited 364
Tensor Calculus 373
Equations of Fluid Motion 396
Conservation of Mass 399
Conservation of Linear Momentum 400
Conservation of Energy 401
Non-dimensional Form of Equations 407
Important ideas from this chapter 411

Multi-dimensional flows and Grid Generation 412
Finite Volume Method 412
Computing Fluxes 415
Computing Derivatives in Finite Volume Method 417
Applying Boundary Conditions 419
Finite Difference Methods 425
Two Dimensional Euler Equations 426
Alternating Direction Implicit scheme 428
LU - approximate factorisation 430

Three-Dimensional Euler Equations 435
Addition of Artificial Dissipation 438
Grid Generation 438
Why Grid Generation? 440
A Brief Introduction to Geometry 444
Properties of Space Curves 450
Surfaces and Manifolds 453
Structured Grids 456
Algebraic grids 456
Elliptic Grids 458
Parabolic and Hyperbolic Grids 464
Generating Two Dimensional Unstructured Grids 465
Triangulation 466
Cartesian Meshes 485
Unstructured Quadrilateral Meshes 490
Three Dimensional Problems 491
Stacking Two-dimensional grids 492
Hybrid Grids 496
Overset grids 497
Important ideas from this chapter 499

Advanced Topics 501
Variational Techniques 501
Three Lemmas and a Theorem 502
Representing Functions revisited 517
Extension To Two Dimensional Problems 523
The Soap Film Problem 525
Random Walk 526
Random Number Generators 528

Doing the Random Walk 528
Stochastic Differential Equations 530
Multi-grid techniques 532
Applying the Multi-Grid Scheme to the Euler’s Equation 539
Unsteady Flows 540
Standard Schemes? 544
Pseudo Time stepping 545
Stability Analysis using Pseudo Time stepping 546
One-Dimensional Euler’s Equation 549
Important ideas from this chapter 553

Closure 555
Validating Results 555
Computation, Experiment, Theory 560

Computers 563
How do we actually write these programs? 567
An example using the four step Runge-Kutta Scheme 577
Programming 580
Parallel Programming 581

Some Mathematical Background 586
Complex Variables 586
Matrices 591
Fourier Series 605

Bibliography 611

Preface

Information regarding most topics of interest is available on
the Internet. There are numerous wonderful sources of CFD
paraphernalia and knowledge. This book sets out to cut a path
through this jungle of information. In spirit, it is a journey
rather than a systematic exposition of CFDiana. This is not a
historical monograph of the author’s personal journey. It is more
of a guided tour that the author has been conducting into the
realm of applied mathematics. The target audience has typically
been engineering students. The pre-requisites are calculus and
some matrix algebra.

Computational fluid dynamics[CFD] requires proficiency in
at least three fields of study: fluid dynamics, programming, and
mathematics. The first two you can guess from the name CFD.
The last two are languages, the last is a universal language.

This is a book for an introductory course on CFD and, as
such, may not be that demanding in terms of fluid mechanics.
In fact, it is possible to pitch this material as an introduction
to numerical solutions of partial differential equations[Smi78].
A good bit of the fluid mechanics used here will be basically
one-dimensional flow of gases. There is a lot of CFD that can
be learnt from one-dimensional flows, so I would suggest that
a review of gas dynamics and the attendant thermodynamics
would help, especially in chapter 4.

That was about fluid mechanics, next is programming. Clearly,
programing skills are required, though in these days of canned

8

packages one may hope to get away without acquiring the pro-
gramming skills. However, I feel that one learns best from first-
hand experience. So, there are programming assignments in
this book, and it would really help the student to be able to
write programs. I strongly urge you to do all the assignments
in the book. They are not an addendum to the book. They
are an integral part of the book. Never ask someone whether
something can be done when you can try it out and find out for
yourself.

Fluid mechanics and programming done, finally, we come
to mathematics. “Acquisitive” is the word that comes to mind
when I think of what should be the attitude of a student to
mathematics. The following will see you through most of your
mathematics requirement as far as the “manipulation” part
goes: product rule, chain rule, integration by parts and implicit
function theorem.Most importantly, a review of linear algebra
[Str06][Kum00] would help, at least that of matrix algebra.

As we go along, I will indicate material that you may choose
to revise before proceeding[Str86].

An unsolicited piece of advice on learning a new field: Learn
the lingo/jargon. You get a group of people together to work
on some problem, after a time everyone knows that the context
of any conversation typically will be around that problem. They
get tired of describing things all the time. So, they could make a
long winded statement like: those lines in the flow field to which
the velocity vector is tangent at every point seem to indicate
the fluid is flowing in nice smooth layers. They will eventually
say: the streamlines seem to indicate that the flow is laminar.
It is important to pick up the jargon. Many text books will

supply the jargon in terms of definitions. Other bits of jargon
you may have to pick up from the context. Try to understand
the definition. Definitely commit the definitions along with the
context to memory.

This book is biased. There are times when I try to remove
some of my personal bias, for the most part however, it reflects
a lot of my opinions on how things should be done. It will not
reflect all of the things that are done in CFD. I have however,
tried to give enough information for the student to pursue his
or her own study.

I hope we lay the foundation for the analysis and intelligent
use of any new technique the student encounters. I hope stu-
dents takes away an understanding of the subject that will allow
them to read other material intelligently.

Throughout the book I will try to suggest things that you
can do. The objective is not so much to provide answers as it
is to provoke questions.

I originally had a chapter on visualisation. I then realised
that a chapter at the end of the book on visualisation was not a
help to the student. I have distributed the material through the
book. Any data that you generate, learn to plot it and visualise
it. Try to get a better understanding of what is happening.

It is clear from what I have written so far that I do not, in my
mind, see this book as being restricted to providing some skills
in CFD. That is the primary objective of the book. However,
it is not the only objective. I truly believe that while trying to
study the specific one should keep an eye on the big picture.

Finally, there are other books that the student can looks at
for a variety of related, advanced and background material[Ham73],[
and so on.

This is not a comprehensive book on CFD. It is not a refer-
ence. It meant to be a journey.

Over the years, students have asked me why they are learn-
ing something. I will give an example here. “Why am I learning
about the second moment of inertia in statics? What use is it?”

Engineering curricula have been designed by engineers. We
have abstracted out bits that are fundamental and invariant and
moved them to a point in the curriculum where they can be
taught. Sometimes the student wonders why they are learning
something. They do not see any immediate application. Teach-
ers then jump to some future course as a justification, buckling
of columns is easy to illustrate with a yardstick and can be
presented as evidence for the use of the second moment of iner-
tia to a student who has not studied differential equations and
eigenvalue problems. Spinning the yardstick about various axes
is also useful in the illustration as students can actually perform
these experiments to see a correlation with the second moment
of inertia. The example, though not satisfactory, at least allows
the teacher to move on gracefully rather than bludgeoning the
student with authority.

Computational fluid dynamics is, fortunately, an advanced
course and I am able to determine the content and sequence in
which the material is presented to the student. In my courses,
I have tried to arrange the material in a fashion that I create
the need before I present the solution. However, some of the

strategies that I employ in the class room do not translate well
to paper.

This book is meant to be an introductory one. Though
it contains some advanced topics, most of the emphasis is on
why a few simple ideas actually work. Some of the analysis
techniques do not carry over to complex problems that you may
encounter later; the questions that these tools answer do carry
forth. It is very important indeed to ask the right questions.

We will start chapter 1 with the question: what is CFD? We
will expand the idea of modelling and show that we have a need
to represent various mathematical entities on the computer.

Having determined this need, we will demonstrate the repre-
sentation of numbers, arrays, functions and derivatives in chap-
ter 2. We will also answer the question: How good is the
representation?

In chapter 3 we will look at some simple problems as a ve-
hicle to introduce some fundamental ideas. Laplace’s equation
is a good place to start as a confidence builder then we go on
to the wave equation and the heat equation. Through these
equations we will study the ideas of convergence, consistency
and stability of schemes that we develop to solve them.

Having established a foundation in modelling (the student
hopefully has written a variety of codes), we look at systems of
non-linear equation in chapter 4. We use the one-dimensional
flow equations as a vehicle to extend the ideas from chapter
3 to fluid flow equations. A little background in gas dynamics
would help. However, in my experience, students without the
background have managed. We will look at some details of the
algorithms and application of boundary conditions.

Now, up to this point, we have been looking at a hierarchy
of problems which we posed in the form of differential equations
and boundary conditions. In chapter 5, we look at tensor calcu-
lus and derive the governing equations in a general framework.
This material is independent of the preceding material and can
be read at any time by the student. On the other hand, the
first few chapters can also be read independent of chapter 5.
Tensor calculus and the derivation of the general form of the
governing equations is important for the rest of the book.

Chapter 6 deals with flows in multiple dimensions, tech-
niques of representing the equations and applying the boundary
conditions. It also gives an overview of grid generation. We
will look at just enough of grid generation so that you can solve
problems using grids other than Cartesian coordinates in two-
dimensions.

A taste of variational techniques, random walk, multi-grid
acceleration and unsteady flows is given in chapter 7. The book
ends with a closure in chapter 8. This is meant to round off the
discussion started in chapter 1.

There are a few appendices at the end. The first deals in a
simple manner with computers and programming. The rest pro-
vide the jargon and an exposition of the minimal manipulative
skill required for complex variables, matrices and Fourier series.

I would suggest that a student work through the book in
a linear fashion. For the teacher there is more choice. I tend
to start with Taylor’s series, representation of derivatives and
quickly get to the iterative solution to Laplace equation. This
allows the student to start coding Laplace equation in the first

week. I then start each class with a conversation on the numer-
ical solution to Laplace equation make a few suggestions based
on the conversation and then proceed with the rest of the mate-
rial. Sometimes, the conversation ties material to be discussed
in the rest of the class: for example, when to stop iterating ties
in with machine epsilon and so on. I revisit Laplace equation at
various points in the course, when I am dealing with stability,
variational methods, multigrid techniques, and finally random
walk. It also figures prominently in grid generation.

I need to end this with a vote of thanks. I have been writing
bits and pieces of this over the years. I had figures in colour and
programs in various programming languages. Most demos now
use python. I was, in some vague fashion, thinking of putting
this material out for free. Then, IITM as part of its Golden
Jubilee celebration came out with a book writing scheme. For
a while, I thought it would be published in paper, though deep
down inside, I was sure that the electronic medium was the way
to go. However, in the duration that it was to be paper, I
changed the figures to black and white to cut down the cost of
printing.

I thank the institute for the support of a semester for writing
this book, this includes colleagues who saw me around and did
not get upset for not showing up at the progress meetings of
their students. This gave me the push to complete. It also
resulted in a lot of topics collapsing into the advanced topics
chapter.

I thank my colleague, Prof. Vinita Vasudevan of Electrical
Engineering who read through the book atleast twice, M. Manoj
Kumar, who slogged through the first three chapters. This

was for the early stages of the book. Prof. S. C. Rajan and
Prof. Luoyi Tao read through chapter 5 before I put it up.
The students in my 2009 Computational Aerodynamics course
also sent me some corrections to that chapter. Prof. Joel
George gave me corrections and conversation in regard to the
first chapter and the appendices. Prof Santanu Ghosh read
through parts of chapters on representations, one-dimensional
flows and grid generation. My thanks to all of them. Inspite of
all of this, my PhD students Mythreya and Siva Prasad found
enough to fix. They also whetted the tablet / phablet version.
Thanks guys.

The last reading by my students forces me to write: Despite
their help, I am sure there are corrections to be made. I sincerely
apologize if you have helped me with the book and I failed to
acknowledge it here.

I thank my wife for her continuous support and my immedi-
ate family and friends that lived with “busy with the book” for
a while and then helped out with “Is it out yet?”.

Introduction

In this chapter, we try to find the motivation for all the
things that we do in this book. Further, we will try to lay the
foundation on which the rest of this book depends. At the end
of the chapter, I hope you will have an idea of what you will get
out of this book.

What is Computational Fluid Dynamics?

We will start by putting computational fluid dynamics, CFD
as it is often called, in context. We will try to see what it is and
what it is not. Here we go.

An initial attempt at definition may be along the lines: the
use of computers to solve problems in fluid dynamics. This un-
fortunately is too broad a definition of CFD. Let us see why.
We will first check out what CFD is not.

The general attempt at understanding and then predicting
the world around us is achieved by using three tools: experi-
ment, theory and computation. To understand what compu-
tational fluid dynamics is not, remember that computation is
used along with experiment and theory in numerous ways. Ex-
periments can be automated. Raw experimental data can be
reduced to physically meaningful quantities. For example, one
may have to do some post-processing to “clean up” the data,
like de-noising and so on. Data can be processed to convert
many measurements to useful forms: like obtaining streamlines

or master curves that capture behaviour so as to aid design. All
of this can be done with the help of computers.

Similarly, computers can be used to perform symbolic ma-
nipulation for a theoretician. They can be used for visualising
closed-form solutions or solving intermediate numerical solu-
tions. So, I repeat, defining computational fluid dynamics as
using computers to solve fluid dynamic problems is too broad a
definition.

On the other hand, computational fluid dynamics is the use
of computer algorithms to predict flow features based on a set
of conservation equations. However, you may have encoun-
tered computer packages that simulate flow over and through
objects. One could classify the use of these packages as ex-
perimental computational fluid dynamics (ECFD). After all, the
we are using something like a simulated wind tunnel to under-
stand the problem at hand. In order to be good at ECFD, some
knowledge of CFD in general and the algorithms used in that
package in particular would help. Though, an understanding of
the physical principles and fluid mechanics may often suffice.

We have seen some of the things that I would not consider
to be CFD. So, what is CFD? We use the conservation laws
that govern the universe to build computer models of reality.
We want to understand the computer model and would like to
predict its behaviour. How faithful is it? How robust is it? How
fast is it? All of these questions are asked and answered in the
context of fluid dynamics, so the discipline is called Computa-
tional Fluid Dynamics. By the end of this chapter, you should
have a better understanding of these questions and some an-
swers to them by the end of the book. Let’s now take a very

broad view of affairs, before we start getting into the nitty-
gritty details of modelling/representing things on the computer
and predicting their behaviour.

Modelling the Universe

Modelling the universe is a very broad view indeed. The
idea is that we are interested in modelling any aspect of our
surroundings. To illustrate the breadth of application and the
importance of these models, consider the following scenarios.

Scenario I:

It is 3:30 in the afternoon in Chennai. The sea breeze has
set in and is blowing in from the east. The residents heave
a sigh of relief as they recover from the hot afternoon sun.
Leaves flutter in this gentle breeze. Some flap up and down
as though nodding in assent. Some sway left to right. If it
cools down enough, it may even rain in the night. This is
nature at work.

Scenario II:

The oil company has been prospecting. They have found
oil off the coast and want to pipe it to a refinery north of
the city. The crude oil that comes out of the ground is a
strange concoction of chemicals. We may lay roads with
some of the chemicals, we may drive on the roads using
other chemicals. The flow of the oil in the pipeline is clearly
very important to the economic well being of a nation.

Scenario III:

“At the mark the time will be T − 10 seconds” says the
voice over the loud speaker and then proceeds to tick off the
count down 9, 8, 7, 6, 5, 4... As the count down proceeds,
many scheduled events in the launch sequence take place
automatically. The strap-on rocket motors are fired. All of
them reach a nominal value of thrust, the main rocket motor
is fired. The thrust generated by the hot gases rushing out
of the nozzles of all the rocket motors is greater than the
weight of the launch vehicle and it lifts off slowly from the
pad. There is a gentle breeze from the sea, enough to make
the vehicle drift ever so little. This is not a concern, however.
The vehicle accelerates quite rapidly as it thrusts its way to
its destination of delivering a communication satellite or a
remote sensing satellite; all part of the modern way of life.

All of these scenarios involve fluid dynamics. These are all
situations where we would like to predict the behaviour of our
system. To add a bit of urgency to the state of affairs, we
suspect that the second and third scenario may be having an
effect on the first one.

We will use the first scenario to indicate that we may have
issues of interest that are small in scale or we could have ques-
tions that are enormous in scale. In the first scenario, consider
one small puzzle. Why do some leaves flap up and down, while
the others sway left to right? Call it idle curiosity, but one would
like to know. Is the direction of the breeze with reference to
the leaf important? One would think so. How about the shape

of the leaf? Yes, I would think the shape of the leaf would be
a factor. What about the weight of the leaf and the stiffness
of the stem to which it is connected? All determining factors
and more. The first scenario also has a “problem in the large”
embedded in it. Why does the sea breeze set in? Is it possi-
ble that it sets in at a later time in the day, making Chennai
an uncomfortable city? Can we predict the weather somehow?
Can we see the effect our activity on the weather? Can we do
anything to avert a disaster or to mitigate the effects of our
activity? These are all very relevant questions and “hot” topics
of the day.

In the second scenario, fluid mechanics and modelling again
play a very big role. The oil field was likely located by us-
ing technology similar to echo location. The oil company used
a combination of explosions to infer the substructure of the
earth and drilled some sample locations for oil. There is still
some guess work involved. It is, however, better than wildcat
prospecting where you take a random shot at finding oil. Hav-
ing struck oil or gas, we then come to handling the material.
Pumping to storage yards. How large should the pipes be? How
much power is required to pump the crude oil? How fast should
we pump? Is it possible that the pipeline gets clogged by the
constituents of this crude?

Having fetched the crude where we want, we now process it
to generate a wide variety of products from fabrics to plastics
to fuels. Are there safety related issues that should worry us?

What happens to the reservoir of oil (or the oil field as it
is normally called) as we pump out the oil? How do we ensure
we maximise the amount that we can get out economically? If

we are removing all of this material, what happens to the space
left behind? Do we need to fill it up?

The final scenario is one of exploration on the one hand
and lifestyle on the other. Access to space, especially low-cost
access to space is something for which we are striving. Putting
something in orbit was traditionally done using rocket motors.
A rocket motor basically consists of a chamber in which the
pressure of a working medium is raised and maintained at a
high level, say sixty times the atmospheric pressure at sea level.
This working medium, which may in fact be made up of the
products of combustion that led to the increased pressure, is
then vented out through a strategically placed nozzle. A nozzle
is a fluid-dynamic device that causes fluid that flows through it
to accelerate while its pressure drops. The high pressure acts
on the interior of the rocket motor walls. This high pressure
results in a net force acting on the rocket motor walls. This
is the thrust generated by the rocket. Meanwhile, the launch
vehicle powered by this rocket motor is accelerating through the
atmosphere. The flow over the vehicle becomes important.

Finally, it takes ages for the carbon in the atmosphere to be
trapped by trees. It takes very little time for us to chop the tree
down and burn it. The consequences of scenarios II and III on
scenario I may be quite severe. Instead of the sea breeze coming
in, the sea itself may rise and come in if the polar ice melts and
the sea water expands, like all things do as they warm. With
this in mind we can now ask the question: How do we develop
these models?

How do we develop models?

Let us look at the process that leads to a model. We ob-
serve the world around us. It seems complex and very often
unpredictable. Scientist and engineer take a sceptical view of
an astrologer[GU72], all the same, they would like to predict
the behaviour of any physical system. In seeking order in our
universe, we try mirroring the universe using simpler models.
These models necessarily exclude

(1) things that we do not perceive,
(2) features that we deem unimportant,
(3) phenomena that are too complex for us to handle.

We have no control over the first reason. How can we control
something we cannot sense? We can only try to keep our eyes
open, looking for effects that we are not able to explain. In
this fashion, we can start coming up with ideas and theories
that explain the behaviour. We may even employ things that
we cannot see; like molecules, atoms, subatomic particles...

The last two reasons for excluding something from our model
we handle by making “assumptions”. In fact, a feature we deem
unimportant is typically an assumption that it is unimportant.
We sometimes confuse the reasons for our assumptions. These
come in two forms.

• We make assumptions that certain effects are unimpor-
tant. These can and should always be checked. They
are not as easy to check as you may think. Let us
look at a problem that has a parameter in it, say ǫ.
Consider a situation, where assuming ǫ small makes the

problem easier to solve. So, we solve the resulting “sim-
pler” problem. If ǫ is indeed small, the assumption is
consistent, but may be self fulfilling. We do not know
if it makes physical sense and will actually occur. If
ǫ turns out to be large, our assumption is definitely
wrong. (There is of course the more complicated possi-
bility of ǫ being small when it is considered in the model
and turning out to be large when neglected.)

A more subtle kind of an assumption comes from
assuming that a small parameter leads to small effects.
In this context, the reader should check out the origins
of the theory of boundary layers. The tale starts with
the assumption that viscosity is very small and the cre-
ation of D’Alembert’s Paradox and the final resolution
with the realisation that small viscosity does not always
mean small viscous effects.

• We make assumptions that make our lives easier. Whether
we admit it or not, this is the fundamental drive to
make assumptions. We can and should try to find out
the price of that ease.

There can be a difference of opinion as to whether an assump-
tion is worthwhile or too expensive.

Having made all the necessary assumptions, we come up
with a model. We now study this model and try to make sense
of the world around us and maybe try to predict its behaviour.
If we can analyse a physical system and predict its behaviour,
we may be able to synthesise a physical system with a desired
behaviour and enter the wonderful world of design.

So, what is the nature of our model? Usually, in an attempt
at precision, these models are couched in the language of math-
ematics. This may sound like a contradiction. After all, we have
been harping about the model being approximate. However, we
want a precise statement of our approximation so that we know
exactly what is included and what is excluded. Also, the mathe-
matical description only prescribes the necessary properties that
the phenomenon satisfies. It is up to the individual to infer the
behaviour of his/her particular system from the mathematical
expression of its behaviour and any other information that may
be available.

To understand how this process works, let us consider two
examples. At this point, we will not take it all the way to a
mathematical model. We will look at the continuum model for
a gas first. We will then look at that useful contraption called
a nozzle.

Example I - Air. We could start by looking at air, which
is made up of molecules of various types. To keep life easy, we
could assume that air, instead of being a mixture, is made up
of only one constituent element with the molecular weight cor-
responding to the average molecular weight of air. This makes
our lives simpler. Now, what are these molecules doing? They
could be just moving around colliding with the walls and each
other. If we are going to study these collisions, we would fur-
ther assume that the molecules are hard spheres and that all
collisions are elastic.

We pause here to take look at what we have done so far. You
can see that we are constantly trying to make things easier for
ourselves by throwing away what we consider to be inessential

details. All we need now is the initial position of every one of
these particles and their velocities and we are all set. We just
integrate our usual equations of motion: Newton’s laws applied
to particles and we can predict the motion of all the particles.

Once we realise that we cannot really keep track of all these
hard spheres—there are after all an Avogadro number of them in
every mole of gas—we start looking only at statistical quantities
like means and variances. These quantities are obtained through
the discipline of statistical mechanics. If we are willing to step
away from the need of discrete molecules and assume that air
is a continuum, then life seems to becomes easier. I say “seems
to become easier”, as this book is about CFD. When you are
done with the book, you will see a certain irony in replacing
a large, albeit finite number of molecules with a continuum of
uncountable infinity of points. While we are looking at this,
ask yourself this question: Is there an approximation involved
in assuming we are dealing with a continuum instead of a finite
number of molecules? We will address this question at the end
of the book.

A few points to note here. When we went from a variety of
molecules to one type of molecule, we threw away detail, as we
did when we went on to the hard sphere. The internal structure
of the sphere is forced on us only when we get to tempera-
tures where that structure becomes significant or worse still,
molecules start dissociating into constituent elements. When
we get to the continuum from hard spheres, many of the pro-
cesses that we have ignored must be accounted as properties
of the continuum. For example, a mean quantity may be iden-
tified as the velocity at a point in the continuum. From this

velocity and density at that point, we have an associated ki-
netic energy density at that point. The kinetic energy density
that we calculate this way does not account for all the energy of
the molecules. There is still a random motion about this mean
“drift” speed. The random motion about the mean may have
to be accounted through an associated new variable which is
“internal” to our model, called the temperature.

This is what we have managed to do. We have come to a
continuum. We have field properties like mass, momentum and
energy. We also have their densities associated with every point
in that continuum. Now, we can generate equations to help us
track the evolution of these properties. We do this by applying
the general principles of conservation of mass, conservation of
momentum and conservation of energy. The equations associ-
ated with these balance laws can be derived in a very general
form. We typically use the set of equations known as the Navier-
Stokes equations. These equations are derived in chapter 5. We
will now look at a typical application.

Example II - A Nozzle. We have seen that a series of
assumptions led us to the Navier-Stokes equations. These as-
sumptions were quite general in nature. We will proceed with
that process in the context of an actual problem and see where
that takes us.

Let us consider the problem of the flow through a converging-
diverging nozzle. This is a very popular problem and these C-D
nozzles, as they are called, are cropping up everywhere. They
are used to accelerate fluid from subsonic speeds to supersonic
speeds, when employed as nozzles. They will also function as
supersonic diffusers and decelerate supersonic flow to subsonic

flow. They are used in Venturi meters to measure fluid flow
rate and as “Venturis”, just to create a low pressure region in
a flow field. The fact is, they have been studied in great detail
and you may have spent some time with them too. C-D nozzles
continue to be of great interest to us.

Figure 1.1. A converging-diverging nozzle

A cartoon of a C-D nozzle is shown in Figure 1.1. If we now
draw a cartoon of the possible realistic flow through this nozzle,
we could get something like Figure 1.2. Possible realistic? Well,
my experience tells me it could look like this. Anyway, you
should go and check out a real nozzle. 1

1As a general exercise, you can see how we model various things and what the actual physical

system looks like. As you build up your intuition, it is nice when you expect something and it

works out that way. After you have built up a lot of experience, its a lot more fun when it does

not work out the way you expected.

zoom

Surface normal

Figure 1.2. Nozzle with an imagined realistic flow. I say
imagined since I just made this up. A zoomed in view of
part of the flow field is also shown. In this case the velocity
variation along a direction perpendicular to the wall is indi-
cated.

So, we continue with the process of making assumptions in
the “solution” to the flow through a nozzle. In the context of

fluid mechanics, for example, the flow of a fluid in the region
of interest, may be governed by the Navier-Stokes equations.
This is an assumption. (In fact a whole set of assumptions)
I am not going to list all the assumptions in great detail here
because there are too many of them. We will look at a few that
are relevant. The governing equations will capture the laws
of balance of mass, momentum and energy. Our objective is
to predict the parameters of interest to us using these general
principles.

The walls of the nozzle are assumed to be solid. In this case,
from fluid mechanics, we know the following three statements
are valid and equivalent to each other.

(1) The fluid cannot go through the wall.
(2) The velocity component normal to the wall is zero.
(3) The wall is a streamline

This is often referred to as the no-penetration condition or
the solid wall condition.

For a viscous fluid, we would also assume that at the wall,
the fluid adheres to the wall. That means that the tangential
component of the velocity is also zero near the wall. This is
referred to as the no slip condition. Figure 1.2 shows such a
flow conforming to the wall of the nozzle.

We may simplify our model by assuming the flow to be uni-
directional, or quasi-one-dimensional, or one-dimensional flow.
Please note that these are three different assumptions.

Figure 1.3 shows a flow that has all the velocity vectors
pointed in one direction. The flow is uni-directional. However,
it is more than that. A closer examination of the figure shows

x

y

Figure 1.3. Nozzle flow with the assumption that the flow
is quasi–one–dimensional

that the speed of the flow seems to change along the length of
the nozzle. So, one would think that the flow depends only on
one dimension. It is directed along only one coordinate direction
and therefore should be one-dimensional flow. Why does the
speed change? Well, the area changes along the length of the
nozzle and that results in a speed change along the length of the
nozzle. To differentiate this situation from one where there is
no such geometrical change in the other coordinate directions,
we call this a quasi-one-dimensional model.

We see that we can make a variety of assumptions that
lead to models of different complexity. The validity of our as-
sumptions needs to be determined by us. For instance, in the
quasi-one-dimensional assumption, we assume the velocity vec-
tors are pointed along the axis and that the area variation alone

contributes to a change in the magnitude of the velocity. Our
intuition tells us that the nozzle problem will be better repre-
sented by a quasi-one-dimensional model as the area variations
get smaller.

So, from these two examples we see that we take a physical
system of interest, and we then come up with a model that
we hope captures all the important features of this system, at
least those in which we are interested. Having come up with
a mathematical model, we need to study how it behaves. To
this end, we turn to mathematical analysis and the computer.
Before we go on, let us summarise what we are up to.

(1) We have the “real” world system. We would like to
predict its behaviour.

(2) To this end, we come up with an abstract model. The
behaviour of the model, we hope, is the same as that of
the real world system. So, we have reduced our original
problem to understanding our abstract model.

(3) Since the abstract model may not be amenable to direct
prediction of its behaviour, we create a computer model
of the abstract model. Again, we hope this computer
model captures the behaviour of our abstract model.
So, we have reduced our problem to running the com-
puter model.

I repeat, this book is about understanding the computer
model and trying to predict some of its more generic behaviour.
The things we would like to know are

(1) How faithful is the model? This property is called fi-

delity. You have a recording of a concert hall perfor-
mance. Is it Hi-Fi, meaning is it a high fidelity record-
ing? Does it reproduce the performance?

(2) How robust is it? Does the model work for simple prob-
lems and not work at all for other problems? A model
which fails gently is said to be robust. This means that
the answer you get degrades (it is not as faithful as we
like it to be, the model fidelity degrades), however, you
still get an answer. Small changes in parameter val-
ues do not cause drastic changes to the quality of the
model.

(3) How fast is it? Will I get an answer quickly? Meaning:
will I get the result in time to use it?

All of these questions about our computer model are asked and
answered in the context of fluid dynamics, so the discipline is
called CFD.

Modelling on the Computer

Now that we understand where CFD fits in the big picture,
we can focus on the computer model. In order to model some-
thing on the computer, we must first be able to represent it on
the computer. If we are not able to represent something exactly
on the computer, we approximate it. Even though we make
an approximation, which may or may not be the best approx-
imation, we shall still refer to it as our representation on the
computer or simply the computer representation.

This whole book is about representations, especially that of
mathematical entities related to fluid mechanics, on the com-
puter. Somethings we can represent exactly, some not so well.

In the next chapter, we will look at how to represent math-
ematical ideas on the computer. Before we do that, let us try
to see what we need to represent. To answer this, we take a
step back to see what we actually want to do.

Computational fluid dynamics falls into the general realm of
simulation. The object of simulation is to create an automaton
that behaves like the system we are simulating. We would like
to create an automaton that can solve the flow past an object
or a flow through a system and give us the data that is of
interest to us. We may use the data for design or for a better
understanding of the behaviour of our models and from there
infer/predict the behaviour of our system.

Directly or indirectly, it involves the computational solu-
tion to a variety of equations, especially differential equations.
Which leads to the immediate question: What does it mean to
ask:

“find the solution of a differential equation?”

We will try to answer this question throughout this book.
Here is the first shot at it. A differential equation is a descrip-
tion of a function in terms of the derivatives of that function.

A “closed-form”2 solution is a description of the same func-
tion/behaviour in terms of standard functions. A numerical so-
lution could be a description of the function by tabulated data,
say.

ξξ

f (x)

xxa

g(x)

xa

x

Figure 1.4. A function g(x) and its derivative f(x) = g′(x).
The extremum of the function g(x) occurs at xa. Calculus
tells us that f(xa) = 0. So finding the extremum involves
finding the zero of f(x).

What does it mean to find the solution of any equation? We
will look at an example that just involves elementary calculus.
Suppose you are told that the profit that your company makes
is determined by a function g(x) where is x is some parameter
that determines operation of your company. You have a simple
question that you ask. What is the value for x for which your
profit g(x) is a maximum? You have learnt in calculus that given

2I refrain from using the term analytic or analytical solutions so as not to confuse with the technical

meaning in other disciplines of mathematics

a function g(x), one may try to obtain its maxima or minima
by setting the derivative f(x) = g′(x) to zero and solving for
x. The “ ′ ” here indicates differentiation with respect to x.
As I have picked an example where g(x) is differentiable, we
are reduced to finding a solution to the equation f(x) = 0.
Let us see how this works. Figure 1.4 shows the scenario we
just discussed. If I were to give you a ξ and claim that it is an
extremum for g(x), how would you test it out? Well, you could
find f(x) = g′(x), if that were possible, and then substitute my
candidate ξ and see if f(ξ) was indeed zero.

So there you have it. You have a predicate: “g′(x) = 0?”.
This will tell you, given a value for x, whether it is a stationary
point or not. You just need to come up with ways by which
you can generate candidate values for x. Most of the prob-
lems/assignments that you have encountered so far would have
involved finding x. Maybe even simpler than the “find the max-
imum” problem given here. Finding the square root of two can
be posed as finding the zero of a function f(x) = x2 − 2. Ul-
timately, we find an x ≈ 1.414 which is a zero of this function.
There are two points to take away from this simple example.

(1) Given a candidate solution we can substitute back into
the equation to determine whether it is a solution or
not. This is an important idea and there are times later
on in the book where we may have to take a “weaker”
stand on the substitute back into the equation part.

(2) The important lesson to take from the simple example
is that the problems that we have been solving so far
have solutions which are numbers.

Let’s study situations that are a little more complicated. We
need to find the zeros of functions of the form f(u, x) meaning

(1.1) f(u(x), x) = 0

and the objective is to find the function u(x) that satisfies this
equation. We could call this a functional equation as we are
trying to find a function. For example we may seek a “solution”
u(x) such that

(1.2) u2(x) + x2 −R2 = 0

A solution3 to this equation is a function given by

(1.3) u(x) =
√
−x2 +R2

It is important to note here that one is trying to find the
function u(x). The equations (1.1), (1.2) are called implicit
equations, as the entity we want to determine is embedded in
an expression from which it needs to be extracted. As opposed
to equation (1.3), which is an explicit equation. The term we
seek, in this case u(x), is available on one side of the equals sign
and does not appear on the other side. The implicit function
theorem tells us when we can extract out the u(x) and write
the implicit equation in an explicit form[CJ04].

So far we have looked at algebraic equations. Let us now
consider a differential equation that is, I hope, familiar to all

3We have a situation here that has more than one solution

u(x) = ±
√

−x2 +R2

of us: Bernoulli’s equation. Consider the streamline shown in
Figure 1.5. “s” a measure of length along that stream line from
some reference point on the streamline. On this streamline, we
have for the incompressible flow of an inviscid fluid

(1.4)
1

ρ

dp

ds
+

d

ds

(
u2

2

)

= 0,

where ρ is the density, p(s) is the static pressure and u(s) is
the speed at the point s. Given u(s), one can actually solve the
equation for p(s) as

(1.5)
p(s)

ρ
= C − u(s)2

2

Equation (1.5) is obtained by integrating equation (1.4). The
result is a function p(s). Again, it must be emphasised that the
solution we seek is a function and not just a number.

A third problem we will consider is even more explicit in its
application. Say you walk from your room/home to the class-
room every day. There are many possible routes that you could
take. Which is the shortest? Which is the fastest? Which is
the safest? There can be any number of “selectors” or pred-
icates that we can invent in order to pick an “optimal” path.
Remember, we are picking a path and not some point in our
three spatial dimensions. We are picking a path that we may be
able to define as a function. Figure 1.6 shows this scenario in
two dimensions. It shows three possible paths between the two
points A and B. The path we select depends on which property

s = 0

p(s)

1
ρ
dp
ds +

d
ds

(
u2

2

)

= 0

s

~u(s)

1

3

2

Figure 1.5. The segment of a streamline. s = 0 is the
origin from which we measure length along the streamline.
In incompressible flow, the speed of flow is a function of s,
u = u(s), as is pressure. By the definition of the streamline,
the direction of flow is tangent to the streamline and is also
a function of s

of that path is important to us. However, it is clear from the
figure that we are talking about three different functions.

This then is the focus of this book: We are looking for so-
lutions which are functions. We will spend a little time looking

x

y
A

B

Figure 1.6. Different paths to go from point A to B. Some
could be shortest distance, others could represent shortest
time or least cost.

at how to organise functions so that we can search in a system-
atic fashion for solutions. We will generate algorithms that will
perform just such a search and study these algorithms on how
well they hunt for the solution.

When we do a search, it is clear that we will pick up candi-
dates that are actually not solutions. We check whether a given
candidate is a solution to the equation by actually substituting
it into the equation. If it satisfies the equation, the candidate
is a solution. If it does not satisfy the equation it leaves behind
a residue. This residue is a signal that we do not have a solu-
tion. It can be used effectively in the search algorithms of our
computer model.

We see now, when we model physical systems on the com-
puter, very often, we are trying to find solutions to equations.

Whether the solutions are functions or otherwise, we need a
mechanism to represent them on the computer. Why should we
be able to represent them on a computer? Does it sound like
a stupid question? Obviously if you want to solve a problem
on the computer you need to represent both the problem and

potential solutions on the computer.4

This is not quite the whole story. You may have heard of
equations having a closed-form solution. Let us find out a little
more about closed-form solutions.

What exactly is a closed-form solution? Think of all the
functions that you learnt in your earlier classes. You learnt
about the functions shown in Table 1.1. You know polynomials.
You know of a class of functions called transcendentals: trigono-
metric, exponentials and logarithms. Typically you know how to
construct new functions by taking combinations of these func-
tions. This could be through algebraic operations performed on
functions or by compositions of these functions when possible.

Think about it, Table 1.1 about sums it up. Yes, there are a
category of functions called special functions that expand on this
set a little. You can take combinations and compositions to form
new functions. If we are able to find a solution to our problem in
terms of these primitive functions, we say that we have a closed-
form solution. If I make up a function from these primitive
functions, it is likely you will be able to graph it on a sheet
of paper (This idea was first proposed by Descartes). You may
have difficulty with some of them; sin(1/x) would be nice to try
and plot on the interval (−π, π). So, there are some functions

4sentence included with with permission of a reviewer

Basic Function Examples of Combinations

Monomials,

f(x) = axn

g(x) = ax2 + bx+ c,

h(x) =
ax2 + bx+ c

dx2 + ex+ f

Transcendentals,

f(x) = sinx, cosx, ex, log x
g(x) = e−x sinx,

h(x) = log(| cosx|)

Table 1.1. Table of basic functions and sample combina-
tions to generate new functions

that we can write down which are difficult to graph. How about
the other way around. Does every graph that you can sketch
have a closed-form representation? No!! That is the point.
Look at Figure 1.6 again. Can every possible path from your
home to the classroom be represented in combinations of these
simple functions? Maybe, it is possible to use a combination
of an infinite number of these functions and approximate the
graph or the path.

This difficulty exists not just for a graph. Now consider a
differential equation. It too is a description of some function for
which we seek a simpler description. The simplest differential
equation with which most of us are familiar is something of the
form

(1.6)
dy

dx
= f(x), x = a⇒ y = c

This a fairly simple equation. You think it is easy to inte-
grate? How about

(1.7) f(x) = exp(−x2) ?
Even the simplest differential equation that we write may not
have a closed-form solution. The definite integral of the function
given in equation (1.7) is extremely important in many fields of
study and is available tabulated in handbooks. The indefinite
integral does not have a closed-form.

“Okay, big deal, there is no closed-form solution.” you say.
Why do you want a closed-form solution? Closed-form solutions
very often give us a better handle on the solution. We can per-
form asymptotic analysis to find out how the solution behaves
in extreme conditions. We can use standard calculus techniques
to answer a lot of questions regarding maxima, minima, zeros
and so on. Lastly, closed-form solutions are great to check out
computer models. More about this later. So, we would like
to have closed-form solutions. Failing which, we would like to
represent the solution on the computer.

Many fluid flow models that we use involve differential equa-
tions and finding a solution is basically integration. Before we go
further, we will take a closer look at the process of integration.
Integration is more difficult to do than differentiation. You most
probably knew that already. Why is this so? We have a direct
method by which we get the derivative at a point through its
definition. Bearing in mind that we are talking of a closed-form

expression, the process of differentiation is in fact pretty easy
to automate. Integration is the inverse of this process.5 This
means that in order to integrate a function, we come up with a
candidate integral and differentiate it. If the derivative turns out
to be right, we have the integral, otherwise we try again. The
process of integration fundamentally involves guessing. Either
we are good at guessing or we look up tabulations of guesses of
others. So, again, we need to be able to hunt in a systematic
fashion for these functions.

This brings us back to our original need: The equations that
govern the behaviour of our systems typically have functions as
their solution. We need a mechanism to represent functions on
the computer and algorithms to hunt for solutions in a system-
atic fashion. Please note, there are many a response that will
answer this need. We will look at one class of answers.

First, we will see how to represent numbers on the computer.
Normally, in calculus we construct the real line so as to solve
problems like “find the zero of the function f(x) = x2 − 2”.
Here, we will start at the same point and then we can get on
with vectors, matrices and functions. We will go through this
exercise in chapter 2.

Important ideas from this chapter

• We make assumptions to generate models that capture
what we want or can of the actual real world system:
Always check your assumptions. This is the general

5Integration predates differentiation by millennia, however that it is the anti-derivative has been

an extremely useful property and discovered much later.

idea of abstraction. We remove the nonessential (or as-
sumed nonessential) and leave only the abstract model.

• Our models are mathematical and the solutions we seek
here are likely to be functions and not just numbers. We
do not have a whole host of functions that we can use
to get closed-form solutions and therefore have to con-
sider, carefully, how we are going to represent functions
on the computer.

• Finding the solution to a differential equation is like in-
tegration. Integration is a process of guessing at a func-
tion whose derivative would be the function at hand.

• Finally, remember, that if you are fortunate to have your
computer model agree with your experiments, it may be
that the errors in both of them have gone in the same
direction. A pinch of scepticism is always good.

We started this chapter talking of the sea breeze and pump-
ing oil. By the time you are done with this book, the hope is
that you will have an idea as to how to model them. At the
least, you should have an idea of some of the difficulties that
you will encounter.

Representations on the

Computer

There are 10 kinds of people in this world: those
who understand binary, and those who don’t -
Anonymous1

... there is nothing either good or bad, but think-
ing makes it so... - Hamlet

We have seen that very often, we are forced to build models
on the computer. Ultimately, we hope that these models will
represent the real world. A study of a typical model will show
that it is made of parts. These parts need to be represented
on the computer so that the model can be assembled from
the representation of the parts. Where we cannot represent
something exactly, we try to approximate it.

This chapter will provide the preliminaries in representing /
approximating things on the computer. We could address the
questions:

(1) How accurate is a certain representation?
(2) How efficient is the representation in the use of com-

puter resources?

1One could go on – There are 10 kinds of people in this world: those who understand ternary,

those who don’t, and those who mistake it for binary...

(3) How fast can the particular representation be processed?
or how efficient is our model in the use of this repre-
sentation?

Somethings that we represent on the computer can be viewed
as “data”. This data may be represented in many different ways
as we shall see soon. For this reason, the particular type of rep-
resentation is called a “data structure”. We use algorithms to
process these data structures, resulting in our computer models.

In the context of CFD, our models are often made up of dif-
ferential equations, integral equations and integro–differential
equations. We want to represent our differential equations on
the computer. We have seen that the solutions to these equa-
tions are functions. These functions need to be represented on
the computer. This is our objective. We will start small, with
a simple mathematical entity: the number.

Representing Numbers on the Computer

As was pointed out earlier, the whole book is about repre-
senting things on the computer. We will do this in a hierarchical
fashion. We will begin with simple mathematical entities and
ideas. We will then use these simple entities to represent more
complex mathematical entities and so on. To start with, we are
interested in representing the real line on the computer[Gol91].
For a quick overview of computers see the Appendix A[HP03].

We have designed computers to use Binary digits (bit) to
represent things including numbers. A single binary digit has
two states. We could use these two states to represent a zero
or a one. We can of course use this bit to represent other ideas

and states like (off, on), (black, white), and so on; anything
that can be captured by just two states.

If we consider two binary digits, we have the combination
00, 01, 10, 11, which gives us 22 possible states. Four bits, some-
times called a nibble, can represent sixteen possible states. As
an example, this is enough for a four function calculator: ten
numerals, four operations (+,−,×,÷), and two keys for clear-
ing and obtaining the result of a calculation. We get a sense of
the power that flows from our ability to represent things on the
computer.

If we were to use 32 bits, we could represent 232 different
symbols. The easiest would be whole numbers. So, we could
simply count from 0 to 4294967295. Or, We could represent
integers from −2147483648 to 2147483647. That’s a lot of
counting. However, if you needed larger integers then you would
need to employ more bits. 64 bits will get you almost 20 digits.2

Note: We can count. We can count to large numbers. We
can’t count to infinity!

Nice conclusion, nice words. We will always have only a
finite number of symbols that we can use to represent things.
The problem: if we cannot even represent all integers, how
are we going to represent the real line? We will do the best
we can and try to approximate it. The real line is made up
of rational and irrational numbers. There are an uncountable
infinity of irrational numbers. We will thank Cantor, Dedekind
[Ded63], Dirichlet, and Weierstrass and all the mathematicians
that helped construct the idea of a continuum and abandon

2It really is worthwhile remembering the powers of 2

irrational numbers. After all, they guarantee that we will find
a rational to approximate any irrational to whatever degree of
accuracy that we choose. Consequently, we try to represent
only rationals as best as we can.

There are a countable infinity of rationals, the same as the
set of integers. Just as in the case of whole numbers, we are
not going to be able to represent all of the rationals. In fact,
the way we have represented integers gives us an idea as to how
we could try to represent fractions. If we decide and are able to
scale our problem so that all the computations we perform are
likely to generate numbers in the open interval (−1, 1), we could
take our integer representation and imagine in our minds that
there is a decimal point placed to the left of the integer. That
is, we have a mantissa made up of about 9 digits. This is called
fixed-point arithmetic since the location of the decimal point
is fixed. At first glance this may look like a good scheme. There
are many applications where people have made very clever use
of fixed point arithmetic. The problem is that different numbers
on the interval (−1, 1) will have a different accuracy to which
they are represented. For instance, a largish fixed-point number
may be 0.5. If we consider in comparison 1.57× 10−10, we may
be only able to represent 0.0000000001. We realise that this
problem occurs because the decimal point is fixed and we do
not have an exponent to shift it around. The alternative is to
go for something known as floating-point arithmetic. We will
now look at floating-point representation.

Again, we remind ourselves that we will confine our attempts
to representing rationals and that there are a countable infinity
of rational numbers. We look for some guiding principles to help

us decide which numbers to keep and which to throw away. We
keep 0 and ±∞, symbols that are an anchor for the construction
of the real line. We throw away everything between some yet to
be determined largest number L and∞. So, we have something
that looks like

{−∞,−L, . . . , 0, . . . , L,∞}.
With one swipe we eliminated an infinity of rationals. Of course,
the slippery part of infinity is that we still have an infinite num-
ber of rationals from which to choose, leaving us with only
one question. Now, how do we distribute the numbers that we
choose to represent between [−L,L]? It may strike you that
one may as well distribute them uniformly. It turns out most
people like to know what’s happening around zero. So, we pack
more points close to zero. In the bad old days (good old days?)
everybody represented numbers in their own way. Now we have
standardised this representation on the computer. It is called
the IEEE754 standard. A lot of CPU (Central Processing Unit)
manufacturers conform to this standard. In the IEEE754, 32
bits are allocated to a floating-point number as follows:

0222 12331 30
︸ ︷︷ ︸

mantissa
︸︷︷︸

sign
︸ ︷︷ ︸

exponent

Figure 2.1. Allocation of bits to various parts of number in
the IEEE754 little-endian standard. Each box represents a
bit. Notice that the count starts at zero.

In Figure 2.1, we see that the last bit, bit 31, is indicated
as the sign bit. This determines whether the number is positive
or negative. This leaves 231 symbols to represent any unsigned
number. The mantissa is allocated 23 bits. Since, we will always
adjust the exponent so that there are no leading zeros in the
mantissa, the first digit of the mantissa will, under the normal
circumstances, be 1. In which case, we might as well assume
the first digit is a 1 without actually storing it. This gives us
an effective mantissa of 24 bits indicating that we can have a
resolution of 1 in 224. The exponent (bits 23 to 30) determines
the total dynamic range of the numbers that we can represent.
Quite often, this may just not be enough for our computation.
We may need better resolution or a greater dynamic range. The
IEEE754 also defines a double precision representation. Here,
as you would have guessed from the name, we use 64 bits to
represent a floating-point number. The mantissa is 53 bits.
Finally, the IEEE854 defines a quad precision representation.
This may or may not be supported by the particular computer
on which you are working. You can find out more about it.

You have some information on how numbers are represented
on the computer. We have not seen all the details. This is just
enough to get on with our investigations. Due to various con-
straints, we have the representation of “floating-point” numbers
on the computer as given by the IEEE754 standard. We need to
understand what we have actually achieved going through this
whole process. We will do this by looking at something we call
the epsilon of the machine.

Machine Epsilon. The epsilon of a floating-point data type
on a computing platform is defined as follows.

It is the smallest instance of that data type such that

(2.1) 1.0 + ǫm 6= 1.0

on that particular machine. It can also be defined as the largest
instance of the data type such that

(2.2) 1.0 + ǫm = 1.0

on that particular machine. These two definitions will not give
us the same value. They will differ by a tiny amount. (can you
guess by how much they will differ?) We will use the definition
given in equation (2.1).

With hardware becoming compliant with the IEEE standards
the ǫm’s are gradually turning out to be the same across vendors.
However, with optimising software and hardware architectures
it requires more effort to actually measure the ǫm.

Before you do the assignment, Given what we have seen
about representing numbers using the IEEE754, can you guess
what ǫm should be?

Assignment 2.1

Here is a simple algorithm to evaluate the ǫm. Implement
it in your favourite programming language. Try it for single
precision, double precision and long double if it is available. Are
you surprised by the results? Fix the problem if any.

Candidate ǫm = 1.0
while 1.0 + Candidate ǫm 6= 1.0

Candidate ǫm = Candidate ǫm * 0.5
endwhile

print “epsilon m = ”, Candidate ǫm

Did you get the ǫm the same for float and double? A float
will typically occupy four bytes in the memory. A double will
occupy eight bytes in memory. Now, computers usually have
temporary memory called registers with which they perform their
mathematical operations. So,

Candidate ǫm = Candidate ǫm * 0.5

will result in Candidate ǫm and 0.5 being stored in two registers.
A multiply operation is then performed employing the contents
of this register and should in theory be stored back in memory
as Candidate ǫm. The registers are usually at least as a large
as the double precision variable, that is eight bytes in size. So,
even the single precision computations are performed in double
precision. However, the minute the Candidate ǫm is stored in
memory it goes back to being a single precision value since you
have set aside only four bytes for it.

Here is one other test that you can try out. What happens
if the test is 1.0 − ǫm 6= 1.0 in equation (2.1), that is we use
a minus instead of a plus. You can rework the assignment 2.1
with this test.

What can we conclude from the definition of ǫm and the
study we have made so far? It is clear that any number that
lies in the interval (1 − 1

2
ǫm, 1 + ǫm) will be represented on

the computer by 1.0. So, here is the fundamental point to be
remembered when dealing with floating point numbers on the
computer. Each number represents an interval. This is shown
in Figure 2.2.

The arithmetic we do on the computer is interval arithmetic.
If some computation generates a number b, which falls into the

10−128

0

−10−128

0 1

1 + ǫR1− ǫL

1

10

ǫR = ǫm

ǫL = 1
2ǫm 10(1− ǫL) 10(1 + ǫR)

Figure 2.2. The real line and some sample points on it that
are represented on the computer along with the intervals that
they represent. Zero actually represents a smaller interval
than shown in the figure if we allow leading zeros in the
mantissa. As the points are clustered towards the origin,
given a representation r, the next representation to the right
is s away and the next available representation to the left is
1

2
s to the left

interval represented by the number a, then that number will
become a on the computer. The difference r = b − a is the
roundoff error.

Definition:

The difference between a number and its representation on the
computer is called roundoff error in that representation.

Assignment 2.2

Redo assignment 2.1. Find the epsilon of the machine using
the test

(1) 1.+ ǫm 6= 1.
(2) 10. + ǫ 6= 10., and values other than 10 that you may

fancy.

and generating a new candidate ǫ using

(1) ǫ = 0.5 ∗ ǫ
(2) ǫ = 0.1∗ ǫ, and any values other than 0.1 that you may

fancy.

How does roundoff error affect us and why should we be wor-
ried about it? First, it is clear from the definition and everything
we have seen so far that the act of representing a number on the
computer with finite precision is very likely to result in roundoff
error. If you combine two numbers with roundoff error in any
particular arithmetic operation, you may have a significant error
in the result which is greater than the original roundoff error due
to the representation of the two numbers. That is, if c = a+ b
the error in c may be much more than the roundoff error in a
and b. Unfortunately, colloquially, this error in c is often referred

to as roundoff error. We will call it the cumulative roundoff

error or accumulated roundoff error.
Every numerical computation we perform, we are actually

doing operations between intervals and not numbers [Ded63],
[Moo66]. On the computer, we start with an uncertainty when
we represent our number. As we perform operations upon these
intervals. . . if the intervals grow, our uncertainty grows. We
should be concerned that the roundoff errors in our computa-
tions may accumulate over numerous such operations.

We define cumulative roundoff error as the net error in a
numerical value which is the result of a sequence of arithmetic
operations on numbers that may have either roundoff error or
cumulative roundoff error.

Before we go on with our discussion we will look at cumu-
lative roundoff error a little more closely as a justification for
the remarks that we have just made. It seems that cumulative
roundoff error is an accumulation of roundoff errors. Is it just a
matter of a lot of ǫ’s accumulating? Actually, it can be worse
than that.

Case 1: Consider the difference between two positive numbers
that are very close in value. This is the whole point of
the ǫ calculation. We try to compute 1 + 2ǫ − 1. If
all the digits in our original number are significant, how
many significant digits do we have now? Very often not
all the digits are significant digits. We happen to have a
number A which is 1 + 2ǫ which we have arrived upon
after many calculations. It is possible that it should
actually have been 1. Maybe the actual answer to A−1
should have been zero and not 2ǫ.

Case 2: There is a second kind of a problem that can occur.
Bear in mind our experience with polynomial algebra.
We can add the coefficients of two terms only when
the terms are the same degree in the variable. That is
3x2 + 2x2 = (3 + 2)x2 = 5x2. The same holds when
we do floating-point arithmetic on the computer. After
all a floating-point number on the computer is really a
signed mantissa coefficient multiplying xn, where n is
the exponent part of the floating-point number and in
the binary system x = 2. So, when we combine two
numbers with addition or subtraction, we need to make
sure that the exponent n is the same for the two num-
bers before we actually perform the operation. Which
means, one of the mantissas will have as many leading
zeros added to it as required to make the exponents
equal. So, in performing this operation we have fewer
significant digits. In fact, you could possibly have none
at all! You may protest saying “this is why we dropped
fixed-point arithmetic in the first place”. This is not
quite right. If we had a situation where, n = −20
for the first number and -25 for the second, fixed-point
arithmetic will not be able to represent either, espe-
cially if the nominally expected values are near one. In
the case of floating-point arithmetic, we have possibly
a more accurate representation for both the numbers,
and one of them looses accuracy when combined with
the other in an addition or subtraction.

Case 3: The two cases we have seen just now deal mainly with
errors caused by the limited mantissa size. There is one

more situation where the mantissa limit will haunt us.
We may encounter numbers where the exponent cannot
be adjusted and we are essentially stuck with fixed-point
arithmetic in the representation of the numbers.

If you have had a course in probability and statistics you can
have a little fun playing around with this. Most programming
languages will allow you to roundoff numbers to a certain num-
ber of decimal places. For example round(x, r) may round x to
r places. We will use this to perform an experiment[KPS97].

Assignment 2.3

First let us cook up some iterative scheme to generate a
sequence of numbers {x0, x1, x2, . . . , xn, . . .}.

(2.3) xn+1 = αxn, α = 1.01, x0 = 1

Let us decide to round to four places, that is, r = 4. Call
the rounded number x̃n. Then the roundoff error that we have
made is

(2.4) E = xn − x̃n

What are the extreme values (the maximum and minimum val-
ues) that E can take? Plot a histogram to get an idea of the
distribution of roundoff error.

Did the histogram look about uniform? That is not good
news. It is not bad news either. We would have been happy if
the histogram had a central peak and died off quickly since that
would have meant that our roundoff error is not as bad as we

had feared. On the other hand it could have been bad news and
the histogram could have had a dip in the middle with most of
the results having the largest possible error. We can live with
a uniform distribution. In fact this is the basis of generating
pseudo random numbers on the computer.

We have seen two possible structures or schemes by which
we can represent numbers. Generally, floating-point arithmetic
tends to be more resource hungry. However, it is very popular
and it is the representation that we will use routinely. Now, we
go on to look at representing other data, which are made up of
multiple numbers. The preferred data structure in mathematics
for this entity is a matrix. We will look at the representation of
matrices and multidimensional arrays in the next section.

Representing Matrices and Arrays on the Computer

Matrices are easy to represent on computers. Many of the
programming languages that you will learn will allow you to
represent matrices and you should find out how to do this. Some
programming languages may call them arrays. You should be
aware that the programming language may not directly support
matrix algebra. We just need to implement the necessary matrix
algebra or use a matrix algebra library and we should be done.
Into this happy world we now shower a little rain.

Your favourite programming language may allow you to rep-
resent a square matrix. However, the memory in the computer
where this matrix is actually “stored” seems linear 3. Meaning,

3Actually memory is very often organised at the chip level as a two-dimensional array which makes

it possible to reduce the number of physical electrical connections to the chip. This is a very

serious cost consideration. This reduction happens as the address of any memory location can

now be split into two: a row address and a column address. So, one can use half the number of

we can only store vectors. Now, how does your programming
language manage this trick of storing something that is two-
dimensional in memory that is one-dimensional? Simple, store
the two-dimensional arrays as a set of one-dimensional arrays.
Do we store them by rows or by columns? They make an ar-
bitrary decision: “Store the matrix one row after another as a
vector”. Remember now that someone else can make the deci-
sion (and they did) that they will “store the matrix one column
after another”. There are two reasons why we should worry.

• A lot of the mathematics that we have learnt is more
easily applicable if we actually store the data as vectors.
This will allow us to naturally translate the mathematics
into our data structure and the algorithm.

• If we do our matrix operations row-wise and it is stored
column-wise we may (and often do) pay a performance
penalty.

Instead of using the word “matrix”, which has many other
properties associated with it, we will use the term “array”. This
is also to convey to the reader that we are talking of how the
object is stored. Arrays come in different flavours. A one-
dimensional array of size N made up of floating-point numbers
can be indexed using one subscript: a[i]. These can be thought
of as being written out in a row

(2.5) a[1], a[2], a[3], · · · , a[i], · · · , a[n]

pins and pass it two pieces of data corresponding to the row address and column address one after

the other.

They are stored as such on most computers. On the other hand,
if we are interested in a two-dimensional array then we have

(2.6)


















a[1, 1] a[1, 2] · · · a[1, j] · · · a[1,m]
a[2, 1] a[2, 2] · · · a[2, j] · · · a[2,m]

...
...

. . . · · · ...

a[i, 1] a[i, 2] · · · a[i,j] · · · a[i,m]
...

...
...

. . .
...

a[n, 1] a[n, 2] · · · a[n, j] · · · a[n,m]


















Here, we have laid out the two-dimensional array in two di-
mensions with two subscripts i and j. Now, most programming
languages will allow you to use two subscripts to index into the
array. One can continue to use this. However, we have al-
ready seen that the memory in which it is actually to be stored
is typically one-dimensional in nature. Poor performance may
result if one were to access the array contrary to the order in
which it is stored. Let us see how storing a multi-dimensional
array as a one-dimensional array works. If we were to lay a two-
dimensional array out row by row and employ only one subscript
p to index the resulting one-dimensional array we would have

(2.7)
a[1, 1], a[1, 2], · · · , a[1,m], a[2, 1], a[2, 2], · · · , a[2,m], · · · , a[i, j], ·

Since it is now a one-dimensional array we use one subscript p
to index into this array as follows

(2.8) a[1], a[2], · · · , a[p], · · · , a[nm].

In a similar fashion we can rewrite the same one-dimensional
array with a single subscript in the form of a matrix as shown
below. This allows us to relate the two sets of subscripts to
each other.

(2.9)














a[1] a[2] · · · a[j] · · · a[m]
a[m+ 1] a[m+ 2] · · · a[m+ j] · · · a[2m]

...
...

. . . · · ·

...

a[(i− 1)m+ 1] a[(i− 1)m+ 2] · · · a[(i-1)m+j] · · · a[im]

...
...

...
. . .

...

a[(n− 1)m+ 1] a[(n− 1)m+ 2] · · · a[(n−m) + j] · · · a[nm]















In the two methods of indexing shown in (2.6) and (2.9) the
element indexed by (i, j) are boxed. Clearly, the relationship
between p and i and j is

(2.10) p(i, j) = (i− 1)m+ j

where m is called the stride. This is the number of elements
to go from a[i, j] to a[i + 1, j]. Every time you use two sub-
scripts to access this array, your program needs to perform the

multiplication and addition in equation (2.10). On the other
hand, if you were to create a one-dimensional array of size nm
so that you can store two-dimensional data in it you can very
often avoid the multiplication shown above. For example, if we
wanted to evaluate the expression a[i − 1, j] + a[i + 1, j], we
would write a[p−m] + a[p+m].

This way of storing a row at a time is often referred to as
row-major. We could also store the data one column at a time,
which would be called column-major. We will use row-major
here.

We have seen how to represent two-dimensional arrays and
matrices on the computer. What if we had data that was in
three dimensions? The solution is simple: we view the three-
dimensional array as a set of two-dimensional arrays that are
stacked in the third dimension. So, we just end up with another
stride consisting of the size of the two-dimensional array that is
being stacked. If this stride is designated by s, then our formula
relating the indices i, j, and k of our array to the index p of our
representation is given by

(2.11) p(i, j, k) = (i− 1)s+ (j − 1)m+ k, s = nm

In general, if we had a d-dimensional array with strides s1,
s2, ..., sd−1, the relationship between the indices i1, i2, ..., id
and p is given by

(2.12) p(i1, i2, ..., id) =
d−1∑

l=1

(il − 1)sl + id

We have not said anything about the memory efficiency of
the representation so far. We will look at only one scenario here.

If we have a diagonal matrix of size 10000 × 10000 we would
have 108 elements to store. We do note that all but 10000 of
them are guaranteed to be zero. What we do in this case is just
store the diagonal of the matrix as a one-dimensional array and
then replace our formula given by equation (2.10) with a small
algorithm.

ZeroElement = 10001

def p(i, j):

if i == j:

return i

return ZeroElement

The 10001 element in the representation needs to be set to zero.
There are more sophisticated ways of doing this, but they are
outside the scope of this book. You can check out the section
on programming A.

Assignment 2.4

(1) What happens to the formulas relating indices if our
array subscripts started at zero instead of one as done
in many programming languages.

(2) How would you modify the algorithm given above to
handle tridiagonal matrices? (A tridiagonal matrix may
have non-zero elements on the main diagonal and each
of the diagonals above and below the main diagonal.)

We are now able to represent numbers and arrays of num-
bers. Let us now look at functions and the domains on which
the functions are defined. The latter part is a little more difficult

and we will devote a large portion of a chapter to it later. We
will restrict ourselves to representing intervals on the computer
and functions that are defined on such intervals.

Representing Intervals and Functions on the Computer

We concluded at the end of Chapter 1 that we need to
be able to represent functions on the computer. A function
is defined on a region that we call the domain of definition.
This means that at every point in the domain of definition, the
function takes on a value. In one dimension, this domain of
definition may be an interval.

We have already seen that floating-point numbers on a com-
puter represent intervals. What if we want to represent a part
of the real line, say the interval [0, 1]? Yes an array with the two
values (0, 1) will suffice. However, unless we have a standard
function: polynomials, rational polynomials ..., we would have
to prescribe a function value at every point in the interval [0, 1].
Mathematically, we have an uncountable infinity of points. We
have already seen that even if we took all the possible numbers
that a computer can represent on the interval, we would still
have more numbers than we could handle. So, we follow our
natural instinct and do exactly what we did to represent the real
line, throw away the part that we cannot handle. For example,
we will use a hundred numbers to represent the interval [0, 1].
The numbers correspond to points that are called grid points

or nodes or nodal points. Can we get away with it? Frankly,
most of the time, we have no choice! Typically, we do not have
the computing resources to handle as many points as we can

index or keep track. The resource crunch may be time, memory
or both.

Right. We know that given a function say f(x) = x2 on the
interval [0, 1], we can find the value of the function for any x in
the interval. How do I ensure that the behaviour of a function
does not change if I am replacing the interval on which it is
defined by hundred grid points? We will give a rather longish
answer to this question, since the whole point of this book is to
find functions. We have seen in the previous chapter that our
business here very often boils down to hunting down a function
that satisfies our requirement as described by, say, a differential
equation.

We need to understand the meaning of “function” a little
better. You are likely to have seen functions as mappings in your
calculus class. Here we will look at it from a different point of
view.

Consider the following expressions

3x2 + 2x+ 1,(2.13)

3ı̂+ 2̂+ k̂,(2.14)

3 cos θ + 2 sin θ + 1,(2.15)

3 + 2 + 1,(2.16)

(3, 2, 1),(2.17)

321,(2.18)

3dx+ 2dy + dz,(2.19)

3
∂

∂x
+ 2

∂

∂y
+

∂

∂z
,(2.20)

where ı̂, ̂, k̂ are unit vectors, dx, dy, dz are differentials and
the last term consists of partial derivatives in the respective
coordinates. What do all of these expressions (2.13-2.20) except
one have in common? There is really only one case where one
would actually perform the addition and simplify the expression
further, that is expression (2.16), 3 + 2+ 1 = 6. Of course, for
x = 1, the polynomial produces the same result.

Why would you think it crazy if I tried to do this kind of a
summation with the other expressions. How come I can perform
the addition when x = 1 and not otherwise? Clearly, the x2 and
the x prevent us from adding the coefficients 3 and 2. We look
at this further. Let us perform an operation. How about this:

(2.21) (3x2 + 2x+ 1) + (2x2 + 5x+ 2)

How is this operation different from

(2.22) (3ı̂+ 2̂+ 1k̂) + (2ı̂+ 5̂+ 2k̂)

You see that this argument seems to work in the other cases
where “something” prevents you from adding the “3” to the
“2”. That something is our notation and meaning that we
ascribe to what we write and type. The x2 and x stop you from
adding the coefficients together just as the cos θ, sin θ or the ı̂,
̂. In fact, this is exactly the role of the “,” between the 3 and 2.
The “321” is in fact the polynomial with x = 10. The decimal
notation is something with which we have been brainwashed for
a long time.

If you were to take a course in linear algebra they will point
out to you that you are dealing with a three-dimensional linear

vector space. They will proceed to talk about the properties of
entities that deal with linear vector spaces. The point that we
should make note of here is that

something that looks like a function can

also be viewed as a point in some space.

In our examples, the space looks like our usual three-dimensional
space or at least promises to behave as such. The expressions

(2.23) (3dx+ 2dy + dz) + (2dx+ 5dy + dz)

and

(2.24) (3
∂

∂x
+ 2

∂

∂y
+

∂

∂z
) + (2

∂

∂x
+ 5

∂

∂y
+

∂

∂z
)

seem also to behave in the same fashion. However, we will not
pursue these two expressions at this point. They are stated here
so that one can puzzle over them.

So what is the essence of the examples? The triple (3, 2, 1).
In fact, (3, 2, 1) is something that can be represented by an array
on the computer. It can then represent any of the functions in
our list; it is our interpretation that makes it so. We make the
following observations

(1) Functions can be considered as points in some space.
If we were to organise this space as we did the real line
it would be possible for us to come up with algorithms
to hunt down a function in a systematic fashion.

(2) Right now we have one way of representing a function
on the computer using arrays as long as we interpret the
array entries properly. We can use the ability to combine

simple functions to represent a general function as a
linear combination of simple functions.

We not only want to represent functions on a computer, we
would also like to have them organised so that we can search
for one of interest in a systematic and efficient fashion. We
will review the process of organising vectors in vector algebra
so that we understand how it works with functions. You would
have done all of this before when you learnt vector algebra,
where the power of algebra is brought to bear on the geometry
of vectors.

Vector Algebra. Before we go about organising functions,
let us first recollect how we went about doing it for vectors. I
would recommend at this point that you refresh your memory
on vector algebra. We will cover only those parts required for
this discussion here.

The plane of this page is two-dimensional. We will restrict
ourselves to the plane of this page for now. Let us consider two
vectors in this plane ~A and ~B. We know from the graphical rep-

~V

Figure 2.3. The graphical representation of a vector as a
directed line segment. Notice that I have not drawn any
coordinates, or provided any other frame of reference other
than this page on which it is drawn.

resentation of vectors that these can be represented as directed
line segments as shown in Figure (2.3). We also know that the
scalar product or dot product between them is defined as

(2.25) ~A · ~B = | ~A| | ~B| cos θ
where, | ~A| is the magnitude of ~A and | ~B| is the magnitude of
~B. | ~A| and | ~B| would be the lengths of the line segments in the

graphical representation of the vectors ~A and ~B. θ is the angle
between the line segments also called the included angle. The
dot product of ~B with unit vector â is shown in Figure (2.4).
It shows us that the dot product is the projection of the vector

θ

~B

~a

| ~B| cos θ

Figure 2.4. Graphical representation of the dot product of
~B with unit vector â. |B| cos θ is the projection of ~B in the
direction of â.

~B onto the line parallel to the unit vector â. This definition
of the dot product allows us to transition from drawing vectors
to algebraic manipulation. In particular one can immediately
derive an expression for the magnitude of the vector as

(2.26) | ~A| =
√

~A · ~A

We can consequently define a unit vector along ~A as

(2.27) â =
~A

| ~A|
For two vectors whose magnitudes are not zero, it is now

clear that if ~Q · ~R = 0, then the two vectors are orthogonal to
each other.

(2.28) | ~Q| 6= 0, |~R| 6= 0, and ~Q · ~R = 0 ⇒ ~Q ⊥ ~R

Again, if ~A and ~B are two vectors on our page and they are
not parallel to each other (if they were parallel to each other
~A = α~B, or â = b̂), we can represent any other vector on the
page as a linear combination of these two vectors. The plane
containing the page is called a linear vector space or a “Banach
space”. Since any vector in the plane can be generated using
~A and ~B, they are said to span the plane. That is some other
vector ~P in the plane of the page can be written as

(2.29) ~P = α′ ~A+ β′ ~B

Better still, we could find the unit vectors â and b̂ and represent
~P as

(2.30) ~P = αâ+ βb̂

How do we find α and β? The dot product maybe useful in
answering this question. If we find the projection of ~P along â

and b̂, we would get

Pa = ~P · â = α + βb̂ · â(2.31)

Pb = ~P · b̂ = αâ · b̂+ β(2.32)

So, to find α and β we would need to solve this system of
equations. However, if â and b̂ were orthogonal to each other,
things would simplify and then ~P can be written as

(2.33) ~P = Paâ+ Pbb̂, when â ⊥ b̂

see Figure(2.5). This simplification that orthogonality gives is
so great that quite often we go out of our way seeking it. If

|~P | sin θ
θ

~P

~a

~b

|~P | cos θ

Figure 2.5. ~P is resolved into components along ~A and ~B
using the dot product and hence can be represented by these
components

~A and ~B started of by not being orthogonal to each other we
could do the following to obtain an orthogonal set ~Q, ~R or an
orthonormal set q̂, r̂.

(1) Set ~Q = ~A
(2) then q̂ = â is the corresponding unit vector

(3) ~B · q̂ is the projection of ~B onto q̂ and the vector com-

ponent is (~B · q̂)q̂.
(4) ~R = ~B−(~B · q̂)q̂ is vector that is orthogonal to ~Q. This

can be easily checked out by taking the dot product.
(5) if the problem was in three dimensions and a third vector

~C which is independent of ~A and ~B is available, we can
obtain a vector ~S which is orthogonal to ~Q and ~R as
~S = ~C − (~C · q̂)q̂− (~C · r̂)r̂, where r̂ is the unit vector
along ~R

~Q = ~A

r̂

~B · q̂

q̂

~R = ~B − { ~B · q̂} q̂

~B

Figure 2.6. The Gram-Schmidt process applied to two vec-

tors ~A and ~B.

The first few steps to obtain two orthogonal unit vectors is
shown in Figure 2.6. The next step to find the third vector
perpendicular to the first two is shown in Figure 2.7.

This is referred to as the Gram-Schmidt process and can be
carried out to as many dimensions as required. For example,

~r

~C

~q

~s

{~C · ~q }~q + {~C · ~r }~r

Figure 2.7. Having applied the Gram-Schmidt process to the

two vectors ~A and ~B as shown in Figure 2.6 we now include
~C.

if we have a set of vectors ~E1, ~E2, ..., ~En, which span4 an n-
dimensional space, we can then generate an orthonormal set as
follows.

(1) Set ~e1 =
~E1

| ~E1|
then ~E2 = ~E2 − (~E2 · ê1)ê1

(2) Set ê2 =
~E2
|~E2|

...

~Ei = ~Ei −
∑i−1

j=1(
~Ei · êj)êj

4Remember that this means that any vector in that n-dimensional space can be represented as a

linear combination of these vectors

(i) Set êi =
~Ei
|~Ei|

...

~En = ~En −
∑n−1

j=1 (
~En · êj)êj

(n) Set ên =
~En
|~En|

Thus, we generate n unit vectors that are orthogonal to one
another. This technique is illustrated here as it is quite easy to
appreciate. However, as has been pointed out before, it is liable
to accumulate roundoff errors with all those subtractions.

There are more robust techniques to achieve the same end
of obtaining an orthogonal set of vectors. We could perform
rotations[GL83]. For the sake of our discussion here, the Gram-
Schmidt process will suffice. It is clear that the process requires
not only the addition and subtraction of vectors, but also the
dot product. Once we had the dot product, we were able to
build a basis of vectors with which we could represent any other
vector in our space. With this in mind, we are now in a position
to extend this idea of vectors to functions. To this end, we look
for functions that will act as a basis with which we can represent
functions of interest to us.

Functions as a Basis: Box Functions

We will start off by looking at a very specific example. We
will define “box” functions and check out their properties. In

fact it seems, we will find an easy way to build a basis without
using the Gram-Schmidt process.

Box Functions. Consider the two functions

f(x) = 1.0 for x ∈ [0, 0.5], support of f(2.34)

= 0.0 for x ∈ (0.5, 1.]

and

g(x) = 0.0 for x ∈ [0, 0.5](2.35)

= 1.0 for x ∈ (0.5, 1], support of g

The support of a function is that part of its domain of definition
where it, the function, is non-zero. The two functions f and g

are shown in Figure (2.8).

Figure 2.8. Plots of f and g defined on the interval [0, 1].
These functions are orthogonal as the supports are non-
overlapping. We will call these functions “box functions”.

It should be clear to you that we can add/subtract these
functions to/from each other. That is, af+bg for two numbers a
and b makes sense and the operation can actually be performed.
As we noted earlier, the whole process works with the definition
of the dot product. If we define the dot product or the inner
product as

(2.36) 〈f, g〉 =
∫ 1

0

f(ξ)g(ξ)dξ

we can actually take dot products of functions defined on the
interval [0, 1]. Of course, here we assume that the integral
exists. We use the 〈, 〉 notation for the dot product since the ◦
is usually used for the composition of functions and the use of
“·” may create confusion.

In general, for functions f and g defined on the interval
[a, b], we can define the dot product as

(2.37) 〈f, g〉 =
∫ b

a

f(ξ)g(ξ)dξ.

Just as a matter of general knowledge, a linear vector space of
functions where the inner product is defined is called an inner
product space or a Hilbert space. You will notice that even here,
as with the earlier dot product, we have

(2.38) 〈f, g〉 = 〈g, f〉.
The definition of the inner product immediately allows us to

define the following terms. The “magnitude” of f (or the norm
of f) is given by

(2.39) ‖f‖ =
√

〈f, f〉 =
√
∫ 1

0

f(ξ)2dξ =

√
∫ 0.5

0

dξ =
√
0.5

We use ‖·‖ for the norm as | · | is already used for the absolute
value. Consequently, we have the norm (or magnitude) of a
function f defined on a general interval as

(2.40) ‖f‖ =
√

〈f, f〉 =
√
∫ b

a

f(ξ)2dξ.

Without any loss of generality we will look at examples on the
interval [0, 1].5

It is clear that 〈f, g〉 is zero. From our analogy with vector
algebra, we conclude that f is orthogonal to g. In fact, we can
generalise the definition of the angle between two vectors to the
“angle”, θ, between two of these functions as follows

(2.41) θ = cos−1

{ 〈f, g〉
‖f‖ ‖g‖

}

, ‖f‖ 6= 0, ‖g‖ 6= 0

In particular, as we had already noted if the θ = π/2, then the
functions are said to be orthogonal to each other. It is likely
that you have seen this earlier if you have already studied Fourier
series.

Look closely at the definitions of f and g and their graphs
in Figure 2.8. Do you see why they are orthogonal? f is non-
zero where g is zero and vice-versa. So, the support of f is
[0, 0.5] and the support of g is (0.5, 1.0]. Since the supports

5We can map any interval [a, b], b > a to the interval [0,1]

of the two functions do not overlap, the functions turn out to
be orthogonal to each other. We chose f as being the constant
1.0 in the interval (0, 0.5). Now we see that it could have been
almost any function as long its support is (0, 0.5). In a sense,
the intervals are orthogonal to each other. We can pick any
function on the interval; for now the constant function suffices.
It would be nice if f and g were orthonormal, meaning their
norms (or magnitudes) are one. In order to make f orthonormal,
we need to divide the function f by its norm, 1/

√
2. We can do

the same for g.
We can define the set of all functions generated by taking

linear combinations of f and g to be S2. In fact we could have
defined three functions f, g, and h with corresponding support
[0, 1/3], (1/3, 2/3] and (2/3, 1]. These form S3. We can even
add 3f+ 2g+ h to our list of expressions (2.13).

Assignment 2.5

(1) Given two arrays (3, 2, 1) and (5, 1, 4), perform the fol-
lowing operations
(a) (3ı̂+ 2̂+ k̂) + (5ı̂+ 1̂+ 4k̂) and (3̂f+ 2ĝ+ ĥ) +

(5̂f+ 1ĝ+ 4ĥ)

(b) (3ı̂+2̂+ k̂) ·(5ı̂+1̂+4k̂) and 〈(3̂f+2ĝ+ ĥ), (5̂f+

1ĝ+ 4ĥ)〉
where f̂, ĝ, and ĥ are the orthonormal basis functions
corresponding to the three functions f, g, and h sug-
gested above.

(2) On the interval [−1, 1] you are given a function f(x) =
x. Find |f(x)| and ‖f(x)‖.

(3) On the interval [0, 1], find the angle (see equation (2.41))
between sin x and cos x.

(4) On the interval [−1, 1], find the angle between the func-
tions f(x) = 1 and g(x) = x. How about if you con-
sidered the functions on the interval [0, 1].

(5) Here is a trick question for you. Is there any interval
on which the functions x and 1/x are orthogonal? Be
careful with 1/x and where it is defined.

From the assignment, we can see that for the operations of
regular vector algebra ı̂, ̂, and k̂ could well be f̂, ĝ, and ĥ. Great,
we are able use functions to do our regular vector algebra. How
would we use them to represent any given function? Let us
consider the simple function P (x) = x and see if we are able to

use our f̂, ĝ, and ĥ to represent it. The graph of this function is
a 45-degree line with a positive slope and passing through the
origin. Well, we will project the function onto f, g, and h to
find the components. We are saying we can represent P (x) as

(2.42) Pff+ Pgg+ Phh

where Pf would be the f-component of P . Likewise, the other
two are the g-component and the h-component, respectively.

Taking the scalar product with f we see that

〈P, f〉 = 〈Pff+ Pgg+ Phh, f〉
= 〈Pff, f〉+ 〈Pgg, f〉+ 〈Phh, f〉
= Pf〈f, f〉+ Pg〈g, f〉+ Ph〈h, f〉

= Pf‖f‖2
(2.43)

Therefore,

(2.44) Pf =
〈P, f〉
‖f‖2

With the new definition of f, g, and h we have ‖f‖, ‖g‖, and
‖h‖ as 1/

√
3. We have by definition

(2.45) 〈P, f〉 =
∫ 1

0

P fdx =

∫ 1/3

o

xdx =
x2

2

∣
∣
∣
∣
∣

1/3

0

=
1

18

giving us Pf = 1/6. Verify that Pg = 1/2 and that Ph = 5/6.
This results in the approximation to the straight line in our
“coordinate system” as shown in figure 2.10.
Clearly, the function and the representation are not identical.
This, we see, is different from our experience with vectors in
three spatial directions. We have here a situation very much
like roundoff error. There is a difference between the original
function and its representation. We should really write

(2.46) P (x) ≈ P̃ = Pff+ Pgg+ Phh

Can you make out that the area under the two curves is the
same? We will refer to this generalised roundoff error as repre-
sentation error. How do we get an estimation of this represen-
tation error? We need the distance between two points in our
function space. We can use the norm that gives us the mag-
nitude to define a metric which will give the distance between
two points as

(2.47) d(F,G) = ‖F −G‖ =
√

〈F −G,F −G〉,

1.0

1

3

2

3

Figure 2.9. Representing a line P (x) = x using f, g, and h.
Should we say “approximating” instead of “representing”?

F and G are points in the function space. This allows us to get
a measure for the error in our representation as
(2.48)

E(P̃ , P) = d(P̃ , P) =

√
{∫ b

a

(

P̃ (x)− P (x)
)2

dx

}

= d(P, P̃)

Let us now calculate E. From Figure 2.9, it is clear that the
difference between our function and its representation over the
interval (0, 1/3) is identical to that over the interval (1/3, 2/3)
and (2/3, 1). So E turns out to be

(2.49) E =

√

3

∫ 1/3

0

(
1

6
− x

)2

dx =
1

6
√
3

Let us step back now and see what we have managed to do so
far. The situation is not as bad as it looks. We have a method
now to represent functions on the computer and we have some
way by which we can measure how good is the representation.
The great part is that we can ask a natural follow up question:
How do we make our representation of this simple function bet-
ter? We will explore different answers to this question.

How about defining a whole bunch of functions Bh
i whose

support is (xi, xi+1), here h ≈ hi = xi+1−xi is used as a super-
script to remind us of the definition of the functions. Keeping
in mind our experience with using the three functions f, g, and
h as a basis, we define Bh

i as 1/
√
hi on its support and zero

otherwise.

(2.50) Bh
i =







1√
hi

x ∈ (xi, xi+1)

0 otherwise

The Bh
i are orthonormal. That is

(2.51) 〈Bh
i , B

h
j 〉 =

{
1 i = j
0 i 6= j

1.0

1

3

2

3
1.0

1

3

2

3

Figure 2.10. Representing a line P (x) = x using smaller
intervals and consequently, more box functions

We do not see any reason right now to use uneven intervals,
so for this discussion, we use N equal intervals on the inter-
val (0, 1). Figure 2.10 shows the same function. P (x) = x,
represented by a larger number of basis functions. We see the
function is indeed approximated more closely. However, there is
a fear that as we take more and more intervals the number of
jumps increases, though the magnitude of the individual jumps
can be seen to drop. Our approximation gets better in the sense
that it is closer to the function values. On the other hand, it
also gets “more” discontinuous in the sense that there are more
points at which the function jumps.

So, in general, the function P (x) can be written as

(2.52) P (x) ≈
N∑

i=1

aiB
h
i

The basis functions Bi defined so far are called box functions
as suggested by the graph of any one basis function. In all of
the equations above, we have used the equals sign to relate the
function to the representation on the right hand side. However,
we see that the right hand side is only an approximation of the
left hand side. Remember that h ≈ (xi+1−xi) really determines
the definition of the box functions. We can use the symbol P h

to indicate the representation on the given basis. So, we really
should write

(2.53) P h(x) =
N∑

i=1

aiB
h
i

where, Bh
i are defined on a grid of size h. The error at any

point in the representation is

(2.54) e(x) = P (x)− P h(x).

Finally, the total error on the interval is
(2.55)

E = ‖e‖ =
√

〈P − P h, P − P h〉 =
√
∫ b

a

(P (x)− P h(x))2dx

For the function f(x) = x, we can work out the general expres-
sion for the error E. It is given by

(2.56) E =
1

2N
√
3
=

h

2
√
3
.

The reader is encouraged to verify this. The point to note
is that we get closer and closer to the actual function as N
increases and this happens at the rate proportional to 1/N .
The approximation is said to converge to the original linearly.
The error goes to zero in a linear fashion. The error is said to
be of first order.

On the other hand, we can represent a constant function
ax0 exactly (this is a times x raised to the power zero). The
representation is said to accurate to the zeroth order, or simply
the representation is of zeroth order.

It is important to note that the first corresponds to the
rate of convergence and the second represents the order of the
polynomial that can be represented as exactly up to roundoff
error.

As promised, we have come up with a basis that allows us
to represent our functions in some fashion. However, the more

“accurate” is the representation, the jumpier it gets. Instead of
breaking up the region of interest into intervals, we could have
tried to use polynomials defined on the whole interval of interest.
These polynomials can then be used to represent functions on
the whole interval [0, 1].

Assignment 2.6

(1) I would suggest that you try to represent various func-
tions using the box functions on the interval (0, 1). Do
this with 10 intervals and 100 intervals.
(a) x2,
(b) sin x,
(c) tan x

(2) For the first two items repeat the process for the interval
(0, π).

(3) Find e(x) and E(P, P h) for all the approximations that
you have obtained in the first two problems. Is e(x)
orthogonal to P h(x)?

Polynomial on the Interval [0, 1]. We have already asked
in an earlier assignment whether the functions p0(x) = 1 and
p1(x) = x, both defined on the interval [0, 1], are orthogonal to
each other. That they are not, is clear from the fact that

(2.57) 〈p0, p1〉 =
∫ 1

0

xdx =
1

2

If we define

(2.58) pi(x) = xi, x ∈ [0, 1], i = 0, 1, 2, ...

you can verify that none of these are orthogonal to each other.
Why not try to apply the Gram-Schmidt process and see where
it takes us? For convenience we will write p instead of p(x).
We will indicate the orthonormal basis functions as p̂i.

Let us find the expression for a few of these p̂i. The first one
is easy. It turns out p̂0 = p0. In order to find the second one
we need the component of p1 along p̂0. We have already taken
the dot product in equation (2.57). Using this, the component
of p1 along p̂0 is given by the function h(x) = 1

2
. So, we get

(2.59) p̂1 =
p1 − h(x)

‖p1 − h(x)‖ = 2
√
3

(

x− 1

2

)

Along the same lines we have for the third basis function We
need to find the components of p2 along p̂0 and p̂1. We take
this out of p2 and normalise to get
(2.60)

p̂2 = 6
√
5

(

x2 − x+
1

6

)

= 6
√
5

(

x2 −
[

x− 1

2

]

− 1

3

)

You can try a few more of these and other problems from the
assignment.

Assignment 2.7

(1) Find p̂3 and p̂4.
(2) Repeat this process on the interval [−1, 1].
(3) Find p̂0 and p̂1 on the interval [1, 2].

(4) Repeat the last question with the arguments of the
functions taken as x − 1 instead of x. How about if
we calculate the other two basis functions p̂3 and p̂4?

If you have had a course in differential equations, you may
have recognised the polynomials that you got from problem
2 of assignment 2.7 as being the Legendre polynomials. We
can clearly apply this scheme to obtain a set of basis functions
on any interval [a, b], bearing in mind that as x increases all
polynomials of degree one and greater will eventually diverge.

It looks like we have something here that we can use. The
functions are smooth and right now look as though they are easy
to evaluate. The scheme of using these polynomial bases does
suffer from the same problem that Fourier series representation
does. That is, they lack a property that we call locality. Just say
you were trying to fit a function and there was some neighbour-
hoods where you were particular that the representation should
be good. You find coefficients and pick enough terms to fit one
neighbourhood and then find that at some other spot it is not
that good. Adding terms and tweaking may fix the second spot
but then change the representation in the first spot on which
we have already spent a lot of time. By locality, we mean that
if we were to change something (for example a coefficient) in
one location it is not going to affect our representation in any
other location.

On the other hand, if we think back to our box functions,
we see that we did indeed have the locality property. That is,
changes in coefficients of one basis function did not affect the

representation elsewhere. We will now try to merge these two
ideas in the following section.

Linear Approximations: Hat Functions

As we had noted earlier, the representation using box func-
tions gets jumpier as N gets larger. On the other hand, while
using polynomials on the whole interval of interest, though
smooth, we lose the locality property. We will now define a new
set of basis functions. Our aim is to get rid of all those jumps.
So, instead of using constant functions over the interval, we will
use linear functions. As long as we keep the functions defined
on different non-overlapping intervals, they will be orthogonal
to each other. However, we will compromise and define two
functions on the interval [xi, xi+1). This is so that we can get
a smoother representation of P (x).

Consider two functions shown in Figure 2.11). They are
defined as follows

(2.61) N1
i (x) =

{

1− αi(x) for x ∈ [xi, xi+1),

0 otherwise.

and

(2.62) N0
i+1(x) =

{

αi(x) for x ∈ [xi, xi+1),

0 otherwise.

where,

1.0

xi xi+1

1.0

xi xi+1

N1
i N0

i+1

Figure 2.11. Plots of two functions N1
i and N0

i+1 defined
on the interval [xi, xi+1)

(2.63) αi(x) =
x− xi
xi+1 − xi

The functions N1
i and N0

i+1 are shown in Figure 2.11. They are
first degree polynomials in the interval [xi, xi+1) and zero out-
side the interval. [xi, xi+1) is the support for the two functions
N1

i and N0
i+1.

What is the graph of the function

(2.64) f(x) = aN1
i + bN0

i+1?

This function is graphed in Figure 2.12. It is zero outside the
interval [xi, xi+1). Inside the interval it is the sum of two first
order polynomials and therefore is a first order polynomial. At
x = xi, f(xi) = a, and at x = xi+1, f(xi+1) = b. We can

1.0

xi xi+1

a

b f(x) = aN1
i + bN0

i+1

N0
i+1

N1
i

Figure 2.12. Plot of a straight line segment as represented
using N1

i and N0
i+1

conclude that it is a straight line from the point (xi, a) to the
point (xi+1, b). Are N1

i and N0
i+1 orthogonal to each other?

You can take the dot product and verify that

(2.65) 〈N1
i , N

0
i+1〉 =

xi+1 − xi
6

.

So, they are not orthogonal. On the other hand, with the two
functions we have managed to isolate the effects of f(xi) and
f(xi+1). What do I mean by this? For the given f(xi), if we
change f(xi+1), the coefficient of N0

i+1, b, alone would change.
Local changes are kept local. The sum N1

i +N0
i+1 = 1. So, for

any point x ∈ [xi, xi+1] the function value is a linear combina-
tion of f(xi) and f(xi+1) (you will hear the use of the expres-
sions “convex combination” or “weighted average” in place of
linear combination).

Though the two functions N1
j and N0

j+1 are not orthogonal
to each other, they are orthogonal to the functions defined on
other intervals that are non-overlapping and can be used to
represent straight line interpolants over their support. We can
now represent a function f(x) as piecewise linear segments as
follows

(2.66) fh(x) =
n∑

i=1

{
aiN

1
i + bi+1N

0
i+1

}

h is the size of a typical xi+1 − xi and is used as a superscript
here to distinguish the representation of the function from the
function. This representation is illustrated in the Figure 2.13.

xi xi+1

ai

N1
i−1

N0
i

N1
i

N0
i+1

bi

1.0

bi+1

ai−1

f(x) = ai−1N
1
i−1

+ biN
0
i + aiN

1
i + bi+1N

0
i+1

Figure 2.13. Two adjacent intervals on which a piecewise lin-
ear function is represented as being continuous at xi. Con-
tinuity at xi means ai = bi

Look carefully at this now. The function is continuous at
the point xi. The value of ai must be the same as that of bi.
In this case, we can expand the summation in equation (2.66)
to get
(2.67)

fh(x) = a1N
0
1+a1N

1
1+· · ·+aiN0

i +aiN
1
i +· · · =

n∑

i=1

ai
{
N0

i +N1
i

}

Please note, I am being a little hazy about what happens
at the left end of the interval and right end of the interval. We
will look at them later. Right now, what is the sum N0

i +N1
i ?

N0
i is supported by the interval [xi−1, xi), whereas N

1
i has

support [xi, xi+1). The sum is zero everywhere except in the
interval (xi−1, xi+1). This function, shown in Figure 2.14, is
called the hat function about the node i and we label it as
Ni and it has support (xi−1, xi+1). It is also called the tent

function.
Now, we can write

(2.68) fh(x) =
n∑

i=1

aiNi

where the Ni are hat functions that have unit value at the grid
point xi. Again, we should get a closer approximation to the
function if we increase the number of intervals. Functions repre-
sented by the hat function can be continuous, but the derivatives
at the nodal points will not be available. However, one could
take as the derivative at a node, the average of the slopes of
the two line segments coming into that node.

1.0

xi+1xi
xi−1

N0
i N1

i

Ni = N0
i +N1

i

Figure 2.14. The sum N0
i +N1

i gives us Ni which is called
the hat function. It also called the tent function

It is clear that we can represent polynomials of first order
exactly. Hat functions give us a first order representation. Con-
sequently, the error is of second order. By checking the error in
representation of a quadratic we can see that the rate of conver-
gence also happens to of second order. That is as h → 0, the
error goes to zero as h2. The error goes to zero in a quadratic
fashion.

Is there a difference between our approach to the box func-
tions and the hat function here? There is. In the definition
of the Bi of the box function, we made sure that they were
orthonormal. In the case of the hat functions, we have an inde-
pendent set that allows us to represent any function. We could,
but do not normalise them. The advantage with defining the
hat functions in this fashion is that linear interpolation of tabu-
lated data is very easy. The coefficients ak are the nodal values

taken directly from the tabulated data. No further processing
is required.

1.0

x = b
0 1 2 3 4

N0 N1 N2 N3 N4

i =
x = a

Figure 2.15. The interval [a, b] is split into four sub-
intervals. Functions on this interval can be approximated
by piecewise linear elements that are represented as a linear
combination of the hat functions shown in this figure. N0

and N4 in this case are truncated or half hat functions.

We need to deal with the first point and the last point care-
fully. Clearly, if i = 0 is the first nodal point, we will have an
N1

0 and no N0
0 . On the other hand if i = n is the last point. We

will have a N0
n and no N1

n. A set of five hat functions are shown
in Figure 2.15. Note that the first and last functions have only
one of the two limbs that make up the typical hat function.

Assignment 2.8

(1) Verify equation (2.65).

(2) Again, I would suggest that you try to represent various
functions using the hat functions on the interval (0, 1).
Do this with 10 intervals and 100 intervals. Here are
some sample functions that you can try.

(a) 3x+ 2, (b) x2, (c) sin x, (d) tan x
(3) For the first three items, repeat the process for the

interval (0, π).
(4) Given n grid point that are equally spaced on the inter-

val [a, b] so as to divide that interval into n− 1 subin-
tervals and n values of a function at those points do
the following.
(a) Fit hat functions and graph the function.
(b) Write a function interface, h(x), to your represen-

tation so that given an x in [a, b] the function will
return h(x) which is the value given by your repre-
sentation.

(c) Write a function mid(x) that return an array of
the function values at the midpoints of the n − 1
intervals as obtained from the hat function repre-
sentation

We set out to construct functions that were orthogonal to
each other. We really have not quite achieved that. This can
be seen easily by considering the dot product of any two hat
functions.

(2.69) 〈Ni(x), Nj(x)〉 =







0 j < i− 1

h

6
j = i− 1

2h

3
j = i

h

6
j = i+ 1

0 j > i+ 1,

where h = |xi−xj|. It is clear that we do not have orthogonality.
However, we do have something called compactness and locality.
A change in the coefficient of the ith hat function will result in
a change in the function f(x) only in the two adjacent intervals
containing the point xi. Remember, this property of keeping
the local change local is called locality! In the case of the box
functions, a change in a coefficient affects only one interval.

What is the value of the derivative of the function at any
point between nodes. Just taking the derivative of the repre-
sentation we see that

(2.70) f ′(x) =
n∑

i=1

aiN
′
i

where the prime indicates differentiation with respect to x. We
find that N ′

i is given by

(2.71) N ′
i(x) =







0 x < xi−1

1

h
x ∈ (xi−1, xi)

−1

h
x ∈ (xi, xi+1)

0 x > xi+1

1

h

− 1

h

xi−1 xi xi+1

Figure 2.16. The Haar function. It is the derivative of the
hat function defined on the interval (xi−1, xi+1)

Note that the derivative seems to be made up of two of our
box functions. This combination of two box functions is called
a Haar function and is shown in Figure 2.16. Given the rela-
tionship to the hat functions, we should use Haar functions in
preference to the box function. The derivative at some point
ξ ∈ (xi, xi+1) is written as

(2.72)

f ′(ξ) = aiN
′
i(ξ) + ai+1N

′
i+1(ξ) = −ai

h
+
ai+1

h
=
ai+1 − ai

h

The derivative is a constant on the interval (xi, xi+1) as is ex-
pected and can be evaluated based on the end points. We are
using the hat functions to approximate the actual function us-
ing piecewise linear interpolation and the actual derivative by a
piecewise constant function. An estimate of the derivative at
the nodal point xi can be obtained by taking averages from the
adjacent intervals as

(2.73) f ′(xi) =
1

2

{
ai+1 − ai

h
+
ai − ai−1

h

}

=
ai+1 − ai−1

2h

where, h = xi+1 − xi = xi − xi−1

So, what do we have? Here is a quick summary.

(1) We are able to get a continuous representation for a
continuous function. With the box function we could
only get a piecewise continuous representation.

(2) We are able to get approximations of derivatives which
we did not even consider with the box functions. The
derivative of the hat function suggests that we use the
Haar functions as a basis instead of the box function

anytime we are tempted to employ the box function.
This is especially true when we look at solving differen-
tial equations. After all, on integration the Haar func-
tion will give representations in terms of the hat func-
tion.

Assignment 2.9

In the previous assignment (assignment 2.8) you have used
hat functions to represent various functions. For those repre-
sentations do the following:

(1) Find the derivative of the representation.
(2) Plot this derivative and the actual derivative.
(3) What is the error in the representation of the functions?
(4) What is the error in the representation of the deriva-

tives?

Now that we have these hat functions that are very encour-
aging, let us ask the same question that led us from the box
functions to the hat functions. How good is the representa-
tion that we get? We have already seen that we can represent
the function F (x) = x, exactly. How about a quadratic? The
previous assignment gave us an answer to this. We can only rep-
resent polynomials of the first degree exactly. The hat function
gives us a first order representation of any function.

We will look at a different aspect of approximation now.
We have so far used polynomials and trigonometric functions
to test our ability to representation functions. We have seen
so far that the greater the number of intervals, the better the

approximation. We cannot take an infinite number of intervals.
So, we have this lingering question, how many is enough and
is there a minimum number that we have to take in order to
represent the essential features of a function?

Before we can answer this question, we have to understand
what we mean by “how many” and “essential features”. The
question “how many” we can tie with the length of the interval
on which the basis function is defined. So far, we have assumed
the basis functions are defined on intervals of equal length. The
question “how many” then translates to “how long”. Which
leads to the followup question: how long in comparison to what
length scale? This question gives us the first essential feature of
a function: an inherent length scale. The other essential feature
of interest could be maxima, minima, and zero crossings. We
can check out functions that are bounded and can be used to
characterise a length scale.

Let us look at what happens if we try to represent a function
like sinnx using hat functions. If we consider the function sin x
and employ 11 grid points to represent it on the interval [0, 2π],
we see that it does not look as great as using 101 grid points (see
assignment 2.8). The representation on ten intervals is shown
in Figure 2.17 We will try a whole series of these functions on
11 grid points: sinnx, n = 1, 2, 3, What do we observe?
We see that on ten intervals the essential features are captured.

• The extrema are not captured by the representation.
Since we are not sampling the sin x function at π/2
and 3π/2, that is, we do not have a grid point at π/2
and 3π/2, the extrema of sin x are not represented.
Clearly, this problem will exist for any function. If we

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

x)

Figure 2.17. sinx sampled at 11 grid points on the interval [0, 2π].

do not sample the function at its extrema, we will loose
that information.

• The zero crossings, the point at which a function tra-
verses the x-axis, are quite accurate. Try to generate
these graphs and verify that the zero crossings are good
(see first problem of assignment 2.10).

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

2x
)

Figure 2.18. sin 2x sampled at 11 grid points on the interval [0, 2π].

In Figure 2.18, we double the frequency of the sine wave.
Or, equivalently, we halve the wavelength. Again, we see that
the extremal values are not represented well. With some imag-
ination, the graph “looks” like the sine function. Again, verify
that the zero crossings are fine. So, with ten intervals we are
able to pickup the periodicity of the sine function along with the
zero crossings. The inherent anti-symmetry of the sine function
is also captured by the representation.

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

3x
)

Figure 2.19. sin 3x sampled at 11 grid points on the interval [0, 2π].

Now we check out what happens at three times the funda-
mental frequency. The wavelength is consequently one third the
original length. We have not lost the anti-symmetry in the rep-
resentation. Our peaks now are quite poor. The number of zero
crossings is still fine. The location of the zero crossings is now
a bit inaccurate. Through the zero crossings, our estimation of
the basic frequency of the signal is still accurate.

It would take some pretty good imagination to see the sine
wave in our representation for the sin 4x employing ten intervals
as shown in Figure 2.20. The extrema are off. The zero crossing
are off. The number of zero crossings is still correct.

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

4x
)

Figure 2.20. sin 4x sampled at 11 grid points on the interval [0, 2π].

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

5x
)

Figure 2.21. sin 5x sampled at 11 grid points on the interval [0, 2π].

The sin 5x curve represented on the ten intervals is shown in
Figure 2.21. In fact you could ask: What curve? Here, we have
clearly sampled the original function at exactly those points at
which it is zero. We have completely lost all information on
the extrema. This is a disaster as far as representing functions
goes.

We have seen a continuous degeneration in our representa-
tion as the wave number increased. We are using ten intervals
for our representation. At a wave number five, that is half of the

number of intervals that we are using, we have seen complete
degeneration. It has no amplitude information or frequency in-
formation that we can discern. We will press on and see what
happens as we further increase the wave number.

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

6x
)

Figure 2.22. sin 6x sampled at 11 grid points on the interval [0, 2π].

We see in Figure 2.22 the representation for sin 6x. Does it
look familiar. Go back and compare it to sin 4x. They are in
fact negatives of each other.

Consider the graph of the representation of sin 7x shown in
Figure 2.23 This is the negative of the representation of sin 3x.
We should be able to guess that the next representation shown
in Figure 2.24 would look like sin 2x. The most shocking of
them all is the fact that the representation of sin 9x on ten
intervals looks like the representation of − sin x on the same
ten intervals. The order of graphs is just reversed from the fifth
one. For ten intervals, wave number five is called the folding
frequency.

Just for the sake of completeness we plot the representation
of sin 10x on ten intervals in Figure 2.26. We are not surprised
by the graph that we get and expect this whole drama to repeat

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

7x
)

Figure 2.23. sin 7x sampled at 11 grid points on the interval [0, 2π].

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

8x
)

Figure 2.24. sin 8x sampled at 11 grid points on the interval [0, 2π].

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

9x
)

Figure 2.25. sin 9x sampled at 11 grid points on the interval [0, 2π].

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1
si

n(
10

x)

Figure 2.26. sin 10x sampled at 11 grid points on the inter-
val [0, 2π].

as we increase the wave number. We see that there is a highest
wave number that we can represent on this grid. I repeat:

A given grid on which we are going to

sample functions to obtain a representa-

tion of that function, has associated with

the grid a maximum wavenumber that can

be captured. The function representation

using hat functions will not be good at the

higher wave numbers.

Looking at all the figures that we have plotted it looks as
if sin 4x is the highest frequency sinusoid that can be captured
by our grid of 11 points. Wave number four corresponds to
a high frequency on a grid of 11 points. It corresponds to a
lower frequency on a grid of 101 and an even lower frequency
on a grid of 1001 and so on. The point being, when we say

high frequency or low frequency, we are talking about a given
frequency in comparison to the size of the grid.

Assignment 2.10

(1) Generate the graphs shown in figures 2.17– 2.26. Verify
amplitudes and zero crossings.

(2) What happens if we try the same thing on 10 grid
points? Is there a difference between an even number
of grid points and an odd number of grid points.

(3) Try out the following. Represent the sin 4x function
using 41, 81, 101, 161 grid points.

(4) Repeat the previous problem using sin 4x+ sin 40x.

If we want to represent a function fairly accurately, it should
be clear from the above, assignment 2.10, that if we have a priori
knowledge of the maximum frequency that we expect, we need
a grid frequency that is at least ten times larger and preferably
forty times larger. Figure 2.21 and Figure 2.26 should give
us pause. They tell us explicitly that there are an infinity of
functions that can take on the function values fi at the nodes
/ grid points xi. The hat function just presents us with a linear
candidate representation. In fact, if we use the sinc function
instead of the hat function we could have recovered a better
and smoother representation of the original sin 4x instead of
the graph shown in Figure 2.20. You can find out more about
this in Bracewell’s book on Fourier Transforms [Bra00]. The
use of the sinc function results in a smoother representation but
locality goes out the window since its support is the whole real

line. This possibility, however, tells us now that we need to seek
polynomials of higher order as basis functions.

Higher Order Approximations

We can define higher order functions spanning multiple in-
tervals that ensure that higher derivatives exist and are contin-
uous. Having used constants and linear interpolants so far, it is
clear that a quadratic should be next in line.

What kind of quadratics would we use that are akin to the
functions N0 and N1 that made up the hat functions? A linear
interpolant in two dimensions requires two points to be specified
and we had two corresponding functions to make up the hat
functions. In the case of the quadratic, we expect that we need
to provide three pieces of information. We would, therefore,
expect to have three functions to make up the final quadratic.
Three candidate functions are shown in Figure (2.27). Their
analytic expressions are

N0(x) = αi(x)
2(2.74)

N1(x) = 2αi(x)(1− αi(x))(2.75)

N2(x) = (1− αi(x))
2(2.76)

where, again

(2.77) αi(x) =
x− xi
xi+1 − xi

.

As in the case of the hat functions the sum of the three
functions on the interval is always one. So any quadratic on the
interval (xi, xi + 1) can be represented as a linear combination

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

N
(t

)

Figure 2.27. The three quadratic functions used to interpo-
late on a given interval.

of these three functions. Instead of dwelling further on the qua-
dratic representation let us, instead skip directly to a cubic. We
will follow the same process that we did with the hat function.
We consider an interval and ask ourselves what kind of cubics
would we use akin to N1

i and N0
i+1.

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

N
(t

)

Figure 2.28. The four cubic functions used to interpolate on
a given interval.

Their analytic expressions are

N0(x) = αi(x)
3(2.78)

N1(x) = 3αi(x)
2(1− αi(x))(2.79)

N2(x) = 3αi(x)(1− αi(x))
2(2.80)

N3(x) = (1− αi(x))
3(2.81)

where, again

(2.82) αi(x) =
x− xi
xi+1 − xi

.

Before we proceed any further, it should be noted again that
in all the four cases studied here,

(1) The sum of the functions in given interval add to one
(go ahead and check it out.)

(2) α takes values in [0, 1] and is kind of a non-dimensionalised
coordinate on any particular interval.

(3) the coefficients seem to correspond to those of a bino-
mial expansion of the same order. If you remember, it
was just a matter of combinatorics.

On the interval (xi, xi + 1) we can represent any function
as

(2.83) fh(x) =
3∑

i=0

ciN
i(x)

This comes in many flavours, meaning we can provide a variety
of data to determine the cubic. One obvious thing for us to do
is to specify the values of the function and its derivative at the
grid points. Please note that for the hat function we specified
only the function values. If we indicate the nodal values by a
and the derivatives by d we can work out what the coefficients
of each of our cubics given in equations (2.83). The coefficients

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1
si

n(
x)

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

x)

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

x)

Figure 2.29. Three cubic spline representations of sinx, the
function was sampled at 5, 6, 11 grid points along with
derivatives at those points. The constituent components
that add up to the final function are also shown. The spline
in each interval is sampled at ten points for the sake of
plotting the graphs.

are

c0 = a1 = f(xi)(2.84)

c1 =
d1h

3
+ a1, d1 = f ′(xi), h = xi+1 − xi(2.85)

c2 = −
(
d2h

3
− a2

)

, d2 = f ′(xi+1)(2.86)

c3 = a2 = f(xi+1)(2.87)

By inspection, we know that c0 = a1, where a1 = f(xi), the
value of the function on the left hand end of the interval. Also,
c3 = a2, where a2 = f(xi+1), which is the value of the function
on the right hand end of the interval. If you look at Figure
2.28, you will see that on the left end of the interval, all but
N0 are zero. At the right end of the interval, all but N3 are
zero. Now, when it comes to the derivatives at the left end
of the interval, N0 and N1 have non-zero derivatives. If we
differentiate equation (2.83) and set it equal to the derivative
d1 = f ′(xi), we get c1. In a similar fashion we get c2.

Figure 2.29 shows three plots of cubic spline representations
of the function f(x) = sin x. The first graph is generated by
using five grid points or four equal intervals with h ≈ 1.57.
The second graph is generated with five intervals, h ≈ 1.26.
Finally, the third one is with ten intervals and an interval size
h ≈ 0.628. The first and last graph in Figure 2.29 have a
grid point at x = π. The second graph does not. Using our
superscript notation fh(x) for the representation, we will refer
to each of the above representations as f 1.57, f 1.26, and f 0.628.
On paper, the three function representations may look equally
good. However, that just says that our visual acuity is not good

enough to make the judgement. We can estimate the error by
numerically evaluating the norms ‖f−fh‖ for the three different
h values. We get

‖f − f 1.57‖ = 0.01138,(2.88)

‖f − f 1.26‖ = 0.00474,(2.89)

‖f − f 0.628‖ = 0.000304.(2.90)

For the last two graphs, the interval size was halved and you can
check that the error dropped by a factor of about 15.6 ≈ 16.
This seems to tell us that on the interval the error goes as
h4. This is an empirical estimate. We could follow the same
process that we did with box functions and hat functions to
derive the analytic expression. Again, it must be emphasised
that the representation is accurate to a third degree polynomial
and as h → 0 the error goes to zero as h4. We will look at
another way to determine this relationship between the error
and the interval size h in the next section.

As was indicated earlier, there are quite a few ways by which
one can fit a cubic to a set of points. At the grid points one
could provide the function and the second derivative instead of
the function and the first derivative. Of course, the ultimate
solution would be to use only the function values at the grid
points to obtain the cubics.

Assignment 2.11

(1) Try out the cubic representation for various wave num-
bers and compare them to the examples shown using

hat functions. Compute the error in the representa-
tion. How does this error change as a function of wave
number?

All the function bases that we have seen so far, starting at
the linear hat function, ensure continuity at the nodal points.
The higher order bases offer continuity of higher derivatives too.
Is it possible to get a better representation for the function if
we did not seek to have this continuity? For the hat functions,
you can go back to equation (2.66) and see where we imposed
the continuity condition. We will now relax that requirement
and see what we get. Some analysis is done in section 7.1.

Linear Interpolants on an Interval. We want to go back
and see if we can use a function that is linear on an interval
as the mechanism of building a function basis. The only differ-
ence now is that we will not impose the requirement that the
representation be continuous at the grid points, even if the the
function being represented is continuous. We will go back to
equation (2.66) which is rewritten below

(2.91) fh(x) =
n∑

i=1

fh
i =

n∑

i=1

{
aiN

1
i + bi+1N

0
i+1

}
.

On the interval (xi, xi+1) we rewrite the equation as

(2.92) fh
i (x) =

{
aiN

1
i + bi+1N

0
i+1

}
.

We could ask the question what are the best values of ai and
bi+1 to approximate the given curve on the interval (xi, xi+1)?
By best we mean ‖f − fh

i ‖ in (xi, xi+1) is a minimum. This

question is beyond our scope right now, we will answer this
question in section 7.1.

We will end this section with one more question. We have
suggested that there could be different linear interpolants using
straight lines. We have suggested a little before that there are
numerous cubics that we can use to represent our function. We
have to ask: How do we know that we can always find this
representation? Let us see what we have. Consider the space
of functions defined on the interval [a, b] spanned by a linearly
independent basis bi(x). For any given function F (x) defined
on [a, b], as long as 〈F, bi〉 is defined for all i we can find the
components. To keep the discussion simple, let us assume that
the basis is orthonormal. Then the components of F , we have
seen, are ci and F can be written as

(2.93) F =
∑

i

cibi

Is the representation found by you going to be the same as
the one found by me? Let us say for the sake of argument
that you have gone through some process and obtained the
coefficients, Ci. Then, the function can be written by the two
representations as

(2.94) F =
∑

i

cibi =
∑

i

Cibi

This means that

(2.95)
∑

i

cibi −
∑

i

Cibi =
∑

i

(ci − Ci)bi = 0

Since, bi are linearly independent, ci must be equal to Ci. So
you see, we cannot get different answers unless one of us made a
mistake. Okay, we see that given an F (x), the representation we
get is unique. How about the other way around, are there more
than one function to have the same representation? Meaning,
given ci, is there more than one F . The answer is yes. We have
already seen this in section 2.9.

Assignment 2.12

Using Haar functions, hat functions, and cubic splines

(1) on the interval x ∈ [0, 1], use five nodes

{0.0, 0.25, 0.5, 0.75, 1.0}

and find the representations for the following functions
(a) f(x) = x2,
(b) g(x) = sin x,
(c) h(x) = ex.
(d) s(x) = tan x
Find the error in the representations.

(2) Double the number of intervals and check on the error.
If you now write a program to do this, you can check
for 4, 8, 16, 32 interval and see if you can discover a
trend.

(3) Try sinnx for various n. Plot the order of the repre-
sentation versus n and the number of intervals.

Local Error Estimates of Approximations

So far we have seen how numbers and functions can be rep-
resented / approximated on the computer. For numbers, we
defined the roundoff error as the difference between a number
and its representation. In the case of functions, we have de-
fined a dot product between functions. From this, we defined
a norm which we can use to measure of the difference between
functions over the whole domain of definition. So, if we have
a function and its representation, we can find the magnitude of
the difference between them. This gives us a global measure
of the difference between a function and its representation. At
each point in the domain of definition of the function, we could
get a local error by just subtracting the representation from the
original function. Is there a way we can get an a priori estimate
of the error? Put another way, can I say my error will be of
this order if I use this kind of a representation? If I have this
mechanism to estimate the error before I actually go about my
business (that is the “a priori” part), I can make a choice on the
basis functions, size of grid - meaning how many grid points,
distribution of grids and so on.

I repeat: We have an idea of how our computations using
these approximations of numbers affect our final result. We
need to look at how we approximate functions more clearly. We
have so far seen a few methods to approximate functions. We
will now try to figure out what exactly is the approximation.
That is, what is the error in the representation? We will look at
this problem of approximation of functions and related entities
anew.

Very often, we are interested in estimating and approximat-
ing things You say, wait a minute this is what we have been
talking about so far. Not quite. Until now, we have been look-
ing at a situation where we are given a function and we want to
represent it exactly, failing which, we will seek a good approx-
imation. Now consider a situation where we do not have the
function ahead of time. “How is this possible?” you ask. Well,
let’s look at the following example.

You are a student who has completed 140 credits of a
180 credit baccalaureate program. You have applied
to me for a job. You plan to take up the job after
the 180 credits are completed. If you provided me
with your CGPA (Cumulative Grade Point Average)
at the end of your 140 credits, how would I estimate
your CGPA at the end of your studies?

Let us state it as a mathematics question. If I knew that a
function f(x) had a value 1.0 at x = 0.0, then is there a way
I could estimate the value at x = 0.1? See, it is different from
having a function ahead of time and then finding an approxi-
mation to it. A year from now, I will have your actual CGPA.
However, I want to have an estimate now as to what it will be
and I want to get an idea of the error in that estimate.

So, if f(0) = 1 what is f(0.1)? Let us use Taylor’s series
and see what we get.

(2.96) f(0.1) = f(0) + 0.1f ′(0) +
0.12

2!
f ′′(0) + · · ·

︸ ︷︷ ︸

truncation error

′ and ′′ are used to indicate derivatives. If we were to assume the
value of f(0.1) to also be 1.0 then, we are essentially truncating
the Taylor’s series after the first term. This looks like we were
using our box functions to represent the function f . The terms
we have thrown away are identified as the truncation error. Very
often, you will find that the truncation error is “declared” using
the lowest “order” term in the truncation series. If we were to
rewrite the above example in general terms

first order truncation

(2.97) f(x+∆x) = f(x) + ∆x
1
f ′(x) +

∆x2

2!
f ′′(x) + · · ·

The approximation that f(x + ∆x) = f(x) is said to have a
truncation error that is first order, as the highest order term in
the truncated part of of the series representation is ∆xf ′(x).
In actuality, our representation is zeroth order accurate. The
representation only works accurately for a constant function,
which is a zeroth degree polynomial. It is an approximation
for all higher order functions. We would say we have a zeroth
order representation with a first order truncation error. Clearly,
for a given function, the error is small when ∆x is small. Of
course, if you know the derivative f ′(x) then you can get a
better estimate as

(2.98) f(x+∆x) ≈ f(x) + ∆xf ′(x).

The truncation error would be given by

second order truncation

(2.99)
∆x

2

2!
f ′′(x) + · · ·

and the new estimate is expected to be better than the zeroth
order estimate. This can used to represent up to a first order
polynomial accurately. The truncation error is second order.
This is as good as representing a function using hat functions
as the basis. The hat function is a first degree polynomial,
a polyline to be precise. So, the representation is only first
order. I repeat this for emphasis so that there is no confusion
between the order of the representation and the order of the
truncation term. As we go along, you will see that the order of
the truncation term will be source of confusion since it is tagged
by the exponent of the increment and not by the order of the
derivative occurring in the truncation term.

Of course, if you want an a priori estimate of the truncation
error, you need an estimate of the derivative involved in the
truncation error. How do we get an estimate of the derivative?
Look at equation (2.98) again. It gives us an idea of how to
proceed from here.

(1) The way it is written, it tells us that if we have the
function and the derivative at some point x, we can use
that derivative to step off by ∆x to get the function at
the new point x + ∆x. Now all we need to do is to
find a way to get the derivative at x +∆x and we are
in business. We can integrate in x to construct the
function. We would effectively be solving a differential
equation. We will see how this works at the end of this
chapter.

(2) If we have the value of the function at two points x and
x+∆x, we can get an estimate of the derivative.

We will start by looking at approximating the derivative.
Equation (2.97) gives us a way to get an estimate for the first
derivative and the associated error. First we rewrite it as

(2.100) ∆xf ′(x) = f(x+∆x)− f(x)− ∆x2

2!
f ′′(x)− · · ·

or

(2.101) f ′(x) =
f(x+∆x)− f(x)

∆x
− ∆x

2!
f ′′(x)− · · ·

︸ ︷︷ ︸

trucation error

We see that an estimate with a first order truncation error for
the derivative at the point x is

(2.102) f ′(x) =
f(x+∆x)− f(x)

∆x
.

The leading error term is in fact ∆x
2
f ′′(x). Go back to the sec-

tion of basis functions and you will see that we have a similar ex-
pression there (see equation (2.72)) for the estimate of the first
derivative using hat function representations for f . As would
be expected, and it can be verified from equation (2.101), the
derivative of a linear function is represented exactly. The repre-
sentation of the function f(x) is first order. The representation
of the derivative itself is constant on the interval (x, x + ∆x),
and as we say “zeroth order”. However, the expression for the
derivative in finite difference parlance is that it is first order or
that it is of the order of ∆x. This means the truncation error is
first order. For higher order polynomials, equation (2.102) gives
an approximation to the derivative. How good the estimate is,

actually, depends on the point at which this is considered the
derivative. We will see this in more detail in the next section.

If you already have the derivative at x, then equation (2.97)
again gives us a way to get an estimate for the derivative at
x+∆x.

(2.103) f ′(x+∆x) = f ′(x) + ∆xf ′′(x) + ...

Please note that if the derivative f ′(x) is known, then it is a
first order estimate of f ′(x+∆x) from Taylor’s series (2.103).
This estimate is with an error ∆xf ′′(x), which is twice the error
of (2.102).

To summarise, if we have a function at hand or know the
nature of the function (linear, quadratic, . . . , periodic, . . .),
we can decide on the representation and get an estimate of
the error in our representation. On the other hand, if we are
constructing the function as we go along we can still get an
idea as to how good or poor is our estimate. We also see that
though there are two different view points of representing the
derivative of a function, they are actually related. We can tie
the finite difference scheme with representing the function by,
say, a hat function.

As a side effect from our look for local error estimates, we
have found that we can estimate the first derivative of a func-
tion. We are interested in solving differential equations. Is there
a systematic way by which we can generate approximations to
derivatives? Can we again get an idea of the error involved and
the sources of the error?

Representing Derivatives - Finite Differences

In the previous section, we have seen that we can get a rep-
resentation for the first derivative of a function in terms of the
nodal value of the function. The representation of the function
was linear and the derivative was a constant on the interval of
interest. We will now start over and see if we can build up
estimates of various orders for derivatives of various order. For
example, we could be interested in first order, second order...,
estimates of derivatives. The derivatives of interest maybe first
derivatives, second derivatives and so on. Let’s see how we work
this. In many calculus texts, the derivative is defined as follows

df

dx
(x) = lim

∆x→0

f(x+∆x)− f(x)

∆x

In order to estimate the derivative at a point x, one can use
the values known at x and x + ∆x and eliminate the limiting
process. Thus, we have a finite difference approximation for the
first derivative.

(2.104)
df

dx
(x) ≈ f(x+∆x)− f(x)

∆x

The question that remains to be answered is “how good is
this estimate?”.
To this end, we turn to Taylor’s theorem.

(2.105)

f(x+∆x) = f(x) +
∆x

1!
f ′(x) +

∆x2

2!
f ′′(x) +

∆x3

3!
f ′′′(x)

+
∆x4

4!
f ′′′′(x) + · · ·

We see that by rearranging terms we can extract out the ap-
proximation (2.105) for the first derivative and write an equation
instead of the approximation. We get

(2.106) f ′(x) =
f(x+∆x)− f(x)

∆x
− ∆x

2!
f ′′(x) + · · ·

The error therefore is of the order of ∆x
2!

d2f
dx2 (x) As opposed

to starting with a classical definition of the derivative, we see
that using Taylor’s series to expand the function at a point
(x+∆x) about the point of interest we can isolate the derivative
of interest.

(2.107) fh′(x) =
f(x+∆x)− f(x)

∆x
.

The superscript h is to remind us that this is an approximation
with h ≡ ∆x. We will drop the use of the superscript unless
there is ambiguity. The expression on the right hand side of
equation (2.107) is called a forward difference and the trun-
cation error is referred to as first order. This approximation for
the first derivative of f is called a forward difference as the
approximation is at the point x and it involves the points x and
x + ∆x. We can proceed to derive a backward difference

formula in a similar fashion. Using the Taylor’s series expansion
for the function at x−∆x, that is

(2.108)

f(x−∆x) = f(x)− ∆x

1!
f ′(x) +

∆x2

2!
f ′′(x)− ∆x3

3!
f ′′′(x)

+
∆x4

4!
f ′′′′(x) + · · ·

we get the backward difference approximation for the first de-
rivative at x as

(2.109)

f ′(x) =
f(x)− f(x−∆x)

∆x
+

∆x

2!
f ′′(x)− ∆x2

3!
f ′′′(x)

+
∆x3

4!
f ′′′′(x) + · · ·

Again we see that the truncation error is first order. We will
now inspect the truncation error in the two approximations.

−∆x

2
f ′′(x), and +

∆x

2!
f ′′(x)

We see that they have the same magnitude but are opposite
in sign. Clearly, if we took an average of these approximations
to the first derivative, we would expect to reduce the truncation
error.

Tangent

f(x)

Forward Chord

Central Chord

p

Backward Chord Tangent

x
p+ 1p− 1

Figure 2.30. The forward difference approximation at the
point p uses the slope of the forward chord as an approx-
imation for the slope of the tangent at point p. Similarly,
the backward difference uses the backward chord and the
central difference employs the central chord. This is shown
for two different types of functions

(2.110) f ′(x) ≈ 1

2
{Forwardf ′(x) + Backwardf ′(x)}

=
1

2

{
f(x+∆x)− f(x)

∆x
+
f(x)− f(x−∆x)

∆x

}

=
f(x+∆x)− f(x−∆x)

2∆x

Well, that’s not bad, we have a centred difference ap-
proximation to the first derivative now. Can we derive it from
Taylor’s series? Lets take equation (2.105) and subtract equa-
tion (2.108) from it. We get

(2.111) f(x+∆x)−f(x−∆x) = 2
∆x

1!
f ′(x)+2

∆x3

3!
f ′′′(x) · · ·

So, the first derivative can be written as
(2.112)

f ′(x) =
f(x+∆x)− f(x−∆x)

2∆x
−∆x2

3!
f ′′′(x) · · ·

The truncation error in this case is second order.
We want to make the following observation: On a given

interval (a, b), the expression [f(b) − f(a)]/[b − a] is a first
order approximation of the derivatives f ′(a) and f ′(b); It is a
second order estimate of the derivative f ′([a + b]/2). If you
remember the mean value theorem, we know that

(2.113) θab =
f(b)− f(a)

b− a
= f ′(ξ), for some ξ ∈ [a, b]

This tells us that θab is the exact derivative of f(x) somewhere
in the interval [a, b]. We just do not know where. Given no
other information, our expression for the truncation error tells
us that θab has a first order truncation error as an approximation
to the derivative at the points x = a and x = b. It has a second
order truncation error as an approximation at the midpoint x =
(a + b)/2. The two examples in Figure 2.30 show the part of
the hat function used to approximate the function from which
the derivative is inferred. It is clear comparing the two functions
that even the centred difference can be “off” quite a bit.

∆x Forward Difference Backward Difference Central Difference

0.1 3.31 2.71 3.01

0.01 3.0301 2.9701 3.0001

0.001 3.003001 2.997001 3.000001

0.0001 3.00030001 2.99970001 3.00000001

Table 2.1. Estimation of derivative of f(x) = x3 using
forward differences, backward differences and central differ-
ences for a variety of parameter values

Consider a function like f(x) = x3. We can try to estimate
the derivative of this function at x = 1. using various values of
∆x and the three methods of estimation derived so far. A more

detailed assignment is given below. The results for this function
are given in the Table (2.1).

Study Table (2.1) carefully. Look at the error carefully. For
convenience the error is tabulated in Table (2.2). The error
term in the forward and backward differences are indicated as
the sum of two terms. These can be identified as the first
and second leading terms in the truncation error. The central

∆x Forward Difference Backward Difference Central Difference

0.1 0.3+ 0.01 -0.3+0.01 0.01

0.01 0.03+0.0001 -0.03+0.0001 0.0001

0.001 0.003+ 10−6 -0.003 + 10−6 10−6

0.0001 0.0003 + 10−8 -0.0003+10−8 10−8

Table 2.2. The errors in the estimation of derivative of
f(x) = x3 using forward differences, backward differences
and central differences for a variety of parameter values. For
the forward and backward differences we have indicated the
truncation error as the sum of the leading term and the
second term.

difference approximation on the other hand has only the higher
order term.

One can easily derive the expressions for higher order approx-
imations to the first derivative. These are tabulated in Table
2.3

Order type Difference formula truncation error

1 forward
fi+1 − fi

∆x
−∆x

2
f ′′(x)

1 backward
fi − fi−1

∆x

∆x

2
f ′′(x)

2 central
fi+1 − fi−1

2∆x
−∆x2

3!
f ′′′(x)

2 forward
−fi+2 + 4fi+1 − 3fi

2∆x

∆x2

3
f ′′′(x)

2 backward
3fi − 4fi−1 + fi−2

2∆x

∆x2

3
f ′′′(x)

3 backward
2fi+1 + 3fi − 6fi−1 + fi−2

6∆x
−∆x3

12
f iv(x)

4 central
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12∆x

∆x4

30
fv(x)

Table 2.3. Table of differences approximating the first deriv-
ative of a function f to different orders and the corresponding
truncation errors

We ask a simple question here. Can we make our∆x smaller
and smaller and get better and better answers? We have already
seen that there is a limit of machine-ǫ, below which we can’t
go. However, the machine-ǫ is quite small. In which case, why
do I need all these different orders? The simple debate that we
could have is whether a finer ∆x is better than taking a higher
order approximation for the derivative. Or, more greedily, take
a fine ∆x and a very high order scheme. We address the issue
of taking a very fine ∆x with an assignment.

Assignment 2.13

(1) Verify the formulas in Table 2.3.
(2) Use the function f(x) = 3x2+2x+1 and evaluate θab,

with a = 0 and b = 1. Compare θab with f
′(0), f ′(1),

and f ′(0.5).
(3) Here is a simple test that you can perform. Pick our

favourite function: sin(x). Estimate its derivative at
some value of x, say, x = π/4 using the different
schemes shown in Table 2.3. Compute the magnitude
of the relative error for different values of ∆x. The
relative error is defined as (computed derivative - ac-
tual derivative) / actual derivative. Plot the log|error|
versus log∆x. Things are not what we always expect.

(4) Verify and reproduce tables (2.1) and (2.2). Repeat the
process for other functions.

We see from Figures 2.31 and 2.32 that the plot of the error
is quite complex. Note that on the x-axis we have log∆x. This

1e-16 1e-12 1e-08 0.0001 1
log(DeltaX)

1e-16

1e-12

1e-08

0.0001

1

lo
g(

ab
s(

er
ro

r)
)

First Order Fwd Diff
First Order Bck Diff
2nd Order Cntr Diff
2nd Order Fwd Diff
2nd Order Bck Diff
3rd Order Bck Diff
4th Order cntrl Diff

Figure 2.31. Convergence plot: The magnitude of the rel-
ative error in the first derivative of sinx versus ∆x. The
derivative is evaluated at π/4 using finite differences of dif-
ferent orders and is plotted on a log-log plot

1e-16 1e-12 1e-08 0.0001 1
log(DeltaX)

1e-16

1e-12

1e-08

0.0001

1

lo
g(

ab
s(

er
ro

r)
)

First Order Fwd Diff
First Order Bck Diff
2nd Order Cntr Diff
2nd Order Fwd Diff
2nd Order Bck Diff
3rd Order Bck Diff
4th Order cntrl Diff

Figure 2.32. Convergence plot: The magnitude of the rela-
tive error versus ∆x in the first derivative of exp(x) eval-
uated at x = 1 using finite differences of different orders
plotted on a log-log plot

increases left to right, indicating a coarsening of the grid as we
go from left to right. Let us consider the first order error term
to understand the graph better.

(2.114) error =
fh′ − f ′

f ′

︸ ︷︷ ︸

calculated

=
∆x

2

f ′′

f ′

︸ ︷︷ ︸

truncation error

Taking the logarithm on both sides

(2.115) log|error| = log∆x+ c

where c is a constant. So, if we plot the absolute value of the
relative error of a first order scheme versus log∆x, we expect
to get a straight line with slope one. That is, we expect to
have linear convergence to the exact value as ∆x → 0. The
slope of the line for the higher order schemes will be the order
of the scheme. However, Figures 2.31 and 2.32 show something
unexpected. Starting at the right hand side of the graphs, we
see for large ∆x, the truncation error is quite large. As we move
to the left, the error for all the representations does indeed drop
as a straight line with the appropriate slope on this log-log plot.
However, there seems to be a barrier which we cannot cross.
This looks like a curve with negative slope one. I say “looks like”
because we also observe a certain randomness to this curve.

Look at the assignment 2.3. Remember that in the given
interval the roundoff error seems to show up in a random fash-
ion. Clearly, the roundoff error kicks in as the ∆x gets smaller
and smaller. This seems to be on a curve of slope negative one.
Why should it have a negative slope of magnitude one? The

answer is quite simple. We are looking at a plot of the relative
error. So, the slope is not one, it is actually the derivative of
the function f(x).

Now, to make sense of this, look at the numerator of the
first order forward difference expression: f(x+∆x)− f(x). In
the cases that we have plotted they have the same sign. As
∆x gets smaller, they share more and more significant digits.
These common digits are eliminated by the subtraction to leave
the difference. The smaller the ∆x, the greater the number of
significant digits that are lost.

Let us consider an example here. For the sake of the example
we restrict ourselves to a four digit mantissa. Say at x the value
of f is 0.1234 (the actual value is 0.12345678 and the value at
x+∆x1 is 0.0. In this contrived example, f(x+∆x1)−f(x) =
0.1234. We tabulate values for this made up example

What is the rate at which we lose them as ∆x decreases?
Can we estimate that? The answer is an emphatic “Yes!”.
Taylor’s series again tells us that

(2.116) f(x+∆x) = f(x) + ∆xf ′(x) + · · ·

Yes, f(x+∆x) approaches f(x) at the rate of f ′(x).
The truncation error decreases linearly with a slope which

is the order of the scheme and when it intersects the line with
negative unit slope, the roundoff error dominates the truncation
error. From the graph, we observe that higher order schemes
allow us to get more accurate representations of the first deriv-
ative, however, there is a tighter limit on the size of the ∆x one
can use.

∆x f(x+∆x) f(x+∆x)− f(x) ∆f

∆x1 0.0 -0.1234 -0.1234

∆x2 0.1 -0.0234 -0.02345

∆x3 0.12 -0.0034 -0.003456

∆x4 0.123 -0.0004 -0.0004567

Table 2.4. Demonstration of increased roundoff error as ∆x
gets smaller. The roundoff error would remain at the fifth
significant place if∆f were used in the derivative calculation
instead of f(x+∆x)− f(x). The underlined digits in ∆f
are lost due to fixed size mantissa

On the roundoff side, we see that once roundoff error equals
or exceeds the truncation error, for every bit in the representa-
tion of ∆x that we reduce, we lose one bit in the relative error
in the derivative. Which explains/is a conclusion drawn from
the unit negative slope of the error curve.

One lesson that you pick up from here is that for some
reason if you want to take very small increments, remember
you may be just accumulating round off error instead of getting
the accuracy that you wanted.

Another point that must be noted here is that if we were
to use the finite difference schemes to evaluate the first deriva-
tives of polynomials of various degrees, there is a degree of

the polynomial up to which a given scheme will give the exact
derivative.

A finite difference approximation for the first derivative will
give the exact value for all degrees of polynomial up to a maxi-
mum n for the given scheme. This scheme is called an nth order
scheme.

Now we look at obtaining approximations for higher order
derivatives. We try first to get second derivatives. We add
equations (2.105) and (2.108) to eliminate the first derivative
term and get an expression for the second derivative as

(2.117)

f ′′(x) =
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
−∆x2

12
f ′′′′(x)+ · · ·

Like we did earlier, we can get different linear combinations of
the function evaluated at grid points. So, we see that in general,
using the Taylor’s series one can approximate a derivative of
order n, written here as f 〈n〉, as

(2.118) f 〈n〉 =
∑

i

αifi, fi = f(xi)

where αi are the weights[Gea71]. For example the second de-
rivative at some point xi can be approximated by

(2.119) f
′′

i = α1f1 + α2f2 + α3f3

where

(2.120) α1 =
1

∆x2
, α2 = − 2

∆x2
, and α3 =

1

∆x2

We get these weights by adding equation (2.105) to equation
(2.108) You can try this out for yourself to check the derivation
and also to get the truncation error.

Again one can try to derive one-sided expressions to the
second derivative just as we did the first derivative. In a sim-
ilar fashion, we can find expressions for the third and fourth
derivatives. Here is a third derivative that is forward biased.
(2.121)

f
′′′

i =
fi+2 − 3fi+1 + 3fi − fi−1

∆x3
− ∆x

2
f (iv) − ∆x2

4
f (v) + ...

We say forward biased because it has the i − 1 grid point in-
cluded in the expression. If we derived an expression with the
fi+3 instead of fi−1 we would had a a pure forward difference
expression.

(2.122) f
〈iv〉
i =

fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2

∆x4

Equation (2.122) gives a centred approximation to the fourth
derivative. Note that in all of these expressions, we have as-
sumed ∆x is the same everywhere.

A final note on the expression “order”. Take equation (2.121).
The truncation error is given by

Convergence is first order
Determines order of rep-
resentation of f , in this
case order 3.

(2.123) −
∆x

2
f (iv)

As ∆x→ 0 this error goes to zero linearly or the representa-
tion has first order convergence. On the other hand the error is
zero for polynomial up to the order three, that is, the represen-
tation is third order which we infer from the fourth derivative
in the truncation error.

Assignment 2.14

Make sure you are able to derive the difference approxima-
tion to derivatives of various orders.

(1) Verify the truncation error for the third derivative given
in equation (2.121).

(2) Derive the expression for the fourth derivative given in
equation (2.122) and the associated truncation error in
the representation.

Differential Equations

Now that we know how to represent derivatives and func-
tions on the computer, we are in a position to represent differ-
ential equations. Let us consider a simple differential equation
of the form

(2.124)
du

dt
= f(u, t), u(0) = uo

In order to solve for a particular problem we need the boundary
conditions. In this case we may have u(0) = uo.

If we were to use a first order forward difference representa-
tion for the derivative at some time, tq, and evaluated the right
hand side at tq, we would get

(2.125)
(uq+1 − uq)

∆t
= f(uq, tq)

where, uq is short hand for u(tq).
So we have the “Finite Difference Representation” for equa-

tion (2.124), what do we do with it. We use it to build an
automaton on our computer to solve this problem over some
interval of time (0, T). We can rewrite equation (2.125) as

(2.126) uq+1 = uq +∆tf(uq, tq)

If we take t0 = 0, for a given ∆t we an find u1 as

(2.127) u1 = u0 +∆tf(u0, 0)

We already know that u0 = uo. Hence, we can find u1. We can
repeat this process to find u2, u3...uq...

This scheme is called the Euler’s explicit scheme. Using the
definition of the derivative we could also write equation (2.124)

(2.128) du = f(u, t)dt

or the integral form

(2.129)

∫ u(t)

u0

du = u(t)− u0 =

∫ t

t0
f(u(τ), τ)dτ

We could discretise the integral on the right hand side of equa-
tion (2.129) using the rectangle rule and we would get the au-
tomaton given by equations (2.125) and (2.126). The point
is that the same automaton may be obtained through different

paths and for historical reasons may have different names. The
objective is to recognise this and not get too hung up on names.
Instead of using the rectangle rule one could use the trapezoidal
rule and would simultaneously get the modified Euler’s scheme
which is given by two steps

u∗ = uq +∆tf(uq, tq)(2.130)

uq+1 = uq +∆tf(u∗, tq)(2.131)

The second equation can of course now be iterated to get the
iterated Euler’s scheme and so on.

You can try to use this to solve simple differential equations
for which you already know the solution. This way you can
compare your computed solution to the actual solution.

Assignment 2.15

Try solving the following equations:

(2.132)
du

dt
= t2, u(0) = 0

and

(2.133)
du

dt
= cos t, u(0) = 0

Try these with different values of the boundary conditions,
different values for ∆t. Solve them for t ∈ (0, 4π).

We are generating a sequence made up of uq in all our
schemes. You will see through out this book that we tend
to do this very often. In mathematics, we have studied the

properties of sequences. Mostly, we were interested in sequences
that converged. Here, we explicitly define a sequence to be
divergent if the magnitude of its terms eventually get larger
and larger. One way to guarantee that the sequence does not
diverge is to make sure that the gain in magnitude across any
given time step is not greater than one. This is a stronger
requirement than our definition, since we do not mind something
that grows and decays as long as it does not diverge. Anyway,
this is conventionally what is done and we will be happy if

(2.134)

∣
∣
∣
∣

uq+1

uq

∣
∣
∣
∣
< 1

We are interested in sequences that do not diverge.
There are many books that present this material on finite

differences in a variety of ways. An early reference is a book by
Boole [Boo60].

Let us now pay attention to one critical component of this
whole process. The intervals on which our functions are repre-
sented.

Grid Generation I

It is clear from our attempts at representing functions, the
intervals on which our basis functions are defined are very im-
portant. If you look closely at the definitions of the box function
and the hat function, you will see that there is no real constraint
on the intervals on which they are defined to be equal intervals.
Which means that, as needed, one could take unequal intervals.

This gives rise to the question, for a given function to be rep-
resented using hat functions, is there an optimal distribution of
intervals?

The intervals are easily defined by the end points. The end
points of our intervals will be called “nodes”, “grids”, “grid
points”. We can ask the following question. If we were approx-
imating a function on some domain, how many intervals does
it require? That simply translates to: How many grid points
do we require? Where should the grid points be located? The
process of answering this question by creating the set of points
that we use to represent functions, derivatives and differential
equations is called grid generation. We will take a brief peek
at it now. We will take a more detailed look at grid generation
later in the book.

The easiest way to generate grids is to get a uniform distri-
bution of grid points. Say you had ten intervals with which you
wanted to represent the function sin(x) on the interval [0, π].
This means you have eleven grid points. Using Haar functions
what do you get?

One thing we can do is to redistribute the grid so that there
are less grid points where the function does not vary much (the
derivative is small) and more grid points where the function
varies rapidly (the derivative is large)

We can now ask the question: Is there an optimal distri-
bution of the grid points? What do we mean by optimal? We
want to use eleven grid points and get the best representation
of sin x. So, if hi(x) are the Haar functions from (xi, xi+1) then
we want to find the {xi} such that

(2.135) E = ||e({xi})|| =

√
√
√
√

∫ π

0

{

sin x−
10∑

i=0

aihi(x)

}2

dx

is a minimum. Remembering that x0 and x10 in this example are
fixed, we can differentiate the equation with respect to xi, i =
1, . . . , 9 and set it to zero. If we solve the resulting system of
equations we should get a good distribution of the nine interior
points. This is easy to describe in this fashion. It is quite
difficult to do. Remember that ai = 〈hi, sin x〉. We will see
problems like this in a later section 7. The sub-discipline is
called adaptive grid generation. The name is an indication that
the grid adapts to the function that we are trying capture.

Can we do something with whatever we have learnt so far?
We can look at equation (2.135) and see what it signifies. It
is an accounting of the total error in the interval of our rep-
resentation. We have derived expressions for the local error in
terms of the truncation error. So, we can find the total error
by adding up the magnitudes of the truncation errors. We now
have an estimate of E. If we were using box functions E can
be written as

(2.136) E =
∑

i

|cos(xi)∆xi| , ∆xi = (xi+1 − xi)

This E is the total error over the whole domain. Given that we
have N intervals with which we are approximating our function
the average error is E/N .

Very often, we do not have the solution at hand to get the
grid. One obvious thing to do is to get an approximate solution

on an initial grid and then adapt the grid to this solution. We
can then proceed to get a solution on the new grid and repeat
the process. This is not always an easy proposition. If we have
an idea of the solution we can cluster the grids ahead of time.

If for example we know that the function we are represent-
ing has a large derivative at x0 in the interval [x0, x1], we can
generate a grid to accommodate this behaviour. The easiest
thing to do is geometric clustering or stretching. If we knew a
solution varied very rapidly near the origin we could take fine
grids near the origin, x0 = 0, and stretch them out as we move
away from the origin. For example, We could take the first in-
crement to be ∆xo. Then, if we propose to stretch the grid
using a geometric scheme with a stretching factor α we could
then take the next increment to be ∆x1 = α∆xo. In general
we would have ∆xi+1 = α∆xi

We have some idea as to how to take the description of a
function u given by a differential equation and obtain a repre-
sentation for u on the computer.

Important ideas from this chapter

• We approximate the real line on the computer using
a “finite” number of points chosen from the real line:
each point represents an interval around it.

• Arrays are stored in a fashion on the computer so as
to make linear sequential access to array elements fast.
The way they are indexed by the programmer can have
a major influence on the performance of program on
that computer.

• We are hunting for functions.

• We need to organise these functions in a manner that
the hunt is made easy.

• To this end we treat functions as existing in function
spaces[Moo85].

• If the supports of functions do not overlap, they will be
orthogonal to each other.

• One can find many classes of basis functions to repre-
sent the function of interest.

• The highest frequency that one can represent on a given
grid is determined by the size of that grid and the poly-
nomial order of the representation. If we know that we
want to use a linear representation a function with a
frequency of the order of n then our grid needs to be
at least 10n and preferably 40n.

• There are many ways by which functions and derivatives
can be approximated on the computer.

• On a given interval (a, b), the expression [f(b)−f(a)]/[b−
a] is a first order approximation of the derivatives f ′(a)
and f ′(b); It is a second order estimate of the derivative
f ′([a+ b]/2).

• The increments in the finite difference approximation
of the derivative can’t be made very small. There is a
point beyond which roundoff error starts to grow.

• A scheme for representation of a function has an “or-
der” of representation and an “order” of convergence.

• Approximation to the derivatives can be used to approx-
imate differential equations. These representations of
the differential equation can be used, very often, to get
an approximate solution to the differential equation.

Simple Problems

We have enough machinery in place to tackle a few simple
and classical problems. We are going to do the following here.
We will take the naive approach and try some obvious schemes
for solving simple equations. We will try to develop the analysis
tools that help us to ask and answer questions such as

One: Is the proposed technique going to produce any-
thing at all?

Two: Are we generating garbage or a solution?
Three: How does the technique behave?
Four: Can we do better?

These questions help us improve on the simple schemes. Some
of the improvements we will study in this chapter. Others we
will study in latter chapters.

We propose to look at equations which are prototypes for a
class of problems. These are: Laplace’s equation which happens
to the prototypical elliptic equation, the heat equation, which
will represent the parabolic problems, and finally the wave equa-
tion for the hyperbolic problems. We will see more about the
nature of these problems and shed some light on the classifica-
tion at the end of the chapter.

Laplace’s Equation

Laplace’s equation is a good place to start our discussions.
It is easy to conjure simple problems that it describes. The

corresponding program is easy to write and is well behaved. As
we shall see, it is amenable to the simple-minded analysis that
is done in this book [ZT86], [Ame77], [Arn04], [Sne64].

Let’s first place Laplace’s equation in a physical context.
Consider the irrotational flow of a fluid. We will assume for the
purpose of this discussion that the flow is two-dimensional and
incompressible. The equations governing the motion of fluid are
derived in section 5.2. The law of conservation of mass can be
stated as

(3.1)
∂u

∂x
+
∂v

∂y
= 0

u and v are the velocity components along x and y respectively.
As the flow is irrotational, we can define a potential function
φ(x, y) such that

(3.2) u =
∂φ

∂x
, v =

∂φ

∂y

Substituting back into the equation (3.1) we get the potential
equation or Laplace’s equation.

Laplace’s equation is the prototype equation for an elliptic
problem [ZT86]. It should be pointed out here that the equa-
tion is referred as Laplace’s equation or the Laplace equation.
In two dimensions, using the Cartesian coordinate system, the
equation is

(3.3) ∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0

Since the flow is irrotational and two-dimensional, we also
know from the definition of vorticity that

(3.4) ωz =
∂v

∂x
− ∂u

∂y
= 0

The stream function is defined such that

(3.5) u =
∂ψ

∂y
, v = −∂ψ

∂x

If this is substituted into equation (3.1), we see that the stream
function generates an associated velocity field (equation (3.5))
that automatically satisfies the equation governing conservation
of mass. In turn, if we were to substitute from equation (3.5)
into equation (3.4), we see that the stream function also satisfies
Laplace’s equation.

(3.6) ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

In the discussions that follow, one could use either the stream
function or the potential function. In using these equations to
describe the solution to a problem, the boundary conditions will
depend on whether the stream function is being used or the
potential function is being used.

Consider the following problem.
We are interested in a unit square in the first quadrant as

shown in Figure 3.1. Laplace’s equation governs the solution
within the unit square as indicated in the figure. It would be
convenient at this point if we had a problem for which we had a
closed-form solution. Then, we could act as though we did not

xu(x, 0) = x2

u
(0
,y
)
=

−
y
2

u
(1
,y
)
=

1
−
y
2

∇2u = 0

u(x, 1) = x2 − 1

y

Figure 3.1. Problem definition with Laplace’s equation on
a unit square

have the solution and proceed to solve the problem and check
the answer that we get. To this end, the boundary conditions
are chosen so that the solution is φ(x, y) = x2 − y2 (verify
that this is a solution). So, we have the problem definition as
shown in Figure 3.1. Well, what does this mean? We want to
find a φ(x, y), that satisfies equation (3.3) everywhere inside
the square and satisfies the boundary conditions given. Bound-
ary conditions where the dependent variable, in this case φ, is
specified are called Dirichlet boundary conditions.

Remember that by “φ satisfies the equation” we mean that
we can substitute it into the equation and find that we do in-
deed have an equation: the left hand side equals the right hand

side. In order to substitute φ into the equation, we need to be
able to evaluate the second derivatives with respect to x and y.
So, we are already searching for φ within a class of functions
that have second derivatives everywhere inside the unit square.
You may have studied techniques to solve this problem analyt-
ically. Here, we are going to try and get an approximation for
φ. This means that we will have approximations for its second
derivatives. Consequently, we will have an approximation for
Laplace’s equation. This then is our plan of action.

Given three points that are ∆x apart, we have already seen
that the second derivative of f(x) can be approximated at the
middle point in terms of its neighbours as

(3.7)
∂2f

∂x2
=
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2

We have deliberately used partial derivatives since f could
be a function of y. Since the idea is to use this finite difference
approximation for the second derivatives in both x and y, we
will consider five points as indicated in Figure 3.2 to estimate
these derivatives.

We can then approximate both the x–derivative and the y–
derivative at the central point (x, y). So, Laplace’s equation
(3.3) can be rewritten at the point (x, y) as

x, y

x, y +∆y

x, y −∆y

x−∆x, y

x+∆x, y

Figure 3.2. Points used to approximate Laplace’s equation
in two spatial dimensions.

∂2φ

∂x2
+
∂2φ

∂y2
≈

φ(x+∆x, y)− 2φ(x, y) + φ(x−∆x, y)

∆x2
+

φ(x, y +∆y)− 2φ(x, y) + φ(x, y −∆y)

∆y2
= 0

(3.8)

We can solve for φ(x, y) in terms of the φ at the neighbouring
points to get

(3.9)

φ(x, y) =
∆x2∆y2

2(∆x2 +∆y2)

{
φ(x+∆x, y) + φ(x−∆x, y)

∆x2

+
φ(x, y +∆y) + φ(x, y −∆y)

∆y2

}

What are we actually doing when we solve this equation?
For clarity, we have so far taken ∆x and ∆y to be constant.
To get a better picture, we will set ∆x = ∆y = h as shown in
Figure 3.3. In this case, equation (3.9) reduces to

(3.10)

φ(x, y) =
φ(x+ h, y) + φ(x− h, y) + φ(x, y + h) + φ(x, y − h)

4

x, y

x, y − h

x+ h, y

x, y + h

x− h, y

Figure 3.3. Points employed in approximating Laplace’s
equation, ∆x = ∆y = h

Referring to Figure 3.3, we see that the value of φ at the
point (x, y) is in fact the average of the values from the neigh-
bouring points. We can use this to generate a solution to the
problem numerically.

We know how to get an approximation of φ at a point based
on four neighbours. Clearly, we cannot compute φ at every point
in the unit square using equation (3.10). So, we represent the
unit square with a discrete set of points. We refer to these points
as grid points. We will now try to approximate the differential
equation on these points. We can identify a grid point by its
location. However, it is easier for us to index them in some
fashion. Figure 3.4 shows one such arrangement. We use two
indices to identify a grid point. i is an index along the x direction
and j is an index along the y direction. The coordinates of the
grid point (i, j) in general are (xij, yij). Since we constrained
∆x = ∆y = h, and the mesh is Cartesian the (i, j) grid point
in fact has coordinates (xi, yj). The φ approximation at that
point would be φij.

If we focus again on one grid point (i, j), we get

(3.11) φij =
φi−1j + φi+1j + φij−1 + φij+1

4

or to put it in a programming style

(3.12) φij = 0.25 ∗ {φi−1j + φi+1j + φij−1 + φij+1}
The φij on the boundary grid points are determined using the
given boundary conditions. At the grid points in the interior we
use equation (3.11). So, we do the averaging only at the inter-
nal grid points. Taking the average at one grid point is called
relaxing the grid point. In order to start taking the averages

i

6, 05, 04, 03, 02, 01, 00, 0

0, 1

0, 2

0, 3

0, 4

0, 5

0, 6

j

1, 1 2, 1

1, 2

1, 3

...

· · ·

i, j

Figure 3.4. Sample grid to represent and solve Laplace’s equation

we need to assume some initial value. We could, for example,
assume all the interior φ values to be zero. That is, φ0

ij = 0
for the interior values. What does the superscript 0 mean? We
propose to calculate a new set of values φ1

ij by averaging the

φ0
ijs. This is called one iteration or one relaxation sweep.

Of course, we only iterate on the interior points. By this, we
mean that we do not change the boundary values of φ1

ij. The

φ1
ij is, hopefully, a better approximation to φ than is φ0

ij. We

can then iterate one more time to get φ2
ij. φ

0
ij, φ

1
ij, φ

2
ij ...φ

q
ij ...

are called iterates or candidate solutions. We can now write
an iterative version of equation (3.10) as

(3.13) φq+1
ij = 0.25×

{
φq
i−1j + φq

i+1j + φq
ij−1 + φq

ij+1

}

where q is the current iteration level at which we have an ap-
proximation and q + 1 corresponds to our new and improved
approximation. This is the Jacobi iteration scheme [GL83].
It is also called a simultaneous relaxation scheme, since the
averaging can be done in parallel. When do we decide to quit
iterating? For what value of q can we stop taking averages? In
order to answer this critical question, we need to take a good
look at what we are doing? We seem to be generating a se-
quence of φijs. So we are really asking the question: when does
the sequence φn converge? We could go with the answer: when
||φq+1−φq|| < ǫc. This is called the convergence criterion for
the iterative scheme. How do we evaluate it? One way would
be

(3.14) ‖φq+1 − φq‖ =

√
∑

i,j

(
φq+1
ij − φq

ij

)2
< ǫc

where ǫc is specified by us. Let us write the steps involved in
this discussion so that you can actually code it.

One: At any grid point (i, j) we can define a φq
i,j. The q

superscript tells us that it is the qth iterate or approxi-
mation.

Two: In our problem the φq
i,j is given on the boundaries.

This is called a Dirichlet boundary condition.

Three: In order to use equation (3.13), we need φ0
i,j in

the interior. We will assume this value, for example,
φ0
i,j = 0.

Four: We can now repeatedly apply equation (3.13) to
find the “next” and hopefully better approximation to
φi,j .

Five: We stop iterating when the condition given by equa-
tion (3.14) is satisfied. When this occurs, we say our
code has converged.

Assignment 3.1

(1) Write a program to solve Laplace’s equation on a unit
square, see Figure 3.1. Use the boundary conditions
provided there.

(2) You can iterate away, till convergence.
(3) Try solving the problem with grids of various sizes: [11×

11], [21× 21], [41× 41], [101× 101] . . . [m×m].
(4) Pick three different convergence criteria: ǫc = 10−2, 10−4and

Call c = ||φq+1−φq|| the change in solution. For a given
grid [m × m], define N(m, ǫc) as the last value of q,
when the code has converged. That is c < ǫc.
(a) Plot c versus q.
(b) For each m, plot N versus ǫc.
(c) For each ǫc, plot N versus m.
(d) For each ǫc, plot N versus (m− 2)2.

You may have already written a solver for Laplace’s equation
using the scheme we just developed. The hope is that you have

Start numbering here

1 + n 2n

i i+ 1i− 1

i− n

i+ n

2 + n

1 · · ·2 n

1 + 2n

...

· · ·

(n
+

2
)(
m

+
2
)

(n+ 1)(m+ 1) + 2(n+ 1)(m+ 2) + 2

nm+ 1 n(m+ 1) + 2

Figure 3.5. A more convenient numbering of the grid points.
It keeps the interior points together. The boundary points
are kept together.

been playing around with it trying to learn as much as possible
from that code. In the assignment, I have suggested somethings
that you can try out. What I mean by playing around with the

code is that you try out a variety of boundary conditions, grid
sizes, convergence criteria, the order in which the points are
picked for iteration. How about if we pick points at random
and take averages. Try out things like this and other things
that may strike you as you go along. These are a few examples
to start you off “playing around” with your code. I will make
other suggestions as we go along.

Playing around with the code also means paying attention
to what you are doing and coming up with something a little
different, maybe better. If you look at the way your program
proceeds, we see that we are sweeping our problem domain as
given in Figure 3.5, left to right, bottom to top. Meaning, if
we are relaxing any grid point (i, j), the grid point to the left,
(i − 1, j), and the one below it, (i, j − 1), have already been
averaged in the current iteration or sweep. We have a choice of
using the old values for the relaxation procedure we are about
to perform or the latest value. If we use the latest values, we
could rewrite our iteration equation as

(3.15) φq+1
ij =

φq+1
i−1j + φq

i+1j + φq+1
ij−1 + φq

ij+1

4

This is the Gauss-Seidel iterative scheme [HY81],[GL83].
Since the averaging can only be done one after the other, this
is also called successive relaxation. Look closely at the two
equations (3.13) and (3.15). The difference is that in equation
(3.15) we are using the latest information as and when it is
available. Does the code run faster? Run the two and find out.

Assignment 3.2

(1) Repeat assignment 3.1 using the Gauss-Seidel scheme.
(2) Plot c versus q for both Jacobi and Gauss-Seidel

schemes on a semi-log scale. (c is plotted on the log-
scale). Compare the slopes of the two graphs.

(3) Find the above slopes for various grid sizes and tabulate.
How does the slope depend on the size of the grid? Is
the relationship between the slopes corresponding to
the two schemes independent of the grid size?

(4) What about the CPU times or the run times for the
two schemes. Plot time versus number of interior grid
points. If you fit a straight line to this curve where does
it intersect the axis for zero grids?

(5) Compute the time per iteration per grid point for the
various grid sizes. Plot it versus grid size to see if goes
to an asymptote with number of grid points increasing.

A suggestion that I had made as an example of playing
around was to pick grid points at random and take averages.
The whole point is that we normally do not pick points at ran-
dom, we pick them up in a “natural” numerical sequence. Is
there a more convenient way to number these grid points? It
all depends on what we want. The way we have indexed grid
points so far seemed pretty convenient and natural. How about
the one shown in Figure 3.5? One could number all the interior
points in a sequential order with one index say i as shown in

Figure 3.5. The boundary points can be numbered separately
after that. This has done two things for us.

(1) It has allowed us to represent φ using a one-dimensional
array instead of a two-dimensional array.

(2) It has clustered all the interior points together at the
beginning (or top) of the array and all the boundary
conditions at the end (or bottom) of the array.

Incidentally, if you do not care to have all the interior points
clustered you could number the grid points serially starting at
the bottom left hand corner. However, we will stick to the
version shown in Figure 3.5.

Referring still to Figure 3.5, an interior grid point with index
i, has a left neighbour i− 1, a right neighbour i+ 1, a bottom
neighbour i−n and a top neighbour i+n. Here n is called the
stride. We have to be careful now. What are the neighbours
of the first interior grid point? It has neighbouring points from
the boundary. At a generic interior point, the approximation for
Laplace’s equation becomes

(3.16) φi =
φi−1 + φi+1 + φi−n + φi+n

4
We can then proceed to iterate again and solve the problem.

Nothing should change in the solution as all we have done is
change the symbols. Redo the assignment and make sure there
is no change to your solution and any of the other parameters
that you have checked (like convergence plots and so on).

This renumbering of the grid points gives us another way of
looking at this problem and solving it. Let us first consider the
way we have numbered the grid points. Take another look at

this equation for a unit square at the origin. n = m since the
∆x = ∆y. In reality, we have n2 unknown interior points and
n2 equations. We are solving the equations here using either
Gauss-Seidel or Jacobi schemes. So, the equation (3.16) should
be written as part of a system of equations. The ith equation
of this system of equations can be written as

(3.17) φi−n + φi−1 − 4φi + φi+1 + φi+n = 0

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

23

24

25

26

272829303132

33

34

35

36

2221

Figure 3.6. The numbering for a [6× 6] grid

We will write the full system for a [6×6] grid with 16 interior
points as shown in Figure 3.6. We have 16 unknowns and the
corresponding 16 equations. These equations can be written as

(3.18) Ax = b

where x is vector made up of the φi on the interior grid points.
This equation is written out in full detail in equation (3.19).

(3.19)

























































−4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 −4 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 −4 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 −4 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 −4 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 −4 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 −4 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 −4 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 −4 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 −4 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 −4 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −4







































































































































































φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

φ16















































































































=















































































































−φ36 − φ18

−φ19

−φ20

−φ21 − φ23

−φ35

0
0

−φ24

−φ34

0
0

−φ25

−φ33 − φ31

−φ30

−φ29

−φ28 − φ26















































































































From this it is clear that for an arbitrary grid with [n ×m]
interior grid points the stride is n (or m). The diagonal will
have a −4 on it. The sub-diagonal will have a 1 on it if possible.
The super-diagonal will have 1 on it if possible. All the possible
diagonals above and below will be zero excepting the nth above
and below which will be one. Where it is not possible to place
a one on any diagonal the corresponding entry will show up in
b as a term subtracted from the right hand side.

This matrix is clearly a sparse matrix. Most of the entries in
a sparse matrix are zero as is the case here. For this reason,
we very rarely construct/assemble this matrix in CFD. Once we
have identified the problem as that solving a system of equa-
tions, many ideas will come to mind. For small problems, you
may actually consider assembling the matrix and using a direct
method like Gaussian elimination to solve the problem. How-
ever, as we have done here, for bigger problems we usually use
an iterative scheme like Gauss-Seidel or Jacobi schemes. There
is a very simple reason for this. Direct methods like Gaussian
elimination which is identical to LU decomposition involves an
elimination step.

(3.20) Ux = L−1b

This is followed by the back substitution step to get our solution.

(3.21) x = U−1L−1b

Both U and L are triangular matrices. The calculations, once
you have the decomposition, are easy to do as at any given time
you have an equation with just one unknown. For example,
the first step in equation (3.20) would be to solve for the first

unknown.

(3.22) {Ux}1 = b1/L1,1

where the subscripts indicate the corresponding component of
that matrix. The second equation would be in terms of the
known right hand side and the first term just calculated from

the first equation. At the end of evaluating equation (3.20),
we would have all the terms that make up the vector Ux. The
fact of the matter is that the last term would have been cal-
culated based on all preceding terms. In an n × n system of
equations, n is the number of unknowns, this would have in-
volved of the order of n(n + 1)/2 calculations. We repeat a
similar process in the backward direction to solve for x using
equation (3.21). So, it turns out that the very first element
of the vector x is a consequence of n2 operations performed
one after the other. The potential accumulation of cumulative
roundoff error is enormous. However, the solution from this di-
rect method may be a good guess for an iterative scheme. As a
personal bias, I do not use direct methods to solve linear system
of equations specified by anything more than a 400× 400 ma-
trix, though people have come up with some clever techniques
to get around the size issue.

Note that the matrix A is symmetric, has negative terms
on the diagonal and positive ones on the off-diagonals. It has a
lot of nice properties [Var00] based on its structure. Anyway,
now that we recognise that we are solving a system of linear
equations we can bring to bear other methods from numerical
linear algebra [GL83] to aid us in the solution of the system.

Assignment 3.3

(1) Rewrite a program to solve Laplace’s equation on a unit
square using the new numbering system.

(2) Is there any difference in the time per grid point per
iteration?

(3) Is there a difference in the solution, convergence rate?
The solution and convergence rate should be the same
as before.

(4) What happens to the convergence rate if we iterate in
a fashion alternating relaxation of the interior points
between the ends of the array? That is relax the first
point, then the last point, then the second point, the
last but one point, and so on, till we do the middle
point at the end of the iteration.

(5) If you feel up to it, you can try writing a solver us-
ing Gaussian elimination, LU decomposition or better
LDLT decomposition. Refer [GL83] for more details.

Convergence of Iterative Schemes

You would have solved Laplace’s equation for various pro-
gram parameters by now. The schemes we have looked at are
called iterative schemes. An iterative scheme, as we have seen,
generates a sequence of candidate solutions x0, x1, x2,. . .,
xq,. . .. We want to know when this sequence converges. We
asked a similar question earlier when we were writing our code.
There we meant to ask, what is the terminating condition for

the iterations in our program? Here we are asking: Are there
conditions under which the termination condition is never met?
Is it possible we run the program and it does not stop? We will
take a look at this now.

An iterative scheme involves generating a sequence of solu-
tions employing an equation of the form

(3.23) xq+1 = g(xq)

In particular, from Laplace’s equation we have

(3.24) xq+1 = Pxq +C

Where P is an iteration matrix. A closer inspection of equations
(3.23) and (3.24) indicates that g(·) (P , in our case) maps the
space containing φ onto itself. Consider the system of equations
with sixteen unknowns given in equations (3.18), and (3.19).
The matrixA can easily be written as the sum of three matrices,
L,D,U . The entries in the sub-diagonals of the L matrix are
the entries from the sub-diagonals of A. The diagonal and
super-diagonal entries of L are zeros. That is the entries of L
are

(3.25) lij =

{
aij for i > j
0 for i ≤ j

Similarly U has entries from the super-diagonals of A as its
super-diagonals and zero everywhere else. That is the entries
of U are

(3.26) uij =

{
aij for i < j
0 for i ≥ j

Finally, as you should have guessed, the matrix D is a diagonal
matrix with the entries from the diagonal ofA. In this particular

case, D is a diagonal matrix with −4 on the diagonal and zeros
for all other entries. With this framework in place, we can write
the Jacobi scheme as

(3.27) xq+1 = D−1{b−Lxq −Uxq}
For an interior point, with no neighbouring boundary point, for
example the seventh equation from the system of equations
(3.19) is

(3.28) φ3 + φ6 − 4φ7 + φ8 + φ11 = 0

Rewritten in the form of equation (3.27) it is

(3.29) φ7 =
1

−4
︸︷︷︸

{D−1}7,7

{0−φ3 − φ6
︸ ︷︷ ︸

−{Lx}q
7

−φ8 − φ11
︸ ︷︷ ︸

−{Ux}q
7

}

Clearly,

(3.30) P J = D−1{−L−U}, CJ = D−1b

The subscript J is to remind us that it is the iteration ma-
trix corresponding to the Jacobi iteration. In a similar fashion,
Gauss-Seidel would be written as

(3.31) xq+1 = {D +U}−1{b−Lxq}
and the corresponding iteration matrix P is given by

(3.32) PGS = {D +U}−1{−L}
This observation enables us to look at convergence from a dif-
ferent perspective. What kind of a guess should I make to start
the iterations? So far, you have assumed an initial value for the
interior points to be zero. Can we start with something better?
Does it matter? It looks like it should matter. What if we took

the solution, x, as the initial guess? We expect equation (3.24)
to give us the same x as the new iterate. The convergence is
in one iteration. That is, any number of subsequent iterations
will return the same point. Since the iterations seem to stuck
on that point, which happily looks as though it is the solution
that we are after, the point is called a fixed point of equa-
tion (3.24). So, trying to solve equation (3.24), is the same as
asking for its fixed point.

Assignment 3.4

Repeat the previous assignment using different initial condi-
tions. Use different constants, φ0 = 1.,−1, 2,−2 at all of the
interior points.

Contraction Maps and Fixed Point Theory. This is a
grandiose sounding title. Let us look at a simple problem. Con-
sider the iterative equation in x given by

(3.33) xq+1 = αxq

x is a real number. For a given finite, real number α, equation
(3.33) is a map from the real line back onto the real line. Does
this equation always have a fixed point? That is, is there a ξ
such that ξ = αξ? Is x = 0 a fixed point? Yes, for equation
(3.33), x = 0 is a fixed point. If I guess any old x0, will
the iterations always converge to zero? How does α affect the
process? Clearly α > 1 is not going to get to any fixed point
unless the initial guess is x0 = 0. How about if α = 1? α =

1 seems to make every point on the real line a fixed point.
Finally, when α < 1, we do generate a sequence of numbers
that shrink towards the origin. All of this makes sense if we
notice that we are generating a sequence x0, x1, . . . , xq, . . . and
that the ratio test for the convergence of a sequence tells us
that we have a fixed point if α < 1. We are now looking to get
some understanding using this simple example, so that when we
encounter a system of equations we are able to cope with it a
little better.

Consider a region of points containing the origin −r ≤ 0 ≤
r. If this were in two dimensions we would have called it a
circular region. So, we will just call it a circle of radius r about
the origin. What happens to the points in this circle when they
are run through equation (3.33) for α < 1? This is illustrated
in Figure 3.7. Clearly, the equation maps into a circle that is
smaller, in fact in this case

(3.34) rq+1 = αrq

This map is called a contracting map for pretty obvious reasons.
As q → ∞ we have r → 0.
Someone looking for a more precise statement of the contraction
mapping can find it many advanced calculus books or in books
on real analysis [Kre89].

There are many physical examples of contraction mappings.
Consider a one-dimensional rod, say made of steel. (You maybe
more comfortable with a bar of foam rubber). What happens if
we apply an inward force at the two ends? The length of the
rod reduces. If we had placed some markings on the rod before

rq

xq

xq+1

rq+1

rq+1 = αrq xq+1 = αxq + c

Figure 3.7. A contraction map causes the ”radius” of the
interval r to decrease. α < 1.

compression (contraction) we would have seen these markings
move to a new position after compression. So we have a map
from the original position of a mark to its new position. We
will observe, (we are conducting a thought experiment now)
that all the markings move closer to each other. That is the
transformation that takes us from the initial position of the
markings to the final position is a contraction mapping. We
can also see that there will be one point that does not move.
This is the fixed point of the map/transformation.

Meanwhile, you can ask the question: Isn’t it enough if the
mapping confines us to a fixed region in space? Do we really
need α < 1? Consider the map given by

(3.35) xq+1 =







αxq for xq < 1
2

α(1− xq) for xq ≥ 1
2

Try this out for various initial conditions x0 and you will see
that though we are confined to the unit interval at the origin
we may never converge to a fixed point.

Assignment 3.5

Run the above map for various starting points x0 and α =
2.0 and α = 1.9

(1) Try 0, 1, 1
2
, 0.25. Draw conclusions.

(2) Try other values of α, 0.5, 1.2, 1.4 and so on.

In all our endeavours here, we would like to look at spaces
that are complete. What do we mean by this? Let us say that
we are generating a sequence of solutions. We would like the
sequence to converge to a point that is in the space in which we
are looking for the solution. A policeman would like the hunt to
end within his jurisdiction. If the person being pursued enters
another country with which there is no extradition treaty, then
the hunt does not converge. So, lets say we have a complete
space S and we have a map P that takes a point in S and
maps it back into S. We could restate this as, if you have some
x ∈ S, then

(3.36) y = Px, y ∈ S

In fact given an x0 ∈ S, we can use this to generate a sequence

(3.37) xq+1 = Pxq, xq, xq+1 ∈ S

This map P is called a contraction mapping if for any a, b ∈ S,

(3.38) d(P a,P b) < d(a, b)

where d(a, b) is the distance between the points a and b and
is called the metric of the space S. What equation (3.38) says
is that the map P maps the points a and b into points that
are closer together. It turns out that if this is the case, we can
assert that there is an unique point, ξ, in S, called a fixed point,
such that

(3.39) ξ = P ξ

That is, P maps this particular point into itself. I have para-
phrased the Banach fixed point theorem here.

Fine, we see how this works for a scalar equation. However,
we are looking at a system of equations. How does it work
for a system of equations? To answer this question we will
consider a simple problem using two scalar equations. We will
convert this problem into a slightly more complicated problem
by performing a rotation of coordinates. You can review the
material on matrices given in the appendix B-1 and try out the
following assignment.

Assignment 3.6

Consider two equations

xq+1 = αxx
q(3.40)

yq+1 = αyy
q(3.41)

Write a program to try this out, or better still plot a the region
as it is mapped by hand on a graph sheet. Take both αx and
αy to be in the range (−1, 1). You can run each equation
separately. Choose different combinations of αx and αy.

We look at the problem in the assignment. As we now
expect, if |αx| < 1 the x sequence will converge. Similarly if
|αy| < 1 the y sequence will converge. So, in order for the
the combined sequence (xq, yq) to converge we require ρ =
max(|αx|, |αy|) < 1. The condition to converge seems coupled.
Right now it looks, sort of, contrived. We are at times fortunate
to pick the right coordinate system and get a problem that is
simple. In this case, the simplicity comes from the fact that
the two equations are decoupled. Since, we are not always this
fortunate, we will now perform a rotation of the coordinate
system to convert this simple problem into something that you
would generally encounter.

First, let’s rewrite the two equations as a matrix equation.
Equations (3.40), (3.41) can be written in matrix form as

(3.42)

(
xq+1

yq+1

)

=

(
αx 0
0 αy

)(
xq

yq

)

This equation can be rewritten as

(3.43) ~x q+1 = Λ~x q

where

(3.44) ~x =

(
x
y

)

and

(3.45) Λ =

(
αx 0
0 αy.

)

The iteration matrix Λ looks nothing like the matrix P that we
got with Gauss-Seidel scheme for Laplace’s equation. Let us
rotate the coordinate system through an angle θ. We can do
this by pre-multiplying equation (3.42) by the matrix

(3.46) R =

(
cos θ sin θ

− sin θ cos θ

)

You will notice that this matrix performs a pure rotation of any
vector on which it is applied. By pure rotation, we mean that it
does not perform a stretch. Performing the multiplication, we
will get an equation of the form

(3.47) xq+1 = Pxq

where P is an iteration matrix given by

(3.48) P = RΛR−1

and x = R~x. R is very often called the modal matrix. It
should be obvious that αx and αy are the eigenvalues of the it-
eration matrix P . The largest of these, ρ, is called the spectral

radius of the iteration operator P .

(3.49) ρ(P) = max(|αx|, |αy|)
We have seen that the iteration matrix generates a con-

vergent sequence of x’s when the spectral radius of P is less
then one. So, getting back to our iterative solution to Laplace’s
equation, it is clear that if the spectral radius of the matrix is
less than one, we have a contraction mapping. Okay then, how
do we find the largest eigen-value? Again, there are various
techniques by which one can estimate the eigenvalues. In the
appendix B-1 we stated Gershgorin’s theorem. We restate it
here for convenience.

If we have a matrix A and we partition the matrix into two
as follows

(3.50) A = D + F ,

where D is a diagonal matrix made up of the diagonal of A.
Consequently F has a zero diagonal and the off-diagonal entries
of A. If di is the ith entry of D and fij are the entries of F
then we define and Ri as

(3.51) Ri =
∑

j

|fij|

Remember that fii = 0. If z is a complex number then the
Gershgorin’s circle theorem says that the circular disc |z−di| <
Ri has an eigenvalue in it if it does not overlap other discs. If
a set of ω such discs overlap, then ω eigenvalues are contained
in the union of those discs. Sometimes this is easy to use,
sometimes it is not. Look at the Jacobi scheme applied to the
two-dimensional Laplace equation on an equi-spaced grid. The

diagonal of the iteration matrix P given in equation (3.30) is
clearly zero. All the circles are centred at the origin. The off-
diagonal terms add up to one in most rows and to less then one
when the grid point is near a boundary. We do not have the
strict inequality so, in theory, the largest eigenvalue could be
one. However, we do not expect the iterations to diverge. The
other possibility is to use the structure of the iteration matrix to
try and derive an analytical expression for the eigenvalue, which
has been done for the Jacobi scheme and for the Gauss-Seidel
scheme applied to the two-dimensional Laplace equation as we
have studied so far.

Properties Of Solutions To Laplace’s Equation

Okay, now we know what to do and how long to do it for
convergence. We have plots of the solution and other parame-
ters related to the behaviour of our code. Can we say something
about the solution so that we can be confident that it is a good
approximation to the solution to the original problem?

Is it possible for two different people to solve this problem
and get different answers? In this particular case, we chose the
boundary conditions from a function that already satisfies our
equation. How do we know for some other boundary condition
whether we got the solution or not? Are there any kind of
“sanity checks” that we can make to assure ourselves that we
have a solution? Can we say something about the solution to a
problem without actually solving it? We will take a shot at it.

Let’s now take a look at what we are actually doing. Equa-
tion (3.10) says that the value of φ at a given point is the

average of its neighbours. So, what is the average? The av-
erage φ cannot be larger than the largest neighbour or smaller
than the smallest one. This is true of all the interior points: No
point is larger than the largest neighbour or smaller than the
smallest one. Therefore, we can conclude that the maximum
and minimum of φ cannot occur in the interior points. The
maximum or minimum will be on the boundary.

Though we have not actually done all the mathematics to
make this statement, we will go ahead and extend our conclusion
to the Laplace equation by saying:

The solution to Laplace’s equation will have

its maximum and minimum on the bound-

ary

We can pursue this line of reasoning to come up with an
interesting result. If two of us write a solver to Laplace’s equa-
tion, is it possible to get two different answers? Let us for the
sake of argument assume this is possible. So, you get an answer
φ1 and I get an answer φ2 and both of them satisfy Laplace’s
equation. That is

∇2φ1 = 0(3.52)

∇2φ2 = 0(3.53)

They also satisfy the same boundary conditions on φ. Subtract-
ing one from the other tells us that

(3.54) ∇2 (φ1 − φ2) = 0

This is possible since Laplace’s equation is linear. So, φ1 − φ2

is also a solution to Laplace’s equation. Since both φ1 and φ2

satisfy the same boundary conditions, φ1 − φ2 is zero on the
boundaries. As φ1 − φ2 is a solution to Laplace’s equation, its
maximum and minimum occur on the boundary. We conclude
that φ1 = φ2. Incidentally, we reasoned out the uniqueness of
the solution to Laplace’s equation using the maximum principle.
However, you can go back and check that the same argument
holds for the system of equations. This is especially true when
solving the system of equations using Jacobi iterations, as we
are indeed averaging in that case.

We have two results

(1) The solution to Laplace’s equation has its maxima and
minima on the boundary of the domain governed by
that equation.

(2) The solution is unique.

Both these results are very useful for us to solve the problem.
We can verify the solution with a quick check to see if the
extremum is on the boundary. We also have the confidence that
there is only one solution. So if we get two different solutions,
one of is definitely wrong and both of us could be wrong!

Accelerating Convergence

The assignments solving Laplace’s equation should have con-
vinced you that it can take a lot of time iterating till you get
the desired convergence. This is especially true for the larger
grid sizes. What can we do to get to the solution faster?

Clearly, if we started with the solution as an initial guess, we
would converge in one iteration. This tells us that a better initial
guess would “get us there” faster. Possible initial conditions for
our problem on the unit square in increasing complexity are

• the value on one of the sides can be taken.
• linear interpolation of boundary conditions for two op-
posites sides of the square.

• the solution to a coarser grid say [5 × 5] can be used
to determine the initial condition on a finer grid, say,
[11× 11].

You have seen that the spectral radius of the iteration oper-
ator P determines convergence. It also determines convergence
rate. Let us see how this happens. The iteration that leads to
the solution φh to Laplace’s equation approximated on a grid of
size h is

(3.55) Φn+1 = PΦn +C

where, Φn is a candidate fixed point to equation (3.55) and con-
sequently a candidate solution to Laplace’s equation. On the
other hand φh is the solution to the discrete Laplace’s equation
and is the fixed point of the iteration equation (3.55). There-
fore,

(3.56) φh = Pφh +C

We will designate the difference between the actual solution and
the candidate solution as e, that is

(3.57) en = Φn − φh

If we subtract equation (3.56) from equation (3.55) we get

(3.58) en+1 = P en

This works as both P and C, in our case, do not depend upon
φ. Now, if we premultiply equation (3.58) by the inverse of the

modal matrix R, the equation becomes

(3.59) En+1 = ΛEn

where, En = R−1en. Equation (3.59) is a decoupled system of
equations and if we write out the equation corresponding to the
largest eigenvalue

(3.60) En+1
ρ = sρ(P)En

ρ

where s is the sign of the largest eigenvalue and ρ is the spectral
radius. Or,

(3.61)

∣
∣
∣
∣

En+1
ρ

En
ρ

∣
∣
∣
∣
= ρ(P)

Now, it is clear that for ρ very nearly one, the number of it-
erations required to get |Eρ| below a predetermined ǫc will be
large. Let us see if we can come up with an estimate of ρ. The
Φn, for all n and φ represent functions that satisfy the bound-
ary conditions of our problem. en and En represent the error,
e(x, y), which is zero on the boundaries. We will expand e(x, y)
in terms of the Fourier series as

(3.62) e(x, y) =
N−1∑

l=1

N−1∑

m=1

albm exp

{

iπ
lx

L

}

exp
{

iπ
my

L

}

where, N is the number of intervals of size h, (Nh = L), and
L the side of the square on which we are solving the problem.
You will notice that we have restricted the sum to the range 1
to N − 1. Wave number zero will not contribute anything as
the boundary condition is zero (homogeneous). At the other
end of the summation, we already know (see chapter 2.9) that
the highest frequency that we can represent is 2π(N − 1)/2 =

π(N − 1). Since both Laplace’s equation and our iteration
equation are linear, we can check out what happens to each
wave number separately.

Assignment 3.7

Verify that elm(x, y) = exp
{
iπ lx

L

}
exp

{
iπmy

L

}
is an eigen-

vector (or an eigen-function) of the Laplace’s equation. That
is, show that ∇2elm = λelm.

What happens to elm when we crank it through one iteration
of our Jacobi iteration?

(3.63) en+1
lm (xp, yq) = 0.25 {enlm(xp+1, yq) + enlm(xp−1, yq)

+enlm(xp, yq+1) + enlm(xp, yq−1)}

where, p and q are indices along x and y respectively. Since
xp+1 − xp = yq+1 − yq = h, we can write this as

(3.64) en+1
lm (xp, yq) =

0.25
(

exp
{

i
π

L
lh
}

+ exp
{

−i π
L
lh
}

+exp
{

i
π

L
mh
}

+ exp
{

−i π
L
mh
})

enlm(xp, yq)

This gives the gain g in each iteration to be

(3.65)

g =

∣
∣
∣
∣

en+1
lm (xp, yq)

enlm(xp, yq)

∣
∣
∣
∣
= 0.25

∣
∣
∣exp

(

i
π

N
l
)

+ exp
(

−i π
N
l
)

+exp
(

i
π

N
m
)

+ exp
(

−i π
N
m
)∣
∣
∣

Using Euler’s formula, we see that

(3.66) g = 0.25
∣
∣
∣2 cos

(π

N
l
)

+ 2 cos
(π

N
m
)∣
∣
∣

This takes it extreme values for m = l = 1 and m = l = N−1.
Both give identical values of cosine, except for the sign. So, the
maximum gain is

(3.67) gmax = cos
(π

N

)

≈ 1− 1

2

(π

N

)2

So, the spectral radius for the Jacobi iteration, ρJ = |cos(π/N)|.
With a hundred intervals this turns out to be approximately
0.9995. That is really slow. Is there some way by which we can
make gmax smaller? We will see one technique next.

Successive Over Relaxation - SOR. Since the gain is the
ratio of two successive iterates, our hope lies in using the two
iterates to reduce the maximum gain. This is an acceleration
technique that works by taking a linear combination of the new
iterate and the old iterate. Take an ω ∈ (0, 2). Why this
restriction on ω? We will come to that later. This is how
the algorithm works when applied to the Gauss-Seidel scheme.
Instead of calling the average of the four neighbouring points

“the new iterate”, we treat it as some intermediate value in our
computation. We give it a new name, φ∗, so as not to confuse
it with the new iterate. Our new algorithm is a two step process
as follows.

φ∗
ij =

φn+1
i−1j + φn

i+1j + φn+1
ij−1 + φn

ij+1

4
(3.68)

φn+1
ij = ωφ∗

ij + (1− ω)φn
ij(3.69)

ω is called an over-relaxation parameter. The question now
is, how do we pick the over-relaxation parameter ω? For the
special case that we have here, that of Laplace’s equation on a
square with ∆x = ∆y = h, it can be shown that [Var00].

(3.70) ρω =
ρJ

1 +
√

1− ρ2J
=

cos
(
π
N

)

1 + sin
(
π
N

)

ρω is the spectral radius of the iteration operator corresponding
to SOR.

For a general problem we may not be able to obtain an
expression for the optimal ω. What we usually do is perform
several test runs with different values of ω so as to locate an
optimal one. Clearly, there is no sense solving the problem many
times since we could just take ω = 1 and solve it just once.
Instead, we hunt systematically for the best ω. We could, for
instance, iterate ten times with different values of ω and take the
value that resulted in the largest drop in the residue. Different
values of ω? How do we pick them? Why did I say “Take an
ω ∈ (0, 2)”? We will find out now.

Before we embark on a campaign to hunt down the optimal
ω, let us try to understand what we are doing when we use SOR.

Remember that we had shown that we were actually solving a
system of linear equations,Ax = b. Let us now push this a little
further. We had also pointed out earlier that A is symmetric,
meaning, A = AT . Consider the following scalar function of x

(3.71) Q(x) =
1

2
xTAx− xTb

Q maps an n-dimensional vector into the real line. How would
you find an extremum for this function? We find the gradient
with respect to x and set it equal to zero and solve the resulting
equation for x. We take the gradient. Lo and behold, we get
Ax = b. So, with symmetric A, solving the linear system of
equations is like finding the extremum of Q(x).

To get a geometrical idea of the SOR algorithm let us see
what we are doing in the process of finding this minimum. We
will look at a specific simple example so that we understand
SOR and get an idea as to why ω is constrained to the interval
(0, 2) in our case. We will look at the quadratic in one single
variable. This works for us, since, when we do the operation
(averaging) at a grid point, i, corresponding to one iteration,
we are working on minimising Q along that one dimension φi.
That is, b has all the other terms absorbed into it. This scenario
is graphed in Figure 3.8.

Consider the scenario where we have xn and would like to
find xn+1 to get at the next approximation to the minimum. In
the one-dimensional case we could solve the problem directly as

(3.72) xmin =
b

a

x

Q

xn x∗

BA

Figure 3.8. Graph of Q(x) and finding its minimum in one
spatial dimension. For simplicity the axis of the parabola is
parallel to the Q-axis

and reach the minimum of a quadratic in one iteration. We act
as though we are not aware of this and see what we get with
SOR. The quadratic that we are minimising is

(3.73) q(x) =
1

2
ax2 − bx

Resulting as we know in the equation for the minimum as ax =
b. Our iteration equation is

(3.74) x∗ = − b

a

and we use it in the SOR algorithm as follows

(3.75) xn+1 = ωx∗ + (1− ω)xn

where, x∗ is the solution that we get from our iteration equation
(3.72) We subtract xn from both sides of this equation to get

(3.76) ∆xn = ω∆x∗

Now in the one-dimensional case we would get the exact
solution to the minimisation problem in one iteration. ω = 1
would indeed get you the answer. However, what happens if
we take ω = 0? Nothing. The solution does not progress. On
the other hand, what happens if we take ω = 2, we end up
oscillating between point A and B (see Figure 3.8). ω < 0 and
ω > 2 would cause the resulting Q(x) to increasing causing the
iterations to diverge. We realise from this simple argument that
we must seek our optimal ω in the interval (0, 2).

If you are not sure if this is true for a general quadratic as
opposed to the one shown in Figure 3.8, we can work it out
algebraically. Equation (3.72) tells us that the minimum that
we seek is at b/a. Let us say that our guess is off by an amount
d. This means ∆x∗ = d. That is

(3.77) xn =
b

a
+ d

Q(xn) then works out to be

(3.78) Q(xn) =
1

2
a

(
b

a
+ d

)2

− b

(
b

a
+ d

)

The question is, does Q(xn+1) take the same value? Where

(3.79) xn+1 =
b

a
− d

It does! That is, if xn = b/a + d, and xn = b/a− d, Q(xn) is
indeed the same as Q(xn+1). You can verify this.

To summarise

0 200 400 600 800 1000

Iteration index n

1e-18

1e-15

1e-12

1e-09

1e-06

0.001

1
||

R
es

id
ue

||

11x11
21x21
31x31
41x41
51x51
61x61
71x71
81x81
91x91
101x101

Figure 3.9. Plot of the norm of the residue versus iteration
for the solution to Laplace’s equation using the Gauss-Seidel
method for various grid sizes

(1) ω ∈ (0, 2), the value ofQ decreases. That isQ(xn+1) <
Q(xn).

(2) ω = 0 or ω = 2 the value of Q remains the same.
Q(xn+1) = Q(xn).

(3) Finally if ω < 0 or ω > 2, then the value of Q increases
leading to a situation where Q(xn+1) > Q(xn).

Now that we have an idea of why ω needs to be in the range
(0, 2), how do we find the optimal value? A plot of the residue
versus number of Gauss-Seidel iterations is shown in Figure 3.9.

It is clear that as the grid size gets finer, or the number of grids
increases for the given domain, that the rate of convergence to
the solution slows down. For now it should be noted that the
initial drop is rapid for all of the grids. Subsequently, there is a
slow down in the convergence rate.

In order to accelerate convergence, we have tried using point
SOR. A plot of the residue versus iterations for various ω is
shown in Figure 3.10. The plot of the terminal points is shown in
Figure 3.11, where we see the residue after a hundred iterations
versus ω value. Clearly, the most rapid drop occurs near ω =
1.8. How does this seem from the perspective of the contraction
mapping we looked at in section 3.3? Are we looking for an ω
that will give us the best contraction?

There are two possible ways by which we can try to get at
the optimal ω. One is to run the program till the residue drops
by one order in magnitude. The optimal ω is the one that takes
the lowest number of iterations to cause the prescribed drop in
residue. This works fine for Laplace’s equation. In a general
problem, however, this may result in the code running for a very
long time to converge be the predetermined amount. Worse, it
may never converge.

The other way is to run a set number of iterations and then
decide based on the one that has the greatest residual drop.
This corresponds to the plot shown in Figure 3.11. This figure
illustrates how dramatic the improvement with SOR could be.

0 20 40 60 80 100

Iteration index n

1e-08

1e-06

0.0001

0.01

1
||

R
es

id
ue

 || ω = 1
ω = 1.3
ω = 1.6
ω = 1.7
ω = 1.8
ω = 1.9

Figure 3.10. Plot of the norm of the residue versus iterations
for the solution of Laplace’s equation on a 41x41 grid using
point SOR for various ω values

Assignment 3.8

(1) Verify that the roots of the quadratic Q(x) = c are
symmetric about the minimum of Q(x). Hint: The
minimum of the quadratic ax2 + bx+ c occurs at x =
−b/2a. Study the expression for the two roots.

(2) Repeat the computation involved in generating Figure
3.11 for 10, 50, 100, 200, 500, 1000, iterations. For
each of them, once the ωopt is recovered using ∆ω =
0.1, repeat the computations for ω ∈ (ωopt−0.1, ωopt+
0.1) with a new value of ∆ω = 0.01.

1 1.2 1.4 1.6 1.8 2
ω

1e-08

1e-06

0.0001

0.01

1

100

||
R

es
id

ue
 ||

Figure 3.11. Plot of residue after 100 iterations versus ω
for the solution of Laplace’s equation on a 41x41 grid using
point SOR

Did you see a drift in the ωopt to the right with an increase
in number of iterations?1 This is of great concern if we do not
have an expression for the optimal value and we have to hunt
for the ω through numerical experiment.

Neumann Boundary Conditions

So far, we have looked at problems where we have applied
the Dirichlet type boundary conditions. That is, the function

1You must have learnt of uniform convergence in mathematics. Here we have a situation which,

fortunately, does not have uniform convergence. However, that makes finding the ωopt more

difficult.

value is prescribed everywhere on the boundary. In fluid flow
problems, Dirichlet boundary conditions are typical if we were
solving Laplace’s equation for the stream function of a two-
dimensional irrotational flow. Now we will look at the same
problem through the potential function, which is also deter-
mined by Laplace’s equation. Look at our problem domain given
in Figure 3.1. We replace the bottom boundary with a solid wall.
This means that the fluid cannot penetrate the boundary de-
scribed by the x-axis. That is the normal velocity component
would be zero on that boundary. Or,

(3.80)
∂φ

∂n
= 0,

where, n is along the normal to a no-penetration boundary.
In our particular problem we take the no-penetration boundary
as the unit interval (0, 1) on the x-axis. As a result, the no-
penetration boundary condition turns out to be

(3.81)
∂φ

∂y

∣
∣
∣
y=0

= 0,

How is this implemented? Most of the code that you have
written does not change. After each sweep of the interior points,
we need to add the boundary condition on the bottom grid
points.

(3.82) φi,0 = φi,1

is the simplest way to apply this boundary condition. It uses
the first order approximation of the derivative and sets it equal
to zero. Subsequently, we solve for the φi,0 on the boundary.
For the most part this should suffice. We could also use a

second order representation for the first derivative and derive
an expression in a similar fashion to get

(3.83) φi,0 = (4φi,1 − φi,2)/3

We will see, as we go along, that we apply these kinds of bound-
ary conditions quite often.

Assignment 3.9

(1) Translate the equations (3.82), (3.83) to a form using
one subscript and a stride.

(2) Repeat the first assignment 3.1 and implement the Neu-
mann condition on the x-axis as indicated above.

(3) Does it make a difference if you first iterate in the usual
fashion with Dirichlet conditions and apply the Neu-
mann condition in later iterations. Start with the solu-
tion to the Dirichlet problem as the initial condition for
the Neumann problem.

(4) Plot contours and see what changes occur due to the
change in boundary conditions.

How does changing the boundary condition on one side af-
fect the properties of our solution? Well, the maximum principle
does not change. How about the uniqueness of the solution? It
is outside the scope of our study here. We will just state that
the solution in this case is indeed unique.

First Order Wave Equation

Keep this picture in mind as you read the next few pages.
There is a stream of water flowing at a speed λ from your left
to your right. You have some paper boats that you have made
and are placing these boats in the stream one after another and
they are carried away by the stream. Can we figure out where
the boats are at any given time after they are released?

x

Figure 3.12. A series of paper boats released in a stream of
water flowing along the positive x direction

x

Contact Surface
Hot

Cold water

water

Figure 3.13. Hot water flowing from a water heater towards
a shower. The figure shows the interface between the cold
water that was in the pipe all along and the hot water flowing
out from the water heater at some time t. The interface is
very often referred to as a contact surface.

Here is another scenario. You wake up to a cold morning.
You decide to turn on the water heater. You start the shower;
the water is cold! Eventually and quite abruptly, the water gets
hot. Can we get an idea as to when the hot water will reach
us?

Try your hand at the following problem. It should help with
the material that follows.

Assignment 3.10

a. Yesterday, at 9AM, a student started to walk down
the street from his hostel. He stopped, looked at his
watch and thought for awhile. He started to hurry to
the aerospace engineering department. Near Taramani
guest house, he realised it was Sunday and that the
Introduction of CFD examination was on the next day.
He turned around immediately and strolled back up
the road. Which of the graphs, shown in Figure 3.14,
represents his motion. Why?

b. A student started to bike down the street from Cauvery
hostel. He stopped, at Chemistry building to chat with
a friend. They started to walk towards GC. At HSB,
which is on the way to GC, the student realised that he
may need a calculator for his quiz on “Introduction to
CFD”. He turned around immediately and biked back
up the road. Which of the graphs, shown in Figure
3.14, represents his motion. Why?

a.

x

t

b.

x

t

c.

x

t

d.

x

t

e.

x

t

Figure 3.14. x–t plots. Try to figure out what each curve
means. x is the length measured along a road in IIT Madras.
t is time.

With these preliminaries behind us, let us look at an equation
which is as important to our study as Laplace’s equation. The
one-dimensional, first order, linear wave equation is

(3.84)
∂u

∂t
+ λ

∂u

∂x
= 0

where λ is positive. u is just some property for now. We will
try to understand the behaviour of this equation and then tie
some physical meaning to u.

Let us see what this equation does for us. If the unit vector
in the t direction were ̂ and the unit vector in the x direction
were ı̂, then, the equation can be rewritten in terms of the

gradient operator as

(3.85) (̂+ λı̂) · ∇u = 0

This is a directional derivative along the direction s = (̂+ λı̂).
So, the equation says that the derivative of u along s is zero.
That is

(3.86)
du

ds
= 0

where s is measured in the direction of s.
So, u is constant along s. The direction s is known as a

characteristic direction. The line shown in the figure is called a
characteristic. The equation of that line can be written in many
ways. In vector form it is

(3.87)

{
x
t

}

=

{
x0
0

}

+ s

{
λ
1

}

where, (x0, 0) is the point ξ, the point where the characteristic
intersects the x-axis. s is measured along the characteristic. It
takes a value zero at x0. We could write out the two equations
separately as

x = x0 + λs⇒ dx = λds(3.88)

t = s⇒ dt = ds(3.89)

These equations can then be consolidated into

(3.90) dx = λdt⇒ dx

dt
= λ

This is the equation that governs the characteristic and is called
the characteristic equation.

1

λ

s

t

x

s

ı̂

̂

ξ

Figure 3.15. Along s, u is a constant. Since λ is a constant,
we get straight lines. ı̂ and ̂ are unit vectors along the x-axis
and t-axis respectively

Physically, the line shown emanating from ξ in Figure 3.15,
represents lines along which some property u is a constant. For
instance, consider the stream of water from our earlier example.
It is flowing from the origin towards the right. The stream of
water flows at a constant speed λ. At the point ξ, at time
t = 0, one adds some dye into the stream (instead of the boats
we had earlier). This dye will be carried with the stream at the

ξO L

f(ξ)

Figure 3.16. We can take u(x, 0) = f(x) as the initial
condition for u. Note that it is defined on an interval of
length L at the origin

speed λ. On the x− t plane it will travel along the line drawn.
From Figure 3.15, we can find out where the dye is at any time.

One interpretation of this equation is that u is carried or
advected with the constant speed λ. For this reason, this equa-
tion is also called an advection equation. Or, more precisely,
the first order, linear, one-dimensional advection equation.

We can use the characteristics to obtain the solution to
the advection equation. If at t = 0, we were given the value
of u(x, 0), we could use the characteristics to propagate this

u

t

xO

O′

O′′

Figure 3.17. Initial condition from 3.16 being transported by
the wave equation (3.84) in the x− t plane. Four character-
istics are shown using dashed lines. Note that right now we
are not saying anything about what happens to the the left
of the line O−O′−O”, or to the right of the characteristic
emanating from x = L

forward in time. The condition u(x, 0) would be called the initial
condition. Figure 3.16 represents a possible initial condition for
u. How can we use characteristics to determine the solution
for t > 0? Simple, the characteristic equation tells us that u
is constant along a characteristic. Figure 3.17 shows how the
characteristics transport u.

We see what happens to the initial conditions prescribed.
The value at the origin, point O, is propagated to O′ and O′′

and so on. What is the value of the function to the left of O′

or O′′. Well, since the information seems to be propagating
left to right, it seems natural that it should come from the left
boundary. So, not only do we need to provide an initial condition
at t = 0, one also needs to provide a boundary condition at
x = 0, say, u(0, t) = g(t). These are the boundary conditions
as required by the physics of the problem.

Let us consider a few cases and see what we get. Try out
the following problems.

Assignment 3.11

Given the initial conditions and a boundary condition find
the solution to the equation on the interval [0, 1].

(3.91)
∂u

∂t
+
∂u

∂x
= 0

(1) u(x, 0) = 1., u(0, t) = 1.0, ... boring!
(2) u(x, 0) = 1., u(0, t) = 0.5,
(3) u(x, 0) = x, u(0, t) = 0,
(4) u(x, 0) = 1., u(0, t) = cos(t),
(5) u(x, 0) = 1., u(0, t) = cos(2t), ... any difference?

All of these clearly indicate (except the first one) that we
are just shifting the solution in time along x−λt. In fact, given
any function f(ξ) as the initial condition at t = 0, f(x − λt)
should be a solution. This is easily shown as follows.

(3.92)
∂f

∂t
=
∂f

∂ξ

∂ξ

∂t
=
∂f

∂ξ
× (−λ)

and,

(3.93)
∂f

∂x
=
∂f

∂ξ

∂ξ

∂x
=
∂f

∂ξ
× (1)

Clearly the equation is satisfied.

(3.94)
∂f

∂t
+ λ

∂f

∂x
= 0

As was pointed out at the end of section 1, integration is a
process of guessing. Meaning, given a function f , we guess the
integral F . You verify that F is the integral by checking that
f = F ′, where F ′ is the derivative of F . We try to use clues
from the problem to make a good guess. Just now, we used
the fact that the solution is constant along lines x − λt = ξ
to guess that any differentiable function f(ξ) is a solution to
equation (3.84). We will weaken that statement a bit. For
the sake of this discussion, assume that the initial condition is
given on an interval on the x-axis. If we are able to expand
the initial condition in terms of a Fourier series, we can then
propagate the basis functions, that is sin(.) and cos(.), along
the characteristics. Doing a periodic extension of the function
to ±∞, f(ξ) can be expanded using the Fourier series as

(3.95) f(ξ) =
∑

n

Ane
in2πξ/L

where i =
√
−1, n is the wave number, and L is the corre-

sponding wavelength. Combining these two ideas together we
guess a solution of the form

(3.96) u(x, t) =
∑

n

Ane
in2π(x−λt)/L =

∑

n

un

This can be substituted back into equation (3.84) to see if it is
satisfied. As the differential equation is linear, we can test each
term un individually. You can checkout “uniform convergence”.
I am not going to bother about it here. The two terms of
equation (3.84) give

∂un
∂t

= −inλ2π
L
Ane

in2π(x−λt)/L = −inλ2π
L
un(3.97)

∂un
∂x

= in
2π

L
Ane

in2π(x−λt)/L = in
2π

L
un(3.98)

We can clearly see that un satisfies the wave equation. Remem-
ber, the use of Fourier series presupposes a periodic solution.

Okay. Reviewing what we have seen on the wave equation, it
is clear that the discussion surrounding equations (3.84), (3.85),
and (3.86) is pivotal to everything accomplished so far. We also
see that the argument does not require that λ is a constant.
What do we mean by this? We have nowhere made use of the
fact that λ is a constant. Or, so it seems. One way to find
out is to see what happens if λ is not a constant. Since, we
know now that λ is a propagation speed, we are aware that a
situation of varying λ can actually occur. The speed of sound in
air, for instance, depends on

√
T , where T is the temperature

expressed in Kelvin. If we have a temperature gradient, that
is a spatial variation of temperature, the speed of sound would

also vary appropriately. In this case the equation may look like

(3.99)
∂u

∂t
+ λ(x, t)

∂u

∂x
= 0

A particular form of equation (3.99) that is of interest to us is

(3.100)
∂u

∂t
+ u

∂u

∂x
= 0

This is the quasi-linear one-dimensional wave equation. You
may also see it referred as the inviscid Burgers’ equation. We
can go back to our discussion on characteristics to see what it
gets us. The characteristic equation (3.90) in this case becomes

(3.101)
dx

dt
= u(x, t)

Let us try a new set of problems.

Assignment 3.12

Get a solution to the equation (3.100) in the first quadrant
using the characteristic equation for the initial and boundary
conditions given below.

(1) u(x, 0) = 1, u(0, t) = 1,

(2) u(x, 0) =

{
x for x < 1
1 for x ≥ 1

, u(0, t) = 0,

(3) u(x, 0) =

{
1− x for x < 1
0 for x ≥ 1

, u(0, t) = 1.

Let us look at the first problem. With a constant initial
condition, it is clear that the equation effectively degenerates

to the linear equation. There is nothing exciting here. Let
us go on to the second problem. Look at Figure 3.18. Each

O

t

x1

Figure 3.18. Characteristics corresponding to problem 2 of
the assignment 3.12. dx

dt
increases linearly from 0 to 1 and

is then constant at 1

characteristic originates from a point taken from a set of equally
spaced points on the x-axis. You can make out from the figure
that, the characteristics emanating from the interval [0, 1] of
the x-axis are spreading out. This is called an expansion fan.
Inspection of the expansion fan shown in figure 3.18 should
tell you that the characteristics pass through (0, 0), (0.2, 0),
(0.4, 0), (0.6, 0), (0.8, 0), and (1.0, 0). For the characteristic
i, we know the ui and xi at time t = 0. Now, at t = 0.2,

what is the corresponding xi of this characteristic? Using the
slope-intercept form for a straight line we know that
(3.102)
xi(t)− xi(0)

t− 0
= u(xi(0)) = ui = xi(0), for 0 ≤ xi(0) < 1

This tells us that the solution should be

(3.103) xi(t) = xi(0) + txi(0), for 0 ≤ xi(0) < 1

Using this expression, we plot the solution for various times.
Figure 3.19 shows the initial condition at t = 0. Check that the
characteristics in Figure 3.18 match this function. Figure 3.20

O x

u
A B

1

Figure 3.19. The initial condition at t = 0.

shows the solution after one time unit. Let us compare the two
figures to see how the solution is evolving in time. Consider
the line segment AB as shown in Figure 3.19. It is moving at
unit speed from left to right. In Figure 3.20, we see that it has
moved to the right by unit length in unit time and only point A
can be seen on the page. At the origin, the speed of propagation

is zero and hence that point does not move at all. In between,
we see that we have proportionate speed. Hence, the linearly
increasing part of our function, line segment OA, experiences
a stretch. After two time units, the ramp is much less steep.

O x

u

2

A

Figure 3.20. The solution at time t = 1. You should recog-
nise that the characteristic x(0) = 1 has unit slope.

Since the start of the ramp on the left hand side is anchored to
the origin and the end of the ramp is moving at unit speed away
from the origin, the ramp angle is going to keep decreasing.

Now consider the last problem. The characteristics corre-
sponding to the initial condition are shown in Figure 3.22. First
the easy part, the characteristics coming from the t-axis with ar-
rowheads correspond to the boundary condition given at x = 0.
These are not extended all the way to the end of the figure to
keep the figure from becoming unreadable. The vertical charac-
teristics on the right correspond to the u = 0 part of the initial
condition. Which leaves the characteristics emanating from the
unit interval at the origin. They intersect each other at x = 1,

O x

u

3

A

Figure 3.21. The solution at t = 2.

t = 1. We have extended the lines beyond this point to show
them intersecting other characteristics. Is this a problem? Yes!
This is a problem. ui is supposed to be constant on the char-
acteristic xi(t). If they intersect, what value does u take at the
point (1, 1)?

Let us go ahead and draw the other figures and see what
we get. We have the initial condition drawn in Figure 3.23. It
is clear that we expect to have motion from left to right for the
point at the origin. This corresponds to our first characteristic
starting at the origin in Figure 3.22.

After a time of about t = 0.25 units we will get a graph of
the new state of u as shown in Figure 3.24. Here we notice,
and it should not come as a surprise to you, that the ramp is
getting steeper. In fact, if you look at Figure 3.25, we see that
our solution continues to be continuous but the ramp is getting
steeper and at t = 1 we end up with the function shown in
Figure 3.26. All the characteristics intersect at (1, 1) and this

O

t

x1

Figure 3.22. The characteristics corresponding to the initial
condition in problem 3 of the assignment. u decreases from
1 to zero and is then constant at zero.

results in this jump. How do we interpret this jump? We will
draw one more figure and see what we get for a time t > 1.
This is shown in Figure 3.27.

We will look at a discrete analogue first. A railway line
is a good example of a one-dimensional space. We imagine
there is a railway station at x = 1 and that we have a train
stopped at that station. We also have at least five other trains
speeding along at different speeds. The positions of the trains
are indicated in Figure 3.22. Fortunately, at the station they
have enough sidings and parallel through tracks that the trains

O x

u

1

Figure 3.23. The solution at t = 0 which is the initial con-
dition in problem 3 of the assignment. u decreases from 1
to zero and is then constant at zero.

O x

u

1

Figure 3.24. The solution at t = 0.25 for the initial con-
dition shown in figure 3.23 and given in problem 3 of the
assignment

are able to overtake each other. The fastest express train gets
ahead of the others and yes, the function is multi-valued at the

O x

u

1

Figure 3.25. The solution at t = 0.63 for the initial con-
dition shown in figure 3.23 and given in problem 3 of the
assignment. It is clear that the ramp is getting steeper.

O x

u

1

Figure 3.26. The “solution” at t = 1 for the initial condition
shown in figure 3.23 and given in problem 3 of the assign-
ment.

station at that time since you have more than one train going
through. Now, if the trains were not allowed to get past each

O x

u

1

Figure 3.27. The “solution” at t = 1.33 for the initial con-
dition shown in figure 3.23 and faithfully following the char-
acteristics drawn in figure 3.22

other, then the solution to the differential equation stops at
(1, 1). I am sure you can imagine other scenarios along this
line.

A continuous interpretation could be that this problem rep-
resents a wave of some kind travelling left to right. It is possible
that we have land at x = 1. If u represents the height of the
water, on land, u = 0 The series of figures can be viewed as the
building up and breaking of the wave. It is not a great model,
but still it captures some features of that problem.

Another way to look at it is from a gas dynamics point of
view. This is something that you will see in greater detail in
the next chapter. However, for now, assume that in a pipe (I
want to make sure that it is one-dimensional, see the chapter on
one-dimensional problems for a more details on this) we have
a gas. On the left hand end of the pipe we are capable of

creating a series of disturbances. Each disturbance is in the
form of a small compression, causing a small pressure change
and a corresponding density change. As this wave propagates
through the tube, if it results in an increase in the speed of
sound behind it, the next wave that comes along is going to
be travelling faster than the first and so on. The problem with
this train of waves is they cannot overtake each other. They
are confined to the pipe. In this context, Figure 3.27 makes
no sense and does not represent the physics of the problem.
Instead as shown in Figure 3.26, a discontinuity called a shock
is formed. This shock continues to propagate through the pipe
beyond (1, 1). So we have to redraw Figure 3.22 for the gas
dynamic case as shown in Figure 3.28

Is there a way to find out how fast the “shock” propagates
[Lax73]? We will investigate this in greater detail in section
3.16. We can make the following observations.

(1) The shock seems to consume all characteristics that
intersect it.

(2) We started with a continuous function and the quasi-
linear wave equation generated the discontinuity. Just
because our initial and boundary conditions are smooth
does not mean our solution will be smooth.

We now return to our linear first order one-dimensional wave
equation. How do we solve this equation numerically? Consider-
ing our success with the Laplace equation, we will just go ahead
and perform the discretisation. We will do this in a section on
stability. Read on and you will understand why.

O

t

x1

Figure 3.28. The characteristics corresponding to the initial
condition in problem 3 of the assignment. u decreases from
1 to zero and is then constant at zero.

Numerical Solution to Wave Equation: Stability

Analysis

This problem has a given initial value. With λ positive, we
have seen that property u propagates from left to right.

Since we were successful with the Laplace equation, we re-
peat the same process for the wave equation. Let’s consider
some general grid point indexed as p, q. The index p is in space,
that is, along x and the index q is in time, that is, along t. The

equation can be discretised as

(3.104)
up,q+1 − up,q−1

2∆t
︸ ︷︷ ︸

central difference in time

+λ
up+1,q − up−1,q

2∆x
︸ ︷︷ ︸

central difference in space

= 0

This gives us an equation for u at the next time step given that
we know its values at prior time steps. This clearly will create a
problem at t = ∆t, since we are only given values at t = 0. This
problem can be fixed. However, for now, we will get around this
problem by using a forward difference in time. We will retain
the central difference in space so as not to lose the advantage
of a second order representation for the spatial derivative. This
gives us

(3.105)
up,q+1 − up,q

∆t
︸ ︷︷ ︸

forward difference in time

+λ
up+1,q − up−1,q

2∆x
︸ ︷︷ ︸

central difference in space

= 0

With this discretisation, we have written a finite difference ap-
proximation to the differential equation at the point p, q as
shown in Figure 3.29. We can solve equation (3.105) for up,q+1

as

(3.106) up,q+1 = up,q − λ∆t
up+1,q − up−1,q

2∆x

It looks like we have an automaton that we can use to just
march in time picking up the solution as we go along. All the
quantities on the right hand side are know at the current time
level “q”.

We will now look at this equation and ask the question:
does the automaton generate a sequence of u’s that represent
the solution or does the sequence diverge. Colloquially, does

p, q

p, q + 1

p+ 1, qp− 1, q

Figure 3.29. The grid points involved in the solution to the
wave equation using Forward Time–Centred Space (FTCS)
scheme. The wave equation is approximated at the point
p, q by the finite difference equation (3.105).

the solution “blow up”? This last question relates to stability
analysis. It can be restated as: Is the scheme stable?

If you are wondering: what’s the point of the discussion, let’s
get coding. I would suggest that you can indeed get coding and
see what happens. Meanwhile, as the wave equation that we are
looking at (equation 3.94) is a linear homogeneous equation, a
perturbation to it would also be a linear homogeneous equation
with homogeneous boundary conditions. The discrete equation
would be the same as equation (3.106). We have seen earlier
that a periodic solution to the equation can be written in the
form given by equation (3.96) This can be rewritten as

(3.107) u(x, t) =
∑

n

Ane
in2π(x−λt)/L =

∑

n

un

For convenience we can take L = 2π. You can verify that it
makes no difference to the analysis that follows.

Both equation (3.84) and equation (3.106) are linear. Just
to remind ourselves what we mean when we say something is

linear we look at the example of a linear function L(x). L(x)
is linear means that L(a1x1 + a2x2) = a1L(x1) + a2L(x2). Of
course, if instead of a sum consisting of two terms,

∑

n=1,2 anxn
we have an infinite number of terms as in the Fourier series
expansion, we do have concerns about uniform convergence of
the series. This is something that you can look up in your
calculus text. We will sidestep that issue here and get back to
our stability analysis.

As we are dealing with a linear equation and scheme, we
need to look only at one generic term, un, instead of the whole
series. If the scheme is stable for any arbitrary n then it is stable
for all the n. The fact that un does not diverge for all n does
not mean that the series will converge. On the other hand, if
un does diverge for some n, the series is likely to diverge.

To answer the question as to what happens as we advance
in time using our numerical scheme / automaton, we rewrite un
as

(3.108) un = an(t)e
inx

A blowup, as we move forward in time with our automaton,
would mean the an(t) is growing. We are going to be having
lots of subscripts and superscripts going around. Since there is
no chance of confusion, we know we are considering one wave
number n of the Fourier series, we will drop the subscript n
from the equation (3.108) to get

(3.109) u = a(t)einx

Assuming we have a uniformly spaced grid so that ∆x is a
constant, we can write at any grid point

(3.110) up,q = aqe
inp∆x, xp = p∆x

which tells us that the gain from the time step q to q + 1 can
simply be written as

(3.111) g =
up,q+1

up,q
=
aq+1

aq

For stability we will require that |g| < 1. In equation (3.106),
not only do we have up,q, we also have up−1,q and up+1,q. In
order to obtain a simple expression g, we need to rid ourselves of
the p−1 and p+1 subscripts. To this end, we do the following.

(3.112) up+1,q = aqe
in(p+1)∆x = aqe

inp∆xein∆x = up,qe
in∆x

and

(3.113) up−1,q = aqe
in(p−1)∆x = up,qe

−in∆x

We define θ = n∆x and substitute equations (3.112) and
(3.113) into equation (3.105) to get

(3.114) up,q+1 = up,q −
σ

2

{
eiθ − e−iθ

}
up,q, σ =

λ∆t

∆x

Expanding the exponential using Euler’s formula, eiθ = cos θ +
i sin θ, [Ahl79] [Chu77] and dividing through by up,q, we get
the amplification or the gain over one time step as
(3.115)

g =
up,q+1

up,q
= 1− σ

2
(cos θ + i sin θ − cos(−θ)− i sin(−θ))

(3.116) g = 1− iσ sin θ

For stability, we do not want the u to grow. So, the factor g by
which u is multiplied each time should have a magnitude less
than one. We require

(3.117) |g|2 = gḡ = 1 + σ2 sin2 θ < 1

where ḡ is the conjugate of g. We clearly cannot satisfy this
requirement. This scheme is said to be unstable. That is, there
is no condition, on say σ, for which it is stable.

We were not as lucky with the wave equation as we were
with Laplace’s equation. Let us have another shot at it. Let us
use a forward difference in space, just as we did in time. We

p, q + 1

p+ 1, q

p, q

Figure 3.30. The grid points involved in the solution to the
wave equation using Forward Time–Forward Space (FTFS)
scheme. The wave equation is approximated at the point
p, q by the finite difference equation (3.118).

will use the grid points as shown in Figure 3.30. The discrete
equation at the point p, q now becomes

(3.118)
up,q+1 − up

∆t
+ λ

up+1,q − up,q
∆x

= 0

or

(3.119) up,q+1 = up,q − λ∆t
up+1,q − up,q

∆x

Substituting from equation (3.112) into equation (3.119) we
get

(3.120) up,q+1 = up,q − σ
{
eiθ − 1

}
up,q

We obtain the gain or the amplification factor g as

(3.121) g =
up,q+1

up,q
= 1− σ(cos θ + i sin θ − 1)

and the stability requirement again is

(3.122) |g|2 = gḡ = (1 + σ − σ cos θ)2 + σ2 sin2 θ

= 1 + σ2 + σ2 cos2 θ + 2σ − 2σ cos θ

− 2σ2 cos θ + σ2 sin2 θ < 1

This gives

(3.123) 1 + 2σ2 − 2σ cos θ + 2σ − 2σ2 cos θ < 1

=⇒ (σ2 + σ)(1− cos θ) < 0

=⇒ σ(σ + 1) < 0

⇒ σ < 0 and σ > −1

We get a condition for stability, but what does it mean? Well,
let us look at the condition that σ < 0, the condition says that

(3.124) σ = λ
∆t

∆x
< 0 =⇒ ∆t < 0 or ∆x < 0

We do not want to go back in time so the condition on
the time step is really not of interest right now. The other
condition, ∆x < 0, can be interpreted as giving us a hint to fix
this problem. It seems to tell us to use a backward difference

in space rather than a forward difference. How do we conclude
this?

Well, we are assuming λ is positive. That is the waves are
moving left to right. How about if λ were negative. Then our
current scheme would work since the wave would be moving
from right to left. Our forward differencing also has points that
are on the right of our current spatial location. So, to get a
scheme that works for λ positive, we use a forward difference
in time and a backward difference in space. We use the grid

p, q + 1

p− 1, q

p, q

Figure 3.31. The grid points involved in the solution to the
wave equation using Forward Time–Backward Space (FTBS)
scheme. The wave equation is approximated at the point p, q
and results in the automaton given in equation (3.125).

points shown in Figure 3.31 to get the following equation.

(3.125) up,q+1 = up,q − λ∆t
up,q − up−1,q

∆x
We repeat our stability analysis to get

(3.126) up,q+1 = up,q − σ
{
1− e−iθ

}
up,q

We obtain the gain or the amplification factor g as follows

(3.127) g =
up,q+1

up,q
= 1− σ(1− cos(−θ)− i sin(−θ))

giving

(3.128) g = 1− σ + σ cos θ − iσ sin θ

Again, for stability we require that

(3.129) |g|2 = gḡ = (1− σ + σ cos θ)2 + σ2 sin2 θ < 1

which expands out to

1 + σ2 + σ2 cos2 θ − 2σ + 2σ cos θ − 2σ2 cos θ + σ2 sin2 θ < 1

(3.130)

This gives

(3.131) 1 + 2σ2 + 2σ cos θ − 2σ − 2σ2 cos θ < 1

Some cancelling and factoring gives us

(3.132) (σ2 − σ)(1− cos θ) < 0

(1 − cos θ) is not negative and we are not concerned about
θ = n∆x = 0. So, dividing through by (1− cos θ) we get

(3.133) σ(σ − 1) < 0

Which tells us

(3.134) σ > 0 and σ < 1

This condition 0 < σ < 1 is called the Courant-Lewy-Friedrich
condition or the CFL condition [CFL67]. In CFD parlance now,
the number σ is referred to as the CFL number or the Courant
number. In an informal discussion a colleague may ask you:
“What CFL are you running your code?” By this they are re-
questing information on the value of σ that you are using in your
code. Coming back to the CFL condition, we see that FTBS

is conditionally stable for this equation as it is stable if the
condition 0 < σ < 1 is met.

Right, we have finally come up with a scheme that worked
by taking a backward difference in space. Since we are sort
of groping around to construct an automaton somehow or the
other, let us take one more shot at it. Backward difference in
space worked. How about, if we tried a backward difference in
time and went back to a centred difference in space (I really
like the centred difference in space since the truncation error is
better). So, we can write the Backward Time–Centred Space
[BTCS] scheme. The grid points involved are shown in Figure
3.32. Note that the differential equation in this case is repre-
sented at the point p, q + 1. We get the discrete equation

p, q + 1

p, q

p− 1, q + 1 p+ 1, q + 1

Figure 3.32. The grid points involved in the solution to the
wave equation using Backward Time-Centred Space (BTCS)
scheme. Note that the wave equation is approximated at the
point p, q + 1 by the finite difference equation (3.135).

(3.135) up,q+1 +
σ

2
{up+1,q+1 − up−1,q+1} = up,q

We see that the gain would be given by

(3.136) g =
1

1 + iσ sin θ

Again, for stability we require that

(3.137) gḡ =
1

1 + σ2 sin2 θ
< 1 =⇒ 1 < 1 + σ2 sin2 θ

Which is always true for n > 0. Aha! BTCS is STABLE.
No conditions. Remember, as the saying goes: You don’t get
nothin’ for nothin’. The BTCS scheme on closer inspection
requires that we solve a system of equations. We will look at
this in greater detail later. The lesson to take away from here
is

we cannot just discretize the equations

and assume that the resulting scheme will

work.

This analysis is referred to as the von Neuman stability analysis.
An important requirement is that the equation that we analyse
is linear. If the equation is not linear, we will linearise it. For
this reason, it is also called linearised stability analysis.

Courant number or CFL number. From this analysis we
see the significance of the parameter σ. It is referred to as the
Courant number or the CFL number. What do these stability
conditions mean? What does this number mean?

A closer inspection of σ reveals that it is non-dimensional.
We have seen from our initial study of the wave equation that
“λ” is a propagation speed. ∆x/∆t is called the grid speed.
In a sense, the grid speed is the speed at which our program is
propagating u. σ is the ratio of the physical speed to the grid
speed.

What does it mean that FTBS is stable if 0 < σ ≤ 1?
This says that the physical speed needs to be less than the grid

speed. Since we are choosing the grids, it tells us to choose the
grids so that the grid speed is greater than the physical speed.

Numerical Solution to Wave Equation:Consistency

So, what are we really doing when we represent the wave
equation by the FTBS scheme of any other such method? We
have seen that all of these representations come from truncat-
ing the Taylor’s series. The discrete equations are said to ap-
proximate the original equation and we expect that by solving
the discrete equation we get an approximate solution uh to the
original problem. The h superscript in uh just tells us that we
are dealing with a solution to a discrete equation. We ask the
question: uh is an approximate solution to the wave equation
problem; To which problem is it an exact solution? A poorly
posed question since we only have a discrete set of points and
we have already seen that there are really an infinity of func-
tions that the discrete set actually represent. See [FH74] and
[Cha90] for a more detailed discussion. However, asking the
question and attempting to answer it is still an useful exercise.
So, let us try to answer it anyway.

Consider the FTCS scheme applied to the wave equation
again.

(3.138) up,q+1 = up,q − λ∆t
up+1,q − up−1,q

2∆x

This is supposed to approximate the differential equation
at the point (p, q). We will substitute for the the terms not
evaluated at the current point (p, q) using the Taylor’s series. In
this analysis, we will keep terms only up to the fourth derivative.

Equation (3.138) becomes

(3.139) up,q +∆t
∂u

∂t
+

∆t2

2!

∂2u

∂t2
+

∆t3

3!

∂3u

∂t3
+

∆t4

4!

∂4u

∂t4
+ · · ·

= up,q−
λ∆t

2∆x

[

up,q+∆x
∂u

∂x
+
∆x2

2!

∂2u

∂x2
+
∆x3

3!

∂3u

∂x3
+
∆x4

4!

∂4u

∂x4
+· · ·

− (up,q −∆x
∂u

∂x
+

∆x2

2!

∂2u

∂x2
− ∆x3

3!

∂3u

∂x3
+

∆x4

4!

∂4u

∂x4
− · · ·)

]

Simplifying and rearranging we get
(3.140)
∂u

∂t
+λ

∂u

∂x
= −λ∆x

2

3!

∂3u

∂x3
−∆t

2!

∂2u

∂t2
−∆t2

3!

∂3u

∂t3
−∆t3

4!

∂4u

∂t4
+ · · ·

We have isolated the expression for the original wave equa-
tion on the left hand side. On the right hand side, we have terms
which are higher order derivatives in x and in t. Since at any
time level, we have u for various x, we convert the time deriva-
tives to spatial derivatives. We do this by taking appropriate
derivatives of equation (3.140) and eliminating terms that have
time derivatives in them. Again, remember, we will keep terms
only up to the fourth derivative. A rather tedious derivation
follows this paragraph. You can skip to the final result shown
in equation (3.161) if you wish. I would suggest that you try to
derive the equation for yourself.

We take the time derivative of equation (3.140) to get the
second derivative in time.
(3.141)
∂2u

∂t2
+ λ

∂2u

∂t∂x
= −λ∆x

2

3!

∂4u

∂t∂x3
− ∆t

2!

∂3u

∂t3
− ∆t2

3!

∂4u

∂t4
+ · · ·

The third time derivative is

(3.142)
∂3u

∂t3
+ λ

∂3u

∂t2∂x
= −∆t

2!

∂4u

∂t4
+ · · ·

Finally, the fourth time derivative gives

(3.143)
∂4u

∂t4
= −λ ∂4u

∂t3∂x
+ · · ·

To get rid of the mixed derivative on the right hand side of
equation (3.143) we differentiate equation (3.142) with respect
to x and multiply by λ, to get

(3.144) λ
∂4u

∂x∂t3
= −λ2 ∂4u

∂t2∂x2
+ · · ·

Subtracting this from equation (3.143) we get

(3.145)
∂4u

∂t4
= λ2

∂4u

∂t2∂x2
+ · · ·

In order to eliminate the mixed derivative on the left hand side
of equation (3.141) differentiate equation (3.140) with respect
to x and multiply by λ to get
(3.146)

λ
∂2u

∂x∂t
+λ2

∂2u

∂x2
= −λ2∆x

2

3!

∂4u

∂x4
−λ∆t

2!

∂3u

∂x∂t2
−λ∆t

2

3!

∂4u

∂x∂t3
+· · ·

Subtracting equation (3.146) from equation (3.141) we get

∂2u

∂t2
= λ2

∂2u

∂x2
+ λ2

∆x2

3!

∂4u

∂x4
+ λ

∆t

2!

∂3u

∂x∂t2
+ λ

∆t2

3!

∂4u

∂x∂t3

−λ∆x
2

3!

∂4u

∂t∂x3
− ∆t

2!

∂3u

∂t3
− ∆t2

3!

∂4u

∂t4
+ · · ·

(3.147)

If we were to differentiate equation (3.146) twice with respect
to x we can eliminate the mixed derivative term in equation
(3.147) which has only one time derivative in it. On performing
the differentiation, we get

(3.148) λ
∂4u

∂x3∂t
= −λ2∂

4u

∂x4
+ · · ·

Substituting we get the latest expression for the second time
derivative as

∂2u

∂t2
= λ2

∂2u

∂x2
+ λ2

∆x2

3!

∂4u

∂x4
+ λ

∆t

2!

∂3u

∂x∂t2
− λ2

∆t2

3!

∂4u

∂x2∂t2

+λ2
∆x2

3!

∂4u

∂x4
− ∆t

2!

∂3u

∂t3
− ∆t2

3!

∂4u

∂t4
+ · · ·

(3.149)

We now differentiate this equation with respect to x to get

∂3u

∂x∂t2
= λ2

∂3u

∂x3
+ λ∆t

∂4u

∂x2∂t2
+ · · ·(3.150)

Eliminating the mixed third derivative and substituting for the
fourth time derivative in equations (3.142) we get
(3.151)
∂3u

∂t3
= −λ3∂

3u

∂x3
−λ2∆t

2!

∂4u

∂x2∂t2
+λ

∆t

2!

∂4u

∂x∂t3
−∆t

2!
λ2

∂4u

∂t2∂x2
+· · ·

This can be simplified to

(3.152)
∂3u

∂t3
= −λ3∂

3u

∂x3
− λ2∆t

∂4u

∂x2∂t2
+ λ

∆t

2!

∂4u

∂x∂t3
+ · · ·

We now differentiate this equation with respect to x

(3.153)
∂4u

∂x∂t3
= −λ3∂

4u

∂x4
+ · · ·

We can eliminate one more mixed derivative in equation (3.152).

(3.154)
∂3u

∂t3
= −λ3∂

3u

∂x3
− λ2∆t

∂4u

∂x2∂t2
− λ4

∆t

2!

∂4u

∂x4
+ · · ·

We have one last mixed derivative in this equation. Actually,
there are an infinity of these mixed derivatives. We have re-
stricted ourselves to fourth derivatives. To get rid of this last
mixed derivative in the third derivative term, we rewrite the
equation for the second time derivative (3.149) as

∂2u

∂t2
= λ2

∂2u

∂x2
+ λ2

∆x2

3

∂4u

∂x4
+ λ3

∆t

2!

∂3u

∂x3
+ λ2

∆t2

3!

∂4u

∂x2∂t2

−∆t

2!

∂3u

∂t3
+ · · ·

(3.155)

If we differentiate this equation twice with respect to x, we get

(3.156)
∂4u

∂x2∂t2
= λ2

∂4u

∂x4
+ · · ·

The third time derivative finally becomes

(3.157)
∂3u

∂t3
= −λ3∂

3u

∂x3
− λ4

3∆t

2

∂4u

∂x4
+ · · ·

(3.158)
∂2u

∂t2
= λ2

∂2u

∂x2
+ λ3∆t

∂3u

∂x3
+

{

λ2
∆x2

3
+ λ4

11∆t2

12

}
∂4u

∂x4
+ · · ·

and for completeness

(3.159)
∂4u

∂t4
= λ4

∂4u

∂x4
+ · · ·

(3.160)
∂u

∂t
+ λ

∂u

∂x
= −∆t

2!
λ2
∂2u

∂x2

−
{

λ
∆x2

3!
+ λ3

∆t2

3

}
∂3u

∂x3
−∆t

2!

{

λ2
∆x2

3
+ λ4

∆t2

2

}
∂4u

∂x4
+· · ·

We will consolidate coefficients so that they are in terms of ∆x
and σ.

(3.161)
∂u

∂t
+ λ

∂u

∂x
= −λ∆x

2!
σ
∂2u

∂x2

− λ
∆x2

3!

{
1 + 2σ2

} ∂3u

∂x3
− σλ

∆x3

12

{
2 + 3σ2

} ∂4u

∂x4
+ · · ·

This equation is very often referred to as the modified

equation. A scheme is said to be consistent if in the limit
of ∆t and ∆x going to zero, the modified equation converges
to the original equation.

For the case of the FTBS scheme, the modified equation
becomes

(3.162)

∂u

∂t
+ λ

∂u

∂x
= λ

∆x

2
(σ − 1)uxx + λ

∆x2

3!
(σ − 1)(2σ − 1)uxxx

− λ
∆x3

4!
(σ − 1)(6σ2 − 6σ + 1)uxxxx + . . .

clearly for the first order, one-dimensional, wave equation, both
FTCS and FTBS are consistent. It is interesting to note that
the modified equation of FTBS is identical to the wave equation
for σ = 1. What does this mean? We are solving the original

equation (in this case the wave equation) and not some modified
equation. Does that mean we get the same answer? No! We
are still representing our solution on a discrete set of points.
If you tried to represent a step function on eleven grid points
you would actually get a ramp. Try it. This ramp then will be
propagated by the modified equation. Even though the modified
equation becomes the wave equation when σ = 1, we cannot
get away from the fact that we have only eleven grid points.
Our representation of the differential equation is accurate in
its behaviour. Our representation of the solution at any time
is approximate. So, if that is the problem, what happens in
the limit to the solution of the discrete problem as ∆t and ∆x
going to zero? If the discrete solution goes to the solution of
our original equation we are said to have a scheme which is
convergent.2

Consistency, Stability, Convergence: There is a theorem by
P. D. Lax that states that if you have the first two of these you
will have the third.

Assignment 3.13

(1) Verify the modified equation (3.162) for the FTBS scheme
applied to the linear wave equation given in equation
(3.84).

(2) Derive the modified equation for the FTFS scheme ap-
plied to the linear wave equation.

2If you have a serious conversation with a mathematician they may want the derivatives also to

converge.

(3) Verify that the modified equation for the BTCS scheme
applied to the linear wave equation is

(3.163)
∂u

∂t
+ λ

∂u

∂x
=
λ∆x

2
σ
∂2u

∂x2

− λ∆x2

3!

{
2σ2 + 1

} ∂3u

∂x3
+
λ∆x3

12
σ
{
3σ2 + 2

} ∂4u

∂x4
+ · · ·

Numerical Solution to Wave Equation:Dissipation,

Dispersion

What are the consequences of having these extra terms in
our modified equation? Let’s find out. Our original problem
and a solution are

(3.164)
∂u

∂t
+ λ

∂u

∂x
= 0; u(x, t) = ane

in(x−λt)

Substitute the candidate solution into the equation to verify
whether it is actually a solution or not; Don’t take my word for
it. Clearly this is a travelling wave with a wave number n. It
never stops oscillating since it has a purely complex exponent.
Now consider the equation

(3.165)
∂u

∂t
+ λ

∂u

∂x
= µ2

∂2u

∂x2

We seek a solution in the form

(3.166) u(x, t) = ane
in(x−λt)ebt

A nice way of saying, “I am guessing the solution looks like
this”. We find the derivatives

∂u

∂t
= an{−inλ+ b}ein(x−λt)ebt = {−inλ+ b}u(3.167)

λ
∂u

∂x
= λan{in}ein(x−λt)ebt = inλu(3.168)

µ2
∂2u

∂x2
= −µ2n

2u(3.169)

µ3
∂3u

∂x3
= −µ3in

3u(3.170)

µ4
∂4u

∂x4
= µ4n

4u(3.171)

Substituting into the equation (3.165) we get

(3.172) b = −µ2n
2 =⇒ u(x, t) = ane

in(x−λt)e−µ2n2t

We observe the following. If µ2 > 0 then the solution decays.
Higher wave numbers decay faster than lower wave numbers.
If we look at our modified equation for the FTCS technique,
equation (3.161), we see that the coefficient of the second spa-
tial derivative is µ2 = −λ∆x

2!
σ. As µ2 is negative, the scheme is

unstable.
Now let us see the effect of having a third derivative term

by looking at the equation

(3.173)
∂u

∂t
+ λ

∂u

∂x
= µ3

∂3u

∂x3

we immediately see that
(3.174)

b = −µ3in
3 =⇒ u(x, t) = ane

in(x−λt)e−µ3in3t = ane
in[x−(λ+µ3n2)]t

The third derivative contributes to the speed of propagation of
the wave. The speed depends on n2, for positive µ3, higher wave
numbers travel faster than lower wave numbers. This effect is
known as dispersion. Now, finally, let us consider the effect of
the fourth derivative in the equation.

(3.175)
∂u

∂t
+ λ

∂u

∂x
= µ4

∂4u

∂x4

and

(3.176) b = µ4n
4 =⇒ u(x, t) = ane

in(x−λt)eµ4n4t

In this case, for stability we require µ4 < 0. This term is clearly
a very strong damping mechanism. Also, as with the second
derivative term, high wave numbers are damped much more
than lower wave numbers.

The effect of the extra terms in the modified equation and
the coefficients corresponding to FTCS and FTBS are sum-
marised in table 3.13. We see that both FTCS and FTBS have
second derivative terms. However, the coefficient µ2 for FTCS
is negative and we would conclude the scheme is unstable as
the solution to the modified equation is unstable. The FTFS
scheme is also unstable for positive values of σ. As we have seen
earlier, it is stable only for −1 ≤ σ < 0. The FTBS scheme, on
the other hand, is stable for 0 < σ ≤ 1 as µ2 is positive. It will
also capture the exact solution at σ = 1. For σ < 1 it is quite
dissipative. It will dissipate higher frequencies faster than lower
frequencies.

Both of the schemes have third derivative terms. Since
dissipation is rather rapid it may be difficult to observe the
dispersion in the FTBS scheme. In the FTCS scheme we have

Term µ2 µ3 µ4

b −µ2n
2 −iµ3n

3 µ4n
4

FTCS −λ1σ −λ2(1 + 2σ2) −2σλ3(2 + 3σ2)

FTFS −λ1(1 + σ) −λ2(1 + σ)(2σ + 1) −λ3(1 + σ)(6σ2 + 6σ + 1)

FTBS λ1(1− σ) λ2(1− σ)(2σ − 1) λ3(1− σ)(6σ2 − 6σ + 1)

Table 3.1. These are the coefficients that occur in the
modified equation of FTBS, FTFS, and FTCS. Summary
of the effect of higher order terms on the solution to the
one-dimensional first order linear wave equation: µ2 > 0
or µ4 < 0 is dissipative, high wave numbers decay faster
than low ones, µ3 6= 0 is dispersive, µ3 > 0, high
wave numbers travel faster than low ones. Here, λs =
λ∆xs/(s+ 1)!, s = 1, 2, 3

dispersion, but unfortunately the scheme is not stable. However,
small CFL values will slow down the growth in FTCS. High
frequencies are also less unstable (meaning they do not grow as
fast as low wave numbers). So we can observe the dispersion.
Also, in the FTCS scheme, the coefficient of the third derivative
term is negative for small σ. Therefore, low frequencies will
travel faster than high frequencies. Fine. We will demonstrate
dispersion in the following fashion.

(1) We will employ the FTCS scheme to demonstrate dis-
persion.

0 0.1

0.2 0.3

0.4 0.5

Figure 3.33. The wave equation, with wave speed=1, is
discretised using FTCS. The solutions generated using 101
grid points, with σ = 0.05 are shown at time-steps t = 1,
201, 401, 601, 801, and 1001. The amplitude of the high
frequency component is growing as FTCS is an unstable
scheme. You can make out the low frequency component
propagating from left to right faster than the high frequency
wave

(2) We will use a unit length domain divided into a 100
intervals.

(3) We will use the differential equation

∂u

∂t
+
∂u

∂x
= 0

The equation is propagating u at unit speed.
(4) We start with an initial condition u(x, 0) = sin(2πx)+

0.05 sin(50πx). This initial condition corresponds to a
the two wave numbers n = 1 and n = 25.

(5) We will use a CFL of 0.05.

The results of the computation for time steps t = 1, 201,
401, 601, 801, 1001 are shown in Figure 3.33. With σ =
0.05, we expect that our solution should progress through the
unit computational domain in 2000 time steps. This is be-
cause our equation is supposed to be propagating u at unit
speed. We can clearly see that the component of the solu-
tion that has wavenumber 25 seems to be stationary. The
wavenumber n = 1, on the other hand, is being propagated
by the wave equation in a routine fashion. In fact, at the times
shown, the trailing edge of the low frequency part is at loca-
tions 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 as expected. You will also
observe that the amplitude of the high frequency component is
increasing in time. If we were to run this a little longer, the
program would “blowup”.

Let us collect our thoughts at this point and see where this
leads us. We have seen that numerical schemes that are applied
to the wave equation can be unconditionally unstable, condition-
ally stable or unconditionally stable. We have also seen that this
instability, attributed earlier to the the unbounded growth in the
von Neuman stability analysis can now be tied to the sign of the

second order or fourth order diffusion term. Further, we can see
that all frequencies may not diverge at the same rate. Schemes
may introduce dissipation that did not exist in the original prob-
lem. Added to this is the fact that some schemes may introduce
dispersion that does not exist in the original problem. A close in-
spection of these techniques indicates that the unstable schemes
have the wrong kind of dissipation.

A thought: We can take the FTCS scheme and add some
second order dissipation to it. After all, we are actually
solving the modified equation anyway. Why not modify
it, carefully, to suit our stability requirement.

To justify this thought, we ask the following question:

Question: What is the difference between the backward
difference approximation of the first derivative and the
central difference representations of the same?

First, we squint at this question to get an idea of the answer.
We are asking for the difference of two first derivatives. Well,
it is likely to look like a second derivative. You can make this
out from Figure 2.30.

Finally, we just get in there and subtract one from the other

(3.177) diff =
up,q − up−1,q

∆x
− up+1,q − up−1,q

2∆x

=
−up+1,q + 2up,q − up−1,q

2∆x
≈ −∆x

2

∂2u

∂x2

Just out of curiosity, what is the difference between forward
difference and the centred difference

(3.178) diff =
up+1,q − up,q

∆x
− up+1,q − up−1,q

2∆x

=
up+1,q − 2up,q + up−1,q

2∆x
≈ ∆x

2

∂2u

∂x2

Only the sign of the quantity representing the second derivative
is flipped. The magnitude is the same.

Let us try to pull all of this together now. For λ positive,
waves propagating from left to right, FTBS will work. For λ
negative, wave propagating right to left, FTFS will work. So,
the scheme we use should depend on the sign of λ.

We will work some magic now by defining two switches,
watch.

s+(λ) =
|λ|+ λ

2
(3.179)

s−(λ) =
|λ| − λ

2
(3.180)

So, a scheme which takes into account the direction of the
“wind” or “stream” can be constructed as
(3.181)

up,q+1 = up,q−σ
{

s+(λ){up,q−up−1,q}+s−(λ){up+1,q−up,q}
}

Such a scheme is called an upwinding scheme or an up-

streaming scheme.
There is another way to achieve the same thing. How is

that possible? you ask. To the FTCS scheme add the second

difference term to get
(3.182)

up,q+1 = up,q−λ∆t
up+1,q − up−1,q

2∆x
+|λ|∆tup+1,q − 2up,q + up−1,q

2∆x
︸ ︷︷ ︸

artificial dissipation

Lo and behold, if λ is positive we get FTBS otherwise we get
FTFS. The extra term that has been added is called artifi-

cial dissipation. Now, one could frown on adding this kind of
artificial dissipation to stabilise the solver. After all, we are de-
liberately changing the governing equation. On the other hand,
we are always solving something like the modified equation. In
fact:

The choice of the discretisation scheme is

essentially choosing a modified equation.

Why not engineer the modified equation? At least, then, we
will get it in the form that we want.

What exactly do we have to add to eliminate the second
derivative term all together from the modified equation of the
FTCS scheme? By looking at the modified equation given in
(3.161), you may think that adding the term

(3.183) σ
λ∆x

2

∂2u

∂x2

would do the trick. If we could add the term exactly, it would.
However, we are forced to approximate the second derivative
term in the expression (3.183) using a central difference approx-
imation. The resulting modified equation still ends up having a

second derivative term. It turns out what we need to add is

(3.184)
σ2

2
{up+1,q − 2up,q + up−1,q}

This eliminates the second derivative term from the modified
equation.

Assignment 3.14

Verify that adding the expression (3.184) does indeed elimi-
nate the second spatial derivative from the modified equation
of FTCS applied to the first order linear one-dimensional wave
equation.

If we were interested only in a steady state solution, one
could add a mixed derivative to get rid of the dissipation term
as we got to a steady state solution. For exmaple,

(3.185)
∂u

∂t
+ λ

∂u

∂x
= µ′

3

∂3u

∂t∂2x

We will get the mixed third derivative term by taking the time
derivative of the second spatial derivative in equation (3.169)

(3.186) µ′
3

∂

∂t

∂2u

∂x2
= −µ′

3n
2∂u

∂t
= −µ′

3n
2{−inλ+ b}u

Substituting back into the equation we get

(3.187) {−inλ+ b}u+ inλu = −µ′
3n

2{−inλ+ b}u
Which gives b as

(3.188) b = −µ′
3n

2{−inλ+ b}
⇒ {1 + µ′

3n
2}b = iµ′

3n
3λ

⇒ b =
iµ′

3n
3λ

{1 + µ′
3n

2}
This gives a solution that looks like

(3.189) u(x, t) = ane
in(x−λt)e

i
µ′
3
n3λ

{1+µ′
3
n2}

t

= an exp

{

in

[

x−
(

λ− µ′
3n

2λ

{1 + µ′
3n

2}

)]

t

}

Again, like the earlier spatial third derivative, this mixed third
derivative is also dispersive. Let us consider some of the words
we have used.

dissipation: This term used here in the CFD context is
not to be confused with the term that appears in the
energy equation of your fluid mechanics course. It is
used here to indicate that the amplitude of a certain
wave is decreasing.

decay: Used here synonymously with dissipation. I per-
sonally prefer this term to dissipation.

dampen: Dampen again means reduction, attenuation...

However, CFD literature typically refers to the process as dissi-
pation.

Let’s look at a different interpretation of the stability con-
ditions that we have derived for the wave equation. Figure 3.34

x

t

p, q + 1

∆x

∆
t ∆t =

λ

∆x

p− 1, q p, q

Figure 3.34. Yet another way to look at stability, FTBS
has the upstream influence. The arrow indicates flow of
information (u). This figure represents the case of σ = 1.
The arrow, in fact, is a characteristic. Since σ = 1, the zone
of influence and the zone of dependence happen to be grid
points

shows the three grid points that participate in the FTBS algo-
rithm. The figure shows a setting where σ = 1. The arrow
indicates the direction of propagation of information or “influ-
ence”. We clearly see that the upstream influences the down-
stream, which is good. The point (xp−1, tq) is called the zone

of dependence of the point (xp, tq+1). The point (xp, tq+1) is
called the zone of influence of the point (xp−1, tq).

Now take a look at Figure 3.35. The physical line of influ-
ence is reproduced from Figure 3.34 for reference and is shown
by the solid arrow. The grid point at xp,q+1 is determined by u

x

t

p, q

p, q + 1

∆t <
∆x

λ

∆x

p− 1, q

Figure 3.35. graphical representation of characteristics on a
mesh where σ < 1 for FTBS. The solid arrow points to the
zone of influence from the grid point p − 1, q. The dashed
arrow points from the the zone of dependence of the grid
point p, q + 1. The grid point p, q + 1 is in the zone of
influence of the interval [xp−1, xp]

that propagates along line of influence indicated by the dashed
arrow. That is, the zone of dependence lies somewhere in the
interval [xp−1, xp]. To understand this better we rewrite the
discrete equation (3.125) as

(3.190) up,q+1 = up,q−σ
up,q − up−1,q

∆x
= (1−σ)up,q+σup−1,q

We see that up,q+1 is a convex combination of up,q and up−1,q.
This should remind you of the hat functions, Laplace’s equation,
and SOR. First, let us look at why this is not a solution to

Laplace’s equation or SOR. To make the discussion interesting
look at what happens when σ = 0.5. We get the average
of up,q and up−1,q. The reason why this turns out to be the
wave equation and not the Laplace equation is the fact that
this average is taken to be the new value of u at the point xp.
A clear case of propagation to the right. However, as we have
seen in the modified equation for FTBS, the second derivative
term is also present.

We are using hat functions to interpolate here. So, σ values
in [0, 1] will give us linearly interpolated values on the interval
[xp−1, xp]. Since we have right propagating waves, the points
on the interval ∆x shown determine / influence the points on
the∆t = λ/∆x interval shown in Figure 3.34. The∆t shown in
this figure is the maximum permissible value from the stability
condition. We will call it ∆tm for this discussion. The theoreti-
cally correct value of u at tq +∆tm can be obtained by setting
σ = 1 in the equation (3.190). This is u(xp, tq+∆tm) = up−1,q.
For a ∆t < ∆tm, see Figure 3.35, that is σ < 1, a point on
the interval [xp−1, xp], determines the value of up,q+1. We can
also take the equation (3.190) as saying that for σ < 1, the
value up,q+1 is the weighted average of u(xp, tq + ∆tm) and
up,q. That is, the convex combination of a future value and
a past value. This process is stable, as up,q+1 is bounded by
u(xp, tq +∆tm) = up−1,q and up,q.

Now, for the case when σ > 1, see Figure 3.36, ∆t > ∆tm.
The zone of dependence of the point (xp, tq+1) is a point to
the left of xp−1. Our scheme only involves up,q and up−1,q.
As a consequence, we end up extrapolating to a point outside
the interval [xp−1, xp]. This requires σ > 1. So all of this is

p, q∆x

p, q + 1

∆t >
∆x

λ

p− 1, q

Figure 3.36. graphical representation of characteristics on
a mesh where σ > 1 for FTBS.The solid arrow points to the
zone of influence from the grid point p − 1, q. The dashed
arrow points from the the zone of dependence of the grid
point p, q + 1. The grid point p, q + 1 is outside the zone
of influence of the interval [xp−1, xp]

consistent, why does it not work? Remember our example at
the beginning of the chapter. You may be placing boats on a
stream of water, or adding dye to the stream of water. The dye
is carried along with the water. We may start and stop adding
dye as an when we wish. Downstream, we only have the power
to observe how much dye there is in the interval [xp−1, xp]. Just
because we observe dye in that interval now, does not mean that
the interval [xp−2, xp−1] has the same amount of dye. In fact, it

may have none at all. The stream is flowing at a speed λ ms−1

in the positive x direction. Only after a time ∆t > ∆tm will
the actual status of the dye currently in the interval [xp−2, xp−1]
be known at the point xp. Fiddling around with values up,q and
up−1,q, of dye density, does not help since they have no causal
relationship to the density of dye in the interval [xp−2, xp−1].
The fact that our scheme does not allow the u in the interval
[xp−2, xp−1] to influence / cause the up,q+1 is the reason for the
instability. Or simply, if σ > 1, we can no longer guarantee that
the computed up,q+1 is bounded by up,q and up−1,q. This means
that when we view the computation along the time axis, we are
extrapolating from two past data points into the future which
they do not influence.

The conclusion we draw from here is that when computing
a point in the future we need to ensure that we determine the
future value from regions on which that future depends.

There is a final point that we will make here. This involves
terms we used earlier: high wave numbers, low wave numbers.
High and low are comparative terms. High compared to what?
Low compared to what? These colloquially posed questions
need to be answered. In fact, we have answered them in an ear-
lier section 2.9. A uniform grid has associated with it a highest
wave number that can be represented by that grid. We found
that with eleven grids we could represent frequency information
up to wave number four using hat functions. A wave number
four would be high frequency on that grid. Wave number one
would be a low frequency. On the other hand, on a grid with a
hundred and one grid points, wave number four would be a low
frequency and a wave number forty would be a high frequency.

Solution to Heat Equation

Now that we have seen the wave equation with various
higher order derivatives on the right hand side of the equation,
let us take a look at one such equation with out the advection
term. The one-dimensional heat equation is given by

(3.191)
∂u

∂t
= κ

∂2u

∂x2

If we employ the Euler’s explicit scheme to discretise this
equation we get

(3.192) uq+1
p = uqp +∆tκ

{
uqp+1 − 2uqp + uqp−1

∆x2

}

Performing a stability analysis as we have done before we see
that the gain is given by

(3.193) g = 1 + λ
{
eiθ + e−iθ − 2

}
, s =

κ∆t

∆x2
, θ = n∆x

This gives us a stability condition

(3.194) 0 <
κ∆t

∆x2
<

1

2

This is an interesting result. We saw in the earlier section that
adding a second order term in the form of artificial dissipation
was stabilising as seen from the perspective of the advective
equation. We see now that adding a dissipation term brings
with it another constraint on the time step. So, there is an

upper limit on the time step. We want

(3.195) ∆t =
∆x2

κ

1

2
=

∆x

λ

We basically have a limit on the amount of artificial dissipation
that we can add.

We now find the modified equation for FTCS applied to the
heat equation by substituting for the various terms in equation
(3.192) with the Taylor’s series expanded about the point (p, q).

(3.196)

uq+1
p = uqp +∆t

∂u

∂t

∣
∣
∣
∣

q

p

+
∆t2

2!

∂2u

∂t2

∣
∣
∣
∣

q

p

+
∆t3

3!

∂3u

∂t3

∣
∣
∣
∣

q

p

+ · · ·

= uqp +
∆tκ

∆x2

{

uqp +∆x
∂u

∂x

∣
∣
∣
∣

q

p

+
∆x2

2!

∂2u

∂x2

∣
∣
∣
∣

q

p

+
∆x3

3!

∂3u

∂x3

∣
∣
∣
∣

q

p

+
∆x4

4!

∂4u

∂x4

∣
∣
∣
∣

q

p

+ · · ·

− 2uqp + uqp −∆x
∂u

∂x

∣
∣
∣
∣

q

p

+
∆x2

2!

∂2u

∂x2

∣
∣
∣
∣

q

p

− ∆x3

3!

∂3u

∂x3

∣
∣
∣
∣

q

p

+
∆x4

4!

∂4u

∂x4

∣
∣
∣
∣

q

p

+ · · ·
}

Dividing through by ∆t and cancelling terms, this simplifies to

(3.197)
∂u

∂t

∣
∣
∣
∣

q

p

+
∆t

2!

∂2u

∂t2

∣
∣
∣
∣

q

p

+
∆t2

3!

∂3u

∂t3

∣
∣
∣
∣

q

p

+ · · · =

κ

{

∂2u

∂x2

∣
∣
∣
∣

q

p

+ 2
∆x2

4!

∂4u

∂x4

∣
∣
∣
∣

q

p

+ 2
∆x4

6!

∂6u

∂x6

∣
∣
∣
∣

q

p

+ · · ·
}

which finally results in

(3.198)
∂u

∂t

∣
∣
∣
∣

q

p

= κ
∂2u

∂x2

∣
∣
∣
∣

q

p

+
∆x2

12
κ

{

1− 6∆tκ

∆x2

}
∂4u

∂x4

∣
∣
∣
∣

q

p

+ · · ·

This modified equation does not help as much with the stability
analysis as it did with the wave equation. However, it is inter-
esting to note that the higher order term can be made zero by
the proper choice of parameters ∆x and ∆t.

How does this stability analysis technique work in multiple
dimensions? We will do the analysis for the two-dimensional
heat equation to find out. There is an ulterior motive to study
this now. The two-dimensional heat equation governing the
temperature distribution in a material with isotropic thermal
conductivity is given by

(3.199)
∂u

∂t
= κ

{
∂2u

∂x2
+
∂2u

∂y2

}

If we were to apply FTCS to this equation we would get

(3.200) uq+1
p,r = uqp,r +

κ∆t

∆x2
{
uqp−1,r − 2uqp,r + uqp+1,r

}

+
κ∆t

∆y2
{
uqp,r−1 − 2uqp,r + uqp,r+1

}

where, p and r are grid indices along x and y grid lines respec-
tively. We define

(3.201) sx =
κ∆t

∆x2
, and sy =

κ∆t

∆y2

So that equation (3.200) becomes

(3.202) uq+1
p,r = uqp,r + sx

{
uqp−1,r − 2uqp,r + uqp+1,r

}

+ sy
{
uqp,r−1 − 2uqp,r + uqp,r+1

}

If for the sake of this discussion, we take ∆x = ∆y, we have
sx = sy = s, this equation becomes
(3.203)
uq+1
p,r = (1− 4s)uqp,r + s

{
uqp−1,r + uqp+1,r + uqp,r−1 + uqp,r+1

}

Does not look familiar? Multiply and divide the second term on
the left hand side by four.
(3.204)

uq+1
p,r = (1− 4s)uqp,r + 4s

uqp−1,r + uqp+1,r + uqp,r−1 + uqp,r+1

4

Now for the ulterior motive. What happens if we substitute
s = 0.25. With s = 0.25 we get

(3.205) uq+1
p,r =

uqp−1,r + uqp+1,r + uqp,r−1 + uqp,r+1

4

This, we recognise as the equation we got when we were try-
ing to solve the Laplace equation using central differences (3.11)
earlier in section 3. Which resembles the Jacobi iterative solu-
tion to the Laplace equation, and q suddenly becomes an itera-
tion index instead of time index. We see that marching in time
is similar to sweeping in space. We may look at the iterations
done in our relaxation scheme as some kind of an advancing
technique in time. In fact, this suggests to us that if we only
seek the steady state solution, we could either solve the steady
state equations and sweep in space or solve the unsteady equa-
tions and march in time. Having two different views of the same
process has the advantage that we have more opportunities to
understand what we are actually doing. In a general case, if
we have difficulties to analyse a scheme one way, say analysing
the relaxation scheme, we can switch our view point to the un-
steady problem and see if that would shed any new light on
things. If s = 0.25 corresponds to our first attempt at solving
the Laplace equation, what happens for other s values? For
instance, to what does s = 0.125 correspond?

(3.206)
uq+1
p,r = 0.5uqp,r + 0.5

{
uqp−1,r + uqp+1,r + uqp,r−1 + uqp,r+1

}

In the general case

(3.207)

uq+1
p,r = (1− 4s)uqp,r +

4s

4

{
uqp−1,r + uqp+1,r + uqp,r−1 + uqp,r+1

}

You may think this is the the same as equation (3.75), with
ω = 4s. Not quite. The superscripts on the right hand side

of equation (3.68) are not all the same. Why did we do over
relaxation with Gauss-Seidel and not Jacobi iteration? We will
answer this question now.

Let us get on with the stability analysis now. We see that
we get a simple extension of the shift operator that we obtained
earlier.

uqp−1,r = e−in∆xuqp,r(3.208)

uqp+1,r = ein∆xuqp,r(3.209)

uqp,r−1 = e−im∆yuqp,r(3.210)

uqp,r+1 = eim∆yuqp,r(3.211)

We define θx = n∆x and θy = m∆y. Equation (3.200) gives
us

(3.212) g =
uq+1
p,r

uqp,r
= 1 + 2sx(cos θx − 1) + 2sy(cos θy − 1)

Again, for the sake of this discussion, we take ∆x = ∆y, we
have sx = sy = s. The expression for the gain g reduces to

(3.213) g = 1 + 4s(cos θx + cos θy − 2)

This shows that FTCS applied to the two dimensional heat equa-
tion leads to a conditionally stable scheme with a stability con-
dition given by 0 < s < 0.25. Looking at equation (3.207)
as representing Jacobi iteration with a relaxation scheme, the
stability analysis tells us that the ω would be limited to (0, 1).
ω = 1 turns out to be optimal. In fact, from the heat equa-
tion point of view, we would be advancing the solution with
the largest possible time step. We can use the over relaxation

parameter with Gauss-Seidel, which is something to be borne
in mind if we are advancing to a steady state solution using an
unsteady equation.

We will use this opportunity to point out that one can use
the unsteady equations to march in time towards a steady state
solution. Such schemes are called time-marching schemes,
which we will distinguish from attempts at solving the unsteady
problem using the unsteady equations, in which case we are
trying to perform time-accurate calculations. From what we
have seen so far of dissipative and dispersive effects of solvers,
we conclude that time-marching to a steady state solution repre-
sents an easier class of problems in comparison to time-accurate
computations.

Fine, we have an idea of how this stability analysis could be
extended to multiple dimensions. We are now in a position to
consider the stability analysis of the FTCS scheme applied to
the linear Burgers’ Equation. The linear Burgers’ equation can
be written as

(3.214)
∂u

∂t
+ λ

∂u

∂x
= κ

∂2u

∂x2

Any of the explicit discretisation schemes that we have studied
so far are likely to give a discrete equation that can be written
as

(3.215) uq+1
p = Auqp +Buqp+1 + Cuqp−1

Now, the stability analysis we performed in the earlier sections
tells us that the gain per time step can be written as

(3.216) g =
uq+1
p

uqp
= A+ Beiθ + Ce−iθ, θ = n∆x

For stability we require that

(3.217) gḡ = (A+ Beiθ + Ce−iθ)(A+ Be−iθ + Ceiθ) ≤ 1

This can then be combined to give

(3.218) A2 +B2 +C2 + 2A (B + C) cos θ + 2BC cos 2θ ≤ 1

The left hand side of this equation is maximum when θ = 0,
for A,B,C positive. This tells us that

(3.219) A+ B + C ≤ 1

This stability analysis was performed with FTCS applied to
Burgers’ equation in mind. However, if we pay attention to
equation (3.215), we see that any scheme advancing in time in
an explicit fashion employing the previous grid points will have
the same requirement on the stability condition. In that sense,
this is a very general result.

A Sampling of Techniques

We have seen that just using Taylor’s series and generating
formulas for the approximation of derivatives, we are able to
convert differential equations to difference equations. These
algebraic equations are then solved.

If we look back at how we manipulated the modified equa-
tions to convert temporal derivatives to spatial derivative, we
see that there is an opportunity to develop a solution scheme
employing Taylor’s series directly. The only difference is that
instead of using the modified equation to eliminate temporal
differences, we use the governing equation as follows

(3.220)
∂u

∂t
= −λ∂u

∂x
⇒ ∂2u

∂t2
= −λ ∂

2u

∂t∂x

Now, switching the mixed derivative around (assuming
∂2u

∂t∂x
=

∂2u

∂x∂t
) we get

(3.221)
∂2u

∂t2
= λ2

∂2u

∂x2

This process can be repeated to replace higher derivatives of u
with respect to t. We will now derive a solution technique using
Taylor’s series. Expanding uq+1

p we get about the point (xp, t
q)

we get

(3.222) uq+1
p = uqp +∆t

∂u

∂t

∣
∣
∣
∣

q

p

+
∆t2

2

∂2u

∂t2

∣
∣
∣
∣

q

p

+R(ξ)

Truncating the series we get

(3.223) uq+1
p = uqp − λ∆t

∂u

∂x

∣
∣
∣
∣

q

p

+ λ2
∆t2

2

∂2u

∂x2

∣
∣
∣
∣

q

p

which can then be written as

(3.224) uq+1
p = uqp−

σ

2
{uqp+1−uqp−1}+

σ2

2
{uqp+1−2uqp+u

q
p−1}

Does this look familiar. Look at the expression we added
earlier to the FTCS scheme given in (3.184). Clearly, we can
add more terms to the series and evaluate them by converting
temporal derivatives to spatial derivatives. The only problem
is that every increase in order looks as though it is going to
involve more grid points in space. It is also clear that though

the modified wave equation that we have derived has the terms
that we want to eliminate to get a (possibly) better scheme,
we need to derive the terms using an “ideal modified equation”
that is derived using the original equation.

All of these schemes have the time derivatives represented
by a first order approximation. What if we tried to use central
differences in time? A lot of what we have done in this book
was with a certain naiveté. If we ran into problems, we tried
to fix them and sought explanations later. We will continue to
do the same. We could do this directly using Taylor’s series,
however, we will take the scenic route. We will approach this
in two different ways. One, look at the modified equations
for FTCS and BTCS given in equation (3.161) and equation
(3.163), respectively. What happens if we take the average of
these two equations? We get an equation that is of the order
∆x2 and is dispersive. This gives us a cue. Lets take the average
of the FTCS scheme and the BTCS scheme. This gives us the
Crank-Nicholson scheme. The Crank-Nicholson method applied
to the wave equation gives us

(3.225) uq+1
p +

σ

4
{uq+1

p+1 − uq+1
p−1} = uqp −

σ

4
{uqp+1 − uqp−1}

Of course, this is the specific case of a general linear com-
bination of the explicit and implicit schemes. What we have
learnt from our SOR experience, is if we are going to take linear
combinations, we can do it in a very generic manner.

(3.226) uq+1
p +θ

σ

2
{uq+1

p+1−uq+1
p−1} = uqp−(1−θ)σ

2
{uqp+1−uqp−1}

The particular case of the Crank-Nicholson would would corre-
spond to θ = 1/2, which, incidentally is second order accurate
in time.

The use of an intermediate point at which we represent the
differential equation opens up other possibilities. We will take
a second look at employing FTCS in some fashion to get a
scheme. At time level q, consider three points p− 1, p, p + 1.
We could represent the wave equation at a point in between p−1
and p and identify that point as p + 1

2
. We then approximate

the wave equation at the point p+ 1
2
, q using FTCS. We would,

however, take only half a time step so as to get u
q+ 1

2

p+ 1

2

. To be

p− 1

p− 1
2

p+ 1
2

q + 1
2

q

p, q

q + 1
p, q + 1

p+ 1

Figure 3.37. We can use an intermediate time step to use a
combination of FTCS steps to give a new possibly improved
scheme. We could use the same grids and a combination of
FTCS steps and CTCS steps as an alternative. The rhombus
indicates points at which the differential equation is repre-
sented

precise we can write

u
q+ 1

2

p− 1

2

= uq
p− 1

2

− σ

2

{
uqp − uqp−1

}
(3.227)

u
q+ 1

2

p+ 1

2

= uq
p+ 1

2

− σ

2

{
uqp+1 − uqp

}
(3.228)

We do not have the terms uq
p− 1

2

and uq
p+ 1

2

on the right hand

side of each of these equations. What do we do? As always, we
improvise by taking the average of the two adjacent grid points
to write

u
q+ 1

2

p− 1

2

=
uqp + uqp−1

2
− σ

2

{
uqp − uqp−1

}
(3.229)

u
q+ 1

2

p+ 1

2

=
uqp+1 + uqp

2
− σ

2

{
uqp+1 − uqp

}
(3.230)

Then, repeating this process to go from the intermediate time
step q + 1

2
to q + 1 we can write

(3.231) uq+1
p =

u
q+ 1

2

p+ 1

2

+ u
q+ 1

2

p− 1

2

2
− σ

2

{

u
q+ 1

2

p+ 1

2

− u
q+ 1

2

p− 1

2

}

Assignment 3.15

(1) Perform a stability analysis for this scheme (given by
equations (3.229), (3.230), and (3.231)) and the vari-
ant of taking CTCS in the second step. Remember the
definition of the gain.

(2) Find the modified equation. Make sure to include the
second, third and fourth order terms. Comment on

the scheme from the point of view of dissipation and
dispersion. Can you infer a stability condition?

How do we perform the stability analysis?

Scheme A: Let us do the obvious thing. We will combine the
two steps into one step as we have been doing so far. Substi-
tuting for

u
q+ 1

2

p+ 1

2

, and u
q+ 1

2

p− 1

2

in equation (3.231), from equations (3.229) and (3.230) we get

(3.232) uq+1
p =

uqp+1 + 2uqp + uqp−1

4
− σ

2

{
uqp+1 − uqp−1

}

+
σ2

4

{
uqp+1 − 2uqp + uqp−1

}

We add and subtract uqp to the right hand side so that we can
recognise FTCS and see what extra terms have been added to
it for this scheme.
(3.233)

uq+1
p = uqp −

σ

2

{
uqp+1 − uqp−1

}

︸ ︷︷ ︸

identical to FTCS

+
1 + σ2

4

{
uqp+1 − 2uqp + uqp−1

}

We then see that our gain across a time step is
(3.234)

g =
uq+1
p

uqp
= 1− iσ sin θ +

1 + σ2

2
{cos θ − 1} , θ = n∆x

A little algebra and trigonometry will show that it has the same
stability condition 0 < σ < 1.

Scheme B: If you struggled a little with the algebra, let us try
something that may be a little easier. We assume that gain in
any half step is γ. Then for the first half step

γ− =
1

2

{
1 + e−in∆x − σ(1− e−in∆x)

}
(3.235)

γ+ =
1

2

{
1 + ein∆x − σ(ein∆x − 1)

}
(3.236)

and consequently the gain would be

(3.237) g =
1

2

{
γ+ + γ−

}
− σ

2

{
γ+ − γ−

}

The intermediate terms, setting θ = n∆x, are

γ+ + γ− = 1 + cos θ − iσ sin θ(3.238)

γ+ − γ− = i sin θ − σ {cos θ − 1} .(3.239)

This gives us a gain of

(3.240) g =
1

2

{
1 + cos θ + σ2 {cos θ − 1} − i2σ sin θ

}

Then, we require

(3.241) gḡ =
1

4

{
σ2(1− cos θ) + (1 + cos θ)

}2
< 1

or,

(3.242) − 2 < σ2(1− cos θ) + (1 + cos θ) < 2

We see that once again we get 0 < σ < 1.
Clearly instead of employing FTCS again in the second half

step as shown in equation (3.231), we could use a CTCS step.

This would give us the Lax-Wendroff scheme [LW60]. That is
take a second step as

(3.243) uq+1
p = uqp − σ

{

u
q+ 1

2

p+ 1

2

− u
q+ 1

2

p− 1

2

}

We observe from all the schemes that we have derived up
to this point that we can choose a spatial discretisation of some
kind, for example central differencing, and also pick a temporal
discretisation independent of the choice of spatial discretisation
chosen. In fact, if we pick a discretisation scheme in space for
solving the one-dimensional first order wave equation using cen-
tral differences, we could write at each point (xp, t), an ordinary
differential equation given by

(3.244)
dup
dt

= −λup+1 − up−1

2∆x

At any xp, up is a function of time. This technique is also re-
ferred to as the method of lines[NA63]. In a more modern par-
lance and in CFD literature it is often called semi-discretisation
to capture the idea of only some of the derivatives being discre-
tised. With semi-discretisation we see that we get an ordinary
differential equation in time at each grid point along the space
coordinate. A quick check on solving ordinary differential equa-
tions shows us that we could indeed use a variety of schemes
to integrate in time. This includes the whole family of Runge-
Kutta schemes. Though we can mix any of the time derivative
discretisation with the space discretisation, it is clear that one
would be judicious about the combination. Some combinations
may be just a waste of time. The key phrase to remember is
mix and match. Finally, the modified equation had terms that

came from both the spatial discretisation and the temporal dis-
cretisation. The combination determines the behaviour of the
solver.

Boundary Conditions

When we speak of boundary conditions we should be very
clear as to why they are required. As we have done so far, we
will do this in two parts. First we will look at the big picture.
Then, we will look at the specific instance at hand.

(1) First the operational point of view. If solving differen-
tial equations is like integration, as we have pointed out
in the first chapter, then we always have constants of
integration that need to be prescribed. These are usu-
ally prescribed in terms constraints on the behaviour of
the solution.

(2) Another point of view is that we have the differential
equation that governs the behaviour of the system at
an arbitrary point. We can build models with it. What
distinguishes one model from the other? Too broad?
Let us look at a more concrete question. We saw that
the solution to Laplace’s equation is also the steady
state solution (or the equilibrium solution) to the heat
equation. To restate our earlier question: How would
the model differ if the physical problem were to change
from the temperature distribution in a circular plate to
that in a rectangular plate? We could take a square
plate but change the temperature that was applied to
its edges. The plate could be kept in an oven or it
could be placed in a refrigerator. From this point of

view, once we have our differential equations, it is the
boundary conditions that determine the problem that
we are actually solving.

(3) The final view point is that our algorithm may require
the function values at some point. It is possible that we
are not able to use the algorithm to generate the data
at the point where it is required.

The first point tells us that there is a minimum set of con-
ditions that are required. The second point emphasises the im-
portance of the proper application of the boundary conditions
to meet our goals. After all, we have already seen from the
modified equation that we are not solving the original equation,
we do not want to compound it by making our problem defi-
nition wrong. The final point is a bit vague, indicating, really,
that our algorithm may require more conditions than required
by the constants of integration from the first point. Let us look
now at the specific case of the wave equation.

Let us consider the problem of a pipe filled with cold water.
The pipe is one meter long. Such a pipe is shown in Figure
3.13. The left end of the pipe is connected to the exit of a
water heater. On opening a valve at the right end of the pipe,
water starts to flow out of the right hand side of the pipe into
the open. Hot water starts to flow in from the water heater
which is maintained at a constant temperature of 65 degrees
Celsius. A simple model that we can use to track the hot water
front through the pipe is the first order, one-dimensional linear
wave equation. In the case of the wave equation, the reason for
the application of boundary conditions are quite obvious. The
equation has a first derivative in space and a first derivative

in time. We would expect from our experience with ordinary
differential equations that we will require “one” condition cor-
responding to the time derivative and “one” corresponding to
the spatial derivative.

The temporal derivative part is easy. We have some initial
condition at time t = 0 (cold water in the pipe) and we would
like to use the equation to find out what happens in the future (
How does the hot water-cold water interface or contact surface
move?). If λ is positive , then the wave equation is propagating
left to right (the water will move from the reservoir out into the
open). Information is flowing into our domain from the left and
flowing out of our domain on the right. So, we need to prescribe
what is happening to u at the left end of the domain. If we do
this, we can draw characteristics and extend the solution in time.

For the problem at hand, an initial condition needs to be
prescribed. This means we need to have u(x, 0). We also need
for all time, knowledge of what is coming in at the left end of
the problem, that is, at x = 0, t > 0, we need to prescribe u.
Let us say we were using FTCS to solve the problem. The grids
involved are at p − 1, p, and p + 1. So, when we are applying
FTCS at the last grid point at the rightmost edge, what is p+1?
If we have N grid points in x, we must necessarily stop using
FTCS at the grid point N − 1. How do we compute the value
at the N grid point? We need to apply a boundary condition
that our original problem did not require. That is, our algorithm
seems to need a boundary condition that our differential equa-
tion did not require. We could extrapolate from the interior grid
points to the boundary (effectively setting ∂u/∂x = 0). There
are two ways to do this. We could compute all the values we are

able to calculate at time level q + 1 and then copy u from the
last but one grid point to the last grid point. This is illustrated
in Figure (3.38) and can be written as an equation for the last
grid point as

(3.245) uq+1
N = uq+1

N−1

���� ��

�
�
�
�

�
�
�
�

��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

���� ���� �� �� ����

��
��
��
��

N − 1 N

q+1

q

uN = uN−1

Figure 3.38. We could compute u at time level q+ 1 up to
grid point N − 1 using FTCS and copy uN−1 to uN

To the first order, this could be interpreted as setting

(3.246)
∂u

∂x

∣
∣
∣
∣

q+1

N

= 0

Or, one could perform all the computations as possible with
FTCS and copy the value from last-but-one grid point at the
current time level to the last grid point at the new time level as
show in Figure (3.39). This can be written as

(3.247) uq+1
N = uqN−1

���� ����

���� ����

����

���� ���� ���� �� �� ��

���� ���� �� �� ����

����

N − 1 N

uq+1
N = uqN−1

q

q+1

Figure 3.39. We could compute u at time level q + 1 up
to grid point N − 1 using FTCS and copy uN−1 from time
level q to uN at time level q + 1.

This effectively transports u from grid point N − 1, q to
N, q + 1 at the grid speed. Which means that it is FTBS
applied to equation

(3.248)
∂u

∂t
+
∂u

∂x
= 0

This gives us an idea. That is, we use FTCS for all the points

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

����

�
�
�
�

N − 1 N

q+1

q

Figure 3.40. We could compute u at time level q+ 1 up to
grid pointN−1 using FTCS and uN at time level q+1 using
FTBS employing the known values at the grids N−1, q and
N, q.

that are possible to calculate using FTCS and FTBS for the last
grid point. This is indicated in Figure (3.40).

Note: There are boundary conditions that are prescribed
as part of the problem definition and may be part of the
mathematical theory of whether a problem is well posed
or not. The algorithm that you choose to solve the
problem may require more conditions to be prescribed.
Sometimes this results in a need to manufacture more
boundary conditions. At times, these conditions seem
completely contrived. They are very much part of the
list of assumptions made and need to be verified with
as much vigour as we would our other assumptions. It
cannot be emphasised enough, that the need for the
extra boundary conditions may arise because of the so-
lution technique chosen. If in the earlier discussion, we
had chosen FTBS instead of FTCS there would have
been no need for the generation of an extra boundary
condition. You can verify what happens when FTFS is
applied to this problem.

Assignment 3.16

(1) Write a program to solve the first order one-dimensional
wave equation using FTCS, FTFS, FTBS and BTCS.
I would suggest you develop the code using FTBS and
do the BTCS code last.

(2) Verify the stability conditions that have been derived.
(3) What happens to FTBS for different values of σ > 1?
(4) Try out the different boundary conditions.

(5) Plot your results. This is a lot more fun if you make
your program interactive.

A Generalised First Order Wave Equation

We have already seen the quasi-linear version of the wave
equation given by

(3.249)
∂u

∂t
+ u

∂u

∂x
= 0

This equation is said to be in the non-conservative form.
The equation can also be written in what is called the conser-

vative form as

(3.250)
∂u

∂t
+
∂f

∂x
= 0,

This equation is said to be in the divergence free form or the
conservative form. That it called the divergence free form
is obvious from the fact that the left hand side looks like the
divergence of the vector (u, f) and the right hand side is zero.
From application of the theorem of Gauss, this equation essen-
tially states there is no net accumulation of any property that
is carried by the vector field (u, f). This is a statement of a
conservation law as is shown in greater detail in Chapter 5. This
is the reason why equation (3.250) is said to be in conserva-
tive form. Equation (3.249) is not in conservative form and is
therefore said to be in a non-conservative form. We saw ear-
lier this particular form of equation (3.249) is like a directional

derivative. In CFD parlance, this form is often called “the”
non-conservative form. f is called the flux term and in the case
of equation (3.249), f(u) = u2/2. The fact that f is actually
the flux can be seen, if we consider a one-dimensional control
volume. The extent or the “volume” of the control volume is
xi+ 1

2

− xi− 1

2

. The amount of the property u contained in the

control volume is

(3.251) U =

∫ x
i+1

2

x
i− 1

2

u(ξ, t)dξ

The rate at which this changes in time depends on the rate at
which it flows in and out of the control volume.

(3.252)
∂U

∂t
=

∂

∂t

∫ x
i+1

2

x
i− 1

2

u(ξ, t)dξ = −(f(xi+ 1

2

)− f(xi− 1

2

))

It is more convenient for us to define

(3.253) ũ =
U

∆xi
, ∆xi = xi+ 1

2

− xi− 1

2

where ũ represents the average state of that system in the region
of interest. Equation (3.252) can consequently be written as
(3.254)
∂U

∂t
=

∂

∂t

∫ x
i+1

2

x
i− 1

2

u(ξ, t)dξ =
∂

∂t
(ũ∆xi) = −(f(xi+ 1

2

)−f(xi− 1

2

))

represents the fundamental idea behind a whole class of modern
CFD techniques. We have a process by which a system evolves

in time. We could integrate equation (3.252) in time to get the
change in U over the time period [tq, tq+1] as

(3.255) U q+1 − U q =

∫ x
i+1

2

x
i− 1

2

{
u(ξ, tq+1)− u(ξ, tq)

}
dξ =

{
ũq+1
i − ũqi

}
{xi+ 1

2

−xi− 1

2

} = −
∫ tq+1

tq
[f(xi+ 1

2

, τ)−f(xi− 1

2

, τ)]dτ

Equation (3.252) gives us the process. It tell us that what
is important is the boundary of the control volume. The evo-
lutionary process of the system is at the boundary. In fact, the
resounding message from that equation is

May the flux be with you!

From this point of view we could reduce everything down to
finding the correct flux at the interface of two control volumes.
The flux at the interface between volumes is the process by
which our system evolves. As a consequence, the role of grid
point i shown in Figure 3.41 is only a place holder for ũ and its
location is “somewhere in the interval”. We may still choose to
locate it at the middle.

If equation (3.252) is integrated in time one can generate a
numerical scheme to solve this equation. This class of schemes
are called finite volume schemes. Note that we would be solving
for U in equation (3.252). We have assumed that this is some
mean value ũ times the length of the interval. This mean value
can then be used to evaluate the fluxes. If we drop the tilde

i− 1
2 i+ 1

2

i− 1 i+ 1i

fi− 1

2

x

fi+ 1

2

Figure 3.41. A small control volume around the grid point i.

and label the mean value at ui, we can then write the spatially
discretised version of equation (3.252) as

(3.256)
∂

∂t
ui∆ξi = −(f(ui+ 1

2

)− f(ui− 1

2

))

where,

(3.257) ui+ 1

2

=
ui + ui+1

2

The algorithm then is

(1) Using equation (3.257) compute u on the boundaries.
(2) Use this u to find the flux on the boundaries.
(3) Employ the fluxes and equation (3.256) to advance the

solution in time.
(4) Repeat this process.

If you look at equation (3.252) and equation (3.256), you
will see that the argument of the flux term is different. This
drives the algorithm that is generated. If we stick with equation

(3.252), we see that the flux term is evaluated at the point
xi+ 1

2

. This flux can be obtained as

(3.258) fi+ 1

2

=
fi + fi+1

2

This typically involves more calculations. Try it out and see
how the two behave. Can you make out that using equation
(3.258) actually is equivalent to using FTCS on the grid points.
The key is the term 1

2
fi will cancel. Now it is clear in this case

that if we want to add artificial dissipation of any kind we need
to add it to the flux term.

We see that the solution to the equation depends rather
critically on the way fi+ 1

2

is obtained. There are a whole host of

high resolution schemes which completely depend on the way in
which this flux term is calculated. Clearly, if we want to ensure
we are up-winding we need to know the direction of propagation
at the point. The propagation vector is given by the Jacobian
∂f/∂u. How do we find this at the point i + 1/2? Do we
take the average of the derivatives at each node? If we take
the derivative of the flux at the interface, which flux, meaning
how do we calculate it? All of these questions lead to realm of
high-resolution schemes.

We saw earlier that the generalised wave equation could re-
sult in characteristics intersecting and creating a solution which
was multi valued. Let us take a closer look at that situation
now. We consider a region where the solution jumps in Figure
3.28. We can pick a convenient control volume as shown in Fig-
ure 3.42 It is clear from the figure that the speed us at which

tq

tq+1

up− 1
2

up+ 1
2

xp− 1
2

xp+ 1
2

A

B

Figure 3.42. An enlarged region from Figure 3.28 to see if
we can arrive at the jump condition that will provide the
propagation speed for the discontinuity

the discontinuity propagates is

(3.259) us = lim
B→A

xp+ 1

2

− xp− 1

2

tq+1 − tq

The control volume was deliberately chosen so that equation
(3.259) holds. Now let us look at the generalised wave equation
as applied to this control volume. We take it in the form given
in equation (3.255) since it has no derivatives and we do have
a discontinuity that is in the region of interest. This equation
when applied to our control volume becomes

(3.260)
∫ x

i+1
2

x
i− 1

2

[u(ξ, tq+1)−u(ξ, tq)]dξ = (up− 1

2

−up+ 1

2

)(xp+ 1

2

−xp− 1

2

) =

−
∫ tq+1

tq

[f(xi+ 1

2

, τ)−f(xi− 1

2

, τ)]dτ = −(fp+ 1

2

−fp− 1

2

)(tq+1−tq)

As indicated in the figure, the value of u to the left of the
discontinuity is up− 1

2

and consequently, it is the value at time

level tq+1. At time level tq, the same argument givens us up+ 1

2

.

Dividing through by (tq+1 − tq) and substituting from equation
(3.259) we get

(3.261) (up+ 1

2

− up− 1

2

)
xp+ 1

2

− xp− 1

2

tq+1 − tq
= fp+ 1

2

− fp− 1

2

We take the limit as B → A.

lim
B→A

up+ 1

2

= uR(3.262)

lim
B→A

up− 1

2

= uL(3.263)

lim
B→A

fp+ 1

2

= fR(3.264)

lim
B→A

fp− 1

2

= fL(3.265)

Where uR and fR correspond to the conditions on the right
hand side of the discontinuity and uL and fL correspond to the
conditions on the left hand side of the discontinuity. Taking the
limit B → A of equation (3.260) shows us that the wave speed

of the discontinuity is given by

(3.266) us =
fR − fL
uR − uL

This is called a jump condition in a general context. In the con-
text of gas dynamics it is called the Rankine-Hugoniot relation.

We will now look at rewriting the discrete / semi-discrete
equations in a form that gives us a different perspective on
these numerical scheme. This is called the Delta form of the
equations.

The “Delta” form

So far we have looked at problems where we were simulating
the evolution of a system. Quite often, we may be interested
only in the steady state. That is, we are interested in the solu-
tion to Laplace’s equation, we may, instead, choose to solve the
two-dimensional heat equation and march to the steady state
solution in time. We would like to do this efficiently. To lay
the foundation for the study of these so called time-marching
schemes we will look at the “Delta” form of our equations.

Consider the implicit scheme again. We apply it to the gen-
eral one-dimensional wave equation given in equation (3.250),
which can be discretised as follows

(3.267)
∆u

∆t

∣
∣
∣
∣

p+1

+
∂f

∂x

∣
∣
∣
∣

q+1

= 0.

As we did before we could use Taylor’s series to obtain f q+1,
[BM80], as

(3.268) f q+1 = f q +∆t
∂f

∂t

q

+ ...

Using the fact that f = f(u) and chain rule we get

(3.269)

f q+1 = f q +∆t
∂f

∂u

∂u

∂t
+ ... = f q + aq∆uq, aq =

∂f

∂u

∣
∣
∣
∣

q

where ∆uq = uq+1 − uq. So, equation (3.267) becomes

(3.270)
∆u

∆t

q

+
∂

∂x
[f q + aq∆uq] = 0.

Now, if we were only seeking the steady state solution, we are
actually trying to solve the problem governed by the equation

(3.271)
∂f

∂x
= 0

For any function u other than the steady state solution this
would leave a residue R(u). So at time-level q, we have a
candidate solution uq and the corresponding residue

(3.272)
∂f(uq)

∂x
=
∂f

∂x

q

= R(uq) = Rq

We now rewrite equation (3.270) as

(3.273)
∆u

∆t

q

+
∂aq∆uq

∂x
= −Rq

Multiplying through by ∆t and factoring out the ∆uq gives us
the operator form of the equation

(3.274)
{

1 + ∆t
∂

∂x
aq
}

∆uq = −∆tR(u(tq)) = −∆tR(tq) = −∆tRq

It should be emphasised that the term in the braces on the left
hand side is a differential operator. This equation is said to be
in the delta form. Since we have taken the first terms from the
Taylor’s series expansion of f q+1, it is a linearised delta form.
We look at this equation carefully now to understand what it
does for us. If we are looking only for the steady state solution,
with a given initial guess, we can march this equation in time
till we get convergence to a steady state (or so we hope).

If we designate
{
1 + ∆t ∂

∂x
a
}
byA we can write the pseudo-

code to march to the steady state as follows.

Ai = inverse(A)

Guess u

while(R(u) > eps):

Du = -Dt Ai R(u)

u = u + Du

Here, Ai is the inverse of the operator A. This is called
time-marching. At any given point in the time-marching scheme,
the right hand side of the equation in the delta form determines
whether we have the solution or not (look at the while state-
ment in the pseudo-code). In theory, we can compute our R as

accurately as we desire and are able to compute. So, when we
decide using this accurate R that we have converged we should
have an accurate solution.

Given the current approximation we compute the R. With
these two in hand, left hand side then allows us to obtain a
correction to our current approximation to the solution. The
nature of this correction determines the rapidity with which we
reach the steady state solution. The correction should go to
zero as we approach the solution because R → 0. In fact, at
the solution, the correction is zero, since R = 0. As R → 0,
∆u → 0 as long as M is not singular. In that case, does
the nature of the discrete version of the differential operator M
matter? If we are at the solution, as long as this discrete version
is not singular, if ∆u is zero, does it matter what multiplies
it? The answer is an emphatic: No! This leaves open the
possibility that we can accelerate convergence to the steady
solution by an appropriate choice of the operator M . What we
are effectively saying is that if you are interested only in the
steady state solution why not compromise on the transient to
get to that solution as quickly as possible. We will see how all
of this works. Let us first see how the delta form can be used
to obtain a solution.

A simple minded discretisation would be to use BTCS. That
is, the spatial derivative is discretised using central differences.

(3.275)
{

∆uqp +∆t
aqp+1∆u

q
p+1 − aqp−1∆u

q
p−1

2∆x

}

= −∆tR(uq)

We immediately see that this forms a system of equations,
For the typical equation not involving the boundary, we have a
sub diagonal entry, a diagonal entry and a super diagonal entry.
That is we have a tridiagonal system of equations which can be
written as

(3.276) AU = B,

where A is a tridiagonal matrix (or can be made a tridiagonal
matrix), U is a vector of ∆u and B is made up of −∆tR and
the boundary conditions. We can choose to solve this system
of equations using LU decomposition or any type of iterative
scheme. Let us write out the equation to see what it looks
like. For convenience we set σ̃q = aq∆t/2∆x We will use the
following problem for the illustration.

(1) We will solve the generalised wave equation on the unit
interval (0, 1].

(2) The initial condition is taken to be u(x, 0) = 2. +
sin(2πx).

(3) The inlet condition is specified to be u(0, t) = 2.0. In
this test case it does not change in time.

(4) No exit condition is specified.

We will solve this problem as follows

(1) The delta form and BTCS will be used
(2) The unit interval is split into eight equal sub-intervals

using nine grid points.
(3) Our indexing starts at zero. This means our grid points

are numbered 0, 1, · · · , 7, 8.

(4) Since the inlet condition at grid point 0 is a constant,
∆u0 = 0. We still show it in equation (3.278) so that
it is valid for the general case.

(5) Since we require the last grid point for the computation
we will extrapolate from grid point 7 to grid point 8

Since we have seven unknowns, we get seven equations.
These are written as a system as shown in equation (3.278).
The last equation in this system is a simple extrapolation to the
last grid point. It reads

(3.277) − u7 + u8 = 0 ⇒ u8 = u7

(3.278)





















1 σ̃2 0 0 0 0 0 0

−σ̃1 1 σ̃3 0 0 0 0 0

0 −σ̃2 1 σ̃4 0 0 0 0

0 0 −σ̃3 1 σ̃5 0 0 0

0 0 0 −σ̃4 1 σ̃6 0 0

0 0 0 0 −σ̃5 1 σ̃7 0

0 0 0 0 0 −σ̃6 1 σ̃8

0 0 0 0 0 0 −1 1




























∆u1

∆u2

∆u3

∆u4

∆u5

∆u6

∆u7

∆u8







=







−∆tR1
− a0∆u0

−∆tR2

−∆tR3

−∆tR4

−∆tR5

−∆tR6

−∆tR7

0







You will notice that the matrix A given in equation (3.278)
is not symmetric. This is because of the first derivative in our
equation. Laplace’s equation resulted in a symmetric matrix
because it involved second derivatives.

This system of equation can be solved using any number
of schemes. You could use Gauss-Seidel or Jacobi iterations to
solve them. Since, in this case, the system of equations is small,
we could use a direct scheme like Gaussian elimination or LU
decomposition.

However, we will recall again that in equation (3.276), the
right hand side B determines when we have converged and the
quality of the solution. At the solution B = 0 as is U = 0. As
long as the coefficient matrix A is not singular, the result will
only affect the transient and not the steady state.3

A simple possibility in fact is to replace A with I, the iden-
tity matrix. If we discretise R using central differences, can you
make out that this results in FTCS? Now we will look at replac-
ing A with something that is easy to compute and close to A.
Since we saw that one of the ways we could solve the system of
equations was by factoring A we will see if we can factor this
a little more easily. From the form of the operator in equation
(3.274), we can write

(3.279)
∂

∂x
=
∂−

∂x
+
∂+

∂x
.

Equation (3.274) can now be rewritten as

(3.280)

{

1 + ∆t
∂−

∂x
a+∆t

∂+

∂x
a

}

∆u = −∆tR(u(t))

3This is not a mathematical statement. It is made here with a certain gay abandon so that we

can proceed with developing schemes

This is factored approximately as

(3.281)

{

1 + ∆t
∂−

∂x
a

}{

1 + ∆t
∂+

∂x
a

}

∆u = −∆tR(u(t))

This factorisation is approximate because on expanding we find
that we have an extra term

{

1 + ∆t
∂−

∂x
a

}{

1 + ∆t
∂−

∂x
a

}

= 1 +∆t
∂−

∂x
a+∆t

∂+

∂x
a

+∆t2
∂−

∂x
a
∂+

∂x
a

︸ ︷︷ ︸

extra term

(3.282)

If the extra term in equation (3.282) did not occur when the
product on the left hand side is expanded, we would have an
exact factorisation. However, we will have to live with the ap-
proximate factorisation as it stands. We notice that the extra
term is of the order of ∆t2. We have already made an approxi-
mation of this order when we linearised the flux term.

An example for the kind of partitioning indicated in equation
(3.279) is

(3.283)
∂

∂x
a∆u =

ai+1∆ui+1 − ai−1∆ui−1

2∆x

=
ai∆ui − ai−1∆ui−1

2∆x
+
ai+1∆ui+1 − ai∆ui

2∆x

We should remember that is not quite how it is applied. In order
see this can write equation (3.281) as

{

1 + ∆t
∂−

∂x
a

}

∆u∗ = −∆tR(u(t))(3.284)

{

1 + ∆t
∂+

∂x
a

}

∆u = ∆u∗(3.285)

(3.286)

The first equation gives us a lower triangular matrix equation.
The second an upper triangular matrix. It is easy to solve for
the ∆u∗ and then follow up with a step of solving for ∆u.

In this case, the error due to the approximate factorisation
is the term

(3.287) ∆t2
{
ai+1∆ui+1 − 2ai∆ui + ai−1∆ui−1

4∆x2

}

This is obtained by the repeated application of the two opera-
tors.

The One-Dimensional Second Order Wave Equation

When one speaks of the wave equation, normally it is un-
derstood that the topic under discussion is the one-dimensional
second order wave equation. However, the first order version of
the equation is of such importance to CFD that we have rele-
gated “the” wave equation to the end of the chapter. There is
more to be learnt from this equation.

(3.288)
∂2u

∂t2
− a2

∂2u

∂x2
= 0

We are looking at this equation with out any reference to the
domain or boundary conditions. In operator form this can be
factored as

(3.289)

{
∂

∂t
+ a

∂

∂x

}{
∂

∂t
− a

∂

∂x

}

u = 0

Inspection of the differential operator on the left hand side re-
veals that it has been written as a product of two one-dimensional
first order wave operators. The first operator corresponds to a
“right moving” wave and the second one to a “left moving” one.
The corresponding characteristics are x+at and x−at. One can
solve this equation numerically by employing a CTCS scheme,
that is, a central difference in time and a centred difference in
space.

Assignment 3.17

(1) Solve the second order wave equation on the interval
(−1, 1). The initial condition is u(x, 0) = 0 for all x
except u(0, 0) = 1.

(2) Check the stability condition for the resulting automa-
ton.

We will take a small detour into the classification of differ-
ential equations. First some observations on what we have so
far.

(1) The first order linear one-dimensional wave equation
had a single characteristic.

(2) The second order linear one-dimensional equation that
we have seen just now has a set of two characteristics
that are distinct.

The second item in the list above makes an assumption. We
often tend to get prejudiced by our notation. For example, we
identified a as the propagation speed and that ties us down to
the coordinates x and t. To see this let us write the equation
in terms the independent variable x and y The rewritten wave
equation is

(3.290)
∂2u

∂y2
− a2

∂2u

∂x2
= 0

We now consider the case when a = i =
√
−1. What hap-

pens to our equation? It becomes Laplace’s equation! What
happens to the characteristics? Well they become x + iy and
x − iy. In complex variables parlance z and z̄, that is a com-
plex coordinate and its conjugate[Ahl79][Chu77]. Functions of
z̄ are not analytic. So, we look for solutions of only z. A trip
into the beautiful world of complex analysis would be more than
the small detour promised here. The student is encouraged to
review and checkout material on conformal mapping.

We now summarise a scheme to classify the behaviour of
differential equations.

(1) If the characteristics of a system of differential equa-
tions are real and distinct we say the system is hyper-
bolic in nature.

(2) If the characteristics are complex then the system is said
to be elliptic in nature.

(3) If they are real and identical then the system of equa-
tions is said to be parabolic.

(4) If we get a combination of the above then we have a
mixed system and identify it as such.

Please note that this does not restrict us to second order equa-
tions.

You can ask the question: What’s the big deal? Why are
you bothering to define this at this point? After all we managed
so far with out his classification.

This is true, we have used this classification without quite
being aware of it. Why did we specify the data on all sides
for the Laplace’ equation? Can you solve Laplace’s equation as
an initial value problem with data prescribed on one side. How
about the wave equation. Can you go to the beach and assert
that the wave shall be a certain height or that a stream of water
shall have a paper boat in it at any time that you insist, however,
someone else is placing the boats somewhere upstream of you.
The nature of the equations is intimately tied to the physics
of the problem and to the way we apply/can apply boundary
conditions.

Assignment 3.18

Classify the following equations as elliptic, parabolic, and
hyperbolic.

(1) ∂u
∂t

− a∂u
∂x

= 0

(2) ∂u
∂t

− u∂u
∂x

= 0

(3) Discretise the second order linear wave equation given
by

(3.291)
∂2u

∂t2
− λ2

∂2u

∂x2
= 0.

Is the scheme stable? What are the characteristics as-
sociated with the equation? What is the consequence
of taking λ = i =

√
−1?

Important ideas from this chapter

• Laplace’s equation is averaging, smoothing. The maxi-
mum and minimum of the solution occur on the bound-
ary. The solution is unique.

• Marching heat equation in time is the same as sweep-
ing Laplace’s equation in space. This means that if the
initial condition to the heat equation has any disconti-
nuities in it, the action of the equation to smooth the
discontinuity.

• The quasi-linear one-dimensional wave equation can take
an initial condition which is smooth and generate a dis-
continuity in the solution.

• An iterative technique is basically a map of a space onto
itself. If the map is a contraction mapping, the scheme
will converge to a fixed point which is the solution to
the equation.

• Solution techniques that are obvious don’t always work.

(1) FTCS is unconditionally unstable for the first order
linear wave equation. It is conditionally stable when
applied to the heat equation.

(2) The scheme may not be consistent which means
that the modified equation may not converge to
the original equation.

• FTBS and FTFS are conditionally stable depending on
the direction of propagation. This leads a class of
schemes called up-winding schemes.

• Solution techniques can be dissipative and dispersive.
• Do not confuse the convergence of the scheme, that is
uh → u as h→ 0 with the convergence of the algorithm
or the specific implementation which is your program.

• The boundary conditions provided by the physics and
specified for the governing differential equations may
not sufficient to solve the problem employing an al-
gorithm. Individual algorithms may require auxiliary
boundary conditions that need to be generated in some
fashion.

• All the schemes that we have seen can be written in
a finite volume context using the fluxes at the volume
boundaries. These fluxes completely determine the evo-
lution of the system and hence need to be computed
correctly.

• Partial differential equations are classified broadly into
three types: elliptic, parabolic and hyperbolic equations.

One-Dimensional Inviscid Flow

We will look at a class of problems that are typically studied
in a course on gas dynamics. I would suggest that you do at
least a quick review of the material[LR57].

We have seen a variety of simple problems in chapter 3.
The wave equation and the heat equation were one-dimensional
equations for a dependent variable u. We say one dimension as
we see only one spatial coordinate. However, mathematically
they were two dimensional as the parameters of interest varied
in time. The equations, therefore, had two independent vari-
ables (x, t). These equations in fact dealt with the evolution
of some quantity like density or some measure of internal en-
ergy (temperature is often a good measure of internal energy).
Laplace’s equation is a two-dimensional equation governing one
dependent variable. It was essentially an equilibrium problem
involving two space coordinates. Recall that it was indeed the
steady state equation of the corresponding two dimensional heat
equation (two spatial coordinates, one time coordinate).

To summarise, we have seen equations in one dependant
variable up to this point. We will now look at a system of
equations governing more than one dependent variable. Where
would we run into such a situation? In a general fluid flow
situation, we would have

(1) the mass distribution of the fluid, which we capture
through the field property mass density or just density,
ρ,

(2) the momentum distribution, which we capture through

the momentum density, ρ~V ,(remember that momen-
tum is a vector, and would normally have three compo-
nents)

(3) the energy distribution, through the density of total en-
ergy, ρEt.

Of course, in more complicated situations, we may want to track
other parameters like fuel concentration, moisture concentration
(humidity) and so on. These kinds of parameters are often
referred to as species and species concentration, as they seem
to be variations of mass and mass density. We will look at the
derivation of the governing equations for fluid flow in chapter
5. Right now, the easiest place to start our study is the one-
dimensional Euler’s equation.

Having decided on the equations that we will study in this
chapter, we will now address the other important component of
the problem definition: the boundary conditions. We have seen
this material in an earlier section 3.15, it is important that we
remind ourselves.

Briefly, we know from the theory of differential equations,
we may require a certain number of boundary conditions to solve
the problem at hand. However, it is possible that the algorithm
we generate requires more conditions in order to work. So, there
are issues with respect to the boundary conditions that need to
be addressed. We will look at these issues in this chapter. In
this context, the one-dimensional equations are the best place
to start.

This chapter will lay the foundation for working with a sys-
tem of equations using the one-dimensional Euler equations.

Some of the things done here can be extended to multiple di-
mensions in spirit and possibly form. We will see that the pro-
cess of applying boundary conditions is one of the things that
will be effectively extended to multiple dimensions.

What is one-dimensional flow?

First, one-dimensional flow should not be confused with uni-
directional flow. Uni-directional flow is flow where all the veloc-
ity vectors point in the same direction, the “uni-direction” so to
speak. If we consider a plane perpendicular to the uni-direction,
the magnitude of the velocities at points on the plane need not
be the same. Uni-directional flow with all the velocities at points
on a plane perpendicular to the uni-direction is shown in Figure
4.1 On the other hand, we would have a one-dimensional flow
field if the flow field was not only uni-directional, but also the
velocity vectors on any plane perpendicular to the direction of
flow had the same magnitude. An example of this is shown in
Figure 4.2 It should noted that we will allow for a change in
magnitude going from one plane perpendicular to the flow field
to another parallel plane.

We do not usually deal with infinite flow fields in real life.
We may use that as an effective approximation. The easiest
way to generate a uni-directional flow field is to confine the
fluid to a duct. Consider classical problems like Couette flow
and Hagen-Poisseuille flows. They are uni-directional. One-
dimensional flow fields are near impossible to generate just as
it is to get a room where the velocity vectors are zero! So,
bear in mind that the assumption of one-dimensional flow is a
simplifying assumption.

Figure 4.1. An example of a uni-directional flow. The whole
flow field is not shown. Instead, a plane perpendicular to
the direction of the flow is picked and the velocity vectors
at some points on the plane are shown. The vectors, as ex-
pected, are perpendicular to the plane. However, the mag-
nitudes of these vectors need not be the same.

We will consider a proto-typical one-dimensional flow. We
have a pipe with a circular cross-section of constant area. One
end of this pipe is connected to a large pressure vessel, see Fig-
ure 4.3. These large pressure vessels are also called reservoirs.
The pressure vessel is full of dry air; There! we got rid of the
humidity with this assumption. We will have a valve at end of
the pipe which is connected to the pressure vessel. The valve
can be operated to open the pipe completely and start the flow
instantaneously or as slowly as one chooses. For now we will
assume that we open it instantaneously. The other end of the
pipe is open to the atmosphere.

Figure 4.2. An example of a one-dimensional flow. The
whole flow field is not shown. Instead a plane perpendic-
ular to the direction of the flow is picked and the velocity
vectors at some points on the plane are shown. The vectors
as expected are perpendicular to the plane. In the one-
dimensional case the magnitudes of these vectors are the
same.

Valve

Atmospheric pressure

H
ig
h
P
re
ss
u
re

Figure 4.3. A schematic diagram of a setup that can be
modelled as one-dimensional flow.

We should be clear as to what this diagram in figure 4.3
indicates. To this end we will restate salient features of the
problem.

• The initial pressure on the left hand side of the pipe is
higher than atmospheric pressure.

• The pressure vessel is so large that there will be no
appreciable drop in pressure during the experiment.

• The valve is on the left hand side of the pipe as shown.
• The right end is open to a quiescent atmosphere.
• The initial condition in the pipe is the atmospheric con-
dition.

• The air in the pipe is stationary to begin with.

Now that we have an idea as to the conditions with which
we will operate, we can do a thought experiment to see where
we go from here. If I were to suddenly open the valve, I would
expect a compression wave to propagate from the left to right.
This I expect from the fact that the pressure vessel is at a higher
pressure than the pipe at this point in time. (An expansion wave
propagates into the pressure vessel, we really won’t worry about
that.) Remember that a wave/surface is a compression wave if
the flow passing through it experiences an increase in density.
On the other hand if the density drops it is called an expansion
wave. Once the compression wave comes to the end of the pipe,
an expansion wave may propagate back through the pipe, bear
in mind that the atmosphere now is at a lower pressure than the
pipe. (As we did with the reservoir, we ignore the compression
wave once it leaves the pipe.) Eventually, a flow field is setup in
the pipe. In reality, this whole process can happen quite quickly.

If we ignore viscosity, we expect that a one-dimensional flow will
be set up in this perfectly straight and smooth pipe. That is the
hand waving physics of the problem. Let us now take a look at
the equations that govern this one-dimensional, inviscid, perfect
gas flow.

The Governing Equations. As is usual, we will write the
balance laws for mass, momentum and energy for one-dimensional
flow. If this does not sound familiar to you, there are three pos-
sible options at this point.

(1) You can take a quick look at chapter 5 to build up
some of the background. That chapter is quite terse
and general though.

(2) You could take a look at a standard text which will
provide more comprehensive material than chapter 5.

(3) You can proceed with this chapter, suspending disbelief
for now, and verifying for yourself that the equations
are correct at a later date.

Back to the governing equations. Before we set out the
equations enforcing the balance laws, we make the following
assumptions to make life a little easier. We assume the flow is
inviscid and adiabatic.

The equation that captures the principle of conservation of
mass in one dimension is

(4.1)
∂ρ

∂t
+
∂ρu

∂x
= 0

and is often referred to as the one-dimensional conservation
mass equation or the one-dimensional mass balance equation.

Similarly the equation governing the conservation of linear mo-
mentum can be written as

(4.2)
∂ρu

∂t
+
∂(ρu2 + p)

∂x
= 0

and can also be called the one-dimensional balance of linear
momentum equation. Note that this equation has no viscous
terms as the fluid is assumed to be inviscid. Finally, the equation
that captures the principle of conservation of energy is given by

(4.3)
∂ρEt

∂t
+
∂(ρEt + p)u

∂x
= 0

Again, it is clear that there are no terms related to viscosity or
thermal conductivity in the energy equation which can be called
the equation of energy balance.

Take a look at the three equations. They are very similar in
form. These three equations can be consolidated into a single
vector equation. The inviscid equations are called the Euler
equations and the viscous equations for a Navier-Stokes viscous
model are called the Navier-Stokes equations. These equations
are derived in chapter 5. The one-dimensional Euler equation is

(4.4)
∂ ~Q

∂t
+
∂ ~E

∂x
= ~0

where

(4.5) ~Q =





ρ
ρu
ρEt



 , ~E =





ρu
ρu2 + p

(ρEt + p)u



 , and ~0 =





0
0
0





where, Et is the specific total energy, and is given in terms of
the specific internal energy and the speed the of the fluid as

(4.6) Et = e+
u2

2

For a calorically perfect gas the specific internal energy can be
written in terms of the the specific heat at constant volume and
the temperature

(4.7) e = CvT

We had Et. We wrote that in terms of e, with which we added
one more equation. Now, we have added yet another unknown,
temperature T and we need one more corresponding equation.
Fortunately for us, we can close this process by invoking the
equation of state

(4.8) p = ρRT

We have added one more equation consisting only of variables
defined so far and we have closure. By closure, I mean we
have enough equations to determine all the parameters in the
equations.

You will note that equation (4.4) is in the divergence free
form or the conservative form. We have already seen this form
in the case of the wave equation in section 3.16. In CFD there
is another reason attributed to the name conservative form and
that is the fact that for a steady flow across a discontinuity like
a shock, see [LR57], the quantity E is continuous across the
discontinuity. For example, there may be a jump in ρ and a
jump in u, but there is no jump in ρu across the shock. The
dependent variables Q result in the flux term E. Equation (4.4)

is said to be in conservative form and Q given in equation (4.5)
are called conservative variables.

Assignment 4.1

(1) Write a program that given N will create an array that
contains N number of Qs. Add a function to this pro-
gram that will compute a Q given p, T , and u. Take
p = 101325N/m, T = 300K and u = 0m/s and
create and set the values in and array of size N = 11.

(2) Write functions that compute p, ρ, T and u when given
a Q. Call these functions GetP, GetRho, GetT and
GetU. Use these functions to retrieve the values set in
the previous exercise.

(3) Write a function, GetE, that returns E given Q.
(4) Test the code and set it aside. You will use it later.

The first order linear one-dimensional wave equation that
we studied in the previous chapter is in the non-conservative
form. We will try to get these equations that make up the one-
dimensional Euler’s equation into a similar form. We will do
this in the next section.

Analysis of the One-dimensional Equations

Unfortunately, the system of equations (4.4) do not quite
resemble the wave equation that we have been studying so far.
However, this is easy to fix as it does resemble the generalised
advection equation which we studied in section 3.16 and in given
in equation (3.250). We employ the chain rule as we did in the

case of the generalised advection equation. In that case, we saw
that the derivative of the flux term gave us the local propagation
speed. We see that the flux term ~E can in fact be written as a
function of ~Q. We can then write

(4.9)
∂ ~Q

∂t
+
∂ ~E

∂x
=
∂ ~Q

∂t
+∇Q

~E
∂ ~Q

∂x
=
∂ ~Q

∂t
+A

∂ ~Q

∂x
= ~0

Here, ∇Q is the gradient operator with respect to the variables
~Q and A is called a flux Jacobian. Rewriting the equation in
the non-conservative form in terms of the conservative variables
as

(4.10)
∂ ~Q

∂t
+A

∂ ~Q

∂x
= ~0

The equation now looks like the one dimensional linear wave
equation. It still represents a coupled system which we can verify
by actually figuring out the entries in the matrix representation
of A. If we were to refer to the components of ~Q as qi, the
components of ~E as ei, and the components of A as aij, then
we get

(4.11) aij =
∂ei
∂qj

Now, in order to evaluate these derivatives, it is a good idea
to write each of the ei in terms of the qj. From equation (4.5),

e1 = ρu = q2(4.12)

e2 = ρu2 + p =
q22
q1

+ p(4.13)

e3 = (ρEt + p)u = (q3 + p)
q2
q1

(4.14)

clearly we need to derive an expression for pressure p and one for
Et. We have already come up with the relevant relationships to
close the system of equations. From equations (4.6) and (4.7)
we get

(4.15) Et = e+
u2

2
= CvT +

u2

2

Substituting for the temperature from the equation of state
(4.8), we get

(4.16) Et =
Cvp

ρR
+
u2

2

and given that Cv = R/(γ − 1) we get

(4.17) Et =
p

ρ(γ − 1)
+
u2

2

Solving for p we obtain

(4.18) p = (γ − 1)

{

ρEt −
ρu2

2

}

= (γ − 1)

{

q3 −
q22
2q1

}

substituting back we get

(4.19) ~E =









q2

(γ − 1)q3 +
1
2
(3− γ)

q22
q1(

γq3 − 1
2
(γ − 1)

q22
q1

)
q2
q1









Now differentiating, we get the components of A as
(4.20)

A =













0 1 0

1
2
(γ − 3)

q22
q21

(3− γ)
q2
q1

(γ − 1)

(γ − 1)
q32
q31

− γq3
q2
q21

γ
q3
q1

− 3
2
(γ − 1)

q22
q21

γ
q2
q1













Substituting back for the terms q1, q2, and q3 we get

(4.21)

A =











0 1 0

1
2
(γ − 3)u2 (3− γ)u (γ − 1)

(γ − 1)u3 − γEtu γEt − 3
2
(γ − 1)u2 γu











So, we now have the components of our flux Jacobian.

Assignment 4.2

(1) Write a function GetA to get the matrix A given Q.
(2) Analytically, verify that E = AQ. (Obviously, this need

not be true for all conservation equations)
(3) Having shown that E = AQ, use it to test your function

GetA.

We have managed to get our one-dimensional equations to
“look” like the wave equation. We are disappointed, but not
surprised that the matrix is not diagonal. If it were a diagonal
matrix, the system of equations represented by equation (4.10)
would be a system of independent equations, each one a wave
equation of the kind we have studied earlier. Unfortunately, A
is not diagonal. Maybe if we changed the dependent variables
we could get a non-conservative form which is decoupled. This
derivation is a standard fluid mechanics procedure, we will do it
as an illustration of the process. We choose the the dependent
variable Q̃ given by

(4.22) Q̃ =





ρ
u
p





We will now proceed to transform the equations governing bal-
ance of mass, momentum and energy from ~Q to Q̃. We start

with equation of conservation of mass. Let us expand the equa-
tion (4.1) using product rule to get

(4.23)
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0

We now expand conservation of linear momentum, (4.2),
and simplify using balance of mass.

u times conservation of mass

(4.24) ρ
∂u

∂t
+ u

∂ρ

∂t
+ ρu

∂u

∂x
+ u

∂ρu

∂x
+
∂p

∂x
= 0

So, the momentum equation simplifies to

(4.25) ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0

Our intent is to finally write the equations in the form

(4.26)
∂Q̃

∂t
+ Ã

∂Q̃

∂x
= ~0

dividing through by ρ gives

(4.27)
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Finally, we expand the equation of conservation of energy (4.3).

Et times conservation of mass
(4.28)

ρ
∂Et

∂t
+ Et

∂ρ

∂t
+ ρu

∂Et

∂x
+ Et

∂ρu

∂x
+ u

∂p

∂x
+ p

∂u

∂x
= 0

Substituting for Et from equation (4.17) we get

(4.29) ρ
∂

∂t

(
p

ρ(γ − 1)
+
u2

2

)

+ ρu
∂

∂x

(
p

ρ(γ − 1)
+
u2

2

)

+ u
∂p

∂x
+ p

∂u

∂x
= 0

Separating out the individual terms we get

(4.30) ρ
∂

∂t

(
p

ρ(γ − 1)

)

+ ρu∂u
∂t

+ ρu
∂

∂x

(
p

ρ(γ − 1)

)

+ ρu2 ∂u
∂x

+ u ∂p
∂x

+ p
∂u

∂x
= 0

u times equation (4.25)

This gives us

(4.31) ρ
∂

∂t

(
p

ρ(γ − 1)

)

+ ρu
∂

∂x

(
p

ρ(γ − 1)

)

+ p
∂u

∂x
= 0

on expanding the derivatives we get

(4.32)
1

γ − 1

∂p

∂t
− p

ρ(γ − 1)

∂ρ

∂t
+

u

γ − 1

∂p

∂x
− p

ρ(γ − 1)
u
∂ρ

∂x
+p

∂u

∂x
= 0

from equation (4.23) we can substitute for

(4.33) − p

ρ(γ − 1)

(
∂ρ

∂t
+ u

∂ρ

∂x

)

=
p

γ − 1

∂u

∂x

Substituting from (4.33) into (4.32) and multiplying through
by (γ − 1) we get

(4.34)
∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= 0

We can write the three equations (4.23), (4.27), and (4.34)
as

(4.35)
∂

∂t





ρ
u
p



+





u ρ 0
0 u 1

ρ

0 γp u




∂

∂x





ρ
u
p



 =





0
0
0





This equation can be written in a compact form as

(4.36)
∂Q̃

∂t
+ Ã

∂Q̃

∂x
= ~0

We got a different non-conservative form. The Ã is also not a
diagonal matrix. The equations are still coupled. It is clear that
we cannot go about hunting at random for the set of dependent
variables that will give us a decoupled system of equations. We
have to use some strategy to find these variables.

We will now try to see what we can do to manipulate these
equations to decouple them. For anyone familiar with matrices,
similarity transformations, eigenvalues, left eigenvectors, right
eigenvectors can read on. If you are not comfortable with these

terms, I would suggest that you take a detour to the appendix
B-1 and then come back to this point.

Back to the discussion at hand. If we want to develop a
systematic process to hunt for the diagonal form of our govern-
ing equation, we can look at the relationship between the two
non-conservative forms that we have derived so far and that
may give us a clue. What is the relationship between A and Ã

? If we answer that question we can then figure out how to get
the diagonal form. In order to determine the answer we need to
use chain rule to relate ~Q and Q̃ as

(4.37) d~Q = P dQ̃

In terms of components this is

(4.38) dqi =
∑

j

pijdq̃j =
∑

j

∂qi
∂q̃j

dq̃j

where qi and q̃j are components of ~Q and Q̃ respectively. If we
were to multiply equation (4.9) by P−1, we would have
(4.39)

P−1

(

∂ ~Q

∂t
+A

∂ ~Q

∂x

)

= P−1∂
~Q

∂t
+ P−1APP−1∂

~Q

∂x
= ~0

employing equation (4.37) we get

(4.40)
∂Q̃

∂t
+ P−1AP

∂Q̃

∂x
= ~0

We rewrite our equation for the non-conservative form in Q̃

(4.41)
∂Q̃

∂t
+ Ã

∂Q̃

∂x
= ~0

by comparison we see that

(4.42) Ã = P−1AP

We say that A and Ã are related through a similarity trans-

formation. We just want a similarity transformation that will
give us a diagonal matrix.

Assignment 4.3

(1) Determine the transformation matrix P using the defi-
nition given in equation (4.37).

(2) As a continuation from assignment 4.2, evaluate ÃQ̃.

What do you conclude about ~E, ~Q, A, Ã, and Q̃?

Before we start this discussion, it should be mentioned that
for once I am going to use prior knowledge of the problem at
hand to keep the matrix algebra and the associated manipulation
simple. In this case, for example, I know that we will get three
distinct eigenvalues and that the similarity transformation exists
to diagonalise the matrix A.

If we were to find the eigenvalues of A to be λi, i = 1, 2, 3
and the corresponding eigenvectors xi, we know that for the kth

eigenvalue

(4.43) Axk = λkxk

or in terms of components

(4.44) aijxjk = λkxjk

clearly, we can form a matrix X by placing the individual eigen-
vectors xk as the columns of X. We rewrite equation (4.44)
as

(4.45) AX = XΛ

where, Λ is a diagonal matrix of the eigenvalues. If we were to
pre-multiply equation (4.45) by X−1, we get

(4.46) X−1AX = X−1XΛ = Λ

Yes! We have a scheme to generate the similarity transformation
that we need and consequently, the new dependent variables
that are governed by the corresponding equations. If we were
to define dQ̂ = X−1dQ, Then we can pre-multiply the equation
(4.9) to get

(4.47) X−1

{

∂ ~Q

∂t
+A

∂ ~Q

∂x

}

= X−1∂
~Q

∂t
+X−1AXX−1∂

~Q

∂x

Which reduces to

(4.48)
∂Q̂

∂t
+Λ

∂Q̂

∂x
= ~0

If the components of Q̂ are q̂1, q̂2, and q̂3 then equation (4.48)
in terms of components this would be

∂q̂1
∂t

+ λ1
∂q̂1
∂x

= 0(4.49)

∂q̂2
∂t

+ λ2
∂q̂2
∂x

= 0(4.50)

∂q̂3
∂t

+ λ3
∂q̂3
∂x

= 0(4.51)

As we can see the equations seem to be decoupled. The individ-
ual equations now resemble the first order wave equation that
we have analysed earlier. There is now hope that some of that
analysis will carry over to this coupled system of equations.

We have only shown that this decoupling, if possible, will
be nice to do. So, how do we find the eigenvalues. You can try
to find the eigenvalues of A directly. Again, prior experience
with the problem shows a way to get an easier similar matrix.
It turns out, it is easier find the eigenvalues of Ã. Ã and A are
related through a similarity transformation. A property of two
matrices that are similar to each other is that their eigenvalues
are the same.

The eigenvalue problem corresponding to Ã is written as

(4.52) Ãx = λx

The characteristic equation corresponding to Ã is given by

(4.53)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u− λ ρ 0

0 u− λ
1

ρ

0 γp u− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

Evaluating the determinant gives us the characteristic equation

(4.54) (u− λ)

{

(u− λ)2 − γp

ρ

}

= 0

The eigenvalues are u, u + c and u − c where c is the speed
of sound given by c2 = γp/ρ. Now, some more matrix al-
gebra machinery will allow us to determine the corresponding
eigenvectors. This will give us the matrix X, the matrix of
eigenvectors of matrix A. This matrix is often referred to as
the modal matrix. As was discussed in an earlier section 3.16,
we see that we have three real and distinct eigenvalues. This
helps us classify this system of equations as being hyperbolic.

(4.55) X =










1 1 1

u u+ c u− c

u2

2

c2

γ − 1
+
u2

2
+ cu

c2

γ − 1
+
u2

2
− cu










For a calorically perfect gas, we recognise c2

γ−1
+ u2

2
as the total

enthalpy Ht = CpTo. So, X can be written more compactly as

(4.56) X =










1 1 1

u u+ c u− c

u2

2
Ht + cu Ht − cu










For clarity we will indicate the eigenvalue as a subscript and
write the corresponding entries of the eigenvector.
(4.57)

xu =










1

u

u2

2










, xu+c =









1

u+ c

Ht + cu









, xu−c =









1

u− c

Ht − cu









We should note that though the eigenvalues ofA and Ã happen
to be the same, the eigenvectors are not. In fact, the modal
matrix X̃ corresponding to Ã is

(4.58) X̃ =










1 1 1

0
c

ρ
− c
ρ

0 c2 c2










and the inverse is

(4.59) X̃
−1

=













1 0 − 1

c2

0
ρ

2c

1

2c2

0 − ρ

2c

1

2c2













We go back to our original discussion. Now that we have the
eigenvalues λ1 = u, λ2 = u+ c, and λ3 = u− c we can rewrite
equation (4.49) as

∂q̂1
∂t

+ u
∂q̂1
∂x

= 0(4.60)

∂q̂2
∂t

+ (u+ c)
∂q̂2
∂x

= 0(4.61)

∂q̂3
∂t

+ (u− c)
∂q̂3
∂x

= 0(4.62)

We can relate dQ̂ to dQ̃ as

(4.63)












dq̂1

dq̂2

dq̂3












=













1 0 − 1

c2

0
ρ

2c

1

2c2

0 − ρ

2c

1

2c2
























dρ

du

dp












Which gives us

(4.64) dq̂1 = dρ− dp

c2

(4.65) dq̂2 =
ρ

2c
du+

dp

2c2

and

(4.66) dq̂3 = − ρ

2c
du+

dp

2c2

Consider a point (x0, t0). The equation of the first characteristic
through this point is x − x0 = u(t − t0). Without loss of
generality, we can assume x0 = 0 and t0 = 0 for this discussion.
Along x = ut, dq̂1 = 0 since q̂1 is a constant. In this fashion
equations (4.64), (4.65), and (4.66) can be integrated along
x = ut, x = (u+ c)t, and x = (u− c)t respectively.

If we just consider a point in our one-dimensional flow where
the flow is from our left to right, for which we take u to be
positive and further if we assume the flow is supersonic, we have
three equations that look very similar to the wave equation of
the earlier section. We have three different characteristics. One
for each equation. In the supersonic case they look as follows

Clearly the characteristics are unlikely to be identical. q̂1, q̂2,
and q̂3 are propagated, as we know from the equations at three
different speeds. In supersonic flow from the left to the right,
they are propagated from left to right. What of subsonic flow?
u− c will be negative. Indeed, the characteristic corresponding
to the u− c eigenvalue, in our case λ3, has a negative slope.

We’ve managed to make the system of equations that gov-
ern the one-dimensional Euler’s equation look like a system

u− c

u

u+ c

Figure 4.4. Characteristic line segments at a point in one-
dimensional supersonic flow

u− c
u

u+ c

Figure 4.5. Characteristic line segments at a point in one-
dimensional subsonic flow

made up of “wave equations”. The equations are said to be
in characteristic form. We will use the existence of these char-
acteristics to analyse any numerical scheme.

At this point we pause and make sure that the following is
clear. λ1 = u, λ2 = u + c, λ3 = u − c are the characteris-
tics or eigenvalues of A. Corresponding to these eigenvalues
we have three eigenvectors stacked as columns in the matrix
X and satisfying AX = XΛ. Finally, we have our depen-
dent vector projected onto this coordinate system. These are

governed by the differential equation (thanks to chain rule) as

dQ̂ = X−1dQ. If curlX−1 = 0, then we can integrate the
differential equation and actually find a Q̂. However, for now,
it turns out that we need only know that the differentials exist
and that the differential equation can be transformed at each
Q.

Assignment 4.4

(1) Write a function GetC to find the speed of sound given
Q.

(2) Rewrite the equation (4.4) in terms of the dependant
variable

(4.67) ~Q′ =





ρ
u
T





and show that it becomes

(4.68)
∂

∂t









ρ

u

T









+










u ρ 0

RT

ρ
u R

0 (γ − 1)T u










∂

∂x









ρ

u

T









=









0

0

0









(3) Find the eigenvalues of the for the flux Jacobian in this
case. Show that they are u, u+ c, u− c.

(4) Find the eigenvectors.

A Numerical Scheme

We will go through the same process that we used for the
first order linear wave equation in section 3.11. We will start
by applying the Euler explicit scheme or FTCS discretisation as
we have called it earlier, to the one-dimensional Euler equations
used to solve the flow through the pipe given in Figure 4.3. You
will notice that right now, we will only look at the discretisation
of the governing equations and that the actual problem to be
solved will show up in the discussion only when we want to figure
out the boundary conditions that need to be applied[RS81].

This flow field is modelled using the one-dimensional Euler
equations. FTCS applied to these equations gives us

(4.69) ~Qq+1
p = ~Qq

p −
1

2

∆t

∆x

{

~Eq
p+1 − ~Eq

p−1

}

we can employ this automaton to obtain ~Qq+1
p given ~Qq

p. Bear
in mind that this scheme was unconditionally unstable for the
first order linear wave equation.

Assignment 4.5

Write a function called FTCS that takes an array of Q and
a parameter which can be named DtByDx, which represents the
ratio ∆t/∆x, and takes one time step for all the interior points
(that is leaving out the first and the last grid points) with the
FTCS scheme as given by equation (4.69).

Stability Analysis. We now go through the process of
checking out the stability analysis for FTCS applied to the one-
dimensional Euler equations. Yes, we already expect that the
scheme is unconditionally unstable, after all we were able to
transform to the characteristic form and show that the Euler
equation are the same as three one-dimensional first order lin-
ear wave equations. However, just so that the process is clear
and the underlying assumptions required are transparent, we will
go ahead and do the stability analysis.

We see that the FTCS scheme shown in equation (4.69) can
be conveniently written as

(4.70) ~Qq+1
p = ~Qq

p −
1

2

∆t

∆x
~Eq
p

{
ein∆x − e−in∆x

}

Using the result that you showed in the assignment we can write
E = AQ

(4.71) ~Qq+1
p = ~Qq

p −
∆t

∆x
Aq

p
~Qq
p {i sinn∆x}

Keep in mind that we are dealing with matrices here. We factor
out operator acting on ~Qq

p to the left to get

(4.72) ~Qq+1
p =

{

I − i
∆t

∆x
Aq

p sinn∆x

}

~Qq
p

The matrices X and X−1 can be made normal, meaning they
perform a rotation but no stretch. We define ~Sq

p = X−1 ~Qq
p.

Then X−1 is normalised means ‖Sq
p‖ = ‖X−1‖‖ ~Qq

p‖ = ‖ ~Qq
p‖.

The eigenvectors are also independent of each other. We pre-
multiply equation (4.73) by X−1.

(4.73) ~Sq+1
p = X−1

{

I − i
∆t

∆x
Aq

p sinn∆x

}

~Qq
p

=

{

I − i
∆t

∆x
Λ

q
p sinn∆x

}

~Sq
p

Please note, ~S are not characteristic variables. Taking the norm
of both sides we get

(4.74) ‖~Sq+1
p ‖ = ‖ ~Qq+1

p ‖ =

∥
∥
∥
∥
I − i

∆t

∆x
Λ

q
p sinn∆x

∥
∥
∥
∥
‖ ~Qq

p‖

So, the relationship given by equation (4.73) and consequently
the one given by equation (4.72) is a contraction mapping if

‖~Sq+1
p ‖ < ‖~Sq

p‖, that is

(4.75)

∥
∥
∥
∥
I − i

∆t

∆x
Λ

q
p sinn∆x

∥
∥
∥
∥
< 1

Note that I − i
∆t

∆x
Λ

q
p sinn∆x is a diagonal matrix. We just

require the magnitude of the largest entry on the diagonal to
be less than one. We see again that FTCS is unconditionally
unstable. We would need to add artificial dissipation if we want
it to work.

Boundary Conditions

As we did in the wave equation, we will inspect the gov-
erning equations to discover how many boundary conditions are

required. We see that the vector equation has one time de-
rivative and one spatial derivative. We expect to prescribe one
vector initial condition or three conditions at t = 0 and one vec-
tor boundary condition or actually, three boundary conditions.

This much we get from our understanding of differential
equations. Let us look at it from the point of view of the physics
of the problem as described at the beginning of the chapter (see
Figure 4.3). The pipe is open to the atmosphere on the right
hand side. When the valve is closed, the conditions in the pipe
will be the ambient conditions. At the instant when the valve is
opened, loosely, we have two conditions on the left in the form
of P0 and T0. P0 is the total pressure in the reservoir and T0
is the total temperature in the reservoir. These are often called
reservoir conditions or upstream conditions since we expect the
flow from that direction. We have two conditions, we need
one more. In gas dynamics this would be the back pressure or
the ambient pressure pa on the right hand side of the pipe. If
pa = P0, then there is no flow. If pa < P0 we will have flow.
Clearly, P0 and pa are boundary conditions that influence the
flow. T0 is a constraint on the magnitude of the flow in the
form of the total energy available. The one-dimensional, steady
state energy equation reduces to

(4.76) CpT0 = CpT +
u2

2
where T is the static temperature measured on the Kelvin scale.
This relates the total temperature at the inlet to the unknown
static temperature and speed at the inlet.

Employing these boundary conditions, one can solve the one-
dimensional gas dynamical problem[Sha53]. At this point in

the wave equation, we discovered that the numerical scheme
required more parameters to be specified than required by the
physical problem or the differential equation. How do the bound-
ary conditions that we have prescribed so far work with the nu-
merical scheme? Let us see what happens when we use FTCS.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

q+1

q

pp-1 p+1

Figure 4.6. Taking one time step with FTCS. The grid points
involved in the approximating the governing equation at each
of the interior grid points are shown by the bubble surround-
ing the grid points.

From Figure 4.6 we can see that the Q at points interior to
our domain at time level q + 1 can be found from Q at all the
points at time level q. Now, if we wish to proceed to the next
time level q + 2, we require Q at all the points at time level
q + 1. From FTCS we have calculated Q only at the interior
points. How do we get the values of Q at the boundaries? We
will use the characteristics to answer this question.

For the subsonic inlet case we clearly have at the entry point
characteristics as shown in Figures 4.5 and 4.7. We have some-
thing similar at the exit.

Remember, the characteristics tell us the direction in which
the characteristic variables propagated. We can make the state-
ment vague by saying that along the characteristic “informa-
tion” regarding the flow is propagated. At the first grid point

��
��
��
��

����

�
�
�
�

�� ��

�
�
�
�

����

��
��
��
��

��

�
�
�
�

��

�
�
�
�

����

��
��
��
��

��

�
�
�
�

u− c u

u+ c

p-1,q

p,q+1

p,q

p+1,q

u+ c

u− c
u

Figure 4.7. Characteristics at a subsonic inlet and a subsonic
exit at time level q. Grid points at time level q + 1 are also
shown.

this indicates that two pieces of information are come from out-
side the domain into the domain. That is fine. In gas dynamics
we would prescribe P0 and T0. The surprising thing is that there
is one piece of information that goes from the computational
domain to the boundary. We could extrapolate u from within
the computational domain to the boundary. So, how do we get
Q at the inlet? From the extrapolated u and the prescribed T0
we get T .

(4.77) CpT0 = CpT +
u2

2
⇒ T = T0 −

u2

2Cp

From T , T0 and P0 we get P

(4.78)

{
P

P0

}

=

{
T

T0

}
γ

γ − 1 ⇒ P = P0

{
T

T0

}
γ

γ − 1

Then we employ equation of state to get the density, which
incidentally is q1 = ρ = P/RT . Then q2 = ρu. We obtain q3
from equation (4.17).

Let’s look at the exit condition now. Here, we see that we
have one “incoming” characteristic. That is also fine. In gas
dynamics one would prescribe the static pressure or the back-
pressure. However, we have two “outgoing” characteristics. If
we again extrapolate two quantities say, u and T0. We have
found some way by which we can obtain all the Qs at the time
level q + 1 and hence can proceed to q + 2.

I would suggest you try extrapolating different parameters
and check out the behaviour of your code. At this point, no
doubt, you are asking code? What code? I thought FTCS
was unconditionally unstable. Right, so we add a tiny pinch
of dissipation to make it work, if you are wondering why we
are doing this you need to go back and review the material on
the modified equation of the wave equation and dissipation in
section 3.13.

So, we have done a lot of bad things. We seem to have
engineered boundary conditions by extrapolation, where none
existed. We have taken the equation that we are solving and
deliberately modified it, just to get it working.

Assignment 4.6

(1) Write a one-dimensional Euler equation solver using
FTCS. Remember, that you will need to add some arti-
ficial dissipation terms. While developing the code add
something along the lines

(4.79) µ2∆x
2∂

2Q

∂x2
− µ4∆x

4∂
4Q

∂x4

with µ2 = 0.01 and µ4 = 0.001. While developing the
solver make sure that use the following conditions as
the test case.
(a) Inlet condition

(4.80) Po = 101325Pascals, To = 300Kelvin

(b) Exit condition

(4.81) Pa = 84000Pascals

(c) Set the initial conditions to be the exit condition.
You can take Ta = 300K.

(2) Run the above conditions for various grid sizes. Choose
the time-step so that

(4.82)
∆t

∆x
= 0.0001, 0.0005, 0.001, 0.002

(3) Run your code for Po = 121590Pascals and Pa =
101325Pascals

(4) Repeat the above process for higher values of Po.
(5) Repeat the first problem for different values of To

The Delta Form

We write the equation in what is known as the “Delta form”.
We start with the Flux vector ~E. Using Taylor’s series and
truncating with two terms we can write

(4.83) ~Eq+1 = ~Eq +∆t

[

∂ ~E

∂t

]q

Using chain rule we get

(4.84) ~Eq+1 = ~Eq +∆t

[

∂ ~E

∂ ~Q

∂ ~Q

∂t

]q

= ~Eq +
[

A∆ ~Q
]q

where, ∆Qq = Qq+1 − Qq. BTCS applied to these equations
gives us

(4.85)

∂Q

∂t

∣
∣
∣
∣

q+1

+
∂

∂x
Eq+1 =

∂Q

∂t

∣
∣
∣
∣

q+1

+
∂

∂x

(

~Eq + A∆ ~Q
∣
∣
∣

q)

= 0

If we are interested only in the steady state solution, then that
solution satisfies the equation

(4.86)
∂E

∂x
= 0

In equation (4.85) we can rearrange terms so that

(4.87)
∂Q

∂t

∣
∣
∣
∣

q+1

+
∂

∂x

(

A∆ ~Q
∣
∣
∣

q)

= −∂
~Eq

∂x

Since, we are looking at a backward time scheme

(4.88)
∆Q

∆t

q

+
∂

∂x

(

A∆ ~Q
∣
∣
∣

q)

= −∂
~Eq

∂x
⇒

[

I+∆t
∂A

∂x

]

∆ ~Q = −∆t
∂ ~Eq

∂x

Here is a new way to build a whole class of automatons to
solve our equation.

Compute E and ∂E
∂x

Solve
{
I+∆t ∂

∂x
A
}
∆ ~Q = −∆t∂E

∂x

to get ∆ ~Q

~Qq+1 = ~Qq +∆ ~Qq

∥
∥∂E

∂x

∥
∥ < ǫ

no?

Done

Assume ~Q0

yes

Figure 4.8. Algorithm for solving one-dimensional Euler equation

We assume an initial ~Q. Then use this to compute the right
hand side of equation (4.88). This should be zero if we had the
steady state solution. Unfortunately, we are left, typically, with
a residual. This allows us to determine a correction ∆ ~Q using
equation (4.89).

(4.89)

{

I+∆t
∂A

∂x

}

∆ ~Qq = −∆t
∂ ~Eq

∂x

We can then obtain a corrected ~Q using the ∆ ~Q that we just
got using

(4.90) ~Qq+1 = ~Qq +∆ ~Qq

This process can be repeated till ‖∆ ~Q‖ < ǫ or better still, till
‖∂E/∂x‖ < ǫ.

We should make a few observations here. How close we are
to the solution is determined by the residual on the right hand
side(RHS). Anytime we stop marching in time, the quality of
the approximation is clearly determined by the residual. This
residual should be computed with the desired accuracy. This
will then allow us to employ the left hand side (LHS) of our

equation to generate a sequence of ∆ ~Qs. The RHS is really the
predicate that we use for convergence. The LHS determines
how fast we get there. So, the CFD of the physics that we are
trying to pick up is in the RHS. The CFD of how we are going
to get there is in LHS. On the LHS we need to come up with
something simple to compute which causes large decreases in
the magnitude of the residue in every step.

Let us now see how we would deal with this for BTCS. The
x-derivative in equation (4.89) is approximated using central
differences. Then the full system of equations reads as shown
in equation (4.91).
(4.91)









































































I λ
q
2 0 0 · · · · · · · · · 0

− λ
q
1 I λ

q
3 0 · · · · · · · · · 0

0 −λ
q
2 I λ

q
4 0 · · · · · · 0

...
...

. . .
. . .

. . . · · · · · · 0

· ·

0 · · · · · · −λ
q
p−1 I λp+1 · · · 0

...
...

...
. . .

. . .
. . . · · · 0

· ·

0 0 0 · · · · · · · · · −λ
q
N−1

I























































































































































∆ ~Q1

∆ ~Q2

∆ ~Q3

...

∆ ~Qp−1

∆ ~Qp

∆ ~Qp+1

...

∆ ~QN−1

∆ ~QN















































































=















































































(R+BC)
1

R2

R3

...

Rp−1

Rp

Rp+1

...

RN−1

(R+BC)N















































































where λq
p = ∆t/(2∆x)Aq

p.
Please note that each of the entries in our N ×N matrix is

itself a 3×3matrix. The corresponding entries in the two vectors
are also vectors. These are called block structured matrices. It
should be pointed out that in CFD we NEVER assemble this
matrix as shown.

One could use a direct method like Gaussian elimination to
solve the system of equations. Or an iterative techniques of

Gauss-Seidel or Gauss-Jordan. Another possibility is that we
perform an approximate factorisation. How does this work? re-
member that we want a solution to the steady state equation.
We will take the equation in operator form and factor the deriv-
ative in terms of forward differences and backward differences.

(4.92)

{

I+∆t
∂−A

∂x

}{

I+∆t
∂+A

∂x

}

∆ ~Qq = −∆t
∂ ~Eq

∂x

This in fact can be written as

{

I+∆t
∂−A

∂x

}

∆ ~Q′q = −∆t
∂ ~Eq

∂x
(4.93)

{

I+∆t
∂+A

∂x

}

∆ ~Q q = ∆ ~Q′q(4.94)

If we were to expand the product in equation (4.92) we get

(4.95)
{

I+∆t
∂−A

∂x
+∆t

∂+A

∂x
+∆t2

∂−A

∂x

∂+A

∂x

}

∆ ~Qq = −∆t
∂ ~Eq

∂x

We see this factorisation when expanded gives us an extra
term. How do we justify its use? Two ways to go about it.

(1) The time derivative was discretised using backward dif-
ferences. The truncation error is first order. The extra
term has a factor which is ∆t2. Therefore, it is sub-
sumed by the truncation error. Note that the derivative
multiplying it is still like a second derivative term.

(2) Anyway, we are seeking a steady state solution. How

does it matter what the factor for ∆ ~Q is as long as it
drives it to zero employing the residual.

The second reason is the more potent of the two. It gives
us scope to explore other ways by which we can generate a
sequence of ∆ ~Qs to drive the residual to zero.

Also, please note that the FTCS scheme can be written in
Delta form as

(4.96) {I}∆ ~Qq = −∆t
∂ ~Eq

∂x

Assignment 4.7

(1) Re-do the previous assignment 4.6, using BTCS and the
delta form.

(2) Try a range of CFL values from 0.001 to 100. or more.

Boundary Conditions Revisited

Well, let us at least try to clean the boundary conditions a
little. We will do this in two slightly different ways. First using
the delta form let us try to introduce a little rigour into the
application of boundary conditions.

The plan is a standard game that we play in all of science and
technology. We will transform the problem from one form {our
normal coordinates} to a more convenient form {the charac-
teristic “coordinates”: xu, xu+c, and xu−c}. We then perform

whatever operation is easy to perform in characteristic form and
then transform back. For your reference the equation in delta
form is

(4.97)

{

I+∆t
∂A

∂x

}

∆ ~Qq = −∆t
∂ ~Eq

∂x

We will assume that A is constant. If we were to pre-
multiply this equation by (X−1)qp we get

(X−1)qp

{

I+∆t
∂A

∂x

}

∆ ~Qq =

{

(X−1)qp +∆t(X−1)qpAX
q
p(X

−1)qp
∂

∂x

}

∆ ~Qq =

−∆t(X−1)qp
∂ ~Eq

∂x

(4.98)

At the first grid point this becomes

(4.99)

{

I+∆tΛq
1

∂

∂x

}

∆Q̂q = −∆t(X−1)q1
∂ ~E

∂x

∣
∣
∣
∣
∣

q

1

At the inlet, we can write the boundary conditions from gas
dynamics as we did before. Referring to figure 4.7, for a subsonic
inlet, we have two characteristics along which the characteristic
variables q̂1 and q̂2 are propagated into the computational do-
main. Corresponding to which we prescribed two conditions: Po

and To. We will need to take a closer look at this in a moment.
q̂3 is being carried out of the domain and governed by the third

component in equation (4.99). To extract the third component
corresponding to the left running characteristic the matrix L is
defined as follows

(4.100) L =





0 0 0
0 0 0
0 0 1





Corresponding to the out-going characteristics at the inlet
we can now use the equation

(4.101) L

{

I+∆tΛq
1

∂

∂x

}

∆Q̂q = −L∆t(X−1)q1
∂ ~E

∂x

∣
∣
∣
∣
∣

q

1

Where do the two prescribed boundary conditions Po and To
figure? Actually, we need to transform them to the characteris-
tic coordinates (xu, xu+c, and xu−c)and pick only those parts
of them that correspond to the process of propagation from the
outside of the computational domain into the domain (compo-
nents along xu and xu+c). We do this as follows. Define the
vector Bo as

(4.102) Bo =





Po

To
0





As we did when we derived the delta form, we can express
B

q+1
o using Taylor’s series and truncating at the linear term as

(4.103) B
q+1
o = B

q
o +∆t

∂Bo

∂t

∣
∣
∣
∣

q

⇒ B
q+1
o = B

q
o +Do∆Q

or

(4.104) ∆Bo = Do∆Q

where

(4.105) Do =
∂Bo

∂Q

Now, if Po and To do not vary in time, then equation (4.103)
becomes

(4.106) Do∆Q = 0

This can now be transformed into the characteristic coordinates
by pre-multiplying by (X−1)q1 to get

(4.107) X
−1Do∆Q = X

−1DoXX
−1∆Q = D̂o∆Q̂ = 0

The subscripts indicating spatial and temporal position have
been dropped. Now we use (I−L) to extract the first two com-
ponents and eliminate the q̂3 part(xu−c component) of equation
(4.107).

(4.108) (I− L)X−1Do∆Q = (I− L)D̂o∆Q̂ = 0

We combine this at the boundary with the equation governing
q̂3 to get
(4.109)

(I−L)D̂o∆Q̂
q+L

{

I+∆tΛq
1

∂

∂x

}

∆Q̂q = −L∆t(X−1)q1
∂ ~E

∂x

∣
∣
∣
∣
∣

q

1

This combined equation determines the full vector Q̂q
1. We

can pre-multiply the equation by X
q
1 to get back to the Q sys-

tem.

(4.110) X
q
1

[

(I− L)D̂o∆Q̂
q + L

{

I+∆tΛq
1

∂

∂x

}

∆Q̂q =

−L∆t(X−1)q1
∂ ~E

∂x

∣
∣
∣
∣
∣

q

1

]

At the exit, we have two characteristics propagating q̂1 and
q̂2 out of the domain. We have one physical condition pa pre-
scribed. As was done at the inlet, we can define the vector
Ba.

(4.111) Ba =





0
0
pa





Repeating the process followed at the inlet we write the
condition that Ba as

(4.112) Da∆Q = 0

where,

(4.113) Da =
∂Ba

∂Q

We can then write for the last grid point

(4.114) X
q
N

[

LD̂a∆Q̂
q + (I− L)

{

I+∆tΛq
N

∂

∂x

}

∆Q̂q =

−(I− L)∆t(X−1)qN
∂ ~E

∂x

∣
∣
∣
∣
∣

q

N

]

How do we get D? We need to write To and Po in terms of
q1, q2, and q3. One dimensional energy equation can be written
as

(4.115)

CpTo = CpT +
u2

2
⇒ CvTo = CvT +

u2

2γ
=
q3
q1

− γ − 1

2γ

q22
q21

It looks like the expression is a little simpler if we prescribe CvTo
instead of To. Now from the isentropic relationship

(4.116) Po = p

(
To
T

)
γ

γ − 1
.

Using equation (4.115) we get

(4.117) Po = p

(

1 +
u2

2γe

)
γ

γ − 1
=

(γ − 1)

{

q3 −
q22
2q1

}






1 +

q22/q
2
1

2γ

[
q3
q1

− q22
2q21

]







γ

γ − 1

p was replaced using equation (4.18). The expression can be
simplified to

(4.118)

Po = (γ − 1)

{

q3 −
q22
2q1

}






1 +

q22

2γ

[

q3q1 −
q22
2

]







γ

γ − 1

The entries of Do are given in component form as dij. We
know that d3j = 0. The rest of the entries are

d11 =
γ − 1

γ

u2

ρ
− Et

ρ
(4.119)

d12 = −γ − 1

γ

u

ρ
(4.120)

d13 =
1

ρ
(4.121)

d21 = ρρou
2

[

(γ − 1)

(
To
T

)γ

− Et

2e

]

(4.122)

d22 = ρou

[
ρEt

e
− C

]

(4.123)

d23 = ρo

[

C − ρu2

2e

]

(4.124)

where C =
(γ − 1)

ρ

To
T
. So, Do is given by (Please note the

matrix indicated is DT
o which is the transpose of Do)

(4.125)

DT
o =















γ − 1

γ

u2

ρ
− Et

ρ
ρρou

2

[

(γ − 1)

(
To
T

)γ

− Et

2e

]

0

−γ − 1

γ

u

ρ
ρou

[
ρEt

e
− C

]

0

1

ρ
ρo

[

C − ρu2

2e

]

0















Assignment 4.8

Redo assignment 4.7 with the new improved boundary con-
ditions.

Boundary Conditions - a compromise. So you think all
the stuff that we just went through was a bit much. You like
the extrapolation thing we did earlier as it was easy to do. If
we prescribe the quantities Po and To at the inlet, how do we
compute the new Qq+1 at the inlet? Well that is easy. At any
given time step q, we have Qq at the inlet. From which we can
compute

(4.126) ξ+0 = u0 +
2c0
γ − 1

and

(4.127) ξ−0 = u0 −
2c0
γ − 1

We switched to ξ as the earlier notation looks messy. We have
defined ξ+ = q̂2 and ξ− = q̂3. The subscript “0” indicates it is
at the inlet. From our previous section we can at least conclude
that at a subsonic inlet one could extrapolate the quantity given
in equation (4.128) from the first interior grid point to the inlet
boundary.

(4.128) ξ−1 = u1 −
2c1
γ − 1

where the subscripts indicate the grid point. We could either
extrapolate ξ−1 or use the characteristic equation to extrapolate
it as

(4.129) ξ−
∣
∣
q+1

0
= ξ−

∣
∣
q

0
− (u− c)|q0 ∆t

∆x

{
ξ−
∣
∣
q

1
− ξ−

∣
∣
q

0

}

Along with the extrapolated quantity ξ− we now have the pair
of characteristic variables at the inlet. We observe that this pair

is from the new state and now label them (ξ−|q+1
, ξ+|q+1

). we
can then compute

(4.130) uq+1 =
ξ−|q+1

+ ξ+|q+1

2

We will drop the superscript for now since we know that we
are computing quantities at the new time level. The resulting
expressions don’t look as busy. At the inlet we have the relation
between the total temperature and the static temperature as

(4.131) CpTo = CpT +
u2

2

Using equation (4.130) and equation (4.131) we can find T q+1.
From which we can find the static pressure as

(4.132) p = P0

(
T

T0

)
γ

γ − 1

Given the static pressure and temperature we can find the den-
sity using the equation of state. We have Q̃ we can obtain
Q.

What do we do at the subsonic exit? In this case, again,
we prescribe the boundary condition pa and extrapolate the first
two characteristic variables from the penultimate grid point to
the last grid point.

Assignment 4.9

Try out the new boundary condition and see if it makes a
difference.

Now all this talk of applying the correct boundary condition
by getting the right flux at the boundary has to remind you of
our earlier discussion on the finite volume method - see section
3.16. It clear again that if we breakup our problem domain
into small control volumes and computed the correct fluxes at
the boundaries we can determine the rate of change of our
dependent variables in the interior of these small control volumes
which are very often called finite volumes

(4.133)

(
∂Q

∂t
+
∂E

∂x

)q

p

=

(
∂Q

∂t
+A

∂Q

∂x

)q

p

= 0

We can pre-multiply it by (X−1)qp
(4.134)

(X−1)qp
∂Q

∂t

∣
∣
∣
∣

q

p

+Λ
q
p(X

−1)qp
∂Q

∂x

∣
∣
∣
∣

q

p

=
∂Q̂

∂t

∣
∣
∣
∣
∣

q

p

+Λ
q
p

∂Q̂

∂x

∣
∣
∣
∣
∣

q

p

= 0

For the sake of simplicity we assume u ≥ 0 and define

(4.135) Λ
+ =





u 0 0
0 u+ c 0
0 0 0



 ; Λ
− =





0 0 0
0 0 0
0 0 u− c





Clearly if u were negative the definitions would be inter-
changed. The objective is to split the eigenvalues into the right
running and left running ones. This objective is reached in an

automatic fashion using two possible operations.

Λ
+ =

Λ+ |Λ|
2

, or λ+i = max(0, λi)(4.136)

Λ
− =

Λ− |Λ|
2

, or λ−i = min(0, λi)(4.137)

We can rewrite our governing equations as

(4.138)
∂Q̂

∂t
+ Λ

+
∣
∣
q

p

∂Q̂

∂x

q

p
+ Λ

−
∣
∣
q

p

∂Q̂

∂x

q

p
= 0

Now we pre-multiply again by (X)qp to get

(4.139)
∂Q

∂t
+A

+∂Q

∂x
+A

−∂Q

∂x
=
∂Q

∂t
+
∂E

∂x

+

+
∂E

∂x

−

= 0

Running the Code

Fragments of a one-dimensional code are provided in the
segment on how these codes are written. We first look at the
residue. In Figure 4.9, we have a plot of the individual residues
of the equations governing conservation of mass, momentum
and energy. It is also interesting to plot the residues versus
each other to see if we can glean any information from them.
Figure 4.10 shows the plot of the residue for the conservation of
linear momentum (CLM) versus the residue for the conservation
of mass equation (CM). This shows an initial smaller change
in CM and then an exchange of the variation between them.
Ideally, we would like to get this graph to be a straight line
going to the origin. This is how it behaves from 10−8 to 10−15.

0 1000 2000 3000 4000 5000 6000
Time Step n

1e-15

1e-10

1e-05

1

ab
s(

D
Q

/Q
)

CM
CLM
CE

Figure 4.9. Residue for the one-dimensional problem given
in the assignment. This is plotted versus the time step index

One observation that we can make in the earlier stages of
the computations. Figure 4.11 clearly shows that conservation
of mass and conservation of energy are intimately tied to each
other in their behaviour. In fact you can see, in the earlier
stages, that both the values increase together and decrease to-
gether.

1e-16 1e-12 1e-08 0.0001 1
abs(DQ/Q) - CM

1e-16

1e-12

1e-08

0.0001

1

ab
s(

D
Q

/Q
)

-
C

L
M

Figure 4.10. Residues of the conservation of linear momen-
tum (indicated as CLM) plotted versus the residue of the
conservation of mass (cm) equation

Preconditioning

In all of these assignments, observe your solution as the
program runs. This is best done by plotting one or more of
the dependent variables as your code runs. For each time step,
you can plot ~Q(x) in three separate plots. This is because of
the difference in the order of magnitude of each term: ρ ≈ 1,
ρu ≈ 100, and ρEt ≈ ρu2 ≈ 10000. For the sake of this

1e-16 1e-12 1e-08 0.0001 1
abs(DQ/Q) - CM

1e-16

1e-12

1e-08

0.0001

1

ab
s(

D
Q

/Q
)

-
C

E

Figure 4.11. Residue of the conservation of energy equation
(CE) plotted against that of conservation of mass (cm)

discussion you, can try running the code for this case. I have
run a one-dimensional solver for the following conditions:

(1) P0 = 131590Pascals, T0 = 300Kelvin,
(2) Pa = 101325Pascals,
(3) The pipe is of unit length and 1001 grid points are used

to represent it. I am using FTCS with µ2 = 0.01 and
µ4 = 0.001, where µ2 and µ4 are defined in equation
(4.79).

(4) ∆t/∆x = 0.0001.

Figure 4.12 shows the graphs of the density and speed at three
different time steps, n = 13000 (solid line), n = 40000 (short
dashed line), and n = 59000 (long dashed line). These three
time indices were chosen so that the features of interest to this
section can be illustrated.

A C F

1.1

1.2

1.3

1.4

1.5

1.6

ρ

0 200 400 600 800 1000

x-index

0

50

100

150

200

u

H G B E D

Figure 4.12. The density (ρ) and speed (u) distribution
at three different time steps n = 13000(solid line), n =
40000(short dashes), and n = 59000(long dashes).

If you were to run this case, you could reproduce Figure 4.12
and observe the following. First, a compression wave travels

from the inlet to the exit. It takes about 26000 time steps. The
figure shows the compression wave at point B, midway along
the pipe at n = 13000 time steps. To the left of the compression
wave, the speed of the fluid is uL is of the order of 60+ m/s.
To the right is the initial condition uR = 0. The wave itself is
formed by the intersection of the characteristics corresponding
to u + c. For the given conditions (u + c)L ≈ 400 m/s and
(u + c)R ≈ 340 m/s, the compression wave will be travelling
at the average of those speeds. Now, this motion uL, setup
by the compression wave, carries the mass of the fluid with it.
This may sound like a circular statement, the point is that we
are talking about the characteristics corresponding to u. You
see that the higher density fluid from the inlet, moving at this
speed makes it to the point A after 13000 time steps. After
all, it is travelling only at u ≈ 60 m/s. This wave is a jump
in density, not in pressure or in speed.1 Both the compression
wave and this density wave are smoothed out a bit because of
the numerical dissipation that we have added.

Once the compression wave reaches the end of the pipe, the
whole pipe is at the same pressure (it is interesting to check the
relationship between Po, p, and

1
2
ρu2 as the flow field evolves.)

This is greater than the exit pressure. An expansion wave is
reflected from the exit into the pipe. The location of the ex-
pansion wave after about 14000 time steps after is it is formed
is shown in the figure as being between points D and E. This
expansion corresponds to the the characteristic u−c. Now as it
happens, the wave at point E is travelling at 60− 346 ≈ −286

1This is a contact surface just like the one in 3.7 between the hot and cold water. If you have

studied shock tubes you would have encountered this there.

m/s. On the other hand, the wave at point D is travelling at
120 − 346 ≈ −226 m/s. The negative sign indicates that the
wave is travelling right to left. The leading edge of the wave is
travelling faster than the trailing edge. This wave is going to
fan out and get broader at it travels. We have seen this earlier
in Figure 3.22. This is very clear 19000 time steps later. The
point corresponding to D has moved to G and that correspond-
ing to E has moved to H. Clearly, from the computations, as
expected, GH is longer than DE. On reaching the inlet, you
will see a compression wave again from the inlet and so on. You
will notice that as the waves move back and forth, the steady
state flow field is setup.

The important point to note is that in the first pass of
the waves, the compression wave took ≈ 26000 time steps to
communicate the upstream conditions to the exit. The return
expansion wave took approximately 33000 time steps to com-
municate the downstream conditions to the inlet. In this time
the wave corresponding to u has not even made it to the exit!
It is only at point F . Now, u increases towards its steady state
value. What happens to u, u + c, and u − c? You should no-
tice that the speed at which the wave travels from the exit to
the inlet decreases in each pass of the wave. This is because
u− c decreases with each pass of the waves. Try the following
assignment and see what you can get from it.

Assignment 4.10

Do the following with your favourite version of the one-
dimensional code.

(1) For a given set of conditions, run you code for different
number of grid points: 101, 201, 501, and 1001 and
more if it makes sense to do so. Observe the plot of
the residues, the wave propagation times (number of
time steps) as a function of the number of grid points.

(2) The assignments so far were picked so that the Mach
number for the solution is approximately 0.5. Run your
code for different values of the stagnation pressure so
that the Mach number takes a range of values between
(0.01, 2.0). Observe what happens near Mach number
0.01 and 1.0.

You should have noticed the following. You convergence
plot shows a correlation with the wave motion back and forth.
The larger the grid size the more obvious is this behaviour. From
the second problem, it is clear that we have a severe problem
near M = 0.01 and M = 1. All of these symptoms point to
one problem. For a given acoustic speed c, if u ≈ 0 then two
of the characteristics are of the order of c where one of them, u
is of the order of zero. The propagation speeds in our problem
are very disparate. Such problems are said to be stiff or ill-

conditioned. This situation also occurs when u is of the order
of c. In this case u− c ≈ 0 while the other two are of the order
of c. This explains the difficulty that we have at the two Mach
numbers. We conclude

Disparate propagation speeds has a strong

effect on the convergence to a steady state

solution

Naturally we ask: if we are only interested in the steady
state solution can we do something to make the wave speeds
the same order of magnitude and not contaminate the steady
state solution? Restated, if I do not care for the transient, can I
do something to get to the solution faster? Or a blunt statement
of fact: I am willing to live with a non-physical transient if I can
get to the correct steady state solution rapidly.

We have a clue as to how this can be done from our experi-
ence with the Delta form. If some term in our equation is going
to zero, we can multiply it with a non-singular expression and
not affect our solution. in the case of our governing equations,
when we get to the steady state, the time derivatives should
be zero. We can pre-multiply the time derivative term with a
matrix Γ to get an equation

(4.140) Γ
∂Q

∂t
+
∂E

∂x
= 0

So, what is Γ? That is for us to decide. Let us now multiply
equation (4.140) through by Γ

−1. We get

(4.141)
∂Q

∂t
+ Γ

−1A
∂Q

∂x
= 0

This is the equation written in non-conservative form. We see
that we have indeed got an opportunity to modify the physics of
the problem. We need to choose Γ in a manner that Γ−1A has
eigenvalues that are almost equal to each other. This process
of changing the eigenvalues of a problem of interest to make it
more amenable to solution is called preconditioning. In this
context, since we achieve this end by multiply only the transient
term we call it preconditioning the unsteady term.

We want to keep it simple for the sake of this discussion. We
will seek a Γ so that the eigenvalues of Γ−1A are (1, 1,−1) and
the eigenvectors are the same. We are propagating the same
“physical” quantities. The only difference is that the propaga-
tion speeds are equal. This tells that

(4.142) Γ
−1AX = XΛ1, Λ1 =





1 0 0
0 1 0
0 0 −1





Since the eigenvectors are the same, we have AX = XΛ.
Substituting, we get

(4.143) Γ
−1XΛ = XΛ1

If we post-multiply through by Λ
−1
1 , pre-multiply by Γ, and

rearrange the equation, we get
(4.144)

ΓX = XΛΛ
−1
1 = X|Λ|, |Λ| =





|u| 0 0
0 |u+ c| 0
0 0 |u− c|





We choose the Γ

(4.145) Γ = X|Λ|X−1

Finite Volume Method

We will look at the finite volume method in greater detail
in Chapter 6. We will continue the discussion that we started
in Section 3.16. I have reproduced the Figure 3.41 here for
convenience. The “volume” indexed by i extends from xi− 1

2

to

xi+ 1

2

. The mean value of ~Q in the volume is labelled notionally

x

i− 1
2 i+ 1

2

i− 1 i+ 1i

~Ei− 1

2

~Ei+ 1

2

Figure 4.13. A small control volume about the grid point i.
The boundaries of the volume are shown at xi− 1

2
and xi+ 1

2
.

The short vectors are outward unit vectors “normal” to the
boundary. The other two vectors are the flux terms ~Ei− 1

2

and ~Ei+ 1
2

as ~Qi. Integrating equation (4.4) with respect to x from xi− 1

2

to xi+ 1

2

gives us

(4.146)
d

dt

∫ x
i+1

2

x
i− 1

2

~Q(ξ, t)dξ =

d

dt

(

~Qi∆xi

)

= −
(

~E(xi+ 1

2

, t)− ~E(xi− 1

2

, t)
)

where ∆xi = xi+ 1

2

− xi− 1

2

. In order the get the time evolution

of the parameter ~Qi, we need to integrate this equation in time.
Unfortunately, this means that we need to determine ~E(xi+ 1

2

, t)

and ~E(xi− 1

2

, t). We know that ~Ei± 1

2

= E(~Qi± 1

2

). How do we

determine ~Qi± 1

2

? Further, it is clear that we should use ~E±
i∓ 1

2

and not just ~E. At a given point to determine ~E± one also

needs to determine u and u ± c. Again, we need the state at
the boundaries of the control volume.

Assignment 4.11

Write a finite volume solver using equation (4.146).

Roe’s Averaging. We will determine ~Qi± 1

2

using a pro-

cess called Roe’s averaging [Roe81]. We have done a similar
(though not identical) derivation to determine the wave speed
in section 3.16 equation (3.266).

Consider the interface between two cells i and i + 1. This
is indicated as the point i+ 1

2
in Figure 4.13. To the left of this

interface we have the state ~Qi and to the right of it we have
~Qi+1. We need to use these two states to determine ~Ei+ 1

2

.

If the system of equations were such that the flux Jacobian A
was a constant A in the interval (xi, xi+1) over the time period
∆t, we could use our characteristic equations to propagate the
characteristic variables in time over the period ∆t. The flux
Jacobian A is not likely to be a constant. We will assume it is.
What should we take as the that constant value A? We want
an average value of A. Again, we would like to determine A

using the two states ~Qi and ~Qi+1.
From the two paragraphs can we summarise a question as

follows: Can we find a ~Qi+ 1

2

such that

(4.147) A = A(~Qi+ 1

2

) =
∂ ~E

∂ ~Q

∣
∣
∣
∣
∣
i+ 1

2

?

Now, we know that A is related to ~E and ~Q through their
respective changes over the interval. That is

(4.148) ~Ei+1 − ~Ei = ∆ ~Ei+ 1

2

= A ·∆ ~Q = A ·
(

~Qi+1 − ~Qi

)

We want the entries of A that are given by equation (4.21) and
repeated here for convenience.
(4.149)

A =











0 1 0

1
2
(γ − 3)u2h (3− γ)uh (γ − 1)

(γ − 1)u3h − γEhuh γEh − 3
2
(γ − 1)u2h γuh











where uh = u2
i+ 1

2

and Eh = Eti+ 1

2

. Also,

(4.150) ∆ ~Q =





∆ρ
∆(ρu)
∆(ρEt)



 , ∆ ~E =





∆(ρu)
∆(ρu2 + p)

∆{(ρEt + p)u}





We can use equation (4.148) to determine the entries in A. We
see from equation (4.149), that this should allow us to deter-
mine ui+ 1

2

and Eti+ 1

2

. The student is encouraged to continue

with this derivation to see where the difficulties arise. We will
follow standard procedure here and convert the various expres-
sions containing Et and p into terms using Ht. Ht is the total
enthalpy.

(4.151) ρHt = ρEt + p

First we eliminate p.

We have already seen in equation (4.18) that

(4.152) p = (γ − 1)

{

ρEt −
ρu2

2

}

We use this expression to eliminate p from equation (4.151) to
get
(4.153)

ρHt = γρEt −
γ − 1

2
ρu2 ⇒ Et =

1

γ

(

Ht +
γ − 1

2
u2
)

Consequently, we can verify that

(4.154) p =
γ − 1

γ

{

ρHt −
ρu2

2

}

To keep the expressions looking simple we will drop the i + 1
2

subscript in A. We can now write
(4.155)










∆(ρu)

∆(ρu2 + p)

∆{(ρHtu}











=











0 1 0

1
2
(γ − 3)u2 (3− γ)u (γ − 1)

Cu −C γu





















∆ρ

∆(ρu)

∆(ρEt)











where C = γ−1
2
u2 −Ht

The second equation still has p on the left hand side and
the last equation still has a ρEt on the right hand side. We will
substitute for them from equations (4.153) and (4.154) as we
multiply the matrix equation out to get the individual equations.

The first equation gives us nothing; just ∆(ρu) = ∆(ρu). The
second equation gives us

(4.156)

γ − 3

2
u2∆ρ+(3−γ)u∆(ρu)+(γ−1)∆

(
ρHt

γ
+
γ − 1

2γ
ρu2
)

=

∆

(
γ + 1

2γ
ρu2 +

γ − 1

γ
ρHt

)

The ρHt terms cancel, giving
(4.157)

1

2
(γ−3)u2∆ρ+(3−γ)u∆(ρu)+

(γ − 1)

2γ

2

∆(ρu2) =
γ + 1

2γ
∆(ρu2)

We remind ourselves that u is actually ui+ 1

2

for which we have

a quadratic

(4.158) au2
i+ 1

2

+ bui+ 1

2

+ c = 0

where

a = ∆ρ(4.159)

b = −2∆(ρu)(4.160)

c = ∆(ρu2)(4.161)

The two solutions can be written as

(4.162) ui+ 1

2

=
∆(ρu)±

√

∆(ρu)2 −∆ρ∆(ρu2)

∆ρ

We cannot simplify this any further without substituting for the
terms on the right hand side as

∆ρ = ρi+1 − ρi = ρ
R
− ρ

L
(4.163)

∆(ρu) = ρi+1ui+1 − ρiui = ρ
R
u

R
− ρ

L
u

L
(4.164)

∆(ρu2) = ρi+1u
2
i+1 − ρiu

2
i = ρ

R
u2

R
− ρ

L
u2

L
(4.165)

As in section 3.16, we have use the subscripts R and L to
indicate states to the right and left of the interface at xi+ 1

2

.

When we substitute and simplify terms under the square root
we get

(4.166) ui+ 1

2

=
ρ

R
u

R
− ρ

L
u

L
±√

ρ
R
ρ

L
(u

R
− u

L
)

ρ
R
− ρ

L

By combining the two terms containing
√
ρ

R
u

R
and

√
ρ

L
u

L
and

taking the negative sign from the ±, we get
(4.167)

ui+ 1

2

=

√
ρ

R
u

R
(
√
ρ

R
−√

ρ
L
) +

√
ρ

L
u

L
(
√
ρ

R
−√

ρ
L
)

(√
ρ

R

)2 −
(√

ρ
L

)2

So,

(4.168) ui+ 1

2

=

√
ρ

R
u

R
+
√
ρ

L
u

L√
ρ

R
+
√
ρ

L

A peculiar looking expression. However, the fact that it can be
written as

(4.169) ui+ 1

2

= αu
R
+ (1− α)u

L
, α =

√
ρ

R√
ρ

R
+
√
ρ

L

gives us confidence. Why did we not take the other root? You
can followup on that and figure it out. Now, repeat this deriva-
tion for Hti+ 1

2

to get

(4.170) Hti+ 1

2

= αHtR + (1− α)HtL , α =

√
ρ

R√
ρ

R
+
√
ρ

L

Assignment 4.12

(1) Take the positive sign in equation (4.166) and see what
is the consequence.

(2) Use the Roe average in your finite volume solver.

Quasi-One-Dimensional Flow

In the last few chapters we have built up quite a bit of CFD
machinery. How is all of this applicable to a problem like the
nozzle we looked at in the first chapter. We want to keep the
equations simple and account for the area variation. We will
use the quasi-one-dimensional form of the governing equations
to solve the problem. The governing equations now look like

(4.171)
∂QA
∂t

+
∂EA
∂x

= H

The term A is the area of cross-section of the duct and in fact
varies with x. For a converging-diverging nozzle (CD nozzle),
we would have anA(x) which first decreases and then increases.
The other new term in the equation is the H on the right hand
side of the equation. These terms are usually referred to as

source term. We have used the term E for the x component of
the flux, we expect to use F and G for the y and z components
of the flux. As a consequence we are left with H as the source
term. In this case the source term is a consequence of writing
the quasi-one-dimensional equations in the conservative form
and has components

(4.172) H =










0

p
dA
dx

0










For moderate variations in A we do not expect this change
to make much of a difference to our programs. However, our
experience to date with our expectations and how things have
turned out makes it clear that we need to check this out.

Assignment 4.13

(1) Write a program to compute flow through a converging
duct.

(2) Diverging duct.
(3) C-D duct.

Important ideas from this chapter

• Equations can be written in conservative form or non-
conservative form. They are typically used in conserva-
tive form.

• The stability analysis from the one-dimensional linear
wave equation can be extended to the one-dimensional
Euler equations, after decoupling the system of equa-
tions.

• One can employ characteristics to decide on the bound-
ary conditions to be applied.

• The characteristics velocities determine the convergence
of the scheme. Very disparate characteristics result in
a problem that is said to be ill-conditioned. One way
to solve this problem is to employ preconditioning.

• The crux of a typical finite volume scheme is that the
state is not known where the flux is required. One
interpolates and manages.

• Hopefully from the assignments: Indiscriminate use of
artificial dissipation can lead programs to converge, but
to what?

Tensors and the Equations of

Fluid Motion

We have seen that there are a whole range of things that
we can represent on the computer. Our objective was to dive
into the process of representing and solving partial differential
equations on the computer. We have solved some simple prob-
lems such as Laplace’s equation on a unit square at the origin
in the first quadrant. From the description of the problem, you
can see that it was really a very specific problem. It was simple
enough that we could analyse the resulting discrete equations.

Similarly, we have studied the first order one-dimensional
linear wave equation. We have also seen the heat equation and
the quasi linear version of the wave equation. We have some
basic understanding of the issues involved in representing and
solving these problems on the computer.

Finally, in the last chapter, we looked at the one-dimensional
Euler’s equation though the formal derivation of the equations
was put off till this chapter. We will look at solution in multiple
dimensions in chapter 6.

We are now in a position to solve a larger class of prob-
lems. We will expand on the simple problems we studied in the
preceding chapters as a means to motivate this chapter. We
will then do the essentials of tensor calculus required to derive
the equations of fluid motion. The equations of motion will be
derived in vector form so as to be independent of the particular

coordinate system. Taken along with the tensor calculus you
should be able to specialise these equations to any particular
coordinate system.

Laplace Equation Revisited

We solved the Laplace equation on a unit square. How would
we handle the problem domain shown in Figure 5.1? Again, we

x

y

L

h

H

Figure 5.1. A trapezoidal domain on which Laplace equation
is to be solved

are given boundary conditions on the four sides of the quadri-
lateral. If we tried to solve it using a Cartesian mesh as we did
before, we would get something that looks like the domain and
mesh shown in Figure 5.2. Everything looks fine till you look at
the top edge of the trapezium. Excepting two points, there are

x

y

L

h

H

Figure 5.2. Trapezoidal domain with an underlying Cartesian mesh.

no other grid points on the boundary. How then can we apply
the boundary condition? We could forcibly insert mesh points at
the intersection of the grid lines the boundary. This would lead
to unequal distances between the mesh points in our discretisa-
tion. Those points then have to be dealt with as a special case.
The other possibility is to consider every grid point as being
separated from neighbouring grid points by unequal distances
as shown in Figure 5.3. It is likely that we will have to treat
some points as special points. We have come to expect that we
will treat the boundary points differently from the rest of the
grid points anyway. After all, look at what we did in the other
problems that we have seen, especially the one-dimensional Eu-
ler equations. Since we are trying to motivate tensor calculus,

∆y1

∆x2∆x1

∆y2

Figure 5.3. A grid point with neighbouring points placed at
uneven distances.

our interest lies in a third possibility. That is to generate a non-
Cartesian mesh. One such mesh is shown in Figure 5.4. If we
study the mesh shown in the figure, we see that the mesh lines
conform to the boundary of the domain. Imagine in your mind
that you have a rubber sheet the shape of this trapezium. You
could stretch the sheet so that the stretched sheet looked like a
square. The mesh lines would coincide with the Cartesian grid
lines. This tells us that we need to perform a transformation of
our coordinates so that we are back to solving our problem on
a Cartesian mesh.

If our coordinates in the stretched sheet are (ξ, η), the mesh
lines seen in Figure 5.4 would be constant ξ-lines and constant
η-lines. The Figure 5.4 is drawn in the x − y plane. Clearly,
what we need is a transformation going from one coordinate

x

y

L

h

H

Figure 5.4. A non-Cartesian mesh in a Trapezoidal domain.
The sides of the quadrilateral are mesh lines.

system to another. Say,

ξ = ξ(x, y),(5.1)

η = η(x, y),(5.2)

and the corresponding reverse relationship

x = x(ξ, η),(5.3)

y = y(ξ, η).(5.4)

We are in a position where, given the solution at a point in
one coordinate system, we can provide the solution at the cor-
responding point in the other coordinate system. Let us step
back for a minute to see where we are.

We have Laplace equation given to us in a trapezoidal do-
main in the x − y coordinate system. A little stretch will give
us a square in the ξ − η coordinate system, but what happens
to Laplace’s equation in the ξ − η plane? We use the coor-
dinate transformation given by equations (5.1) to (5.3) along
with chain rule to transform the derivatives. For example, here
are the first derivatives in x and y.

∂

∂x
=

∂ξ

∂x

∂

∂ξ
︸ ︷︷ ︸

A

+
∂η

∂x

∂

∂η
︸ ︷︷ ︸

B

(5.5)

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
(5.6)

Since, the transformation is known, we can determine the partial
derivative on the right hand side of equation (5.5). How do we
use the expression given by equation (5.5)? We can take the
corresponding partial derivative of φ. On doing this, we get

∂φ

∂x
=

∂ξ

∂x

∂φ

∂ξ
+
∂η

∂x

∂φ

∂η
(5.7)

∂φ

∂y
=

∂ξ

∂y

∂φ

∂ξ
+
∂η

∂y

∂φ

∂η
(5.8)

So far it looks manageable. Since we want to solve Laplace’s
equation, we now look at the second derivatives. The second

x–derivative is

(5.9)
∂2

∂x2
=

∂

∂x

{
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η

}

=
∂2ξ

∂x2
∂

∂ξ
︸ ︷︷ ︸

A1

+

(
∂ξ

∂x

)2
∂2

∂ξ2
+
∂ξ

∂x

∂η

∂x

∂2

∂ξ∂η
︸ ︷︷ ︸

A2

+
∂2η

∂x2
∂

∂η
︸ ︷︷ ︸

B1

+
∂η

∂x

∂ξ

∂x

∂2

∂ξ∂η
+

(
∂η

∂x

)2
∂2

∂η2
︸ ︷︷ ︸

B2

This is a little messy. To make sure we understand this clearly,
the term A in equation (5.5) results in the terms identified as
A1 and A2 in equation (5.9). The same is true of the terms
marked B in the two equations. A1 and A2 are a consequence
of applying product rule. The two terms in A2 emerge from
applying equation (5.5) to obtain the derivative of the ∂/∂ξ
term with respect to x. In a similar fashion we can write the
second derivative with respect y as

∂2

∂y2
=
∂2ξ

∂y2
∂

∂ξ
+

(
∂ξ

∂y

)2
∂2

∂ξ2
+
∂ξ

∂y

∂η

∂y

∂2

∂ξ∂η

+
∂2η

∂y2
∂

∂η
+
∂η

∂y

∂ξ

∂y

∂2

∂ξ∂η
+

(
∂η

∂y

)2
∂2

∂η2

(5.10)

Then the transformed Laplace equation can be written as

(5.11)
∂2φ

∂x2
+
∂2φ

∂y2
=

(
ξ2x + ξ2y

) ∂2φ

∂ξ2
+ 2 (ξxηx + ξyηy)

∂2φ

∂ξ∂η
+
(
η2x + η2y

) ∂2φ

∂η2

+ (ξxx + ξyy)
∂φ

∂ξ
+ (ηxx + ηyy)

∂φ

∂η
= 0

To keep things more compact, we decide to use the notation
that the subscript indicates differentiation with respect to that
parameter. So,

(5.12) ξx =
∂ξ

∂x

Using this notation uniformly, the Laplace equation in the ξ−η
plane is given by

(
ξ2x + ξ2y

)
φξξ + 2 (ξxηx + ξyηy)φξη +

(
η2x + η2y

)
φηη

+(ξxx + ξyy)φξ + (ηxx + ηyy)φη = 0
(5.13)

The domain for the problem has become easier, the equation
does not quite fit in one line! Also, it is not in quite the right
form. The coefficients are still expressed in the x, y coordinate
system. We make the following observations and see if we can
clear the air a bit.

• We want to solve problems that involve complicated
domains. There may be many methods to handle com-
plicated problems, performing transformation of coor-
dinates is definitely one way to do it.

• We do not want to have to re-derive our governing
equation in every new coordinate system that we en-
counter. We need a general frame work in which we
can derive our equations.

• The introduction of the subscript notation gave some
relief in handling the equation. So, the proper choice
of notation is going to make life easier for us. Further,
we can do work on more difficult / complex problems
with the effort that we are currently expending.

• We observe that the only difference between equation
(5.9) and (5.10) is the replacement of x with y. Again,
we need the notation that will help us to abstract these
kinds of patterns out, so that we do not have to repeat
the derivation for each coordinate.

• We want to solve problems in three dimensions and
not just one and two dimensions. If we are going to
perform transformations in three dimensions, we need
to have some minimal understanding of geometry in
three dimensions.

We will address the last point here by looking at a little
differential geometry. Coordinate lines in three dimensions are
curves in three dimensions and we will try to get a handle on
them. A region of interest in three dimensions will be a volume
and it is defined using surfaces. We will take a brief look at
surfaces. Tensor calculus is a tool to address the rest of the
issues raised in our list of observations. We will do a little
tensor calculus and some geometry.

As further motivation as to why one needs tensor calcu-
lus, consider the following conundrum. If you have learnt only

“calculus”, the sequence of courses typically taught in an under-
graduate curriculum, this is for you to puzzle over; to show you
there must be life beyond “calculus”. Consider a potential flow
in two dimensions. The velocity can be written in component
form as (u, v) in Cartesian coordinates. If we were to transform
the velocity to some other coordinates (ξ, η) we get

u =
dx

dt
= xt = xξξt + xηηt = xξU + xηV(5.14)

v =
dy

dt
= yt = yξξt + yηηt = yξU + yηV(5.15)

Where (U, V) are the velocities in the ξ − η coordinates. The
matrix representation of this transformation equation is

(5.16)

(
u
v

)

=

[
xξ xη
yξ yη

](
U
V

)

We also have from the definition of the potential

u =
∂φ

∂x
= φx = φξξx + φηηx = ξxU + ηxV(5.17)

v =
∂φ

∂y
= φy = φξξy + φηηy = ξyU + ηyV(5.18)

Which has a representation

(5.19)

(
u
v

)

=

[
ξx ηx
ξy ηy

](
U
V

)

They contradict each other
and are wrong

Why are these equations, (5.16) and (5.19), different? How
can the u and v transform in two different ways? One immediate
conclusion that the equations are wrong. We should be able
to figure out what is wrong with these equations since there
are basically three terms involved. The left hand side of these
two equations are clearly fine since they are the quantities with
which we start and are a given. The chain rule part follows from
calculus. That procedure looked right. That leaves the U and
V and of course, the = symbol. We want the equation relating
velocities in the two coordinate systems. That means there is
a problem with the assumption that the U and V in equation
(5.16) are the same as the U and V in equation (5.19). So,
there may be two different kinds of U and V . To clear up these
issues study tensor calculus.[You93][Ari89][SS82]! We will
do a very quick overview here.

Tensor Calculus

Very often, we assume that a vector ~V can be written in
terms of a global basis vectors ê1, ê2, ê3 as follows

(5.20) ~V = v1ê1 + v2ê2 + v3ê3 =
3∑

i=0

viêi

We will see what we mean by a global basis as we go along.
For now, do not confuse the superscript on v with exponenti-
ation. We deliberately chose superscripts and subscripts since
we anticipate that we are going to encounter two different kinds
of entities. We will see that superscripted entities are said to
be contravariant and subscripted entities are covariant. So, v1

may be different from v1. We will see what this means as we go
along. If we agree that any time the index is repeated it implies
a summation, we can simply write

(5.21) ~V = viêi

Now, THAT is compact. It is called Einstein’s summation con-
vention. It only gets better. By itself, the equation does not
even restrict us to three dimensions. It is our assumption that
we use three dimensions. In this book, we will restrict ourselves
to two / three dimensions. You should note that

(5.22) ~V = viêi = vkêk

Since there is a summation over the index, the index itself does
not survive the summation operation. The choice of the index
is left to us. It is called a dummy index.

We now define the notation with respect to coordinate sys-
tems. Consider Figure 5.5. It indicates a differential line element
with points P and Q at each end of the element. We define
~x(.) as a coordinate function which returns the coordinates of
a point in the Cartesian coordinate system. That is, for a point
P , ~x(P) gives us the corresponding coordinates. If we had an-
other coordinate system overlayed on the same region, the point

P will have the corresponding coordinates ~ξ(P) in that coor-
dinate system. The coordinate function is simple to imagine if
we look at it component-wise.

(5.23) ~x(P) = x1(P)ê1 + x2(P)ê2 + x3(P)ê3

Since we are dealing with Cartesian coordinates, xi and xi are
the same. we have already seen that if ~P is the position vector

1

2

3

P

Q

~x(P)

~x(Q)

~P

Figure 5.5. A Cartesian coordinate system used to locate
the point P and Q. ~x(P) gives the position vector of P in

the Cartesian coordinate system. That is, ~P = ~x(P). PQ

forms a differential element.

for P then

(5.24) xi(P) = ~P · êi
Consider the problem of coordinate transformations in two

dimensions. Let us restrict ourselves for the sake of this discus-
sion to rotations. We take our standard x − y coordinate and
rotate through an angle θ to get the ξ − η coordinates. The

basis vectors in x − y are ~e1 and ~e2. The basis vectors in the
ξ − η coordinates are ~ǫ1 and ~ǫ2. You can check that the basis
vectors are related as follows:

(5.25)

(
~ǫ1
~ǫ2

)

=

[
cos θ sin θ
− sin θ cos θ

](
~e1
~e2

)

We see that by using indices we can simply represent this as

(5.26) ~ǫi = Aj
i~ej

Now, a vector ~s can be represented in the x − y and the
ξ − η coordinate systems as

(5.27) ~s = si~ei = ψi~ǫi

Substituting for ~ǫi from equation (5.26) we get

(5.28) ~s = si~ei = sj~ej = ψi~ǫi = ψiAj
i~ej

where i and j are dummy indices. Even though they are dummy
indices, by the proper choice of these dummy indices here we
can conclude that

(5.29) sj = ψiAj
i = Aj

iψ
i

Compare equations (5.26) and (5.29). The unit vectors
transform one way, the components transform the opposite [or
contra] way. We see that they too show the same behaviour
we saw with the velocity potential. Vectors that transform like
each other are covariant with each other. Vectors that transform
the opposite way are contravariant to each other. This is too
broad a scenario for us. We will stick with something simpler.
Covariant entities will be subscripted. Contravariant entities
will be superscripted.

ê1

1

1′

2
2′

ε̂1

x′2
x2

Figure 5.6. The basis vectors rotate with the coordinate axes
(only ê1 and ~ε1 are shown). The coordinates of the point in
the new system are as though the point had moved clockwise
and the coordinate system was fixed. That is x′

2 < x2 in
this particular case.

An example where this will be obvious to you is the case
of the rotation of the Cartesian coordinate system. Again, we
restrict ourselves to two dimensions. If you rotate the standard
Cartesian coordinate system counter-clockwise, you see that the
coordinate lines and the unit vectors (as expected) rotate in
the same direction. They are covariant. The actual coordinate
values do not change in the same fashion. In fact, the new
values corresponding to a position vector look as though the
coordinate system was fixed and that the position vector was
rotated in a clockwise sense (contra or opposite to the original
coordinate rotation). These two rotations are in fact of equal

magnitude and opposite in sense. They are, indeed, inverses
of each other. We will investigate covariant and contravariant
quantities more as we go along. Right now, we have assumed
that we have a position vector. Let us take a closer look at this.

We have made one assumption so far that the basis vector
is global. We used the term global basis in the beginning of
this section. What do we mean by a global basis? We want
the basis to be the same, that is constant, at every point. Such
a set of basis vectors is also said to be homogeneous. For
example, the basis vectors in the standard Cartesian coordinate
system do not depend on the (x, y) coordinates of a point.
Consider the trapezium in Figure (5.7) We see that the tangent
to the η = constant coordinate lines change with η. In general,
the basis vectors change from point to point. We do not have
a global basis. Also, consider the standard polar coordinate
system (see Figure 5.8). The usual symbols for the basis vectors
are êθ and êr. Both of these vectors depend on θ. Again, for
the familiar and useful polar coordinate system, we do not have
a global basis. That is the basis vectors are not constant. They
are not homogeneous. In fact, in the case of polar coordinates
we have as the position vector at any point ~P = rêr. Does the
position vector not depend of θ at all? The fact of the matter
is that the êr depends on θ, as the basis is not homogeneous.
Fortunately, êr and êθ depend only on θ. So, we are still able
to write ~P = rêr.

Another example of a coordinate system with which you are
familiar and is used for doing log-log plots is shown in figure 5.9.
In this case, the basis vectors seem to be oriented in the same
fashion. However, the length of the vector seems to change. It

x

y

L

h

H
~P

Figure 5.7. The basis vectors at the origin and the basis
vectors at some other point are clearly not the same. The

position vector, ~P is geometrically very easy to draw. It
cannot be written simply as a linear combination of some
basis vector in the coordinate system shown here.

is clear that the notion of distance between points is an issue
here.

Looking at these examples, we realise that we need to spend
a little time trying to understand generalised coordinate systems.
Let’s just consider one coordinate line in some generalised co-
ordinate system. We will see that in three dimensions, it is a
space curve. Let us first look at space curves and some of their
properties. We are especially interested in the tangent to these

x

y

êr

êθ

~P
=
rê
r

Figure 5.8. The position vector in polar coordinates is given

by ~P = rêr. At first glance it seems as though there is no
θ dependence. However êr is a function of θ as is êθ. Only
the constant r coordinate lines are shown.

x

y

~P

Figure 5.9. A “log-log” coordinate system. We have a rect-
angular coordinate system, however the unit vectors are still
a function of position making it impossible to write the po-

sition vector drawn ~P as a linear combination of the basis
vectors.

curves since the tangent to the coordinate line is a part of our
basis.

Consider the coordinate line shown in Figure 5.10. The
curve is determined by a function ~α(ξ1). It is a coordinate line

in a coordinate system labelled ~ξ which has three components
(ξ1, ξ2, ξ3). The figure shows the coordinate line corresponding
to ξ2 =constant, and ξ3 =constant. To belabour the point,
it is the ξ1 coordinate line since it is parametrised on ξ1. The

tangent to this line is given by

(5.30) ~ε1 =
d~α(ξ1)

dξ1

In fact, for any of the coordinate lines of ξi we have for the
corresponding ~αi

(5.31) ~εi =
d~αi

dξi
, no summation on i

This basis vector is called the covariant basis vector. We note
the following

• In equation (5.31), though the subscripts are repeated,
there is no summation implied over i. The subscript
on the ~α is there to conveniently indicate three generic
coordinate functions.

• Some new tensor notation convention: (see equation
(5.31)) the superscript of the derivative on the on the
right hand side becomes a subscript on the left.

We consider an example to understand this process bet-
ter. Let us take a look at polar coordinates in two dimen-
sions (ξ1, ξ2). A ξ2 = θ coordinate line corresponds to a ξ1 =
r =constant line. For the given r, the curve is parametrised as
(5.32)
~α(θ) = ~α(ξ2) = r cos(θ)̂ı+r sin(θ)̂ = ξ1 cos(ξ2)ê1+ξ

1 sin(ξ2)ê2

As was seen earlier, ê1 and ê2 are the standard basis vectors in
the Cartesian coordinate system. You may be used to calling
them ı̂ and ̂. The tangent to this curve is ~ε2.
(5.33)
~ε2 = −r sin(θ)ê1 + r cos(θ)ê2 = −ξ1 sin(ξ2)ê1 + ξ1 cos(ξ2)ê2

1

2

~α(ξ1)

3 ~α′(ξ1)

Figure 5.10. A coordinate line belonging to a three dimen-
sional generalised coordinate system. This line is shown em-
bedded in our usual Cartesian coordinate system. ~α is shown
as a function of ξ1 alone as the other two, ξ2 and ξ3 are
held constant to obtain this line. The local tangent vector
is one of the basis vectors for the generalised coordinates

We note two points here.

• ~ε2 is not a unit vector. If you normalise it, you get the
“physical” basis vector ~εθ.

• ê1 and ê2 are not functions of ξ2. That is the reason
why we only have two terms on the right hand side
of equation 5.33. Otherwise we would have had more
derivative terms due to the application of product rule.

How about the other coordinate line corresponding to θ =
ξ2 =constant? The equation of such a line is given by
(5.34)
~α(r) = ~α(ξ1) = ξ1 cos(ξ2)ê1 + ξ1 sin(ξ2)ê2, ξ2 = constant

For constant ξ2 = θ, this will correspond to a radial line. The
tangent vector to this line is given by

(5.35) ~ε1 =
∂~α

∂ξ1
= cos(ξ2)ê1 + sin(ξ2)ê2

This in fact turns out to be a unit vector and is the same as ~εr.
We can learn something from the study of the polar coor-

dinate system. Why does ~ε2 depend on ξ1? ξ2 is the angle
measured from the x-axis. The angle ξ2 is measured in radians
which is the arc length at some radius that subtends ξ2 at the
centre nondimensionalised by that radius. Naturally, when using
ξ2 as a coordinate, the corresponding arc length depends on ξ1.

Let’s pause and take stock of what we have and where we
are. We have seen that there are coordinate systems where the
basis vectors are not homogeneous. So, just writing a relation
like equation (5.21), ~V = viêi, for a position vector ~V may
not be possible. We will start dealing only with differentials.
A differential element PQ is shown in the Figure 5.11. It is
represented in the X coordinate system as d~x = dxiêi. The êi
are the basis vectors in this coordinate system. We can trans-
form from the X coordinates to the Ξ coordinates where the

X − system

Ξ− system

x1

x2

ξ1

ξ2
ξ3

Q

P

d~ξ = ~Ξ(Q)

d~x = ~X(Q)

x3

Figure 5.11. Figure 5.5 is redrawn and zoomed. The origin
of our Cartesian coordinate system is translated to the point
P . The differential element PQ is now represented in terms
of the translated coordinate system and a similar system of
the generalised coordinates.

basis vectors are ~εi. The differential PQ can be written in the

Ξ coordinates system as d~ξ = dξi~εi. How are the two rep-
resentations for the given differential element at a given point
related? Clearly, the length of the element should not depend
on our choice of the coordinate system. Or, put another way, if

two people choose two different coordinate systems, the length
of this particular element should work out to be the same. As
we had done earlier, here are the two equations that relate the
Cartesian coordinates xi to the generalised coordinates ξi.

(5.36) xi = xi(ξ1, ξ2, ξ3)

and

(5.37) ξi = ξi(x1, x2, x3)

In the Cartesian coordinate system the length ds is given by

(5.38) (ds)2 = d~x · d~x = dxiêi · dxj êj = dxidxj êi · êj
Remember that êi are the basis vectors of a Cartesian coordinate
system and are orthogonal to each other. Consequently, we can
define a useful entity called the Kronecker delta as

(5.39) δij = êi · êj =
{

1, i = j
0, i 6= j

With this new notation we can write

(5.40) (ds)2 = d~x · d~x = dxidxjδij = dxidxi =
∑

i

(dxi)2

Following the convention we have used so far (without actually
mentioning it) we see that

(5.41) dxjδij = dxi

That is, j is a dummy index and disappears leaving i which
is a subscript. For the first time we have seen a contravariant
quantity converted to a covariant quantity. If you think of matrix
algebra for a minute, you will see that δij is like an identity

matrix. The components dxi are the same as the components
dxi in a Cartesian coordinate system. Hence, equation (5.40)
can be written as

(5.42) (ds)2 = dxidxi =
∑

i

(dxi)
2

The length of the element is invariant with transformation mean-
ing the choice of our coordinates should not change the length
of the element. A change to the Ξ coordinates should give us
the same length for the differential element PQ. The length in
the Ξ coordinates is given by
(5.43)

(ds)2 = d~ξ·d~ξ = dξi~εi·dξj~εj = dξidξj~εi·~εj = dξidξjgij = dξidξi

gij is called the metric. Following equation (5.41), we have
defined dξi = gijdξ

j. Why did we get gij instead of δij? We
have seen in the case of the trapezium that the basis vectors
need not be orthogonal to each other since the coordinate lines
are not orthogonal to each other. So, the dot product of the
basis vectors ~εi and ~εj gives us a gij with non-zero off-diagonal
terms. It is still symmetric, though. In this case, unlike the
Cartesian situation, dξi is different from dξi.

We can define another set of basis vectors which are orthog-
onal to the covariant set as follows

(5.44) ~εi · ~ε j = δji

where,

(5.45) δji =

{
1, i = j
0, i 6= j

~ε2
~ε1

~ε 3

~ε3

Figure 5.12. The covariant basis vectors ~ε1, ~ε2, and ~ε3 are
shown. In general they may not be orthogonal to each other.
~ε 3 is also shown. It is orthogonal to ~ε1 and ~ε2 and ~ε3·~ε 3 = 1

This new basis, ~ε i, is called the contravariant basis or a dual
basis. This is demonstrated graphically in figure 5.12. This basis
can be used to define a metric

(5.46) gij = ~ε i · ~ε j

Now, is the definition given for dξi consistent with this definition

of the contravariant basis? Is d~ξ = dξi~ε
i? That is, if we take

the dot product of a vector with a basis vector, do we get the
corresponding component? We have,

(5.47) d~ξ = dξi~ε
i ⇒ d~ξ · ~ε j = dξi ~ε

i · ~ε j
︸ ︷︷ ︸

gij

= dξj,

and

(5.48) d~ξ = dξi~ε
i ⇒ d~ξ · ~εj = dξi~ε

i · ~εj = dξj,

and

(5.49) d~ξ = dξi~εi ⇒ d~ξ · ~εj = dξi~εi · ~εj = dξj,

and finally,

(5.50) d~ξ = dξi~εi ⇒ d~ξ · ~ε j = dξi~εi · ~ε j = dξj,

So, to get the contravariant components of a tensor, dot it with
the contravariant basis vectors. Likewise, to get the covariant
components of a tensor, dot it with the covariant basis vectors.
The effect of gij on a contravariant term is to lower the index
or convert it to a covariant term. Similarly, the effect of gij

on a covariant term is to raise the index or convert it to a
contravariant term. So, what is gijg

jk?

(5.51) gijg
jk = gki = ~εi · ~ε k = δki

The metric tensors are inverses of each other.
At this point you really can protest: “Wait a minute, where

is this going? “Fascinating” as it is, how is it relevant to CFD?”
Look at the trapezium in Figure 5.4. Imagine that this trapez-
ium represents a channel through which some fluid, like water,
can flow. The top and bottom of the trapezium are solid walls.
If we were solving for the potential flow through a channel with
the top and bottom of the trapezium being solid walls, this tells
us, we need to apply the boundary condition ∂φ/∂n = 0, where
n is measured along a line that is perpendicular to the surface.
Look at the top of the trapezium. A zoomed view is shown in
Figure 5.13. Your coordinate line is not normal to the top sur-
face. How do we get the derivative along the normal. You can
find the derivatives along ~ε1 and ~ε2 and use Taylor’s series in
two dimensions to get the normal derivative. You will find that

~ε1

~ε2
~ε 2

Figure 5.13. A zoomed view of the non-Cartesian mesh in a
Trapezoidal domain shown in Figure 5.4. The two covariant
basis vectors and one contravariant basis vector are shown.

you are just reinventing everything we have done so far. What
you want is the contravariant basis vector and not the covariant
basis vector. Why? This is because the covariant basis vector
is along the coordinate line and the contravariant one is per-
pendicular to it. The top of the trapezium is a coordinate line.
The contravariant basis vector is perpendicular to it, which is
what we want. We do need this stuff, so let’s soldier on. First,
an assignment.

Assignment 5.1

(1) Expand the following using the summation convention
assuming that we are working in three dimensions.
(a) aib jδij , (b) δ

j
j , (c) δ

j
i δ

i
j , (d) δ

i
i δ

j
j

(2) Repeat the above problem assuming we are dealing with
tensors in two space dimensions.

(3) Find the covariant and contravariant bases vectors and
the corresponding metric tensors for the following co-
ordinate systems. xi are the Cartesian coordinates.
(a) Cylindrical coordinates. ξ1 = r, ξ2 = θ, and ξ3 = z

in conventional notation.
x1 = ξ1 cos ξ2, x2 = ξ1 sin ξ2, and x3 = ξ3.

(b) Spherical coordinates. ξ1 = R, ξ2 = θ, and ξ3 = φ
in conventional notation.
x1 = ξ1 sin ξ2 cos ξ3, x2 = ξ1 sin ξ2 sin ξ3, and
x3 = ξ1 cos ξ2

(c) Parabolic cylindrical coordinates.

x1 = 1
2

{

(ξ1)
2 − (ξ2)

2
}

, x2 = ξ1ξ2, and x3 = ξ3.

(4) Compute the covariant and contravariant velocity com-
ponents in the above coordinate systems.

You have seen in multivariate calculus that given a smooth
function φ, in a region of interest, we can find the differential
dφ as

(5.52) dφ =
∂φ

∂ξi
dξi

Now, we also know that this is a directional derivative and can
be written as

(5.53) dφ = ∇φ · d~ξ = ∂φ

∂ξi
dξi

where,

(5.54) ∇ = ~ε j ∂

∂ξj
, d~ξ = ~εidξ

i

We managed to define the gradient operator ∇. What happens
when we take the gradient of a vector? How about the diver-
gence? We first write the gradients of a scalar function and a
vector function as

∇φ = ~ε j ∂φ

∂ξj
(5.55)

∇~V = ~ε j ∂
~V

∂ξj
(5.56)

If we look carefully at the two equation above, we see that
equation (5.56) is different. It involves, due to the use of prod-
uct rule, the derivatives of the basis vectors. In fact, equation
(5.56) can written as

(5.57) ∇~V = ~ε j ∂
~V

∂ξj
= ~ε j

{
∂vi

∂ξj
~εi + vi

∂~εi
∂ξj

}

So, what is the nature of the derivative of the basis vector? For
one thing, from the definition of the covariant basis in equation
(5.31) we have

(5.58)
∂~εi
∂ξ j

=
∂2~α

∂ξj∂ξi
=
∂~εj
∂ξi

We have dispensed with the subscript on ~α so as not to create
more confusion. We will use the correct ~α corresponding to
the coordinate line. We can see from equation (5.58) that its
component representation is going to be symmetric in the two
indices i and j. As we have already seen in equation (5.47), to
find the contravariant components of this entity we can dot it
with ~ε k to get

(5.59)

{
k
ij

}

= ~ε k · ∂~εi
∂ξj

The set of
{

k
ij

}
are called a Christoffel symbols of the sec-

ond kind. We took the dot product with ~ε k so that equation
(5.57) can be rewritten as

(5.60) ∇~V = ~ε j

{
∂vi

∂ξj
~εi + vi

{
k
ij

}

~εk

}

Since i and k are dummy indices (meaning we are going to
sum over their values) we swap them for a more convenient
expression

(5.61) ∇~V = ~ε j

{
∂vi

∂ξj
~εi + vk

{
i
kj

}

~εi

}

This allows us to write

(5.62)
∂~V

∂ξj
=

{
∂vi

∂ξj
+ vk

{
i
kj

}}

~εi

In pure component form this is written as

(5.63) vi;j =
∂vi

∂ξj
+ vk

{
i
kj

}

This is called the covariant derivative of the contravariant vector
vi. Staying with our compact notation, the covariant derivative
is indicated by the semi-colon in the subscript. This is so that
we do not confuse it with the plain derivative ∂vi/∂ξj.

So, if we have Christoffel symbols of the second kind do we
have any other kind? Yes, there are Christoffel symbols of the
first kind. They are written in a compact form as [ij, k] and it
are given by

(5.64) [ij, k] =

{
l
ij

}

glk =
∂~εi
∂ξj

· ~ε lglk =
∂~εi
∂ξj

· ~εk

The Christoffel symbols of the first kind can be directly obtained
as

(5.65) [ij, k] =
1

2

(
∂gjk
∂ξi

+
∂gki
∂ξj

− ∂gij
∂ξk

)

This can be verified by substituting for the definition of the
metric tensor. The peculiar notation with brackets and braces
is used for the Christoffel symbols (and they are called symbols)
because, it turns out that they are not tensors. That is, though
they have indices, they do not transform the way tensors do
when going from one coordinate system to another. We are not
going to show this here. However, we should not be surprised
that they are not tensors as the Christoffel symbols encapsu-
late the relationship of the two coordinate systems and would
necessarily depend on the coordinates.

The divergence of ~V is defined as the trace of the gradient
of ~V . That is

(5.66) div~V = ~ε j ·
{
∂vi

∂ξj
~εi + vk

{
i
kj

}

~εi

}

Assignment 5.2

For the coordinate systems given in assignment 5.1,

(1) Find the Christoffel symbols of the first and second kind.
(2) Find the expression for the gradient of a scalar potential.
(3) Find the gradient of the velocity vector.
(4) Find the divergence of the velocity vector.
(5) Find the divergence of the gradient of the scalar poten-

tial that you just found.

In the case of the velocity potential ~V = ∇φ we get,

(5.67) ~V = ~ε j ∂φ

∂ξj
= ~εkg

kj ∂φ

∂ξj
= ~εkg

kjvj = vk~εk

If we now take the divergence of this vector using equation
(5.66) we get

(5.68) ∇2φ = ~ε j ·
{
∂vi

∂ξj
~εi + vk

{
i
kj

}

~εi

}

= ~ε j ·
{
∂

∂ξj

(

gil
∂φ

∂ξl

)

~εi + vk
{
i
kj

}

~εi

}

Completing the dot product we get

(5.69) ∇2φ =

{
∂

∂ξi

(

gil
∂φ

∂ξl

)

+ vk
{
i
ki

}}

Substituting for vk from equation (5.67) we get

(5.70) ∇2φ =

{
∂

∂ξi

(

gil
∂φ

∂ξl

)

+ gkl
∂φ

∂ξl

{
i
ki

}}

This much tensor calculus will suffice. A more in depth
study can be made using the numerous books that are available
on the topic [You93], [SS82].

Equations of Fluid Motion

We have seen enough tensor calculus so that if we derive
the governing equations in some generic coordinate system, we
can always transform the resulting equations into any other co-
ordinate system. In fact, as far as possible, we will derive the
equations in vector form so that we can pick the component
form that we feel is appropriate for us. We can conveniently
use the Cartesian coordinate system for the derivation with out
loss of generality.

We will first derive the equations of motion in integral form.
We will do this in a general setting. Let us consider some
fluid property Q, whose property density is given by Q. In
terms of thermodynamics, Q would be an extensive property
and Q would be the associated intensive property. For example,
consider a situation in which we have added some ink to flowing
water. At any given time, the mass of ink in a small elemental
region of interest may be dmink. If the volume of the elemental
region is dσ, then these two measures defined on that region
are related through the ink density as

(5.71) dmink =
dmink

dσ
dσ = ρinkdσ

dS

dσ

2

3

1

n̂
~V

~x

Figure 5.14. An arbitrary control volume chosen in some
fluid flow. An elemental area on the controls surface dS
and and elemental volume dσ within the control volume are
also shown. Note that in most coordinate systems we may
not be able to indicate a position vector ~x.

We would like to write out the balance laws for a general
property, Q. We arbitrarily pick a control volume. One such
volume is indicated in the Figure 5.14. For the sake of simplicity,
we pick a control volume that does not change in time. This
control volume occupies a region of volume σ. This control
volume has a surface area S. It is located as shown in the figure
and is immersed in a flow field. Within this control volume,
at an arbitrary point ~x, we pick a small elemental region with
volume dσ. From equation (5.71), the amount of the property
of interest at time t, dQ(~x, t), in the elemental control volume
is Q(~x, t)dσ. Then the total quantity contained in our control
volume at any instant is

(5.72) Qσ(t) =

∫

σ

Q(~x, t)dσ

The time rate of change of this quantity is

(5.73)
dQσ

dt
=

d

dt

∫

σ

Q(~x, t)dσ

Then we ask ourselves the question, why is there a rate of
change? There is change because the property Q is carried /
transported in and out of the control volume by the fluid. It
is also possible, based on the nature of Q, that it is somehow
created or destroyed in the control volume. There may be many
mechanisms by which Q can be changed into some other prop-
erty. Let us now look at the transport of Q by the flow.

At any arbitrary point on the surface of the control volume
that we have shown in Figure 5.14, we can determine the unit

surface normal vector. We can pick a small elemental area dS at
that point. The surface normal is perpendicular to this element.
By convention, we choose to pick a surface normal that points
out of the control volume. The rate at which our property Q
flows out through this elemental area is given by Q~V · n̂dS. The
total efflux (outflow) from the control volume is

(5.74)

∫

S

Q~V · n̂dS

Since this is a net efflux, it would cause a decrease in the amount
of Q contained in the control volume. So, our balance law can
be written as
(5.75)
d

dt

∫

σ

Qdσ = −
∫

S

Q~V ·n̂dS+ any other mechanism to produce Q

Before going on we will make the following observation. Though
the control volume can be picked arbitrarily, we will make sure
that it is smooth enough to have surface normals almost every-
where. Almost everywhere? If you think of a cube, we cannot
define surface normals at the edges and corners. We can break
up the surface integral in equation (5.75) into the sum of six
integrals, one for each face of the cube.

Conservation of Mass. Let us look at an example. If
the property we were considering was mass, Qσ(t) would be
the mass of fluid in our control volume at any given time. The
corresponding Q would be mass density which we routinely refer
to as the density, ρ. Ignoring mechanisms to create and destroy
or otherwise modify mass, we see that the production terms
disappear, leaving only the first term on the right hand side

of equation (5.75). This gives us the equation for balance of

mass as

(5.76)
d

dt

∫

σ

ρdσ = −
∫

S

ρ~V · n̂dS

This equation is also called the conservation of mass equa-
tion.

Conservation of Linear Momentum. On the other hand,
if we consider the property Q to be momentum, the property
density Q turns out to be ρ~V , which is the momentum density.
In this case, we know that the total momentum in the control
volume can also be changed by applying forces. For the sake
of this discussion, forces come in two flavours. There are those
that correspond to action across a distance, these forces are
often called body forces. The others that depend on proximity
are called surface forces1. We can write our equation of balance
of linear momentum as

(5.77)
d

dt

∫

σ

ρ~V dσ = −
∫

S

ρ~V ~V · n̂dS +

∫

σ

~f dσ +

∫

S

~TdS

Here, ~f(~x) is the body force per unit volume at the point ~x

within the control volume. ~T (~x) is the traction force per unit
area (often called traction force or just traction) acting at some
point ~x on the control surface. If we are willing or able to
ignore the body force, we are left with the traction force to
be handled. From fluid mechanics, you would have seen that
we can associate at a point, a linear transformation called the

1As with everything that we do in physics, what we mean by this really depends on length scales.

We have assumed that we are dealing with a continuum and that implicitly has a bifurcation of

the length scales built into it.

stress tensor, which relates the normal to a surface element to
the traction force on that element. That is

(5.78) ~T = τ · n̂
where, ~T = Ti~ε

i, τ = τij~ε
i~ε j, and n̂ = nk~ε

k. This gives us
the Cauchy equation in component form as

(5.79) Ti = τijn
j

The momentum balance equation can be written as

(5.80)
d

dt

∫

σ

ρ~V dσ = −
∫

S

ρ~V ~V · n̂dS +

∫

S

τ · n̂dS

Combining terms we get

(5.81)
d

dt

∫

σ

ρ~V dσ = −
∫

S

{

ρ~V ~V − τ
}

· n̂dS

Conservation of Energy. Finally, if we consider the total
energy as the property of interest so that we write out the
balance law for energy. Considering the form of the first two
equations, we will define the total energy density as ρEt, where
Et is the specific total energy defined as

(5.82) Et = e+
1

2
~V · ~V ,

Where e is the specific internal energy defined for a perfect gas
as e = CvT . Cv is the specific heat at constant volume and
T is the temperature measured on the Kelvin scale. We need
to look at the production terms again in equation (5.75). The
total energy in our control volume can be changed by

(1) the forces from the earlier discussion doing work on the
control volume,

(2) the transfer of energy by the process of heat through
radiation and conduction,

(3) the apparent creation of energy through exo-thermic or
endo-thermic chemical reactions,

(4) and finally, of course, the transportation of energy across
the control surface by the fluid.

We will ignore radiation and chemical reactions here. This re-
sults in an equation for the balance of energy as

(5.83)
d

dt

∫

σ

ρEtdσ = −
∫

S

ρEt
~V · n̂dS +

∫

σ

~f · ~V dσ +

∫

S

~T · ~V dS

−
∫

S

~q · n̂dS

Here, ~q is the term quantifying heat. Again, if we are in a
position to ignore body forces we get
(5.84)
d

dt

∫

σ

ρEtdσ = −
∫

S

ρEt
~V · n̂dS +

∫

S

~V · τ · n̂dS −
∫

S

~q · n̂dS

which we conveniently rewrite incorporating the other balance
laws as

(5.85)
d

dt

∫

σ

Qdσ = −
∫

S

~F · n̂dS

where we have

(5.86) Q =







ρ

ρ~V
ρEt






, ~F =







ρ~V

ρ~V ~V − τ

(ρEt)~V − τ · ~V + ~q







where, τ · ~V is the rate at which the traction force does work
on the control volume. This, gives us a consolidated statement
for the balance (conservation) of mass, linear momentum, and
energy. The great thing about this equation is that it can be
cast in any three dimensional coordinate system to get the com-
ponent form. It is written in a coordinate free fashion. Though,
it is good to admire, we finally need to solve a specific problem,
so we pick a coordinate system convenient for the solution of
our problem and express these equations in that coordinate sys-
tem. There is another problem. As things stand, there is some
element of ambiguity in the dot products of the form (τ · ~V) · n̂.
These ambiguities are best resolved by writing the expression in
terms of components.

(5.87) ~T · ~V = Ti~ε
i · ~εlV l = τij~ε

i(~ε j · ~ε k)nk · ~εlV l = τijn
jV i

The differential form of equation (5.85) can be obtained by
applying the theorem of Gauss to the right hand side of the
equation and converting the surface integral to a volume inte-
gral.

(5.88)

∫

σ

{
∂Q

∂t
+ div ~F

}

dσ = 0

The control volume is chosen arbitrarily. As a consequence, the
integral needs to be zero for any σ over which we integrate.
This is possible only if

(5.89)
∂Q

∂t
+ div ~F = 0

The form of equation (5.85) is quite general. We could add,

as required, more terms to the ~F on the right hand side. We

could also add as many equations as required. If you have other
properties that need to be tracked, the corresponding equations
can be incorporated. However, for our purpose, these equations
are quite general. We will start with a little specialisation and
simplification.

We now decompose the stress tensor τ into a spherical part
and a deviatoric part. The spherical part we will assume is the
same as the pressure we have in the equation of state. The
deviatoric part (or the deviation from the sphere) will show up
due to viscous effects. So, τ can be written as

(5.90) τ = −p1+ σ

1 is the unit tensor and σ is the deviatoric part. Do not confuse
σ a tensor with the control volume σ. Through thermodynam-
ics, we have an equation of state / constitutive model for p.
Typically, we use something like p = ρRT , where T is the tem-
perature in Kelvin and R is the gas constant. We need to get a
similar equation of state / constitutive model for σ. Assuming
the fluid is a Navier-Stokes fluid, that is the fluid is Newtonian,
isotropic and Stokes hypothesis holds we get

σ = −2

3
µ trD + 2µD, where(5.91)

D =
1

2
(L+LT), and(5.92)

L = ∇~V(5.93)

where µ is the coefficient of viscosity and trD is the trace of D,
which is the sum of the diagonals of the matrix representation of
the tensor. LT is the transpose ofL. Really,D is the symmetric

part of the the gradient of ~V and is called the deformation
rate. Equation (5.89) with τ written in this fashion is called
the Navier-Stokes equation. Since, we are right now looking
at inviscid flow, we can ignore the viscous terms. So, for the
Euler’s equation we have

(5.94) ~T = −p1 · n̂
where, 1 is the unit tensor. The Euler’s momentum conservation
equation can be written as

(5.95)
d

dt

∫

σ

ρ~V dσ = −
∫

S

ρ~V ~V · n̂dS −
∫

S

p1 · n̂dS

Combining terms we get

(5.96)
d

dt

∫

σ

ρ~V dσ = −
∫

S

{

ρ~V ~V + p1
}

· n̂dS

which we conveniently rewrite as

(5.97)
d

dt

∫

σ

Qdσ = −
∫

S

~F · n̂dS

where we have

(5.98) Q =







ρ

ρ~V
ρEt






, ~F =







ρ~V

ρ~V ~V + p1

(ρEt + p)~V







giving us a consolidated statement for the conservation (or bal-
ance) of mass, linear momentum, and energy. These equations
are collectively referred to as the Euler’s equation. There are, as

is usual, a set of auxiliary equations to complement these equa-
tions. The constitutive model given by the equation of state
is

(5.99) p = ρRT

and

(5.100) Et = e+
~V · ~V
2

(5.101) e = CvT

With these equations included, we have a closed set of equa-
tions that we should be able to solve. The equations are in inte-
gral form. We can employ the theorem of Gauss on the surface
integral in equation (5.97) and convert it to a volume integral
like so

(5.102)
d

dt

∫

σ

Qdσ = −
∫

S

~F · n̂dS = −
∫

σ

div ~Fdσ

This gives us the following equation

(5.103)

∫

σ

(
∂Q

∂t
+ div ~F

)

dσ = 0

which is valid for all possible control volumes on which we have
surface normals and can perform the necessary integration. Re-
member, this “particular” σ was chosen arbitrarily. We conclude
that the integral can be zero for any σ only if the integrand is
zero. The differential form of the Euler’s equation can be writ-
ten as

(5.104)
∂Q

∂t
+ div ~F = 0

If we use normal convention to write ~F in Cartesian coordi-
nates as

(5.105) ~F = Eı̂+ F ̂+Gk̂

our governing equation in Cartesian coordinates then becomes

(5.106)
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0

Clearly, given any other basis vector, metrics, Christoffel sym-
bols, we can write the governing equations in the corresponding
coordinate system.

Assignment 5.3

(1) Given the concentration of ink at any point in a flow
field is given by ci, derive the conservation equation in
integral form for ink. The diffusivity of ink is Di.

(2) From the integral from in the first problem, derive the
differential form

(3) Specialise the equation for a two-dimensional problem.
(4) Derive the equation in polar coordinates.

Non-dimensional Form of Equations. So far, in this
book, we have not talked of the physical units used. How do
the equations depend on physical units that we use. Does the
solution depend on the fact that we use millimetres instead of

metres? We would like to solve the non-dimensional form of
these equations. We will demonstrate the process of obtain the
non-dimensional form of the equation using the two-dimensional
Euler’s equation written in Cartesian coordinates.

(5.107)
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0

To this end, we define the following reference parameters
and relationships. It should be noted that the whole aim of this
choice is to retain the form of the equations.

We have a characteristic length L in the problem that we
will use to scale lengths and coordinates. For example

(5.108) x∗ =
x

L
, and y∗ =

y

L

We employ reference density ρr and pressure pr to non-
dimensionlise the density and the pressure respectively. As a
result we get the non-dimensionalisation for the temperature
through the equation of state.
(5.109)

ρ∗ =
ρ

ρr
, and p∗ =

p

pr
, along with p = ρRT gives T ∗ =

T

Tr
,

where,

(5.110) Tr =
pr
ρrR

,

and the equation of state reduces to

(5.111) p∗ = ρ∗T ∗

Consider the one-dimensional energy equation from gas dy-
namics. This relation tells us that

(5.112) CpTo = CpT +
V 2

2

If we divide this equation through by Tr and nondimension-
alise speed with a reference speed ur we get

(5.113) CpT
∗
o = CPT

∗ +
V ∗2u2r
2Tr

Now we see that if we define

(5.114) ur =
√

RTr

equation (5.113) reduces to

(5.115)
γ

γ − 1
T ∗
o =

γ

γ − 1
T ∗ +

V ∗2

2

Now, consider the first equation, conservation of mass, from
equations (5.107). This becomes

(5.116)
ρr
τ

∂ρ∗

∂t∗
+
ρrur
L

∂ρ∗u∗

∂x∗
+
ρrur
L

∂ρ∗v∗

∂y∗
= 0

where τ is some characteristic time scale to be defined here.
Dividing through by ρrur and multiplying through by L, we get

(5.117)
L

urτ

∂ρ∗

∂t∗
+
∂ρ∗u∗

∂x∗
+
∂ρ∗v∗

∂y∗
= 0

Clearly, if we define the time scale τ = L/ur we get back
our original equation. I will leave it as an exercise in calculus
for the student to show that given the following summary

x∗ =
x

L
, and y∗ =

y

L
(5.118)

ρ∗ =
ρ

ρr
, and p∗ =

p

pr
,(5.119)

Tr =
pr
ρrR

, and ur =
√

RTr(5.120)

equation (5.107) reduces to

(5.121)
∂Q∗

∂t∗
+
∂E∗

∂x∗
+
∂F ∗

∂y∗
= 0

where

(5.122)

Q∗ =







ρ∗

ρ∗u∗

ρ∗v∗

ρ∗E∗
t






, E∗ =







ρ∗u∗

ρ∗u∗2 + p∗

ρ∗u∗v∗

[ρ∗E∗
t + p∗]u∗






, F ∗ =







ρ∗v∗

ρ∗u∗v∗

ρ∗v∗2 + p∗

[ρ∗E∗
t + p∗]v∗







Very often for the sake of convenience the “stars” are dropped.
One has to remember that though these basic equations have
not changed form. Others have changed form. The equation
of state becomes p∗ = ρ∗T ∗ and the one-dimensional energy
equation changes form. Any other auxiliary equation that you
may use has to be non-dimensionalised using the same reference
quantities.

A careful study will show you that if L, pr and ρr are spec-
ified then all the other reference quantities can be derived. In
fact, we typically need to fix two reference quantities along with
a length scale and the others can be determined. The other
point to note is that we typically pick reference quantities based
on the problem at hand. A review of dimensional analysis at this
point would be helpful.

Assignment 5.4

(1) Non-dimensionalise the Euler’s equation in the differen-
tial form for three-dimensional flows.

(2) Try to non-dimensionalise the Burgers’ equation

(5.123)
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

u does not have the units of speed.

Important ideas from this chapter

• Tensor calculus is a necessity.
• Vector form is big picture, component form is nitty-
gritty detail.

• For balance laws, if you know the physics and chemistry
you can write the mathematics.

Multi-dimensional flows and

Grid Generation

In the last chapter, we have derived the equations of mo-
tion in a very general setting. Earlier, we have seen how one-
dimensional flow problems can be handled. We can now move
on to modelling flows in two and three spatial dimensions. Some
things will extend directly from the chapter (chapter 4) on one-
dimensional flows. It is amazing as to how many things do not
naturally extend to multiple dimensions. Of course, if the theory
does not extend and the algorithm can be extended, someone is
going to try it out to see if it works. After that, many schemes
get a life of their own. On the other hand, the approximate fac-
torisation schemes will extend to multiple dimensions and will
be more useful here.

We will look at a class of finite volume methods and finite
difference methods. We will also pay attention to the applica-
tion of the associated boundary conditions.

Finite Volume Method

Look at the process that we used to derive the governing
equations in the previous chapter. You will see that we started
off with a volume σ. We derived an expression for the rate of
change of the amount of a conserved property, Q, contained in
that volume. We based this on F , the fluxes through surfaces
bounding that volume. The fact that we have the time rate of

change of a property of interest gives us an idea for a scheme. If
we take the volume small enough, we could assume the property
density Q to be constant through the volume. Or, we can use
a representative mean value Q̄, that is constant through the
volume. Then, the time derivative of this single representative
value can be determined from the fluxes. Since the volumes
that we consider here are not infinitesimal volumes, they are
called finite volumes or simply cells. Such techniques are
called finite volume methods.

We will start by rewriting equation (5.85) here.

(6.1)
d

dt

∫

σ

Qdσ = −
∫

S

F · n̂dS

This is an equation for flow in three dimensions. Of course, with
the appropriate interpretation of Q, σ, F , and S, it could also
represent the flow in two spatial dimensions. The basic idea
behind the finite volume method is pretty straight forward. We
just repeatedly apply our conservation laws given in equation
(6.1) to a bunch of control volumes. We do this in a systematic
fashion. We fill the region of interest with polyhedra. We ensure
that there are no gaps and no overlaps. No gaps and no overlaps
means that the sum of the volumes of the polyhedra is the
volume of our problem domain. This is called a tessellation.
So we would say: We tessellate the region of interest using
polyhedra.

Consider two such volumes as shown in Figure 6.1. The
volumes share a face ABCD. Whatever flows through this
face, flows from one of these volumes to the other volume.
We define a Q̄ which is the mean value of Q in a given volume

E

D

A

B

C

Figure 6.1. Two polyhedra adjacent to each other. They
share a face ABCD.

as a representative for the flow properties in that cell. This is
given by

(6.2) Q̄ =
1

∆σ

∫

∆σ

Qdσ

where ∆σ is the volume of the cell. (Now you understand
why we needed to introduce the term cell. “Volume of the
volume” does not sound great and if we were discussing a two-
dimensional problem, “area of the volume” sounds worse.) We
decide, for the sake of this discussion, to store the volume aver-
aged properties Q̄ at the centre of a given cell, For this reason,
the scheme will be called a cell centred scheme. The flux
term at the face needs to be estimated in terms of these cell
centred Q̄ values. In a similar fashion for the volume ABCDE,
one can compute the total flux through all of the faces ABCD,
BCE, ADE, and DCE. For this volume, we can now compute

the right hand side of equation (6.1). Including the left hand
side, this equation is in fact
(6.3)
d

dt
Q̄∆σ = − total flux through faces ABCD,BCE,ADE, and D

In general, for a polyhedra with four or more faces, we can write

(6.4)
d

dt
Q̄∆σ = −

∑

k

∫

Sk

Fk · n̂kdSk

For all of the volumes, this gives us a time rate of change of Q̄.
For each volume, these equations can be integrated in time to
get the time evolution of Q̄. This is called the finite volume

method.

Computing Fluxes. It should be obvious from equation
(6.4) that for a given cell, the fluxes are very important to the
determination of the time evolution of Q̄. Just as we had done
earlier, we will look at two simple minded methods to get the F
on a face given the Q̄ at the cell centres. We see from Figure
6.2 that for the face between two cells indexed by i and j, one
needs to find the flux at the interface ABCD using Q̄i and Q̄j.
One possibility is that, we compute the flux term F at each cell
and find the flux on the face ABCD by taking the average of
these fluxes. That is

(6.5) F ij =
1

2
(F i +F j) , Fk = F(Q̄k)

D

A

B

C

Q̄i

Q̄j

Figure 6.2. The shared face ABCD has a flux F through
it which may be determined from Q̄i and Q̄j

The subscripts ij indicate that we are talking about the face
shared by cells i and j. The other possibility is to compute an
average Q̄ij at the face and find the corresponding F .

Assignment 6.1

(1) Write a function Get3dFlux(Q), which will compute
the inviscid flux given the variable Q̄. Use this function
to evaluate fluxes as necessary in the next two functions.

(2) Write a function GetAvgFaceFlux(Qi, Qj), which will
compute the fluxes and return the average given in
equation (6.5).

(3) Write a function GetAvgQ(Qi, Qj) which will return
the averaged value Qij.

Let us look at the second problem in the context of equa-
tion (6.3). Since the integral of the sum is the sum of the
integrals, we can split the integral implied by the right hand

side of equation (6.3) into two parts. That is

(6.6)
1

2

∑

k

∫

Sk

F i · n̂kdSk +
1

2

∑

k

∫

Sk

Fk · n̂kdSk

k is an index that runs over all cells neighbouring the cell i.
Since, F i in the first sum does not depend on k, it can be
taken out and the resulting sum is zero. Only the neighbours
contribute to the net flux in this scheme. The resulting scheme
will look like FTCS and likely to require that we add some vis-
cous dissipation. Worse, the current cell seems to make no
contribution to the net flux. You can try using the fluxes calcu-
lated in both fashions as indicated in problem 2 and problem 3.
However, we suspect that using average Q and then computing
the fluxes may be better.

How do we calculate the derivatives required in the Navier-
Stokes equations and in the artificial dissipation terms that we
may want to add?

Computing Derivatives in Finite Volume Method. How
does one compute a derivative at a point in the finite volume
approach? We know one equation that relates the integral of a
function to something containing derivative terms: Theorem of
Gauss. Theorem of Gauss gives us for a vector function ~A

(6.7)

∫

σ

div ~Adσ =

∫

S

~A · n̂dS

Let us see what happens if we take ~A = uı̂, where ı̂ is the
standard unit vector in the x direction. The theorem reduces to

(6.8)

∫

σ

∂u

∂x
dσ =

∫

S

uı̂ · n̂dS

It should be borne in mind that if we had wanted the x-derivative
of v we would have set ~A = vı̂.

In a similar fashion the y-derivative of u can be obtained
from

(6.9)

∫

σ

∂u

∂y
dσ =

∫

S

u̂ · n̂dS

where ̂ is the standard unit vector in the y direction. Again, if
we want the second derivative we would have

(6.10)

∫

σ

∂2u

∂x2
dσ =

∫

S

∂u

∂x
ı̂ · n̂dS

It is left as an exercise to the reader to figure out all of
the combinations of derivatives that are required. This need
occurs usually in the computation of the viscous terms in the
Navier-Stokes equations or in the computation of any artificial
dissipation terms that the reader may choose (or be forced) to
add to the code being developed. Either way, it is a good thing
to know.

Are you wondering how to extract the derivative from equa-
tion (6.8)? Compare that equation to equation (6.3). They are
similar except for the time-derivative. You can discretise the
left hand side of equation (6.8) as

(6.11)

∫

∆σ

∂u

∂x
dσ =

∂u

∂x
∆σ

The right hand side of equation (6.8) looks like flux term and
can be evaluated in a similar fashion.

Let us consider an example at this point. We will consider
the equation of conservation of mass alone. The integral form

given in equation (5.76) is rewritten here for convenience. It
reads

(6.12)
d

dt

∫

σ

ρdσ = −
∫

S

ρ~V · n̂dS

If we assume that the flow is incompressible, meaning the density
ρ is a constant, this equation becomes

(6.13)

∫

S

~V · n̂dS = 0

Now consider a situation where the flow field is irrotational and
we can actually find a φ so that, ~V = ∇φ. This assumption
gives us

(6.14)

∫

S

∂φ

∂n
dS = 0

where n is along the normal n̂. We have the integral form of
Laplace’s equation. We can use the finite volume method to
solve it. However, we are not ready to start writing a program.

We are aware that all cells are not created equal. Some of
them are at the boundary. Which means one or more faces of
the cell are not shared by another cell. How do we compute the
net flux for the cells that have a boundary, a boundary of our
problem domain? Or, how do we apply boundary conditions in
this scheme of things? We will look at one way of doing this.

Applying Boundary Conditions. We will take a look at
a scheme to apply boundary conditions in finite volume tech-
niques. We need to do this as we need the fluxes on all the
faces of a volume to advance its state in time. A volume, i,
which is at the boundary will have a face which is not shared

by any other volumes. One choice is to prescribe the required
fluxes as boundary conditions.

Determining Fluxes at the Boundary Faces. Consider the equa-
tion (6.4). For the faces corresponding to the boundary we need
to evaluate F · n̂. At an inlet and exit boundary, the flux can be
determined if Q is known on the face. The Q can be obtained
on these boundaries as indicated in the chapter 4. We just apply
the one-dimensional equation perpendicular to the exit or inlet
face.

One difference in multidimensional flows is that we may have
walls. We will consider the solid wall boundary condition in an
inviscid flow. How do we determine F · n̂? For the Euler’s
equation, we have written F as three terms.

(6.15) F =







ρ~V

ρ~V ~V + p1

(ρEt + p)~V







This is reproduced here from equation (5.98). The first term

ρ~V , for a solid wall gives

(6.16) ρ~V · n̂ = 0

The first entry in F · n̂ is zero. The second term ρ~V ~V + p1
consists of two terms. Again, due the solid wall ρ~V ~V · n̂ = 0,
leaving p1·n̂ = pn̂. The final entry in F ·n̂ can be verified to be
zero. This gives the flux through the face of a cell corresponding
to a solid wall as

(6.17) F · n̂ =







0
pn̂
0







How do we find p on the wall? We will take a local coordinate
system on the cell face that corresponds to the solid wall. We
take the x-coordinate direction perpendicular to this wall. Let’s
look at the x-momentum equation in the differential form. This
turns out to be

(6.18)
∂ρu

∂t
+

∂

∂x

(
ρu2 + p

)
+
∂ρuv

∂y
+
∂ρuw

∂z
= 0

If we take find the limit of this equation as we approach the
wall, that is as x → 0. We know that u → 0 as x → 0. As a
consequence, at the wall

(6.19)
∂p

∂x
= 0

Since we are talking only about the normal, it is usual to use a
coordinate n instead of x. We write

(6.20)
∂p

∂n
= 0

The easiest way to impose this condition is to copy the cell
centre value to the face.

Using Pseudo Volumes. We will take a different tack here.
We will generate a volume outside our problem domain which
shares the boundary face with cell i. Since it is not part of our
original problem we will call it a pseudo volume, or a pseudo
cell. Clearly, we need to determine the Q in this pseudo volume.
This is done so as to satisfy our boundary conditions. Again at
the inlet and exit, we employ techniques developed in chapter
4. Here is how we apply the wall boundary conditions for an
inviscid flow. We will consider the mass flux term first.

x

y

z

x

n̂

n̂

F i

F j

Figure 6.3. A surface element, a unit vector n̂ normal to
that element and pointed out of the cell, and points on
either side of the element are shown. A “local” coordinate
system is also indicated. If the element represents a solid
wall, the mass flux through the surface element is zero

Referring to Figure 6.3, we see that the solid wall condition
requires that the mass flux normal to the surface is zero. So,
if the mass flux vector is F i in the problem domain and F j in
the pseudo volume they should be related by the expression

(6.21) F j = F i − 2(F i · n̂)n̂
We see immediately that taking the average flux across the face
will result in zero normal flux (check this for your self). This is a
vector condition. It corresponds to prescribing three quantities,
ρu, ρv, and ρw. We need two more conditions, after all, we
require Q in the pseudo volume. We set

(6.22)
∂p

∂n
= 0, and

∂T

∂n
= 0

We have already derived the first condition The second bound-
ary condition in equation (6.22) is the adiabatic wall condi-
tion. We are asserting that there is no Fourier heat conduction
through that boundary. These conditions in turn can be written
as

(6.23)
∂ρ

∂n
= 0 and,

∂Et

∂n
= 0

The first condition comes from taking the derivative of the equa-
tion of state with respect to n. The second follows from the def-
inition of Et. These conditions can be imposed by just copying
the ρ and ρEt from the interior volume to the pseudo volume.

What happens in the viscous case? The first condition on
mass flux changes. The fluid adheres to solid walls and at these
walls one needs to set the velocity to zero.

n̂

F i

F j

Figure 6.4. F i and F j are mass fluxes in the interior and
pseudo cells. n̂ is a unit normal pointing out of the domain.
For a viscous flow, not only is the mass flux through the
surface element zero, the velocity at the boundary is zero

This is done by just setting the mass flux term in the pseudo
volume to the opposite of that in the interior cell. This is shown
in Figure 6.4 That is

(6.24) F j = −F i

Again, we have prescribed three conditions on the boundary.
The other two conditions on the pressure and temperature re-
main the same. In the case of pressure, the boundary condition
is one of the consequences of the viscous boundary layer on the
wall. The condition, however, is valid only within the boundary
layer. This requires that the first cell be completely immersed
in the boundary layer. In fact, it will turn out that we need at
least three cells in the boundary layer as an absolute minimum.
I would recommend five to ten cells. We have not talked about
grids yet. We see that there is a constraint on the grids for
viscous flow.

We will now look at an important assignment. The first two
problems use the heat equation written in the integral form. Use
this as an exercise to understand the structure of the program.
Once these practice problems are coded, you can move onto
the next two problems which involve solutions to the Euler’s
equations in two and three dimensions.

Assignment 6.2

The heat equation can be written in integral form as

(6.25)
d

dt

∫

σ

φdσ =

∫

S

∇φ · n̂dS

Using the finite volume method to solve equation (6.25).

(1) Write a program two solve the two-dimensional prob-
lem given in Figure 6.5. Use 10× 10 set of volumes to
approximate the square domain. Note that the bound-
ary volumes have pseudo volumes as neighbours. Draw
Iso-therms and convergence plots (norm of the error
versus time step).

(2) Use the unit cube shown in Figure 6.6 as the computa-
tional domain. Use pseudo volumes to apply boundary
conditions. Tessellate the volume using 10 × 10 × 10
cells. Start with an initial condition of 300K. Draw Iso-
therms (In most graphics packages you would use the
iso-surface feature) and convergence plots

(3) Use the inlet and exit conditions given in assignment 4.6
to compute the flow in a straight two-dimensional chan-
nel as shown in Figure 6.5. Instead of the temperature
conditions given there, use the flow conditions given in
the assignment 4.6. The side boundaries, in addition to
being adiabatic, are also solid walls. Draw convergence
plots, density contours, velocity vector plots, pressure
contours, and temperature contours.

(4) Repeat the previous problem using the three dimen-
sional domain shown in Figure 6.6.

Finite Difference Methods

Instead of using the equations in integral form (in fact an
integro-differential form) we employ the Euler equations in the
differential form. We have seen finite difference schemes in

x

y

B

CD

A

CD

A B

Figure 6.5. A unit square. The governing equation is given
by equation (6.25). AB is held at 400K and CD is held
at 300K. The BC and AD are adiabatic. A 4 × 4 cell
discretisation is shown. Note the pseudo volumes indicated
on the sides

earlier chapters. We have used them to solve Laplace’s equa-
tion, wave equation and heat equation in chapter 3. We have
also used them to solve the one-dimensional Euler equations in
chapter 4. We will now see how these techniques extend to
multi-dimensional flows. Let’s start with two-dimensional prob-
lems and then extend to three dimensions.

Two Dimensional Euler Equations. The equations gov-
erning two dimensional inviscid flow can be written in differential
form as

(6.26)
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0

x

y

z

A B

CD

E F

H G

Face ABCD is held at 400K

Face EFGH is held at 300K

Figure 6.6. A unit cube. The governing equation is given
by equation (6.25). The front and the rear faces are held at
400K and 300K respectively. The rest of the faces are
adiabatic

Where
(6.27)

Q =







ρ
ρu
ρv
ρEt






, E =







ρu
ρu2 + p
ρuv

(ρEt + p)u






, and F =







ρv
ρuv

ρv2 + p
(ρEt + p)v







As we had done earlier, we now have a choice of explicit
and implicit schemes to solve these problems. The simplest
explicit scheme that we can apply is the FTCS scheme. In
the two dimensional case we use central differences along each
coordinate line. That is
(6.28)

Qq+1
p,r = Qq

p,r −∆t

(
Eq

p+1,r − Eq
p−1,r

2∆x
+
F q
p,r+1 − F q

p,r−1

2∆y

)

We may find that we have to add some second order and fourth
order dissipation terms to stabilise the scheme. There is a huge
class of multi step methods to march these equations in time.
Then, again there are many implicit schemes that one can em-
ploy too.

Implicit schemes typically involve solving a large system of
equations. We can use a whole plethora of numerical algorithms
to solve this system of equations [GL83]. This makes implicit
schemes computational expensive. We now endeavour to use of
an idea called approximate factorisation to simplify the numer-
ical solution of these equations.

The basic idea of the approximate factorisation schemes

is to factor the implicit operator into two or more factors that
are easier to invert. In order to ensure that the factorisation
cost is not too large, the factors or chosen with a structure that
is predetermined and the product of the factors results in an
approximation to the original operator.

Alternating Direction Implicit scheme. One of the ear-
liest factorisation schemes is the ADI scheme [Jr55], [PJ55].
This is an acronym forAlternating Direction Implicit scheme.

The implicit operator is factored as operators along the various
coordinate directions. In the two dimensional case the linearised
block implicit scheme would give the equation in the delta form
as

(6.29)

{

I +∆t
∂

∂x
A+∆t

∂

∂y
B

}

∆Q = −∆tR(Q)

This can be written as the product of two factors

(6.30)

{

I +∆t
∂

∂x
A

}{

I +∆t
∂

∂y
B

}

∆Q = −∆tR(Q)

Each of the factors is an operator in one of the coordinate
direction. In a sense we are solving two one-dimensional prob-
lems.

{

I +∆t
∂

∂x
A

}

∆Q∗ = −∆tR(Q)(6.31)

{

I +∆t
∂

∂y
B

}

∆Q = ∆Q∗(6.32)

We solve the first equation for ∆Q∗ and then the second
equation for ∆Q. The individual factors result in an equation
that can be solved using central differences. This would then
give as two separate tridiagonal systems to solve. The advan-
tage is that we have reduced the bandwidth of the system of
equations. This is a tremendous savings in computational effort.
The natural question to ask is what was the price.

Well, we can multiply the two factors and see the approx-
imation involved. Please remember that the individual factors
are actually operators.

(6.33)
{

I +∆t
∂

∂x
A+∆t

∂

∂y
B +∆t2

∂

∂x
A
∂

∂y
B

}

∆Q = −∆tR(Q)

We have this extra term

(6.34) ∆t2
∂

∂x

{

A
∂

∂y
(B∆Q)

}

This term is a second order in ∆t. As we have already neglected
terms with ∆t2, we are willing to live with this. We ignore the
fact that the rest of the term consists of a derivative in x and
a derivative in y.

LU - approximate factorisation. We could go further and
ask ourselves the question: Do we really want to solve tridiago-
nal systems? After all, how are we going to solve the tridiagonal
system of equations? We may end up using some scheme like
LU decomposition to solve the tridiagonal system. Why not
just pick the approximate factors as lower and upper triangular
matrices. We can achieve this by writing the derivative opera-
tor as the sum of a forward difference operator and a backward
difference operator. For example,

(6.35)
∂f

∂x
≈ fp+1 − fp−1

2∆x
=

1

2

fp+1 − fp
∆x

+
1

2

fp − fp−1

∆x

or

(6.36)
∂

∂x
=
∂+

∂x
+
∂−

∂x

We can then write equation (6.29) as

(6.37)

{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B +∆t

∂+

∂x
A+∆t

∂+

∂y
B

}

∆Q

= −∆tR(Q)

This can now be factored approximately as

(6.38)
{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B

}{

I +∆t
∂+

∂x
A+∆t

∂+

∂y
B

}

∆Q

= −∆tR(Q)

Which we can then write as

{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B

}

∆Q∗ = −∆tR(Q)(6.39)

{

I +∆t
∂+

∂x
A+∆t

∂+

∂y
B

}

∆Q = ∆Q∗(6.40)

The first equation is a lower triangular system. The second
equation corresponds to an upper triangular system. They can
be solved through a sequence of forward substitution and back
substitution respectively.

To see how this actually works, we write out the left hand
side of the unfactored equation in discretised form at the grid

point (i, j). To keep the equations compact we define

(6.41) αi =
∆t

2∆x
Ai, and βi =

∆t

2∆y
Bi

(6.42) ∆Qi + αi+1∆Qi+1 − αi∆Qi
︸ ︷︷ ︸

∆t ∂
+

∂x
A∆Q

+ βi+N∆Qi+N − βi∆Qi
︸ ︷︷ ︸

∆t ∂
+

∂y
B∆Q

+αi∆Qi − αi−1∆Qi−1
︸ ︷︷ ︸

∆t ∂
−

∂x
A∆Q

+ βi∆Qi − βi−N∆Qi−N
︸ ︷︷ ︸

∆t ∂
−

∂y
B∆Q

= −∆tR(Qi)

We can write this in the factored form given in equation (6.39)
as

(6.43)
∆Q∗

i+αi∆Q
∗
i−αi−1∆Q

∗
i−1+βi∆Q

∗
i−βi−N∆Q

∗
i−N = −∆tR(Qi)

and
(6.44)
∆Qi + αi+1∆Qi+1 − αi∆Qi + βi+N∆Qi+N − βi∆Qi = ∆Q∗

i

These equations are used to sweep through the domain. Equa-
tion (6.43) is used to go from grid point indexed by i = N+1 to
i = M (see Figure 6.7). This is called the L-sweep. Equation
(6.44) is used to sweep from i = M −N − 1 = p− 1 back to
i = 0. This is called the U-sweep.

Let us consider the L-sweep first. That is we will look at
equation (6.43). It is clear that at grid point N + 1

(6.45) ∆Q∗
N+1 + αN+1∆Q

∗
N+1 − αN∆Q

∗
N

+ βN+1∆Q
∗
N+1 − β1∆Q

∗
1 = −∆tR(QN+1)

q−2

p=M−N

i+1

2

2N

N

M

p−1p−2

q=M−2N

M−3N

q−1

N+2

2N+2

M
−

3

M
−

2

M
−

1

3

i−1

i−N

i+N

i

3N

10

N+1

2N+1

Figure 6.7. Application of LU approximate factorisation in
two dimensions. A typical L-sweep starts at the lower left
hand corners and proceeds to the top right hand corner. A
U-sweep does the reverse. p and q are defined only to keep
the figure uncluttered

Both grid points indexed as N and 1 are on the boundary. As a
consequence these, pending figuring out applications of bound-
ary conditions, need to be known. They can be taken over to
the right hand side of the equation leaving
(6.46)
[I+αN+1+βN+1]∆Q

∗
N+1 = −∆tR(QN+1)+αN∆Q

∗
N+β1∆Q

∗
1

Which can be solved for ∆Q∗
N+1. In fact, at an arbitrary grid

point i, (here Ri = R(Qi))
(6.47)

∆Q∗
i = [I + αi + βi]

−1 (−∆tRi + αi−1∆Q
∗
i−1 + βi−N∆Q

∗
i−N

)

we can solve for the ∆Q∗
i as the ∆Q

∗
i−1 and ∆Q∗

i−N would have
already been calculated. In this manner the ∆Q∗ for all the i’s
can be found. Now that ∆Q∗ is known, we can sweep equation
(6.44). This U-sweep goes from grid index i = M − N − 1 =
p− 1 back to i = 0.
(6.48)

∆Qi = [I − αi − βi]
−1 (∆Q∗

i − αi+1∆Qi+1 − βi+N∆Qi+N)

We need to address the issue of applying boundary condi-
tions. Like we did with the finite volume method, we could
create some pseudo grid points as the neighbours of the points
on the boundary and use them to impose the boundary condi-
tions. The other possibility is to apply boundary conditions in
the same manner as the one dimensional case. In either case,
we will have quantities that are prescribed - like the back pres-
sure p at the exit of a pipe, and we will have quantities that
are taken from the domain to the boundary, again like the pres-
sure towards a solid wall. In the L-sweep, conditions that are
prescribed at the lower and the left boundary are applied. Con-
ditions that are propagated from the domain to the boundary
are imposed on the top and right boundaries. Vice-versa for the
U-sweep. This should be apparent after inspecting equations
(6.47) and (6.48).

Three-Dimensional Euler Equations. These equations
look very similar to the two dimensional counterpart. In fact
the same nondimensionalisation can be used to get

(6.49)
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0

Where

(6.50) Q =









ρ
ρu
ρv
ρw
ρEt









and
(6.51)

E =









ρu
ρu2 + p
ρuv
ρuw

[ρEt + p]u









, F =









ρv
ρuv

ρv2 + p
ρvw

[ρEt + p]v









, and G =









ρw
ρuw
ρvw

ρw2 + p
[ρEt + p]w









We can apply ADI to this system of equations written in
Delta form. The point to be noted is that we will get three
factors instead of two. One for each spatial coordinate direction.
Though this is a very large saving in computational effort from
the original equation, we will end up solving three tridiagonal
systems of equations.

In the three dimensional case the linearised block implicit
scheme would give the equation in the delta form as

(6.52)
{

I +∆t
∂

∂x
A+∆t

∂

∂y
B +∆t

∂

∂z
C

}

∆Q = −∆tR(Q)

This can be written as the product of three factors

(6.53)

{

I +∆t
∂

∂x
A

}{

I +∆t
∂

∂y
B

}{

I +∆t
∂

∂z
C

}

∆Q

= −∆tR(Q)

Each of the factors is an operator in one of the coordinate
direction. In a sense we are solving three one-dimensional prob-
lems. The three one-dimensional problems can each be solved
using various methods including LU decomposition. The ques-
tion remains: why not just go to an LU approximate factorisa-
tion? It just produces two factors.

(6.54)

{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B +∆t

∂−

∂z
C

+∆t
∂+

∂x
A+∆t

∂+

∂y
B +∆t

∂+

∂z
C

}

∆Q = −∆tR(Q)

This can now be factored approximately as

(6.55)

{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B +∆t

∂−

∂z
C

}

{

I +∆t
∂+

∂x
A+∆t

∂+

∂y
B +∆t

∂+

∂z
C

}

∆Q = −∆tR(Q)

Which we can then write as

{

I +∆t
∂−

∂x
A+∆t

∂−

∂y
B +∆t

∂−

∂z
C

}

∆Q∗ = −∆tR(Q)

(6.56)

{

I +∆t
∂+

∂x
A+∆t

∂+

∂y
B +∆t

∂+

∂z
C

}

∆Q = ∆Q∗

(6.57)

The first equation is a lower triangular system. The second
equation corresponds to an upper triangular system. They can
be solved through a sequence of forward substitution and back
substitution respectively.

We need to address the issue of applying boundary condi-
tions. At the boundary, we consider the one-dimensional equa-
tions as applicable perpendicular to the boundary. That is, we
describe our equations normal to the boundary and tangential to
the boundary and ignore the tangential equations. This would
be akin to taking only the first factor from the ADI scheme
at a boundary parallel to the YZ plane. Since this is a one-
dimensional problem at this point, our procedure for applying
boundary conditions can be used here. The only difference is
the we also need to propagate ρv and ρw.

Again attention needs to be paid to how and when the
boundary conditions are applied. In the ADI case, the boundary
condition is applied during the appropriate spatial sweep. In
the case of approximate LU decomposition, the boundary con-
ditions also need to be factored into a lower component and an
upper component so that they can be applied at the appropriate
time in the sweep. That is the lower triangular part during the
L-sweep and the upper triangular part during the U-sweep .

Addition of Artificial Dissipation. As in the one-dimensional
Euler equations, it is possible, as need, to add both second and
fourth order terms in order to attenuate high frequency oscil-
lations. We have a choice of adding these terms either to the
right hand side of equation (6.52) or to the left hand side. If
we add it to the right hand side it appears in terms of Q which
is at the current time step. Hence the term becomes and “ex-
plicit” term. On the other hand if we add it to the left hand
side it would be written in the delta form and would appear in
the system of equations to be solved. Consequently, the term
would be implicit in nature.

Assignment 6.3

(1) Use the differential form of the equations and redo as-
signment 6.2.

Grid Generation

We have seen numerical techniques to solve problems in
two and three spatial dimensions using finite volume methods

or finite difference methods. So far, for convenience, all the
assignment have been restricted to domains in which the Carte-
sian coordinate system worked well. Now, we will try to lay the
foundation for solving problems in more general regions.

This part of the chapter will address the issue of where
things are located. We have so far talked about points at which
a function has been expanded using Taylor’s series, or points
at which the function or its derivatives have been somehow
“approximated”. Where are these points? How do we determine
their location? Which are the neighbouring points? How are
these points distributed? Is there an optimal location for the
points? Is there an optimal distribution of the points? Is there
an optimal number of points?

We have a lot of questions regarding these points that we
have rather casually introduced into our study. Now we will set
about answering a few of these questions.

The study of these questions and their answers falls in the
realm of grid generation[ea99]. We have already seen some
grids in the earlier chapters. After a study of this chapter the
reader should be able to generate grids in a given computational
domain and solve a problem. This two part statement is very
important. We often ask, I have generated these two grids,
which is better? If we are asking this question without reference
to a problem, we might need to pick up some generic criterion
to get a figure of merit for a given grid. On the other hand, if
there is a definite problem at hand to be solved, that problem
and its solution then determine the answer to this question.

The question of where things are located was addressed
systematically by René Descartes. He brought the power of

abstraction of algebra to bear on geometry, resulting in ana-
lytic geometry. The realisation that one could assign numbers
in the form of coordinates to points in space was a revolution.
Cartesian coordinates are named so in his honour.

The fundamental job of a coordinate system is to help us
locate points. The fundamental job of a grid is to help us lo-
cate points, determine neighbours and distances to neighbours.
Let us, therefore, start with Cartesian coordinates and ask the
question:

Why Grid Generation?

We will use a two-dimensional problem to motivate the study
of grid generation. We solved the Laplace equation on a unit
square in section 3. After that, we have used a unit square
and a unit cube to solve the Euler’s equation in many forms in
the current chapter. We were able to use Cartesian grids for
the solution of this problem. This was possible as the domain
on which the problem was defined, a unit square at the origin,
conforms to, or is amenable to a Cartesian mesh. That is the
boundary of our problem domain is made up of coordinate lines.
What do we do if the problem domain were not this convenient?
What if it was changed to one with top boundary slanting? We
have encountered this question in chapter 5. This is shown in
Figure 6.8. We considered a Cartesian mesh in that chapter
and abandoned it. Here we will postpone the discussion on that
decision. We will revisit Cartesian meshes again later. We even
saw that we could generating a boundary conforming mesh.
This is shown in Figure 5.4 is reproduced here for convenience
in Figure 6.9. To get a clear idea as to where to go from here,

x

y

L

h

H

Figure 6.8. Trapezoidal domain on which Laplace equation
is to be solved

we pay attention to simple geometries and find out why they
are simple. Here are two examples:

(1) If we want to solve problems on a square or a rectangle
we can use Cartesian coordinates.

(2) If we want to solve a problem on a circle we could use
polar coordinates.

Notice that by simple geometry, we mean one which is made up
of the coordinate lines of, for example, the Cartesian mesh. In
fact, we want to generate a coordinate system where the bound-
aries are coordinate lines. Since our focus is on the problem
domain at hand, we say such a coordinate system is boundary

conforming. We will try to perform a transformation of coordi-
nates of some sort, to be boundary conforming. The point now
is to find such a coordinate transformation.

We observe that, as we go from the origin to the other end
of the trapezium along the x-axis, the height of the trapezium
increases in a linear fashion. Actually, what is important is that
it does so in a known fashion. Let us take M grid points in
the y direction. At any x location, we divide the local height of
the trapezium into M − 1 equal intervals. We see that we can
obtain a mesh, that looks ordered, and the grid points are on
the boundary. We now have grids on our boundary and will be

x

y

L

h

H

Figure 6.9. Grid generated by spacing grid points propor-
tionately in the y-coordinate direction

able to approximate our equations on this grid. The details of
this process will be discussed in the section on algebraic grids.

Another possibility is that we give up the structure that we
get from using a coordinate system, retain a Cartesian mesh and
decompose our domain into smaller domains whose geometry
is known in the Cartesian mesh. This mesh or tessellation as
it is sometimes called, can then be used to solve our differen-
tial equation. Figure 6.10 shows a triangulation of the given
domain. We now solve our problem on these triangles.

x

y

L

h

H

Figure 6.10. Trapezoidal domain on which Laplace equation
is to be solved

A Brief Introduction to Geometry

We have already seen that to obtain a coordinate transform
is to have knowledge of the coordinate lines. We plan to do a
quick review of the geometry of space curves. Along the way,
we will also do a review of the geometry of surfaces. Before
that, let us look at some more motivation to look at the space
curve, since one-dimensional problems could be of interest in
themselves.

An electrical engineer is designing a circuit board. The en-
gineer finds that there is one particular component that is going
to result in a lot of heat. The engineer could put a heat sink on
it. Taking the surrounding components and the overall thermal
environment in the enclosure into account the engineer decides
to transfer the energy out somehow. The solution proposed is
an insulated silver wire that is attached to the component on
one side and snakes it way to a heat sink outside the box.

What is the temperature distribution in the wire? There are
lots of ways to solve this problem. For our purpose, we will
consider the one-dimensional heat equation as governing the
problem and we will discretise this equation to get the solution.
In order to do this we need to discretise the wire.

This problem, to some, may look like a contrived problem.
In reality, we would pump some liquid around, we propose this
solution to keep things simple for our discussion here. However,
the ability to distribute grid points along a space curve can
be viewed as one of the fundamental activities of some grid
generators.

Now, we will do a quick review of the geometry of a space
curve. To get an idea of a space curve as a one-dimensional

entity, consider the following example. Chennai central is the
main railway station in Chennai. You get onto the train there
and you could wind your way through India and find yourself
getting off at New Delhi. As you go along, you look out of
the window and see stones with markings on them; they tell
you how far you are from Chennai. (The stones are very often
called milestones, though these days they specify the distance
in kilometres.) The track which started in Chennai central has a
single unique number associated with it along the track, which
is the distance from Chennai. When you are at point 2177
km you have reached Hazarat Nizamuddin, New Delhi. The
turns that the train takes should convince you that the track
is not a “straight run”. On the other hand, with a distance of
2177 km covered, the curvature of the earth cannot be ignored
either. So, the track forms a space curve in a coordinate system
at the centre of the earth and fixed to the earth. We can
measure distance along the track to identify a point on the track
or we could use time, especially if you are on a train without
any intermediate stops. Since, a single parameter is enough to
locate ourselves on the track, it is one-dimensional in nature.

A space curve can be parametrised by one parameter, say t.
We have,

(6.58) α(t) = x(t)e1 + y(t)e2 + z(t)e3

where, e1,e2, and e3 are the standard basis. We restrict our-
selves to curves in a two dimensions / three dimensions. So a
curve in two dimensions, R2, would be a map from the real line
into a plane. Formally,

(6.59) α(t) : {U ⊂ R → R
2}

As an example, consider the mapping α(t) given by the com-
ponents (cos t, sin t). What does the graph of this map look
like? If e1 and e2 are the basis along the 1 and 2 coordinate
directions, then,

(6.60) α(t) = e1 cos t+ e2 sin t

t

1

2

Figure 6.11. Curve parametrised by α(t) = e1 cos t+ e2 sin t

Assignment 6.4

(1) How would the graph of the curve given by the following
equation look?

(6.61) α(t) = e1 cos 2t+ e2 sin 2t

What changes?

(2) How about

(6.62) α(t) = e1 cos t
2 + e2 sin t

2

For both the curves given in the two problems, find the
tangent vector at any point. What happens to the magnitude
of the tangent vector? What happens to the unit vector along
the tangent vector? You should find that the magnitude or the
speed of the curves changes, the unit vector does not.

In general, the space curve in three dimensions may be as
shown in Figure 6.12. Normally, the tangent to the curve or
the velocity as it is often called in differential geometry, is given
by the derivative of α(t) as

(6.63) αt = xte1 + yte2 + zte3

where the subscript indicates differentiation with respect to t.
Right, we have a parametrised version of our wire. How do

we generate a grid on the wire? Well, we have the parameter
that goes from a to b. We could just divide (partition) the
interval [a, b] into equal intervals and from there find the cor-
responding (x, y, z) coordinates from the specified α(t). This
may not give you a grid that is uniformly distributed along the
wire. How do we generate a uniform grid on this wire? That
is, we want grid points that are equispaced along the length of
the wire. To do this, we need the length of the wire.

The length of the curve from t = a to t = b is given by

(6.64) s =

∫ b

a

∣
∣αt

∣
∣dt

1

2

3 αt

α(t)

Figure 6.12. Curve parametrised by α(t) = x(t)e1 +
y(t)e2 + z(t)e3

We can get this from our tensor calculus. Given the map α from
the Cartesian coordinate system to t we can define a differential
length for a line segment in t as

(6.65) ds2 = αt ·αtdt
2

Since we are mapping to one dimension the metric tensor has
only one component, g11.

Sometimes, we are lucky and we have a parametrisation s,
where s is the length along the space curve. For example, this
occurs in our railroad track. We could use the milestones or the
kilometre markers as a measure along the length of the rails to
indicate position. That is, we are given a situation where

(6.66) α(s) = x(s)e1 + y(s)e2 + z(s)e3

where,

(6.67) s =

∫ b

a

∣
∣αs

∣
∣ds,

and

(6.68)
∣
∣αs

∣
∣ = 1

Any curve that is parametrised so that equation (6.68) is true,
is said to have a unit speed parametrisation or the curve is just
called a unit speed curve.

If we were to generate a grid on our railroad line at uniform
intervals along the length, we could identify these by an index.
If we put a grid point at every railway station on the route, we
could number them starting with zero for Chennai. We know
then that the fifth railway station comes on the railroad after
the fourth and before the sixth. Given a railway station i, we
know it is preceded by i−1 (excepting Chennai) and succeeded
by i+1 (except at Delhi). Thanks to this underlying structure,
such a grid is called a structured grid.

On the other hand, someone can decide to sort the railway
station according to alphabetical order and number in that or-
der. In that case, we could not be sure that of the neighbour of
i without looking at the sorted list. Since this does not have an

immediate structure from which the predecessor and successor
can be found, this is called an unstructured grid.

It may seem that some rearrangement will allow a structured
grid to be converted to an unstructured grid. This is so in one-
dimensional problems. However, if one looks at Figure 6.10,
it is clear that this is not possible in this case. In the case of
an unstructured grid, we are forced to retain information on
neighbours.

Assignment 6.5

(1) Find the curvature and torsion of the curves given in
assignment 6.4.

(2) Find the tangent t, normal n, and binormal b for the
curve given by (a cos t, b sin t, ct). Specialise the prob-
lem to a = b. With a = b, what are t, n, and b if we
change the parametrisation to t = s/

√
a2 + c2?

Properties of Space Curves. We will now look a little
more closely at properties of space curves. We call the tangent
vector to a curve with unit speed parametrisation as t. Now, the
question is what is the derivative of t? We will answer this in
two parts. Clearly, as the curve is a unit speed curve, there is, by
definition, no change in the magnitude or the speed. The only
other property of a vector that can change is its “direction”.
First, for any unit vector

(6.69) t · t = 1 ⇒ d

ds
{t · t} = ts · t+ t · ts = 2ts · t = 0

We will assume that ts is not the zero vector. This means
that the derivative is orthogonal to the original vector. For the
unit speed curve, ts is also the rate at which the curve moves
away from the tangent and hence represents the curvature of
the curve. We can see this from the example shown in Figure

A

B

C

n

n

C
B

A

Figure 6.13. A planar curve is shown with tangents at three
different points. These tangent vectors are shown located
at a single point. The arrow heads lie on a unit circle since
the tangent vectors in this case are unit vectors

6.13. For the sake of simplicity, a planar curve is chosen. As was
pointed out in the assignment, the direction of the tangent to
a curve at a point is a property of that curve at that point and
does not really depend on the parametrisation. The tangents
are shown in this figure as position vectors of points on a unit
circle. Since the curve is smooth, the tangent varies in a smooth

fashion. It is clear then that the derivative of the tangent vector
tA at the point A is perpendicular to tA.

So, if ts is along a direction called n, then

(6.70) ts = κn

where, κ is the curvature at that point. We get back to our
space curve now. We have the unit vector t which is the tangent
vector. We also have the vector n which is normal to the
tangent vector and we know that ts is proportional to n. We
have two orthogonal vectors in three dimensions at a given point
on the curve. We could define a third vector b, orthogonal to t

and n, to complete the triad.

(6.71) b = t× n

It would be interesting, and useful, to see how this triad
evolves along the curve. We already have ts we can obtain
equation for the other two rates. Since b = t×n, we can take
a derivative to find

(6.72) bs = ts × n+ t× ns = t× ns = −τn
By convention the sign on the right hand side of equation (6.72)
is taken as negative. Since bs is orthogonal to b and t, it must
be along n. bs is the rate at which b is twisting away from the
plane formed by t and n. It represents the torsion of the curve.

In a similar fashion, we find ns using n = b×t to be τb−κt.
We can write these three equations as one matrix equation for

the triad t, n, and b as

(6.73)
∂

∂s







t

n

b






=





0 κ 0
−κ 0 τ
0 −τ 0











t

n

b







which gives us the evolution of the triad with the parameter s.
It looks like this system of equations tells us that if we are given
the curvature and torsion of a curve and a point on that curve
we can reconstruct the curve.

Surfaces and Manifolds. Analogous to the one-dimensional
space represented by the space curve, a surface in three dimen-
sions turns out be a “two-dimensional” world. Look at the
surface of the earth. Most everyone is thinking in terms of
“floor space”. Our thinking, though we are embedded in a
three-dimensional space is very often two-dimensional1. These
surfaces are two dimensional as we require two parameters to
index them. A possible representation would be

(6.74) σ(u, v) = f(u, v)e1 + g(u, v)e2 + h(u, v)e3

Of course, σ(a, v) is a coordinate line on this surface as is
σ(u, b). These two lines pass through the point σ(a, b). Clearly
σ(a, v) is a space curve and its tangent at the point σ(a, b) is
given by σv(a, v). The subscript v indicates differentiation with
respect to v. Likewise, we have σu(u, b) a tangent to σ(u, b).
Here, the subscript u indicates differentiation with respect to u.

1He is intelligent, but not experienced. His pattern indicates two-dimensional thinking.–Spock,

Star Trek: Wrath of Khan

For a “regular surface”, |σu×σv| 6= 0. In fact, the unit normal
to the surface is defined as

(6.75) N =
σu × σv

|σu × σv|
If γ(t) is a curve on the surface, its tangent at any point,

γt, lies in the plane spanned by σu and σv and it is normal to
N . The length along this curve is given by equation (6.64).
Using chain rule we can write the expression for |γt| as

(6.76) |γt|2 = σu · σuu
2
t + 2σu · σvutvt + σv · σvv

2
t

Recognising that

(6.77) ds2 = |γt|2dt2 = (Eu2t + 2Futvt +Gv2t)dt
2

where,

(6.78) E = σu · σu, F = σu · σv, and G = σv · σv

We then identify the following expression as the First Fun-
damental Form.

(6.79) Edu2 + 2Fdudv +Gdv2

We could ask the question as to how much the surface curves
away from the tangent plane. This question is critical for us
since it will determine, ultimately, the size of our grid spacing.
From the point σ(u, v), how much does σ(u + ∆u, v + ∆v)
deviate? This answered simply by looking at

(6.80) (σ(u+∆u, v +∆v)− σ(u, v)) ·N
Expanding using Taylor’s series and cancelling σ(u, v) gives

us

(6.81)




(σu∆u+ σv∆v
︸ ︷︷ ︸

in the tangent plane

) +
σuu∆u

2 + 2σuv∆u∆v + σvv∆v
2

2
+ ...






·N

Since the N is orthogonal to the tangent plane the first two
terms do not contribute to the curvature. In fact, we have taken
the dot product to identify and eliminate these terms. This
leaves an expression that we identify as the Second Fundamental
Form.

(6.82) Ldu2 + 2Mdudv +Ndv2

where,

(6.83) L = σuu ·N , M = σuv ·N , and N = σvv ·N
Try out the following problems:

Assignment 6.6

(1) Compute the expression for the unit surface normals to
the following surfaces:
(a) σ(u, v) = (a cos u, a sin u, bv),
(b) σ(u, v) = (u, v, u2 − v2),

(c) σ(u, v) = (u, v, 2uv).
(2) Compute the first and second fundamental forms for b)

and c)

Now that we have some idea of the geometry of curves and
surfaces, we can start looking at the grid generation. We have
already seen that we can have structured and unstructured grids.
Let us start by looking at ways to generate structured grids.

Structured Grids

What are structured grids? We discretise our domain using
grid points and associated volumes. If we are able to index
our grid points using some scheme such that the neighbours
of a given grid point can be inferred from its index, we have a
structured grid.

Algebraic grids. The easiest way to generate structured
grids is by using some algebraic expression to relate the physical
coordinates to the computational coordinates. In the case of
the problem presented by 6.8, we can generate an algebraic grid
as shown in Figure 6.9. Here, we have chosen our grid points so
that they are “proportionately” spaced in the y direction. Let
us work out the algebraic expression for this grid.

The top of the domain is a straight line that starts at the
point (0, h) and ends at (L,H). The equation of this line is

Y (x) = h + x(H − h)/L. Now for a given (x, y) the corre-
sponding (ξ, η) are obtained as

ξ(x, y) =
x

L
(6.84)

η(x, y) =
y

Y
=

y

h+ x(H − h)/L
(6.85)

We can always get back from (ξ, η) to (x, y)

x(ξ, η) = ξL(6.86)

y(ξ, η) = η(h+ ξ(H − h))(6.87)

Since we are able to go back and forth from the two coordinate
systems, we will now transform our governing equation, say
Laplace’s equation to the new coordinate system. Employing
chain rule we get for the first derivative

∂φ

∂x
=
∂φ

∂ξ

∂ξ

∂x
+
∂φ

∂η

∂η

∂x
(6.88)

∂φ

∂y
=
∂φ

∂ξ

∂ξ

∂y
+
∂φ

∂η

∂η

∂y
(6.89)

(6.90)

This will be written in a compact notation as

∂φ

∂x
= φx = φξξx + φηηx(6.91)

∂φ

∂y
= φy = φξξy + φηηy(6.92)

(6.93)

Then for the second derivative we have

(6.94)
∂2φ

∂x2
= φxx =

∂

∂x
(φx) =

∂

∂x
(φξξx + φηηx)

=
∂

∂x
(φξ) ξx + φξξxx +

∂

∂x
(φη) ηx + φηηxx

= φξξ (ξx)
2 + 2φξηξxηx + φξξxx + φηη (ηx)

2 + φηηxx

(6.95)
∂2φ

∂y2
= φyy =

∂

∂y
(φy) =

∂

∂y
(φξξy + φηηy)

=
∂

∂y
(φξ) ξy + φξξyy +

∂

∂y
(φη) ηy + φηηyy

= φξξ (ξy)
2 + 2φξηξyηy + φξξyy + φηη (ηy)

2 + φηηyy

So, Laplace’s equation can be rewritten as

(6.96)

∂2φ

∂x2
+
∂2φ

∂y2
= φxx + φyy = φξξ

(
ξ2x + ξ2y

)
+ φηη

(
η2x + η2y

)

+ 2φξη (ξxηx + ξyηy) + φξ (ξxx + ξyy) + φη (ηxx + ηyy) = 0

Clearly, we have a grid that conforms to our domain, however,
the governing equations, even if it is just Laplace’s equation can
become quite complex.

Elliptic Grids. A grid generation scheme which employs
elliptic differential equations to determine the transformation is
called an elliptic grid generation scheme.

If you look back at our solution to differential equation, you
will see we have reduced the differential equations to algebraic
equations. Recall that in the potential flow problem, stream
lines and potential lines are orthogonal to each other. They in
fact form a mesh. They also satisfy Laplace equation [Win67].
We have already seen that we can solve Laplace equation on a
square. Here is our plan of action:

(1) Assume (ξ, η) satisfy Laplace’s equation
(2) Transform these equations into the (ξ, η) coordinates.
(3) solve for (x, y) in the (ξ, η) coordinates.

We already have the transformed equations (6.96). Since the
coordinates satisfy Laplace’s equation we can simplify to get

(6.97) φξξ

(
ξ2x + ξ2y

)
+2φξη (ξxηx + ξyηy)+φηη

(
η2x + η2y

)
= 0

Let us recall how the chain rule works for the transformation
of differentials from one coordinate system to another.

(6.98)

[
dx
dy

]

=

(
xξ xη
yξ yη

)[
dξ
dη

]

.

Alternately, we can write

(6.99)

[
dξ
dη

]

=

(
ξx ξy
ηx ηy

)[
dx
dy

]

.

We can see that

(6.100)

(
xξ xη
yξ yη

)

=

(
ξx ξy
ηx ηy

)−1

This equation will allow us to replace the derivatives of (ξ, η)
with respect to (x, y) in equation (6.97) to get the equations
in terms of the derivatives of (x, y) with respect to (ξ, η).

We define the Jacobians of the transformations which are
the determinants of the 2× 2 matrices in equations (6.98) and
(6.99) as follows

J = xξyη − yξxη(6.101)

Γ = ξxηy − ηxξy(6.102)

We then get the relationships

(6.103)
ξx = yη

J
ξy = −xη

J

ηx = −yξ
J

ηy =
xξ

J

and

(6.104)
xξ =

ηy
Γ

xη = − ξy
Γ

yξ = −ηx
Γ

yη =
ξx
Γ

Why would we do this? Well, we know that we want the trans-
formed coordinate system to be a unit square, say in a Cartesian
coordinate system. Which means, we actually know the (ξ, η).
In order to have a transformation, we need to find for a given
(ξ, η) the corresponding (x, y). So, we really need differential
equations for (x, y) in terms of (ξ, η). To this end we divide
equation (6.97) by Γ2 and substitute from equations (6.104) to
get
(6.105)
(
x2η + y2η

)
φξξ − 2 (xξxη + yξyη)φξη +

(
x2ξ + y2ξ

)
φηη = 0

We have the equations that need to be solved in the rect-
angular domain in the (ξ, η) plane. We now need the boundary
conditions to actually solve the equation. The rectangle in the
(ξ, η) plane has four sides. To each of these sides we need to
map the sides of our original problem domain from the physical
domain. For instance if the original problem were a unit circle
(a circle with radius one) centred at the origin as shown in the
Figure 6.14.

Let us look at the equations that we are about to solve.

axξξ − 2bxξη + cxηη = 0(6.106)

ayξξ − 2byξη + cyηη = 0(6.107)

where

a = x2η + y2η,(6.108)

b = xξxη + yξyη and,(6.109)

c = x2ξ + y2ξ(6.110)

We see that if we were to discretise these equations we
would be dividing by ∆ξ and ∆η. To eliminate this division
we can take ∆ξ = ∆η = 1. The simplified equation with the
Gauss-Seidel iterative scheme gives

(6.111) xn+1
i,j = dn

{
an(xn+1

i−1,j + xni+1,j)

− 0.5bn(xn+1
i−1,j−1 − xn+1

i−1,j+1 − xn+1
i+1,j−1 + xni+1,j+1)

+cn(xn+1
i,j−1 + xni,j+1)

}

1

2

1

45 ◦

A B

CD

Figure 6.14. Unit circle centred at the origin to be mapped
into a square in the computational domain

(6.112) yn+1
i,j = dn

{
an(yn+1

i−1,j + yni+1,j)

− 0.5bn(yn+1
i−1,j−1 − yn+1

i−1,j+1 − yn+1
i+1,j−1 + yni+1,j+1)

+cn(yn+1
i,j−1 + yni,j+1)

}

where

an = 0.25 ∗
[
(∆jx

n
i,j)

2 + (∆jy
n
i,j)

2
]

(6.113)

bn = 0.25 ∗
[
(∆ix

n
i,j)(∆jx

n
i,j) + (∆iy

n
i,j)(∆jy

n
i,j)
]

(6.114)

cn = 0.25 ∗
[
(∆ix

n
i,j + (∆iy

n
i,j)

2
]

(6.115)

dn =
1

2[an + cn]
(6.116)

and ∆ is defined such that

(6.117) ∆αSα = Sα+1 − Sα−1, S = x, y, α = i, j.

Here, n is the iteration level. The coefficients are not changed
during the current iteration.

As we had indicated at the beginning of this section, we
decided to use Laplace’s equation to determine (ξ, η) so that
the resulting coordinate lines are orthogonal to each other. This
we obtained from our analogy with potential lines and stream
lines. Now we know that streamlines are drawn towards sources
and pushed away from sinks. So, if we want our grid lines to
be clustered in a region due to the solution having large gradi-
ents in that region, then one can add a sink appropriately and
sources appropriately so that such a clustering occurs. Unlike
in case of the unstructured grids, it is difficult to perform very
localised grid refinement without affecting a reasonably large
region around the area of interest.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

A B

CD

x

y

ξ

η

Figure 6.15. Constant ξ lines and constant η lines generated
in the unit circle using elliptic grid generation. This is a
11× 11 grid.

Parabolic and Hyperbolic Grids. Similar to the last sec-
tion if the nature of the differential equations employed to gen-
erate the grid are hyperbolic or parabolic then the grid genera-
tion scheme is called a hyperbolic grid generation scheme or a
parabolic grid generation scheme.

We will look at hyperbolic grid generators first. These
schemes can be used generate grid by themselves. However,
they are increasingly used to generate a hybrid grid where hy-
perbolic grids are used near solid boundaries and and any other
kind of grid generation scheme including unstructured grids are
used away from the boundary.

One simple way to generate a hyperbolic grid is to start
at the surface where the grid is required and to travel along a
perpendicular to the surface by a set distance, ∆ζ. The end
points of all of these normals now defines a constant ζ plane.
This should remind the reader of two things. First the wave
equation and its properties we studies earlier. The second is
algebraic grid generation. Once we have offset by ∆ζ we are
now in a position to determine the new normal directions and
then take another ∆ζ step. In this fashion, one can generate
ζ grid lines and the corresponding ξ − η planes. As in the
wave equation of course, one has to be careful that the ζ-grid
lines do not intersect. One solution is to add some dissipation
terms which will convert the equations to parabolic equations,
resulting in parabolic grid generation.

Generating Two Dimensional Unstructured Grids

Why would we want to generate unstructured grids. The
common reason is that for complex geometries it is easier to
generate unstructured grids rather than structured grids. At the
end of the chapter we will summarise the relative advantages
and disadvantages for the various grid generation techniques.

As opposed to structured grids, unstructured grids will re-
quire us to store data on neighbours and other such information
that can be inferred in structured grid.

Unstructured grids come in many flavours. We will restrict
ourselves to two popular ones: unstructured triangular meshes
and unstructured Cartesian meshes. The latter is not to be
confused with the regular Cartesian coordinate system, though

it is fashionable to refer to an unstructured Cartesian mesh as
just a Cartesian mesh.

Triangulation. For the domain given by Figure 6.8 an un-
structured triangulation is given in Figure 6.10. How do we
automate the generation of these triangles?

Before we start developing an algorithm to solve the trian-
gulation problem, let us define a few terms.

Node: It is a point the domain. The vertices of various
polygons will typically be nodes. Many of them together
may be used to define the boundary of the region of
interest.

Edge: It is an oriented line segment connecting two nodes:
the StartNode and the EndNode. A triangle, for exam-
ple is three nodes connected by three edges.

In order to start the grid generation, we need to specify the
boundary of the region to be triangulated. This can be done
by prescribing a sequence of nodes or edges. Let us say we
prescribe a sequence of nodes. In two dimensions, a region can
be described by a loop. The nodes of a loop are prescribed in
order. This means that an edge connects to consecutive nodes
in a given loop. The orientation of the edges is such that as we
look from the StartNode towards the Endnode, the domain of
interest is to our left. This is done by prescribing our outermost
loop in a counter-clockwise direction. This is very critical, as
it will help us figure out whether we have a point in the region
of interest or not. Put another way, if you are going to give
me an enclosure, you have to give me a method by which I can

decide whether a point is in the enclosure or not. We come to
the following understanding:

The domain in two dimensions is defined em-
ploying loops. The loops are oriented in such
a fashion as to have the domain always to the
left of any segment of the loop[see Figure 6.16.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����
����
����
����

Figure 6.16. The region to be triangulated is shown hatched.
The loop is oriented such that the domain is always to the
left

We will look at an algorithm called the boundary triangula-
tion algorithm. The first step in our grid generation is

Step One: Given the loops forming the domain by ap-
propriately ordered nodes, create the edges from con-
secutive nodes of a loop. The set of edges form the
boundary of the approximation to the domain.

We now have a set of edges, E , and a set of nodes, N , associ-
ated with those edges. We are ready to work out a triangulation
algorithm.

Step Two: While the set of edges, E , is not empty, pick
an edge e.

We will now employ this edge to generate a triangle.

Step Three: Find the set, L, of all nodes that are to be
triangulated and the to left our edge e.

Given the edge e, we need to find a node to form a triangle.
Clearly any node that is to the right of the edge will form a
triangle that is outside the domain. So, we form L from which
to pick a node. We now proceed to find a candidate node from
the set L to form a triangle.

Step Four: Find the nearest node from the set L and
check to see if a triangle can be formed
Check One: Is the area of the triangle too small?
Check Two: Do the new Edges formed intersect any
of the existing edges?

The first check to to make sure that we do not pick three
collinear points. The second check is to make sure that the
triangles do not overlap. Remember, in our chapter on repre-
sentations, we saw that non-overlapping domains gave us func-
tions that are independent of each other. So from the list L
of the nodes we will find a node, n, that allows us to form a
triangle.

Step Five: Form the triangle with the node n. Check
whether new edges have to be added. If a new edge
is added, its orientation is such that the interior of the

triangle is to the left of the edge. This can be achieved
by ensuring that the StartNode of the new edge is the
EndNode of the existing edge or vice-versa.

Step Six: We remove edge e from the set E . We check
to see if any of the edges formed employing the end
points of e and the node n already exist in the set E .
Any such edge is removed from the set E .

Step Seven: The loop was opened out when edges were
dropped. The new edges that were created to form
the triangle are reversed in orientation and added to E .
This results in the loop being closed again.

Step Eight: Go back to Step Two and form another
triangle

This is a simple method to generate unstructured triangular
meshes. Let us look at an example as given in Figure 6.17. I
would suggest that you use a circle to test your code when you
are first developing it. The circle is easier.

For the sake of this discussion (i) will be node “i”. So for
example, (3) is node “3”. i-j will be the edge connecting (i) to
(j). That is, 1− 2 will be an edge going from (1) to (2) which
has the opposite orientation of 2 − 1 which is an edge going
from (2) to (1).

N = {(1), (2), (3), (4), (5), (6), (7), (8)} is the set of nodes
from which we get the set of edges to be triangulated. This set
is E = {1− 2, 2− 3, 3− 4, 4− 5, 5− 6, 6− 7, 7− 8, 8− 1}.

Pick an edge: The set E is not empty, we pick the first
edge from it: e = 1− 2.

1
3

5

2

4

67

8

Figure 6.17. This is the initial domain given as a counter-
clockwise loop of nodes labeled 1, 2, 3, 4, 5, 6, 7, 8, 1

Form the left list: The list of nodes, L, which are to the
left of e is formed: L = {(4), (5), (6), (7), (8)}

Pick nearest node: The node closest to e is (8).

Triangle? : With this it is possible for us to form the
triangle made up of the edges 1− 2, 2− 8, 8− 1.

Old Edges? : of these besides e, 8-1 is an existing
edge from E .

Intersect: The new edge 2−8 does not intersect any
existing edges.

Triangle Size: Triangle is not approaching zero area.

Form Triangle: We can form the triangle {1 − 2, 2 −
8, 8− 1}.

Housekeeping: –

first: We will remove edges 1− 2 and 8− 1 from the
list of edges E .

second: The new edge in the triangle is 2 − 8. We
add the opposite of this edge 8− 2 to E .

third: We remove the node (1) from N as it has no
edge connected to it.

State 1: E = {2−3, 3−4, 4−5, 5−6, 6−7, 7−8, 8−2},
N = {(2), (3), (4), (5), (6), (7), (8)}, and T = {(1 −
2, 2− 8, 8− 1)}

1 2

8

3

5

4

67

2

8

Figure 6.18. The domain remaining to be triangulated and
the new triangle formed, Note that the edge 8− 2 is new

We can see what we have at the end of this effort in Figure
6.18. We proceed along the same lines.

Pick an edge: The set E is not empty, we pick the first
edge from it: e = 2− 3.

Form the left list: The list of nodes, L, which are to the
left of e is formed: L = {(4), (5), (6), (7), (8)}

Pick nearest node: The node closest to e is (4).

Triangle? : With this it is possible for us to form the
triangle made up of the edges 2− 3, 3− 4, 4− 2.

Old Edges? : of these besides e, 3−4 is an existing
edge from E .

Intersect: The new edge 4−2 does not intersect any
existing edges.

Triangle Size: Triangle is not approaching zero area.

Form Triangle: We can form the triangle {2 − 3, 3 −
4, 4− 2}.

Housekeeping: –

first: We will remove edges 2− 3 and 3− 4 from the
list of edges E .

second: The new edge in the triangle is 4 − 2. We
add the opposite of this edge 2− 4 to E .

third: We remove the node (3) from N as it has no
edge connected to it.

State 2: E = {4 − 5, 5 − 6, 6 − 7, 7 − 8, 8 − 2, 2 − 4},
N = {(2), (4), (5), (6), (7), (8)}, and T = {(1− 2, 2−
8, 8− 1), (2− 3, 3− 4, 4− 2)}

3

4

2

1 2

8

5
67

8 4

2

Figure 6.19. The remaining domain to be triangulated and
the two triangles formed so far. Note the new edge 2− 4

We can see what we have at the end of this effort in Figure
6.19. Again, we proceed along the same lines.

Pick an edge: The set E is not empty, we pick the first
edge from it: e = 4− 5.

Form the left list: The list of nodes, L, which are to the
left of e is formed: L = {(2), (6), (7), (8)}

Pick nearest node: The node closest to e is (6).

Triangle? : With this it is possible for us to form the
triangle made up of the edges 4− 5, 5− 6, 6− 4.

Old Edges? : of these besides e, 5−6 is an existing
edge from E .

Intersect: The new edge 6−4 does not intersect any
existing edges.

Triangle Size: Triangle is not approaching zero area.

Form Triangle: We can form the triangle {4 − 5, 5 −
6, 6− 4}.

Housekeeping: –

first: We will remove edges 4− 5 and 5− 6 from the
list of edges E .

second: The new edge in the triangle is 6 − 4. We
add the opposite of this edge 4− 6 to E .

third: We remove the node (5) from N as it has no
edge connected to it.

State 3: E = {6 − 7, 7 − 8, 8 − 2, 2 − 4, 4 − 6}, N =
{(2), (4), (6), (7), (8)}, and T = {(1 − 2, 2 − 8, 8 −
1), (2− 3, 3− 4, 4− 2), (4− 5, 5− 6, 6− 4)}

We can see what we have at the end of this effort in Figure
6.20. Again, we proceed along the same lines.

Pick an edge: The set E is not empty, we pick the first
edge from it: e = 6− 7.

Form the left list: The list of nodes, L, which are to the
left of e is formed: L = {(2), (4), (8)}

Pick nearest node: The node closest to e is (8).

Triangle? : With this it is possible for us to form the
triangle made up of the edges 6− 7, 7− 8, 8− 6.

1 2

8 3

4

2

5
6

4

7

8

2

6

4

Figure 6.20. The remains of the domain to be triangulated
and the three triangles formed thus far. A new edge 4 − 6
has been added

Old Edges? : of these besides e, 7−8 is an existing
edge from E .

Intersect: The new edge 8−6 does not intersect any
existing edges.

Triangle Size: Triangle is not approaching zero area.

Form Triangle: We can form the triangle {6 − 7, 7 −
8, 8− 6}.

Housekeeping: –

first: We will remove edges 6− 7 and 7− 8 from the
list of edges E .

second: The new edge in the triangle is 8 − 6. We
add the opposite of this edge 6− 8 to E .

third: We remove the node (7) from N as it has no
edge connected to it.

State 4: E = {8−2, 2−4, 4−6, 6−8},N = {(2), (4), (6), (8)
and T = {(1−2, 2−8, 8−1), (2−3, 3−4, 4−2), (4−
5, 5− 6, 6− 4), (6− 7, 7− 8, 8− 6)}

We can see what we have at the end of this effort in Figure
6.21. Again, we proceed along the same lines.

Pick an edge: The set E is not empty, we pick the first
edge from it: e = 8− 2.

Form the left list: The list of nodes, L, which are to the
left of e is formed: L = {(4), (6)}

Pick nearest node: The node closest to e is (4).

Triangle? : With this it is possible for us to form the
triangle made up of the edges 8− 2, 2− 4, 4− 8.

Old Edges? : of these besides e, 2−4 is an existing
edge from E .

Intersect: The new edge 4−8 does not intersect any
existing edges.

Triangle Size: Triangle is not approaching zero area.

Form Triangle: We can form the triangle {8 − 2, 2 −
4, 4− 8}.

Housekeeping: –

7

8

6

3

4

21 2

8

5
6

4

2

48

6

Figure 6.21. The domain remaining to be triangulated and
the four triangles formed. The edge 6− 8 is new

first: We will remove edges 8− 2 and 2− 4 from the
list of edges E .

second: The new edge in the triangle is 4 − 8. We
add the opposite of this edge 8− 4 to E .

third: We remove the node (2) from N as it has no
edge connected to it.

7

8

6 6

48

5
6

4

3

4

21 2

8

2

48

Figure 6.22. All the triangles are formed. 8−4 was the last
new edge to be added

State 5: E = {4− 6, 6− 8, 8− 4}, N = {(4), (6), (8)},
and T = {(1−2, 2−8, 8−1), (2−3, 3−4, 4−2), (4−
5, 5−6, 6−4), (6−7, 7−8, 8−6), (8−2.2−4, 4−8)}

Again, we proceed along the same lines and the final triangle is
formed. We can see what we have at the end of this effort in
Figure 6.22.

Assignment 6.7 Generate a triangular mesh on a circular
region. The input file should consist of

(1) Number of loops in the problem domain.
(2) Number of points/nodes in the zeroth loop.
(3) x0, y0
(4) x1, y1

(5)
...

(6) xn, yn
(7) Number of points/nodes in the first loop.

(8)
...

(9) Number of points in the last loop.
(10) data for last loop.

Once you have it working for a circle, try it out for a square,
rectangle, and shapes with holes in them.

A close inspection of the algorithm shows that we essentially
deal with edges and nodes to form a triangle. In fact, once
we have picked an edge, we are hunting for nodes in the left
list. This gives us a cue that we can specify nodes other than
the ones (along with the corresponding edges) that we use to
prescribe the domain to be triangulated. These nodes then will
participate in the griding though they may not be associated
initially with any edge. Clearly the nodes have to be in the
interior of the domain, otherwise, they will not figure in the
formation of a viable edge.

We now have a method by which we can generate a trian-
gulation based on the boundaries specified along with the nodes

provided. How do we ensure that the triangles are of the qual-
ity that we want? Which brings us to the questions: What is
a quality triangle? How do we measure this quality? If we are
given no conditions, what is an ideal triangle in two dimensions.
Most people would zero in on an equilateral triangle.

An equilateral triangle has

• equal angles,
• equal sides,
• ...
• largest enclosed area by a triangle for a given perimeter.

We could use the last point mentioned in the list as a point
of reference. The area of the equilateral triangle of side “a” is
given by

(6.118) A =
1

2
a

√
3

2
a =

√
3

4
a2.

The perimeter is S = 3a for the equilateral triangle. We can de-
fine a non-dimensional parameter “Q” representing the quality
of the triangle as

(6.119) Q = 12
√
3
A

S2

Q would be 1 for an equilateral triangle and less then 1 for other
triangles. For three collinear points Q = 0.

Now that we have figured out a way to generate grids em-
ploying the boundary nodes and we are able to assess the quality
of a triangle, we are in a position to see if it is possible to im-
prove the overall quality of the triangulation.

With out disturbing the nodes if we want to try to improve
the triangulation, we can only move the edges around using the
same nodes.

Figure 6.23. Two Possible Triangulations with the Four Nodes

Figure 6.23 shows two possible triangulations given four
nodes. The question is which of these two triangles is bet-
ter. The “max-min” criterion tells us that the preferable trian-
gulations of the two is the one which has the larger smallest
angle. Once we have the mechanism to check for the better
triangulation we can now generate an algorithm to improve the
triangulation.

(1) For a given node “A” find all the triangles that have
that node as a vertex.

(2) There may be two triangles on either side of any triangle
that share the node “A”.

(3) Consider a triangle “T”. Pick the triangle opposite to
the given triangle.

(4) Apply the swap criterion and consider whether the edge
should be swapped. Repeat this for all the triangles
shared by the node.

(5) Repeat this for all the nodes.
(6) Repeat this whole process till no swap occurs.

We will now look at a method to insert nodes into our tri-
angulation to increase the “richness” of the triangulation.

3

1

2

l3

l1

l2

Figure 6.24. Inserting a node at the centroid of a triangle,
the existing nodes are shown using filled circles, the new
node is shown with a filled square

Consider the Figure 6.24. We want to decide whether to
insert a node at the centroid and form the three triangles shown.

(1) At each of the nodes one can define a node spacing
function (nsf).

(2) One can look at the centroid of a triangle and define
the node spacing function at the centroid in terms of
the node spacing function at vertices of the triangle.

(3) Let li be the distance between the centroid and the ith

vertex of the triangle.
(4) If the min(li) is greater than the nsf at the centroid,

insert the centroid as a new node in the triangulation.
(5) Form three triangles by joining the vertices of the tri-

angle to the centroid and forming new edges and hence
the new triangles.

Having inserted the nodes one can redo the swapping algo-
rithm to improve the new triangulation. An added mechanism
to improve the triangulation at the end of the swap sweep with
a given node is to move that node to the centroid of the poly-
gon formed by the triangles that share that node. This should
be done only if that polygon is convex. Otherwise, the centrod
may lie outside of the polygon. This step can be incorporated
into the swapping algorithm. Note that the boundary nodes and
the user specified nodes should not be moved. Only the nodes
inserted by the insertion algorithm can really be moved.

There are other ways by which one can refine the given grid.
Referring to Figure 6.25, we can insert nodes on the three edges
making up the triangle and form a triangle using the three new
nodes. As can be seen from the figure, this leaves the original
triangle split into four smaller and similar triangles. They are
congruent to each other and similar to the parent triangle. The
quality of the triangulation does not drop drastically due to this
process. However, the swapping and smoothing process can be
attempted after the refinement.

3

1

2

Figure 6.25. Replacing a given triangle with four smaller
similar triangles. The new nodes are indicated using filled
squares.

Since this kind of node insertion results in nodes on the edge,
the neighbouring triangle needs to be modified to conform to
the new set of triangles.

This can be done quite easily as shown in Figure 6.26. Due
to the refinement process if the adjacent triangle has a node
on its edge, it is split into two by joining the node opposite to
that edge to the new node as shown by the thicker line in the
figure. If two of the edges of the triangle happen to have nodes
on them due to two neighbours being refined then that triangle
is also refined by splitting into four.

It is clear that if we have an initial coarse mesh generated
using boundary triangulation that one can generate a hierarchi-
cal mesh by refining each triangle into four as required. This
process can be represented by a quad tree since each triangle
typically has four children. This can in fact be used for adaptive

3

1

2

Figure 6.26. Triangle 1-2-3 is refined as shown in Figure
6.25. An existing triangle on edge 2-3 becomes a quadri-
lateral. This is split into two triangles by adding an edge
from the new node. The objective is conform without the
introduction of any new nodes

griding, where the decision to refine may be based on a com-
puted solution. The advantage with this unstructured grid is
that the refinement can be performed at the place where it is
required instead of having to refine the whole grid.

It should be clear that this kind of refinement of breaking the
geometrical entity into four children is also possible for quadri-
laterals. In particular, quadrilaterals that are part of a Cartesian
mesh.

Cartesian Meshes. Figure 6.27 shows an unstructured Carte-
sian mesh on the trapezoidal domain. Figure 6.28 shows the

zoomed-in part of the mesh. The strategy here is quite clear.
Any cell that is not completely inside our domain, in this case
the trapezium, is subdivided. In the two dimensional case, it
is subdivided into four parts. The same test is applied to the
new cells that are formed. This process is continued till the ge-
ometry is captured to “our satisfaction”. Clearly, we will have
to place a lower limit on the size of any cell. Of course, we
have a limit on how many cells we are able to handle with the
computational resources available.

E

F

C

DA

B

H

G

Figure 6.27. Trapezoidal domain on which Laplace equation
is to be solved - with a Unstructured Cartesian mesh

The fundamental technology required for the Cartesian meshes
is that of a tree based data structure. We form what are called
spatial data structures[Sam03]. In the two dimensional case,
the parent cell is broken into four sub-cells. This process can
clearly be captured by a quad tree. The issue simply is: how

Figure 6.28. Zoomed part of the Unstructured Cartesian
mesh from Figure 6.27

do we decide when a cell needs to be split. There can be three
possible reasons.

(1) We need a finer grid because the problem being solved
requires a richer mesh - refined representation of the
domain to resolve the physics better.

(2) We need to resolve the boundary to the necessary de-
gree - refine the representation of the boundary to cap-
ture the domain better and consequently resolve the
physics better.

(3) Finally, we may need to split a cell simply because its
neighbour has been split many levels down. For exam-
ple, consider the squares ABCD and EFGH in Figure
6.27. The square above each of these has been divided
to three levels in order to capture the boundary. From
the point of implementing a finite volume solver on this

Figure 6.29. An unstructured Cartesian mesh generated to
capture the circle x2 + y2 = 1, the mesh goes down ten
levels

mesh, the disparity in cell size is large. So, ABCD and
EFGH are candidates to be split.

Figure 6.30. A zoomed in version of Figure 6.29 showing
that the circle is not actually drawn in the figure and is
really captured by the mesh, giving the illusion of it being
drawn

Figure 6.29 shows another example of the unstructured Carte-
sian mesh. Figure 6.30 shows a zoomed in version of the same
figure. As you can see, the circle has not been drawn, though
from the mesh it (the circle that is) is apparent.

Unstructured Quadrilateral Meshes. Before we go on
to structured grids we will see one more kind of an unstructured
grid. Like the Cartesian mesh this is also an unstructured mesh.
However, it is akin to an unstructured triangulation. The easiest
way to generate an unstructured quadrilateral mesh is to first
generate an unstructured triangulation and from there generate
a quadrilateral mesh. There are many ways by which a triangu-
lation can be converted to a quadrilation. One way is to choose

3

1

2

Figure 6.31. Three quadrilaterals formed from a triangle.
The mid-points are connected to the centroid

two triangles and remove a shared edge. The other, more robust
method is two decompose a triangle into three quadrilaterals.
This is robust since a given triangle is decomposed without hav-
ing to hunt for a mating triangle. Figure 6.31, shows how this

can be done. This scheme, however, results in the insertion of
nodes on the sides. This is particularly important on the bound-
ary of the domain. Given no other constraints, we would like all
the quadrilaterals to be squares. Laplacian smoothing, as was
done with unstructured triangulation, can be used to improve
the quality of the quadrilaterals.

Three Dimensional Problems

How do we handle three dimensional domains? One is to see
if we can generate a two dimensional grid and stack it somehow
in the third direction. In reality, in the third dimension one can
generate an algebraic grid. This allows us to cluster the grids
very easily. Note that the two dimensional grid that is stacked
can be of any nature: structured, unstructured. . .

We can also generate tetrahedra in three dimensions. The
idea here is to describe the bounding surfaces in terms of a tri-
angular mesh and then to fill the volume with tetrahedra. The
advantage with this as with all unstructured meshes is that we
can capture very complex geometries very easily. The disadvan-
tage is that it requires more information about the grid to be
stored as in the two dimensional case.

One could also generate an unstructured Cartesian mesh in
three dimensions. This would involve dividing a given cube into
eight octets. A tree representation would be made up of node
representing the given cube and eight child nodes representing
the eight child cubes of the parent cube. This would be an
Oct-tree. As was done in two dimensions, the grid would be
initially refined to pick up the boundaries to our satisfaction.
Subsequently, one can refine the grid as required by the solution.

Stacking Two-dimensional grids. Let us consider the
simple case of a cylinder. We can generate the grid on the
circular face of the cylinder using any of the techniques that we
have seen so far. Figure 6.15 is would do quite nicely. This grid
provides us with (xi, yj) in a circular region for a 7× 7 grid. If
the length of the cylinder is L, and we want n grid points uni-
formly along the length, we need to define zk = k ∗ L/(n− 1).
The grid (xi, yj, zk) then discretises the cylindrical volume.

Figure 6.32. A 7 × 7 elliptic grid generated in a unit cir-
cle in the xy plane is scaled and stacked along the helix
(0.2t, 0.1 cos t, 0.1 sin t) to generate a three-dimensional
grid in a helical tube. There are twenty eight grid planes
stacked along the helix

Figure 6.33. A 7 × 7 elliptic grid generated in a unit cir-
cle in the xy plane is scaled and stacked along the helix
(0.2t, 0.1 cos t, 0.1 sin t) to generate a three-dimensional
grid in a helical tube. There are twenty eight grid planes
stacked along the helix. Only grids on the inlet, exit, bot-
tom, and side coordinate surfaces are shown for clarity

Now we can extend this further. Consider a situation where
the axis of the cylinder is some space curve, say a helix. In
this case, at any point along the helix, the Frenet-Serret triad
are known. The grid plane that we have generated needs to be
translated to that point and rotated so that the normal to the
plane being stacked is along the tangent at that point. Whether
the orientation of the grid plane is rotated in plane to account
for the torsion really depends on the user. Grids generated in this

fashion are shown in Figures 6.32, 6.33, 6.35, and 6.36. Figure
6.35 uses a curve with no torsion, resulting in the quarter of a
torus. A full torus is show in Figure 6.36.

Now consider a different extension of the same cylinder prob-
lem. The cylindrical surface of the cylinder is a surface of revo-
lution. How would we handle other objects of revolution. One
way would be to generate the grid as done before on a circle
and the grid is stacked, it can also be scaled. This would also
work for a conical nozzle as shown in Figure 6.34. In this case,

Figure 6.34. A 7 × 7 elliptic grid generated in a unit circle
in the xy plane is scaled and stacked in the z-direction to
generate a three-dimensional grid in a converging conical
nozzle. There are five grid planes along the z-axis. Only
grids on the inlet, exit, bottom, top, and back faces are
shown for clarity

not only do we stack the grid along the z-coordinate direction,
we also scale the grid down to match the nozzle dimensions.

Figure 6.35. A 7 × 7 elliptic grid generated in a unit circle
in the xy plane is scaled and stacked in the θ-direction to
generate a three-dimensional grid in a torus. A quarter of
the torus is shown. There are seven grid planes along the θ-
axis. Only grids on the inlet, exit, and boundaries are shown
for clarity

The other possibility is to generate a grid between the gen-
erating curve for the surface of revolution and the axis about
which it is revolved. This is a two dimensional grid. This grid
can now be stacked in appropriate intervals in the θ-direction.
That is the grid can be revolved about the axis so as to fill the
volume.

Figure 6.36. A 7 × 7 elliptic grid generated in a unit circle
in the xy plane is stacked along a circle to generate a three
dimensional grid in a full torus. The 7 × 7 grid is shown.
Grids are also shown on the bottom and back faces for clarity.

Hybrid Grids

An obvious example of a hybrid grid is an unstructured grid
stacked in the third direction. Here, the hybridness came re-
ally from the convenience of the stacking. However, there may
be other reasons and other mechanisms by which we generate
hybrid grids.

All the grids that we have generated so far have advantages
and disadvantages. The idea is to use the right tool for a given

job. Once we accept that we see the possibility of using dif-
ferent kinds of grids in different regions. In boundary layers,
for instance, we need grids with large aspect ratio. We want
long thing grids aligned with the flow direction, which is aligned
to the boundary. In such cases, triangles are not very good.
It is better to use quadrilaterals. On the other hand, a struc-
tured grid is difficult to use around complex geometries. For
instance, if one used the Rivara’s algorithm to refine the grid
in a boundary layer, one would halve the characteristic size in
the flow direction, every time one halved the direction in the
transverse direction. This results in a very rapid increase in the
number of grids that are required. On the other hand if one
had a structured grid near the surface, the grid can very easily
be stretched perpendicular to the wall and left alone parallel to
the wall. The grid in the general case can be generated us-
ing a hyperbolic/parabolic grid generator. This then provides
the boundary on which a conforming unstructured mesh can be
generated. Now, the grids in the boundary layer can truly be
refined and stretched as required.

Overset grids

There are lots of situations where we may just decide to
create grids around various parts of the domain separately. In
the process, we attempt to stitch the various grids together
having generated them in a fashion that they conform to the
geometries around them and each other.

The other option is to abandon the attempt to have the
grids conform to each other and just focus on what the grid is

Figure 6.37. A two-dimensional hybrid grid made up of a
structured quadrilateral mesh and an unstructured conform-
ing triangular mesh

meant to do. This of course will result in an overlap of grids.
The following two points need to be borne in mind.

(1) Always solve the governing equations on the finest of
the overlapping grids

(2) Interpolate to get the data on the other grids
(3) Transfer of data from one grid to the other needs to

conform to the propagation due to the underlying flow.

Let us consider an example where this may work well. Con-
sider the the flow over any rotating machinery, a helicopter for
example. One could consider the possibility that a grid is gen-
erated about the helicopter and that another grid is generated
about each of the blades of the helicopter main rotor. Now,
the grid around a blade is likely to be completely embedded in
the grid about the fuselage. This has the advantage that the
fuselage grid is generated to conform to the needs of the flow

about the fuselage. The rotor can independently rotate, the
blades can go through a flapping motion or a lead lag motion
with the blade grid following the motion and conforming to the
blade surface.

It is clear that transferring data from one grid to another
is the most important piece of technology required. This can
be achieved again by generating the appropriate unstructured
Cartesian mesh to find out for a given point in the coarse grid,
which are all the grid points on the fine grid that are likely to
contribute to the value on the coarse grid. Once these points
are identified, the data can appropriately transfered.

Important ideas from this chapter

• The finite volume method derives directly from the con-
servation equations derived in integral form.

• The accurate evaluation of the flux at the boundary
determines the quality of the solution that we obtain.

• Boundary conditions can be applied either directly as
conditions on the flux, or by employing ghost volumes.

• Unstructured grids are easy to generate about complex
geometries.

• Structured grids work well in simple geometries. One
could decompose a complex geometry into many simple
geometries and employ a structured grid.

• Structured grids tend to be better in capturing flow
features near boundaries. A hybrid grid consisting of a
structured grid near the boundary and an unstructured
grid elsewhere often may be a better solution rather
than using an unstructured grid everywhere.

• The preceding two points essentially partition the do-
main. Once a decision is made to partition the domain,
one can consider different ways to do it. Overset grids
are easy to generate, require a little effort to use. They
can easily handle moving/deforming geometries.

Advanced Topics

This chapter is a combination of many topics. Each topic
is worthy of a book in its own right. Such books are avail-
able. Given that the philosophy of this book is to give you the
essential elements of CFD, these topics are grouped together
here. The chapter is essentially in three parts. The first two
sections deal with a different view and techniques for solving
our equations. The second part focuses on various acceleration
techniques. Finally we will close this chapter with a look at
some special techniques to solve unsteady problems.

Most of the material presented so far has been based on
finite difference methods and finite volume methods. The finite
volume method essentially solves the integral form of the con-
servation equations. We will look at other techniques to do the
same.

Variational Techniques

Variational methods form the basis of much more specialised
and popular class of methods called finite element methods(FEM).
I am not going to dwell on FEM here since there is a whole
machinery of jargon and techniques that have been developed
over the years. However, this section on variational techniques
should lay the foundation for any future study of FEM pursued
by you.

Three Lemmas and a Theorem. [GF82] As the section
title indicates, we are going to look at three Lemma’s that will
allow us to derive the Euler-Lagrange equation.

Here is the motivation for the mathematics that follows.
Let’s say that you wanted to find out whether the route you
normally take from the library to your class room is the shortest
path. You could perturb the current path to see if the length
decreases. The change h(x) that you make to the path y(x) has
to ensure that the new path y(x) + h(x) starts at the library
and arrives at your classroom. So we see that h(library) =
h(class room) = 0. Since you are not likely to teleport from
one point to another point, the path needs to be a continuous
path. If we identify the library as “a” and the class room as
“b” then we are looking for the shortest continuous path from
amongst all the continuous paths going from “a” to “b”. We
will call the set containing all these paths as C[a, b]. We can
go further and define the subset of C[a, b] which has zero end
points as C0[a, b]

The first Lemma: For α(x), a continuous function on the
interval [a, b], that is α(x) ∈ C[a, b] if we can say that

(7.1)

∫ b

a

α(x)h(x)dx = 0

for any h(x) which is continuous and h(a) = h(b) = 0, that is
h(x) ∈ C0[a, b] then

(7.2) α(x) = 0

How can we prove this to be true? Can we find an α(x) ∈
C[a, b] which satisfies (7.1) but is not zero? Let us assume we
managed to find such an α(x). Now this α(x) must be non-zero

for some value of x, say it is positive. In that case since it is
continuous it must be positive in a neighbourhood say (x1, x2).
Since (7.1) is supposed to work with all h(x) we need only find
one case where it fails. Consider the function

h(x) = (x− x1)(x2 − x) for x ∈ (x1, x2)(7.3)

= 0 otherwise(7.4)

We see immediately that
∫ b

a

α(x)h(x)dx =

∫ x2

x1

α(x)(x− x1)(x2 − x)dx > 0

which contradicts the assertion that the integral is zero. So, the
α(x) could not have been non-zero as we imagined. We could
have chosen h(x) to be a hat function on the interval [x1, x2]
taking unit value at the midpoint of that interval.

Just as we had the set of functions that were continuous
labelled C[a, b], we call the set of functions that have continuous
derivatives as C1[a, b] and if we have a function which is zero
at the end points that belongs to C1[a, b], we say it belongs to
C1

0 [a, b].
The second Lemma: For α(x) ∈ C[a, b] if we have

(7.5)

∫ b

a

α(x)h′(x)dx = 0

for any h(x) ∈ C1
0 [a, b] then

(7.6) α(x) = constant

How can we prove this to be true? Can we find an α(x) ∈
C[a, b] which satisfies (7.5) but is not a constant? Let us assume
we managed to find such an α(x). What worked effectively

last time was to find an h(x) that violated the given integral
condition. We need to construct such an h(x). Let us first
define a constant c as

(7.7) c =
1

b− a

∫ b

a

α(ξ)dξ

or more useful to us would be to take the c into the integral
and write it as

(7.8)

∫ b

a

(α(ξ)− c)dξ = 0

We are essentially taking c to be the mean value of α(x) on the
interval [a, b]. We then define our h(x) to be

(7.9) h(x) =

∫ x

a

(α(ξ)− c)dξ

What we have achieved is that h(a) = h(b) = 0 and the deriv-
ative h′(x) exists! We now look at the integral.
(7.10)
∫ b

a

(α(x)− c)h′(x)dx =

∫ b

a

α(x)h′(x)dx

︸ ︷︷ ︸

(7.5)

−c
∫ b

a

h′(x)dx = 0

on the other hand

(7.11)

∫ b

a

(α(x)− c)h′(x)dx =

∫ b

a

(α(x)− c)2dx

which according to equation (7.10) is zero. This is possible only
if α(x) = c

Our Third Lemma: For α(x) ∈ C[a, b] and β(x) ∈ C[a, b]
if we have

(7.12)

∫ b

a

(α(x)h(x) + β(x)h′(x)) dx = 0

for any h(x) ∈ C1
0 [a, b] then β is differentiable and

(7.13) β′(x) = α(x)

We take a cue from equation (7.13). Define

(7.14) A(x) =

∫ x

a

α(ξ)dξ

Then applying integration by parts to

(7.15)

∫ b

a

α(ξ)h(ξ)dξ = A(ξ)h(ξ)|ba −
∫ b

a

A(ξ)h′(ξ)dξ

Since h(a) = h(b) = 0, the first term on the right hand side of
equation (7.15) is zero. Substituting back into equation (7.12)
we get

(7.16)

∫ b

a

(−A(x) + β(x))h′(x)dx = 0

We know from our last lemma that this means

(7.17) − A(x) + β(x) = constant ⇒ β′(x) = α(x)

Finally, given a function

(7.18) J(y) =

∫ b

a

F (x, y, y′)dx

We would like to find its extremum. If we consider a perturba-
tion h on y we get

(7.19) J(y + h) =

∫ b

a

F (x, y + h, y′ + h′)dx

The difference between the two would be

(7.20)

J(y+h)−J(y) =
∫ b

a

F (x, y+h, y′+h′)dx−
∫ b

a

F (x, y, y′)dx

=

∫ b

a

(F (x, y + h, y′ + h′)− F (x, y, y′)) dx

Well we have the difference now. Remembering that a de-
rivative consists of a linear transformation and a direction, we
see that we already have the “direction” in which the derivative
is being taken, namely h. We need to obtain the linear trans-
formation. For this reason we will expand F (x, y + h, y′ + h′)
using Taylor’s series and only retain the linear terms. We get

(7.21)

δJ(y) =

∫ b

a

(

F (x, y, y′) +
∂F

∂y
h+

∂F

∂y′
h′ − F (x, y, y′)

)

dx

So, if y were an extremum, then δJ(y) would be zero for
any perturbation h. We immediately see that the last lemma is
applicable and as a consequence ∂F/∂y′ is differentiable with
respect to x and that

(7.22)
∂

∂x

∂F

∂y′
=
∂F

∂y

This is called the Euler-Lagrange equation. So how do we
use it? Consider the following problem. In two dimensions, we
want to find the shortest path between two points A and B as
shown in the Figure 7.1.

Y

X

A

B

Figure 7.1. What is the shortest path between A and B?

So what is the length of the path that is shown in the figure.
From calculus we know that the length of the curve y(x) from
x = a to x = b is given by

(7.23) J(y) =

∫ b

a

√

1 + y′2dx

We want to find the path, y(x), which has the shortest length.
We need to find the Euler-Lagrange equation for equation (7.23)

(7.24) F (x, y, y′) =
√

1 + y′2; Fy = 0, Fy′ =
y′

√

1 + y′2

so,
(7.25)

d

dx

{

y′
√

1 + y′2

}

= 0 ⇒ y′
√

1 + y′2
= c⇒ y′2 = c(1 + y′2)

If we were to integrate the equation from x = a to x we get

(7.26)
y′

√

1 + y′2

∣
∣
∣
∣
∣

x

a

= 0 ⇒ y′
√

1 + y′2
=

y′(a)
√

1 + y′2(a)

squaring both sides and subtracting one from both sides we get

(7.27)
−1

√

1 + y′2
=

−1
√

1 + y′2(a)
⇒ y′(x) = y′(a)

Which tells us that the slope of the curve is a constant along
the curve which gives us a straight line. In fact, integrating one
more time from a to x we get

(7.28) y(x) = y′(a)[x− a] + y(a)

Consider the problem of the shortest distance between two
points on the surface of a sphere of radius R. Without loss of
generality we can assume that the radius of the sphere R is one.
The coordinate map on the sphere can be taken in terms of θ
and φ which are the standard coordinates used in the spherical
polar coordinate system. Since we are given two points on the
sphere, taken along with the origin this gives us three distinct

points in space through which we can find a unique plane. We
will align our coordinate system so that the φ value of the two
points is the same. That is the x − z plane of our coordinate
system passes through these points. The x − z plane can be
placed in such a fashion that the z-axis passes through the initial
point and consequently θ of the start point is zero. The initial
and final points have coordinates (0, 0) and (θf , 0). The length
of a differential line element on the surface of the sphere can
be obtained as

(7.29) ds2 = dθ2 + sin2 θdφ2

So, the length of the curve from θi to θf is given by

(7.30) L(φ) =

∫ θf

0

√

1 + (φ′)2 sin2 θdθ

where φ′ indicates differentiation with respect to θ. We want
a φ(θ) which gives us the minimum L(φ). The Euler-Lagrange
equation corresponding to this problem is

(7.31)
d

dθ







φ′

√

1 + (φ′)2 sin2 θ






= 0

Integrating with respect to θ once we get

(7.32)
φ′

√

1 + (φ′)2 sin2 θ
=

φ′

√

1 + (φ′)2 sin2 θ

∣
∣
∣
∣
∣
∣
0

= φ′(0) = c

Rearranging terms and integrating one more time with respect
to θ we get

(7.33) φ(θ) = φ(0) +

∫ θ

0

c

√

1 + (φ′)2 sin2 θ dθ

At this point we do not need to evaluate the integral. We
know that φ(0) = φ(θf). So the above equation gives when
integrating to θf

(7.34)

∫ θf

0

c

√

1 + (φ′)2 sin2 θ dθ = 0

Now, c is a constant, the rest of the integrand is always positive.
This leaves us with a situation where equation (7.34) is satisfied
only when c = 0. This tells us that φ(θ) = φ(0). The shortest
distance between two points is a segment of a great circle on
the surface of the sphere passing between those points.

This is all very nice. How do we solve differential equa-
tions using these methods? Look at the variational problem of
minimising

(7.35) J(u) =
1

2

∫ b

a

u2xdx

with u(a) = ua and u(b) = ub. The Euler-Lagrange equation
for this is given by

(7.36) uxx = 0

with the boundary conditions with u(a) = ua and u(b) = ub.

This is the essential point of this section.

We have two different but related mathe-

matical models for the same problem.

We are then free to choose which of these two mathematical
models we use to obtain the solution. The variational problem
does not seek a solution which has second derivatives, however
we do have the minimisation to perform. The differential equa-
tion on the other hand has its own set of problems as we have
seen so far and requires that the solution have second derivatives
in this case. Let us look at how we would solve the variational
problem numerically.

If we represent the solution in terms of the hat functions
from chapter 2.2.7, we can write it as

(7.37) u =
N∑

i=0

uiNi

The derivative of u is given by

(7.38) u′ =
N∑

i=0

uiN
′
i

where the prime denotes differentiation with respect to x. We
see that the integral in equation (7.35) can be interpreted as
the dot product. So, this equation can be rewritten as

(7.39) Jh(u) =
1

2
〈u′, u′〉 = 1

2

〈
N∑

i=0

uiN
′
i ,

N∑

j=0

ujN
′
j

〉

The superscript h on the J is to indicate it is a discrete version
of the one given in equation (7.35). If we assume that we are
going to take grid points at equal intervals h apart, we can then
get an expression for the derivative of the hat function. The
hat function centred about the point i is given by
(7.40)

Ni(x) =







0 x ≤ xi−1

x− xi−1

xi − xi−1

=
x− xi−1

h
x ∈ (xi−1, xi]

x− xi+1

xi − xi+ 1
= −x− xi+1

h
x ∈ (xi, xi+1]

0 x > xi+1

Now, the derivative is found to be

(7.41) Ni(x)
′ =







0 x < xi−1

1

h
x ∈ (xi−1, xi)

−1

h
x ∈ (xi, xi+1)

0 x > xi+1

This is nothing but the Haar function. We can now find the
dot product between these functions. It is clear that the only
non-zero terms for the dot product are going to be for the terms

corresponding to j = i− 1, j = i, and j = i+ 1.

(7.42) 〈Ni(x)
′, Nj(x)

′〉 =







0 j < i− 1

−1

h
j = i− 1

2

h
j = i

−1

h
j = i+ 1

0 j > i+ 1

Substituting back into equation (7.39) we get

(7.43) Jh(u) =
u2a
2h

+
u2b
2h

+
1

2h

N−1∑

i=1

{
−uiui−1 + 2u2i − uiui+1

}

To find the extremum of this functional we differentiate it and
set it equal to zero. Differentiating equation (7.43) with respect
to uj we get

(7.44)
∂

∂uj
Jh(u) =

N−1∑

i=1

1

2h

[

−ui−1
∂ui
∂uj

− ui
∂ui−1

∂uj
+ 4ui

∂ui
∂uj

−ui+1
∂ui
∂uj

− ui
∂ui+1

∂uj

]

= 0,

The five terms in the expression on the right hand side of
this equation are non-zero for a specific value of i for each of
those terms. Meaning, this is not the time to factor and simplify

the expression. We need to inspect each one and determine the
value of i in terms of j so that the derivative is non-zero. We
do this below.

i− 1 = j ⇒ i = j + 1 i+ 1 = j ⇒ i = j − 1

(7.45)
1

2h

[

−ui−1
∂ui
∂uj

− ui
∂ui−1

∂uj
+ 4ui

∂ui
∂uj

− ui+1
∂ui
∂uj

− ui
∂ui+1

∂uj

]

i = j ⇒ i− 1 = j − 1 i = j i+ 1 = j + 1

(7.46)
∂

∂uj
Jh(u) =

1

2h
{−2uj−1 + 4uj − 2uj+1} = 0, j = 1, ..., N−1

This gives us a tri-diagonal system of equations that we iden-
tify as the finite difference discretisation to the one-dimensional
Laplace’s equation.

In fact, we can derive this directly from the variational prob-
lem by substituting for the derivative of u with a one sided dif-
ferences and employ rectangle rule to the job of approximating
the integral. In that case we can rewrite equation (7.35) as

(7.47) Jh(u) =
N∑

i=1

{
ui − ui−1

h

}2

h

Again in order to get the extremum we differentiate equation
(7.47) with respect to ui and set the resulting expression to

zero.

(7.48)
∂

∂ui
Jh(u) = 2

ui − ui−1

h
− 2

ui+1 − ui
h

=
−2ui−1 + 4ui − 2ui+1

h
= 0

Again, we see that we get the same answer. The advantage
of doing it with the hat functions as a basis and going through
whole process is that we know that we are using linear inter-
polants and have an idea as to how our function is represented.
We now know that just using finite differences in this case in-
volves the use of linear interpolants.

How does this method of using hat functions work if we had
a forcing function / source term on the right hand side? That
is, the equation that we want to solve is given by

(7.49) uxx = p(x), u(a) = ua, u(b) = ub

The variational problem corresponding to this is given by

(7.50) J(u) =

∫ b

a

(
1

2
u2x + pu

)

dx

to be extremised with u(a) = ua and u(b) = ub. How did we get
this? Is it correct? The second question actually answers the
first. The process we use is exactly like that of integration, we
guess and check whether the answer is correct or not. Earlier we
had written u in terms of the hat function. In a similar fashion
we need to project p on to the hat functions so that we can

write it as

(7.51) p =
N∑

i=0

piNi

Again the discrete version of the variational problem becomes
(7.52)

Jh(u) =
1

2

〈
N∑

i=0

uiN
′
i ,

N∑

j=0

ujN
′
j

〉

+

〈
N∑

i=0

piNi,
N∑

j=0

ujNj

〉

We have a new set of terms here from the pu term.

(7.53) 〈Ni(x), Nj(x)〉 =







0 j < i− 1

h

6
j = i− 1

2h

3
j = i

h

6
j = i+ 1

0 j > i+ 1

We differentiate the discrete functional with respect to ui and
set it equal to zero.

(7.54)
∂

∂ui
Jh(u) =

1

2h
{−2ui−1 + 4ui − 2ui+1}

+ h
pi−1 + 4pi + pi+1

6
= 0, i = 1, ..., N − 1

This gives us on simplification
(7.55)
−ui−1 + 2ui − ui+1

h2
+
pi−1 + 4pi + pi+1

6
= 0, i = 1, ..., N−1

Interestingly, we see that the function p is also averaged over
three neighbouring points. This term appears because the in-
tegrals which have a ui in them correspond to pi−1 with a part
overlap, pi with a full overlap and pi+1 with a part overlap.

Assignment 7.1

(1) Since the problem stated equation (7.39) is in one spa-
tial dimension, another way to determine the functional
Jh is to actually enumerate the inner product term by
term. Show that it can also be written as

Jh(u) =
u2a
2h

− u2b
2h

+
1

h

N∑

i=1

u2i − uiui−1

Representing Functions revisited. We can employ linear
interpolants on a grid without enforcing continuity of the func-
tion representation as done in the case of the hat function. We
could use the original basis from which the hat functions were
constructed and ask the question which is the best straight line
on this interval to approximate the given function.

On the interval (xi, xi+1) if we look at the function given by
equation (2.64) and rewrite it here in a slightly different form

as
(7.56)
f(x; ai, bi) = aiαi(x)+bi (1− αi(x)) = (ai−bi)αi(x)+bi, for x ∈

where the “;” indicates that the actual function depends on the
choice of ai and bi. Now, if we want to represent some function
F (x) on the interval (xi, xi+1) we can pick some ai, bi pair to
get a linear representation on that interval. The error in the
representation would be

(7.57) E(ai, bi) =

√
∫ xi+1

xi

(F (x)− f(x, ai, bi))
2 dx

We need to find the pair ai, bi for which this error is minimised.
It should be noted here that we are not going to insist that
the representation is continuous at the end points just like in
the box functions and the Haar functions. This allows us to
solve for one interval without bothering about the neighbouring
intervals. So to get the ai, bi pair we differentiate equation
(7.57) with respect to ai and set the derivative to zero and
repeat the process with bi. This will give us two equations in
two unknowns which we solve for the ai and bi.

I used the package wxmaxima to perform the symbolic inte-
gration and differentiation to find the general expression for ai
and bi for F (x) = sin x. I obtained the following expressions.
(7.58)

ai = −6 (sin xi+1 − sin xi)− 2dxi (cos xi+1 + 2 cos xi)

dx2i

and

(7.59) bi =
6 (sin xi+1 − sin xi)− 2dxi (2 cos xi+1 + cos xi)

dx2i

where, dxi = xi+1 − xi.
1 We use eleven grid points as we did

earlier and graph these line segments in Figure 7.2 to see what
the representation look like. This representation looks quite

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

x)

Figure 7.2. An approximation for sinx using ten optimal
straight line segments

good. It is shown in the same scale as the graphs in section
2.9. It almost looks as though the lines segments meet and
that the representation is continuous everywhere. This is not
really so. We look at a zoomed in view of the above graph at
the point x = π. This is shown in Figure 7.3. We can clearly
see the jump in the representation. What do we do at the point
where the jump occurs? Take the average of the two values.
We can do this for the function and the derivative at the nodal
points.

1I want to point this out just as a curiosity. If you squint at the expression for ai and bi can you

see something that looks like the finite difference approximation to the second derivative of sinx?

3.1 3.15 3.2
x

-0.05

0

0.05
si

n(
x)

Figure 7.3. Zoomed view near x = π of the approximation
for sinx using ten optimal straight line segments. Note the
jump in the representation at x = π.

In fact the general expression for sinnx turns out to be (
thanks again to wxmaxima, though in view of the footnote we
could have actually guessed this expression given the one for
sin x.)
(7.60)

ai = −6 (sinnxi+1 − sinnxi)− 2ndxi (cosnxi+1 + 2 cosnxi)

n2dx2i

and
(7.61)

bi =
6 (sinnxi+1 − sinnxi)− 2ndxi (2 cosnxi+1 + cosnxi)

n2dx2i

Assignment 7.2

(1) As we did in section 2.9, plot these graph for various
values of the wave number n.

(2) Find this kind of a representation for F (x) = x2 on
the interval [−1, 1]. How does that compare to the
representation employing hat functions.

(3) Repeat this process for a cubic, that is for F (x) = x3.
Check the values at the nodes. What can you conclude?

(4) Repeat the exercise with a different number of intervals.
How about eleven intervals?

I have included plots for four cases of n = 5, 10, 11, 12 here
from the first question in the assignment. We are looking at
these cases since we expect the representation to be poor for
these cases. You can look at these graphs and compare them

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

5x
)

Figure 7.4. Representation of sin 5x

to the ones we plotted using hat functions. In the case of the
hat functions we lost all information regarding frequency and
amplitude for the sin 5x case (see Figure 2.21). Here, the am-
plitude is off, however, the frequency is the same, meaning we
are able recover the fact that the wave number was five. This is
so even for the sin 10x case. How are we able to get the correct
information on the frequency all the way up to wave number

n = 10 with ten intervals? Actually we are using 22 ai and
bi values and that is the reason why we can capture frequency
information to such a high wave number. If we are interested

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

10
x)

Figure 7.5. Representation of sin 10x

only in the frequency content and not the amplitudes we can
use ten intervals to go to a wave number ten. However, in
CFD, we are very often interested in an accurate reconstruction
of the function. In that case we really want to use at least 40
intervals in the smallest wavelength to be able to reconstruct
the function with some semblance of fidelity. One of the easiest
ways to ensure that you have enough grid points is to double
the number of grid points and see if the solution changes signif-
icantly. The two Figures 7.6 and 7.7 are given here just to show
the degeneration in the representation if the grid is too coarse.
There is loss of both amplitude and frequency information in
these two cases.

It would be fair to assume at this point that if we were
to come up with a variational formulation with this linear ba-
sis function for our gas dynamical equations we could pick up

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1
si

n(
11

x)

Figure 7.6. Representation of sin 11x

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

si
n(

12
x)

Figure 7.7. Representation of sin 12x

shocks quite easily since the set of basis functions already allow
for jumps to occur in the solution.

We have so far seen problems in one independent variable.
In the next section we will look at problems in which we have
more than on independent variable.

Extension To Two Dimensional Problems. Can we, by
observation extend the Euler-Lagrange equation to a case of two
independent variable (x, y) and a dependent variable u(x, y)?
The variational problem in two spatial dimensions would be

stated as follows

(7.62) J(u) =

∫

A

F (x, y, u, ux, uy)dA.

where ux and uy are derivative of u with respect to x and y,
A is the region over which the integration is performed. The
corresponding Euler-Lagrange equation would be something like
this

(7.63)
∂

∂x

∂F

∂ux
+

∂

∂y

∂F

∂uy
=
∂F

∂u

See if you can derive it by just following the earlier derivation.
Let us consider an application, given the functional

(7.64) J(u) =
1

2

∫

A

(u2x + u2y)dA

We see that the Euler-Lagrange equation is nothing but the
Laplace’s equation. Try it. We can define hat functions in two
dimensions and in fact in multiple dimensions in exactly the
same manner in which we derived them in one dimension. We
define the hat function at a grid point as taking a value one
at that grid point and dropping off to zero toward the adjacent
grid points and the edges connecting those grid points.

We have seen that quite often, problems have a differential
representation, an integral representation or a variational rep-
resentation. Now looking at the example above for Laplace’s
equation it may not be obvious that one representation is better
than the other. The example is chosen simply to demonstrate
that there are various ways of representing the same problem.
We will now consider a different problem which is initially posed

as a variational problem and we subsequently derive the partial
differential equation

The Soap Film Problem. This problem is also called the
Plateau problem. Simply, it is this. If we loop a wire around
and immerse it into soap water so that on removing it from the
water a film of soap is formed on loop, what is the shape of
the soap film. Again, it is clear that we are seeking a function
which satisfies certain boundary conditions. Namely the film is
supported by the loop. There are many functions that satisfy
this requirement. We look for the one which has the minimum
area and for a thin film this turns out to be a minimum energy
state. If D defines the region enclosed by the look we as that

(7.65) J(u) =

∫

D

√

1 + u2x + u2ydA,

where dA is a differential area element at the point (x, y) ∈ D.
We need to find u so that J(u) is minimum. If we were to find
the corresponding Euler-Lagrange equation (I would suggest
that you verify it) we get the equation

(7.66)
(
1 + u2y

)
uxx − 2uxuyuxy +

(
1 + u2x

)
uyy = 0

with u = f(x, y), with (x, y) on the boundary of D as the
boundary condition. In this case, posing the problem as a vari-
ational problem definitely looks more attractive then the corre-
sponding partial differential equation.

Random Walk

The idea of random walk will first be introduced in an intu-
itive fashion[Fel68]. We will start with a probabilistic view of a
game played by two gamblers. Let us say that two gambler’s,
A & B, start playing a game. Let us say at the beginning they
have 100 chips between them [a chip is a unit of currency].
One of them, A, has x chips the other, B, has 100 − x chips.
The game played by the gamblers goes in steps called “rounds”.
At the end of each round one of them gains a chip which the
other loses. So clearly, we need only look at A, the gambler
with x chips. We can infer the fate of B from the story of A.

So, our gambler has x chips. What is the probability that A
is ruined? Let us call this probability qx. The game may not be
a fair game, B may be cheating. Let us say that the probability
that A wins a round is p and the probability of a loss is q. Then,
given x chips, the probability that A will have x+1 chips at the
end of a round is p and the probability that A will have x − 1
chips at the end of the same round is q.

Therefore, the probability of ruin with x chips can be written
as

(7.67) qx = qqx−1 + pqx+1

That is there is a probability q that A will end up with x − 1
chips and the probability of ruin with x− 1 chips is, of course,
qx−1. Similarly, with a probability p, A will have x + 1 chips
given that A has x chips before the round and the probability
of ruin with x+ 1 chips is qx+1. Note that here, p+ q = 1.

This equation is valid for all values of x except for x = 0
and x = 100. In the first case A is ruined and hence q0 = 1.

In the second case B has been ruined and the probability of A’s
ruin is zero. That is q100 = 0. So, given p and q one can find
the probability of ruin for x = 1 to x = 99 by iterating on the
equations given by (7.67) When it has converged, we will have
the qx for all the x’s.

Take a good look at equation (7.67), with p = q = 1/2.
We see that it becomes

(7.68) qx =
qx−1 + qx+1

2

It is possible to use the prescribed boundary conditions to
iterate this equation to get the probability distribution q(x).
The iterates are related by

(7.69) qnx =
qn−1
x−1 + qn−1

x+1

2

subtracting qn−1
x from both sides we get

(7.70) qnx − qn−1
x =

qn−1
x−1 − 2qn−1

x + qn−1
x+1

2

Which is nothing but our solution to the one-dimensional
Laplace equation or the heat equation. So, it looks like we
could some how use this problem of the ruin of a gambler to
study the solution to the heat equation.

Since we need to generate a random sequence of +1 and
−1, we will take a small detour, and look at how to write a
simple random number generator.

Random Number Generators.

The generation of random numbers is too impor-
tant to be left to chance - Anonymous

We will look at how we can generate a sequence of random
numbers[Knu81]. You could also look to use a built in random
number generator, however, you really should check how good it
is. One has to remember that we are usually generating pseudo
random numbers. That is, they are not truly random. In fact
from the point of view of debugging a program that employs a
random number generator, we would like the numbers to be the
same sequence each time we run the code. Otherwise, we would
not be able to figure out whether the change in the program
behaviour was due to a change that we have performed or due
to the random number generator.

Most random number generators will take an initial “seed”
number and generate a sequence of numbers. The sequence
generated is determined by the seed. If one were to change the
seed the sequence would change. Since we are dealing with a
finite number of digits, it is clear that numbers will eventually
start to repeat. We typically want the size of this loop to be as
large as possible.

Doing the Random Walk. Now that we know how to
generate random numbers. How do we have a go at solving the
ruin problem? Here is one way to do it. We can create one
hundred and one bins. We put one hundred marbles in the first
bin and none in the others. Each marble represents a player. As
we have seen earlier, each player plays a round with someone

who need not be shown in the bins, since if our player is ruined
the other player wins and vice-versa.

The recipe for the solution is quite simple. Any player in a
bin tosses a fair coin, p = q = 0.5. If the player wins he moves
to the right. If the player looses he is out of the game. We top
off the first bin to maintain a hundred players there.

Any player who ends up in the bin at the far right is removed
as a victor from the game. You can now run this simulation and
see what happens to the players as a function of time and how
many players there are in each bin.

• for each marble in a bin generate a random number
which has two possible states:(+,−). If it is a plus
move the chip into the bin on the right. If it is a minus
move the chip to the left. The chips in the first bin do
not move left and the chips in the last bin do not move
to the right.

• make sure there are 100 chips in the first bin and zero
in the last.

This process can be repeated.

Assignment 7.3 Implement the above algorithm. How does
the solution evolve? What happens if you generate ten solutions
with ten different seeds and then take the average of the ten
solutions to get one solution. Try this for 4, 16, 64 sets of
solution. What can you say about the quality of the solution?
If you let the solution evolve by a hundred time steps. What
does the average of the last ten steps look like. Do this for the
average solution obtained earlier.

Stochastic Differential Equations. Stochastic differen-
tial equation occur in various field. In the applied disciplines,
this is most probably encountered for the first time through ki-
netic theory of gases and the billiard ball model. However, the
sole objective there is not to solve for the motion of the individ-
ual molecules, the stochastic differential equation would have
never really been stated. Here is a simple stochastic differential
equation.

(7.71) df = µdt+ σdz

Here, µdt is called the drift term. σ2dt is the variance. To
ascribe some physical meaning to these terms, the first term
has a µ in it which is basically the mean velocity of the flow
and the second term is usually captured by temperature in gas
dynamics.

Assignment 7.4

Do the following.

(1) Generate random numbers that are normally distributed
with mean zero and variance one, that is N(0, 1).

(2) These random numbers that you generate at each time
step are the dz values. Use these dz values along with
the drift term to integrate the stochastic differential
equation (7.71). Use the Euler explicit scheme for the
deterministic part. The resulting scheme is called the
Euler scheme for the stochastic differential equation.
For one set of random number you generate one path.
You can repeat this trial many times.

(3) Plot a few sample paths and see what they look like.
What is the expectation of these paths?

0 20 40 60 80 100
Time t

-30

-20

-10

0

10

20

30

Figure 7.8. Ten paths with µ = 0 and σ = 1 obtained by
integrating equation (7.71) over a hundred time steps using
the explicit Euler’s scheme and a ∆t = 1

It is also important to see the relationship between the solu-
tion to the heat equation and this random process. Any bin in
the heat equation solution contains chips corresponding to the
number of paths that pass through that bin at that time.

Multi-grid techniques

Multi grid schemes, somehow, are not as popular as they
should be. An excellent start can be made by reading Briggs[Bri87].
Let’s look at a simple introduction to the multi grid technique.

The basic objective of the multi-grid scheme is to accelerate
a given numerical method. We saw earlier that we could get an
improvement in convergence by employing the successive over
relaxation scheme. However, we also saw that there was a short
coming, in the sense that one had to perform an exploratory
study to obtain the optimal relaxation parameter and that as
the grid became finer the relaxation parameter got closer to 2.0
rendering the scheme less useful. Here accelerated convergence
is obtained using a multiplicity of grids rather than just one grid.

Why use multiple grids to solve the same problem? High
frequency is defined with reference to the grid. A function is said
to have high frequency content if it is composed of frequencies
comparable to the highest frequency that can be represented
on that grid. As was seen in the earlier demonstration, for a
given grid, high frequencies are damped out faster than low
frequency. This is especially true if some kind of smoothing is
involved either in the process represented by the equation being
solved or the smoothing is done deliberately to eliminate the
high frequency component of the function.

These two features are used to develop the multi grid method.
We will use the Laplace equation on a unit square as an example.

We have seen that the Laplace equation on a unit square
when dicretised results in a system of equations given by

(7.72) Ahφh = fh

where the superscript “h” indicates the grid size. Remember
now, that if we solve the equation and obtain a φh, it show
satisfy the equation (7.72) and approximate the solution to the
Laplace equation.

In the process of trying to obtain φh, we have a candidate
approximation Φh. Now this candidate solution to equation
(7.72) differs from the actual solution. This difference is defined
simply as

(7.73) eh = φh − Φh

Here eh is also called the correction as we can obtain φh

from Φh as follows

(7.74) φh = Φh + eh

As is usually done, we define the residual for equation (7.72) as

(7.75) rh = fh − AhΦh

Multiplying equation (7.73) by Ah we get

(7.76) Aheh = Ah(φh − Φh) = Ahφh − AhΦh = fh − AhΦh

substituting from equation (7.75) we get

(7.77) Aheh = rh

This is an important equation. It shows that the error or
correction satisfies the same equation as the original problem.

So here is an alternative way of looking at the solution to
Laplace’s equation.

(1) Assume a Φh

(2) Compute the residue rh = fh − AhΦh

(3) Perform relaxation sweeps to (7.77) and get eh

(4) Obtain the corrected solution from (7.74)

These steps are the same as the earlier algorithm. . It is
rewritten to accommodate our discussion on multi-grid schemes.

It also suffers from the same disadvantage that it decimates
the higher frequencies and has a lot of difficulty with the lower
frequencies. This disadvantage can be turned around to speed
things up if we remember that a low frequency on a fine grid
[small h] will be a higher frequency on a coarse grid [larger
interval, say 2h]

So, what we need to do, is to transfer our problem to a
coarser grid once we have eliminated the high frequencies on
the grid h.

We can look at this alternative series of steps.

(1) Assume a Φh

(2) Compute the residue rh = fh − AhΦh

(3) Perform relaxation sweeps to (7.77) to eliminate the
high frequencies

(4) Transfer the residue rh on the grid h to the grid 2h.
(5) With this residue, we can rewrite (7.77) on the grid 2h

to obtain e2h.
(6) Transfer e2h back to the grid h to get eh.
(7) Obtain the corrected solution from (7.74)
(8) back to step (1) till the required convergence on the

fine grid is achieved.

So, what happens when the iterations in step (5) wipe out
the high frequencies with reference to grid 2h and are now slog-
ging along slowly with the lower frequencies. We have a solu-
tion.

This statement of the modified algorithm was made deliber-
ately vague on the steps (4) and (5). Remember again, that the
equation for the correction [often referred to as the correction
equation] looks the same as the original equation.

So, when we transfer the residue, rh, from grid h to 2h, we
choose the name f 2h. Then the algorithm is

(1) Assume a Φh

(2) Compute the residue rh = fh − AhΦh

(3) Perform relaxation sweeps to (7.77) to eliminate the
high frequencies

(4) Transfer the residue rh on the grid h to the grid 2h to
obtain f 2h.

(5) With this residue, we can rewrite (7.77) on the grid 2h
as A2hΦ2h = f 2h

(6) Compute the residue r2h = f 2h − A2hΦ2h

(7) Perform relaxation sweeps to A2he2h = r2h and get
e2h

(8) Obtain the corrected solution as φ2h = Φ2h + e2h

(9) Transfer φ2h back to the grid h to get eh.
(10) Obtain the corrected solution from (7.74)
(11) back to step (1) till the required convergence on the

fine grid is achieved.

We are now ready to do a preliminary design for an imple-
mentation of this algorithm that will answer our question of
what to do with the problem on the grid 2h.

First write a simple solver called

ComputePhi(Ah, fh, Φh):

Compute the residue rh = fh − AhΦh

Perform relaxation sweeps to (7.77) to eliminate the high fre-
quencies

Update Φh = Φh + eh return Φh

Here is how you would do a multi-grid computation.

(1) Form Ah, fh

(2) Guess a Φh

(3) invoke the function ComputePhi(Ah, fh, Φ) to obtain
eh

(4) find the new improved Φ from Φh = Φh + eh

(5) find rh and transfer it to f 2h

(6) transfer eh to Φ2h and form A2h

(7) invoke the function ComputePhi(A2h, f 2h, Φ2h) to
obtain e2h

(8) find r2h and transfer it to f 4h

(9) transfer e2h to Φ4h and form A4h

(10) invoke the function ComputePhi(A4h, f 4h, Φ4h) to
obtain e4h

(11) This can be taken to as many levels as required

(12) transfer e4h back to e2h.

if you want to go to a coarser grid then

Transfer the residue rh on the grid h to the grid 2h to
obtain f 2h.

Transfer the correction eh from grid h to grid 2h to obtain
Φ2h.

ComputePhi(A2h, f 2h, Φ2h)

Transfer e2h back to eh

Perform relaxation sweeps to (7.77)

return eh

This is called the V–cycle. This is because we start at the
finest grid make our way down to the coarsest grid with the
residuals and work out way back to the finest grid with the
corrections.

There are other cycles or grid sequences that can be used.
To motivate this let us consider the number of operations per-
formed in order to get to the solution. We can then see if we
can try to reduce the total number of operations to get down
to converge to the solution by changing the grid sequencing.

The number of grid points at the finest grid are n. The
number of operations per grid point for one iteration are ω.
Then the number of operations at the finest grid h for one
iteration are nω. This is termed one work unit. At the next
coarsest level there are approximately n/4 grid points. Which

means that an iteration at the second level is only 1/4 of a work
unit. Again an iteration at the third level corresponds to 1/16
of a work unit. As we would expect the number of work units
on a coarse grid are less per iteration than on a fine grid. That
is, it is cheaper iterating on a coarse grid rather than on a fine
grid. So on the way back from a coarse grid to the fine grid we
may be tempted to go back to the coarse grid once more before
returning to the fine grid. This is called the W–cycle. The two
cycles are illustrated in the figure.

h

16h

h
h

2h

4h

8h

16h

r

e

r

r
4h

e

e

Figure 7.9. The V–cycle and the W–cycle. r, the residue, is
passed down a left limb from a fine grid to a coarse grid and
e, the correction, is passed up the right limb from a coarse
grid to a fine grid. h, 2h, 4h, 8h, and 16h, indicate the
grid size at the dots at the corresponding level on the limbs

We need to remember that finally we want our convergence
on the fine grid. So, what ever grid sequencing we do, we need
to ensure that the final test for convergence is done based on
iterates from the fine grid.

This idea of the work unit now allows us to compare the
effort involved in solving a problem with various multi grid al-
gorithms and an old fashioned single grid algorithm. We just

look at or plot the error on the finest grid versus the number of
work units.

Finally of course, the easiest and most obvious thing to do is
to actually start the iterations with the coarse grid rather than
the fine grid.

How do we now apply this to the one-dimensional Euler
equations. The first point to bear in mind is that we always
linearise the equations. This multi grid algorithm can be applied
almost directly to the linearised equation. The second point to
bear in mind is that we always transfer the residue from the
finest grid to the coarsest grid and the corrections/solutions
from the coarsest grid to the finest grid. The equations are
written in delta form and the test for convergence is always
made on the fine grid, meaning the residue is evaluated on the
fine grid.

Assignment 7.5 First redo the Laplace’s equation solver you
have written already to accelerate convergence using the various
multi grid methods.

Applying the Multi-Grid Scheme to the Euler’s Equa-

tion. How do we apply this to the Euler’s equation? Lets start
with the one-dimensional first order wave equation and see what
we get. We will do this in the context of looking for a steady
state solution.

We have seen that the time-marching equations can be writ-
ten in the delta form as

(7.78) S∆u = −∆tR(t)

We will now apply the multi-grid scheme to this equation. The
point to be borne in mind is that we always transfer the residual
from the fine grid to the coarse grid and transfer the correction
/ solution from the coarse grid to the fine grid.

So given the discrete equation (7.78) and an initial condi-
tion, we do the following to obtain the solution.

(1) Take a few time steps with the equation (7.78).
(2) Compute the residualRh. The residual can be smoothed

if required especially if we have taken only one or two
time steps.

(3) Transfer Rh and uh to the grid 2h to get R2h and u2h.
(4) Take time steps on the grid 2h.
(5) Transfer to the grid 4h and so on.
(6) transfer the u back to the fine grid.
(7) repeat this process.

Assignment 7.6 Do the same with the Euler equation solver.
Again try out different levels of grids. Also find the effect of
the number of time steps taken on a given grid level.

Unsteady Flows

So far, we have seen numerical schemes that involved solu-
tions to equilibrium equations like the Laplace’s equation and
time varying equations like the wave equation, heat equation

and the one-dimensional Euler equations. Along the way we
changed our focus to computing steady state solutions to the
unsteady equations. We have built up quite a bit of “machin-
ery” to handle time marching schemes leading to steady state
solutions of these equations with time varying terms.

Consider the simple problem of the viscous flow past a cylin-
der. From fluid mechanics we are aware that one of the impor-
tant parameters characterising this flow is the Reynold’s number
defined as

(7.79) Re =
ρUD

µ

For extremely small Reynold’s number value flows, the flow is
laminar and turns out to be dominated by viscous effects. The
governing equations for a two dimensional incompressible flow
at these Reynold’s number in fact degenerates to the Laplace’s
equation in the velocity components. Creep flow, as it is called,
throws up a flow governed by some kind of a potential. As we
keep increasing the Reynold’s number, the inertial effects start
to grow and the viscous effects slowly start to get important near
the surface of the cylinder. Put another way, as the Reynold’s
number increases, the viscous effects become less important
away from the cylinder. The perceptible and increasingly strong
viscous effects are confined to a region near the cylinder called
the boundary layer. It turns out that this boundary layer can
in fact separate from the cylinder causing a recirculation region
to form. So far everything seems fine. The problem is that
the boundary layer and the recirculation region effect the pres-
sure field around the cylinder which in turn effects the boundary

layer. We could hope that all of this settles down to an equilib-
rium situation giving a steady state solution. However, in real
life the recirculation region may slosh back and forth responding
to the pressure field that it creates in a sense the system hunt-
ing for that equilibrium and never finding it. Worse still, the
recirculation region may break off from the cylinder and head
out into the flow. From fluid mechanics we recognise this as
vortex shedding and then the problem is anything but steady.
Look what this vortex shedding did to the pressure field of the
Tacoma narrows bridge with catastrophic consequences. The
bridge problem was complicated by the fact that the bridge also
deformed in response to the pressure distribution.

The conclusion: There may be problems that are inherently
unsteady.

How do we compute flows that vary in time. Or, how do
we calculate the transient to a flow that eventually makes it to
the steady state. That is, we are interested in the variation of
our flow parameters in time.

The flow past a cylinder example given above is one where
we have unsteady flow without a geometrical change. The
bridge example is a case where the unsteady flow entails changes
in geometry. We will not address the geometry change issue
here. The unsteady flow problem is one on which whole tomes
can actually be written. When we sought the steady state so-
lution with no reference to the transient, we were interested
in getting to the steady state as quickly as possible. If the
flow had different time scales we did not bother to capture all
of them accurately as long as the transients with those scales

were quickly eliminated. We went out of our way to get the time
scales comparable to each other so that they could be efficiently
eliminated. Now we want to pick up the transients. There may
be many different time scales that are important. This creates
an interesting problem as we have already seen that dissipation
in our numerical scheme can change amplitudes and that dis-
persion can change speeds of propagation. The dissipation and
dispersion can depend on the time scales. On the other hand,
the physical system that we are trying to model may have its
own dissipation and dispersion characteristics. That is, the be-
haviour of decay and dispersion that we have seen are not only
properties of numerical schemes, they are also exhibited by real
life. Just look at a bag of potato chips, you open a bag, of-
fer your friends some and then find that all the piece left are
smaller and tending towards crumbs. An initial even distribution
of various length scales of potato chips will on transit from the
manufacturer to your hands be shaken enough times to cause
the smallest length scales to end up at the bottom of the bag.
This process is dispersion. It exists. Clearly, we need a numer-
ical scheme that is accurate and can incorporate/capture the
correct dissipation and dispersion.

Why are these parameters critical. Imagine trying to model
a tsunami in the ocean after an earthquake has occurred. It is
important to be able to predict the magnitude of the tsunami
and the time of landfall. Dissipation and dispersion will intro-
duce errors in both. Consequently, we may give a false alarm
which will cause people to ignore future alarms or we may decide
that there is no danger and not give an alarm when we should.

Standard Schemes?

Can we use the schemes that we have employed so far with
some success to get time accurate solutions. If you go back to
the section on the modified equation, you will remember that
FTBS gave the “exact solution” when σ = 1. What can we do
to make sure that we get the best possible solution within the
constraint of resources available?

If we were to try setting σ = 1 for the one-dimensional
Euler’s equation, which σ would we use? Clearly this is not
going to be easy. This is not getting us anywhere, so let us just
jump and look at a scheme with which we are already familiar:
BTCS.

BTCS has the following advantages

• It is unconditionally stable
• . . .

What of the disadvantages

• It involves the solution of a system of equations
• It is first order accurate in time

So, clearly, we would like to get a scheme that is second
order accurate in time. This can be done by employing a central
difference representation in time. The Crank-Nicholson method
does exactly this.

It should be pointed out here that the BTCS scheme can be
viewed as a central difference scheme for the spatial coordinate
with a backward Euler scheme or a rectangle rule for quadrature
in time. Similarly, the Crank-Nicholson scheme is equivalent to

a trapezoidal quadrature rule employed in time, again in con-
junction with a central difference scheme in space. They are
also identified an first and second order Runge-Kutta schemes.

We could go to higher order schemes. There are a whole
slew of higher order Runge-Kutta schemes. There are numerous
predictor corrector schemes that are second order accurate in
time.

Pseudo Time stepping

We have seen that we can march to a steady state solution
by marching time from some guessed initial condition. We have
accumulated a lot of analysis tools and know how for this class of
time marching schemes. In fact, we would go as far as adding
a time derivative term of our choice to an equation that is
formulated to be unsteady, just to employ our time marching
technology. We will try to bring that to bear on the problem of
solving unsteady flows.

Consider the first order, linear, one-dimensional wave equa-
tion again.

(7.80)
∂u

∂t
+ a

∂u

∂x
= 0

We will create an extra coordinate called “pseudo time”, τ ,
and include a derivative with respect to τ in our equation.

(7.81)
∂u

∂τ
+
∂u

∂t
+ a

∂u

∂x
= 0

Now, we can take a second order backward difference in
time-t and use some time marching scheme to proceed in τ . In

theory, each time we reach some kind of a steady state in τ , we
should have satisfied our unsteady equations.

Let us discretise this equation using central difference for the
spatial derivatives. We will take a two point backward difference
for the time derivative. For the sake of simplicity, we will use a
forward difference in pseudo time, τ . This gives us

(7.82)
ur+1
pq − urpq
∆τ

+
3urpq − 4up(q−1) + up(q−2)

2∆t
+a

ur(p+1)q − ur(p−1)q

2∆x
= 0

We are now able to march in pseudo time using the automa-
ton

(7.83)

ur+1
pq = urpq−∆τ

3urpq − 4up(q−1) + up(q−2)

2∆t
−a∆τ

ur(p+1)q − ur(p−1)q

2∆x
Rearranging terms we get

(7.84) ur+1
pq =

1

2
στu

r
(p−1)q + (1− 3

2
Θ)urpq −

1

2
στu

r
(p+1)q +D

where,
(7.85)

στ = a
∆τ

∆x
, Θ =

∆τ

∆t
, D =

1

2
θ
{
4up(q−1) − up(q−2)

}

Stability Analysis using Pseudo Time stepping. Let us
perform a stability analysis to see how things are going to work
out. We know that as we proceed in pseudo time τ if all is
going well that

(7.86) urpq → upq

At some intermediate iteration we define the error in our current
pseudo time step solution as

(7.87) ǫrpq = upq − urpq

Use this in equation (7.83) to get an equation for ǫpq as

(7.88) ǫr+1
pq = ǫrpq −∆τ

3ǫrpq + 3∆up(q−1) −∆up(q−2)

2∆t

− a∆τ
ǫr(p+1)q − ǫr(p−1)q

2∆x
+ a∆τ

u(p+1)q − u(p−1)q

2∆x

As it turns out that when the pseudo time steps have converged
we would have solved the equation

(7.89)
3upq − 4up(q−1) + up(q−2)

2∆t
+ a

u(p+1)q − u(p−1)q

2∆x
= 0

If we add and subtract 4upq to the first term of equation (7.89)
we get

(7.90)
3∆up(q−1) −∆up(q−2)

2∆t
+ a

u(p+1)q − u(p−1)q

2∆x
= 0

Multiplying through by ∆τ we substitute the resulting equation
back in to equation (7.88) to get an equation in terms of ǫ
alone.

(7.91) ǫr+1
pq = ǫrpq −∆τ

3ǫrpq
2∆t

− a∆τ
ǫr(p+1)q − ǫr(p−1)q

2∆x

The gain gτ turns out to be

(7.92) gτ = (1− 3

2
Θ)− iστ sin θ

Stability requires that the modulus of the gain be less than one.
That is

(7.93) |gτ |2 < (1− 3

2
Θ)2 + σ2

τ sin
2 θ < 1

gτ takes its maximum value for θ = π
2
. From here it is clear

that

(7.94) − 3

2
Θ(2− 3

2
Θ) + σ2

τ < 0

would ensure that the automaton is stable.
To see this in terms of our original time step we expand out

all the terms to get

(7.95)
9

4

(
∆τ

∆t

)2

− 3
∆τ

∆t
+ a2

(
∆τ

∆x

)2

< 0

If we divide through by Θ2 we get

(7.96)
9

4
− 3

∆t

∆τ
+ σ2 < 0, σ = a

∆t

∆x

We really need to derive the modified equation for discretisation
given in equation (7.89) to find out when, if at all, all the
dispersive and dissipative terms disappear. We will for now look
at the case when σ = 1. This tells us that we will have a stable
iteration for the pseudo time marching if

(7.97) ∆τ <
12

13
∆t

Just for fun, we could ask the question when can we take ∆τ =
∆t. Substituting back into equation (7.96) we get

(7.98) σ2 <
3

4

One-Dimensional Euler’s Equation. Let us find out how
it works with the one-dimensional Euler’s equation

(7.99)
∂Q

∂τ
+
∂Q

∂t
+
∂E

∂x
= 0.

The naive thing to do is to just add the unsteady term in
pseudo time to the Euler equation as we have just done. This
gives us an automaton to generate a sequence of Q in pseudo
time. Every pseudo time step, one needs to then extract the
flow parameters as required to calculate the other terms of the
equation on order to take the next pseudo time step. Since,
most of our work here is in taking pseudo time steps and the
pseudo time derivative goes to zero anyway, why not add a term
that makes the computation easier. We could instead look at
the equation

(7.100)
∂W

∂τ
+
∂Q

∂t
+
∂E

∂x
= 0.

where W is some convenient set of state variables like Q, Q̃,
and so on.

Let us consider different ways that one could proceed to
discretise these equations. First, we can repeat the process used
for the linear wave equation. We can use an implicit scheme
in time and an explicit scheme in pseudo-time so as to get an

explicit scheme. Again to illustrate we will use a second order
backward-time representation of the time derivative to get the
following equation.

(7.101)
W r+1

pq −W r
pq

∆τ
+

3Q
r

pq − 4Qp(q−1) +Qp(q−2)

2∆t
+
E
r

(p+1)q − E
r

(p−1)q

2∆x
= 0.

Implicit in
physical
time

Explicit
in pseudo
time

Implicit in
physical
time

Solving for Q̃r+1
pq we get

(7.102) W r+1
pq = W r

pq −∆τ

(
3Qr

pq − 4Qp(q−1) +Qp(q−2)

2∆t

+
Er

(p+1)q − Er
(p−1)q

2∆x

)

= 0.

We can now march in τ , that is, advance in index r till we
are satisfied that we have a steady state in τ . A good initial
condition in τ (r = 0) is Q0

pq = Qp(q−1). Or, an explicit
step can be taken in physical time to get an initial condition for
time-marching in pseudo time.

A second possible mechanism is to use an implicit scheme
in pseudo time. In this case we rewrite equation (7.101) as

(7.103)
W r+1

pq −W r
pq

∆τ
+

3Q
r + 1

pq − 4Qp(q−1) +Qp(q−2)

2∆t

+
E

r + 1
(p+1)q − E

r + 1
(p−1)q

2∆x
= 0.

Implicit in pseudo time

As done in the earlier case, to get the Delta form we expand
E in using Taylor’s series and retain the first two terms alone.
This taken along with chainrule gives us

(7.104) Er+1
pq = Er

pq + AW
∂W

∂τ
∆τ, AW =

∂E

∂W

∣
∣
∣
∣

r

pq

Substituting back into equation (7.103) and adding and sub-
tracting 3Qr

pq from the physical time derivative term we get

(7.105)
∆W r

pq

∆τ
+

3

2∆t
(Qr+1

pq −Qr
pq)

+
3Qr

pq − 4Qp(q−1) +Qp(q−2)

2∆t
+
∂AW∆W

∂x
= −∂E

∂x
.

If we define the Jacobian PW =
∂Q

∂W
and take the second order

time derivative to the right hand side we get

(7.106)
∆W r

pq

∆τ
+

3

2∆t
PW (∆W r

pq) +
∂AW∆W

∂x

= −∂E
∂x

− 3Qr
pq − 4Qp(q−1) +Qp(q−2)

2∆t
.

The right hand side is our residue R. Multiplying through by
∆τ and factoring out the ∆W r

pq we get

(7.107)

{

I +
3

2

∆τ

∆t
PW +∆τ

∂AW

∂x

}

∆W = −∆τRr
pq.

Clearly, most schemes to accelerate convergence, whether it is
local time stepping in τ , residual smoothing, preconditioning
the unsteady term can all now be included. For example, pre-
conditioning the unsteady term would simply require the change
in one term in equation (7.107) to get

(7.108)

{

ΓW +
3

2

∆τ

∆t
PW +∆τ

∂AW

∂x

}

∆W = −∆τRr
pq.

ΓW needs to be determined appropriately.

Assignment 7.7 Apply the dual-time stepping scheme to the
one-dimensional Euler’s equation and solve the transient prob-
lem corresponding to 4.6.

Important ideas from this chapter

• A variational formulation maybe possible for the given
problem.

• It is possible that a discontinuous representation is more
“faithful” to a function in comparison to a continuous
representation.

• If a class of finite difference/element/volume equations,
random walks, and molecules jiggling in a rod all have a
continuum model which is the heat equation, they can
be used as approximate models for each other.

• It is possible to use a hierarchy of grids to accelerate
convergence of a numerical scheme as long as one en-
sures the solution on the finest grid.

• One can not just pick up any old scheme and assume
that it can be used for computing unsteady flows.

• Typically, one should use at least a second order scheme.
However, the results of the exercise shown in figure 2.31
should be borne in mind. One can not just keep taking
smaller and smaller time steps.

• Just like one can try to compute the steady state solu-
tion to a problem by looking for the steady state asymp-
tote of the unsteady equations for the problem. One can
add a pseudo time term to any unsteady equation and
seek the steady solution in pseudo time...which would
give the unsteady solution in real time.

• It is not possible to capture all time scales with the same
degree of accuracy. One has to decide which physical
phenomenon is dominant and/or of interest and try to
capture that as well as possible.

• Extra care must be taken in applying boundary condi-
tions.

Closure

If you are right 95% of the time, there is no sense
in worrying about the remaining 3% - Anony-
mous

Faith is a fine invention
For gentlemen who see;
But microscopes are prudent
In an emergency!
-Emily Dickinson

We have looked at various techniques to represent entities
of interest to us. We have seen how to get estimates of the
error in the representation of mathematical entities. We will
now look at this whole process in a larger context.

Validating Results

How good are the approximations that we generate? How
do we know they are correct? Remember where we started this
discussion back in chapter 1. Also bear in mind what we want
to do - answer the two questions that we just asked. We will
recast the discussion from the first chapter in a broader setting.

We have the world around us and in a attempt to understand
and predict this complex world we try to model it. Figure 8.1
tries to capture the processes involved. The figure consists of

Real

World

Computer

Model
Mathematical

Model

This

We See

A

B

C

D

Figure 8.1. How CFD works. The polygon at the end is
our approximation to the circle. The process marked “A”
is perception. The process marked “B” maybe abstraction.
The process “C” is the CFD. Finally the process marked “D”
would be validation

arrows going between various shapes. The shapes have explana-
tory labels on them. One of the points that I am trying to make

through the figure is that we have only a faint idea of what the
real world is like. The arrow or limb marked as A is the process
of perception. Take vision for example. Our vision is limited to
a range of frequencies of electro-magnetic radiation in which we
can see. We call this range that we perceive “light”. We can’t
see x-rays for example. However, by accident we may discover
their existence and try to come up with an arrangement to see
them. Here, once we have a theory for light as electro magnetic
radiation, we can predict the existence of radiation not visible
to us. The fact of the matter is that we usually cannot test
limb A in the figure. We may not know what we do not know.
In this case, we do not see the grey shade in the figure, in fact
no one sees it or perceives it and that is that.

We would then take what ever we see and try to model it.
If we look at what we perceive, we see that it is quite complex.
We try to model this by throwing away non-essentials and typ-
ically create a mathematical model. In the figure we choose to
represent the mathematical model as a circle. This is to convey
as clearly as possible, the loss of detail and our attempts, very
often, to keep the model as simple as possible. Sometimes, we
may be tempted and fascinated by the symmetries exhibited by
our mathematical model. The first question to ask is “does
the mathematical model represent the reality that we choose to
represent?” That is, how do we test limb B of the figure? Nor-
mally, we can’t answer this question unless we use it to solve
/ model a problem that can then be used in an attempt to
answer this question. We usually find that this mathematical
model is in itself complicated and difficult to solve. By making

appropriate assumptions and approximations we end up mod-
elling the mathematical model on the computer. In our case
we assume the Navier-Stokes equations are correct and then
proceed to approximate these equations on the computer using
the techniques of CFD to get and algorithm and techniques of
programming to get an actual implementation. The discretisa-
tion process we have studied so far in this book is indicated by
the polygon that is used to approximate the circle. Quite often,
we can not get an exact representation of our mathematical
model on the computer and hence we end up approximating
the mathematical model. We ask, how well does the computer
model represent the original mathematical model. This is an
important question when we are trying to develop techniques to
solve equations that arise in the modelling of nature. This also
questions the competence of doing limb C. It is complicated
by the fact that one needs to ensure that the program captures
the algorithm appropriately.

The other question that is often asked, especially by some-
one who is interested in the application of the model to solve
problems is: How well does the computer model represent re-
ality? Here we are short circuiting all of the previous questions
asked before and instead say, “Just tell me if the answer mir-
rors reality?” This would check whether limb D exists or not.
This is not always as easy to answer. A short cut would be to
perform experiments and compare the results with the output
of our program. However, always bear in mind that the errors
in the experiment and the errors in the computer model may

be such that the results agree. The issue then is: what con-
fidence do we have that they will agree when we do not have
experimental data?

This is the problem of validation[Roa00]. We now address
different ways to evaluate or validate our programs.

Consider, for example, Laplace’s equation. We know from
complex analysis [Ahl79][Chu77] that any analytic function is
a solution to Laplace’s equation. We pick an analytic function
(say z2) and use the real part as our solution. We evaluate
the solution that we have picked on the boundaries and use this
as the boundary condition for Laplace’s equation. We now act
as though we did not know the solution and solve the problem
using any of our favourite techniques. Since, we actually know
the solution we can figure out how each solution technique is
doing.

What if we did not know any solution? Well, make up a
function say

(8.1) u(x, y) = x2 + y2

As before one can evaluate this function on the boundaries and
obtain the boundary conditions for the problem. If we were to
substitute equation (8.1) into Laplace’s equation it will leave a
residue. You can check for your self that the residue is 4. This
tells us that u given by equation (8.1) is a solution to

(8.2) ∇2u = 4

This does not change the essential nature of our equation.
We now have a problem to which we know the solution. We

can now compare the computed solution to actual solution of
this equation.

How does one pick the solution? Looking at the differential
equation, one knows that the solution to Laplace equation will
have second derivatives in the various coordinate direction. So,
we choose functions of our independent variables that have this
property. If we know more, for example, that the equation or
the original problem will allow for some discontinuity. We can
then pick such problems. We did this for the wave equation,
when we took the step function as the initial condition.

The choice of functions for the solution can be made due
to some very sophisticated reasons. One may want to test the
ability of the computer model to pick up some aspect. As has
already been noted, discontinuities are one such artefact. One
could test the ability to pick maxima, minima, the correct dis-
persion and so on.

Computation, Experiment, Theory

The first part of this chapter spoke in generalities. We now
look at this triad that makes up current scientific endeavour.
Theory is the abstraction of exploratory experiment and com-
putation. Abstraction is the process of extracting the general
and throwing away the specifics relating to a particular phe-
nomenon. Exploratory experiment gives the broad outlines of
the terrain in which our problem resides. Theory abstracted
from these experiments provides the direction for future exper-
iments and computation that can be used to confirm or refute
the theory. Experiments can also be used to refine theories and
help make the theoretical framework more precise. They can

help add detail to make the theory work for the particular. The
experiment can be used to demarcate the boundaries of applica-
bility of the theory. That is refute the theory in some instances
and confirm it as acceptable in other instances.

For example, the theory that for a fluid stress is proportional
to the deformation rate is a very general statement of a theory.
It can be verified for a class of fluids (limit the theory to a
class of fluids). In that class of fluids it can be verified for a
class of flow conditions (again limit the applicability of the the-
ory). Having achieved this, the theory may be able to give clues
as to other experiments that can be made to make the theory
“useful”. For example, in the case of fluids, the coefficient of
viscosity may be measured using a rheological experiment like
Couette flow. Thus experiment can be used to specialise the
theory for the specific problem / material at hand. Computation
can be used to perform whole scale experiments. Depending on
the level of the computational model, one can explore a range of
theoretical parameters that may be difficult to achieve with ex-
periment. Computational studies can also be used to motivate
the direction of experiment. Confidence in computation can be
obtained by validation against experiment and theory. Failure
of agreement in any two of the theory, experiment and compu-
tation can be used by the theoretician, experimentalist and the
computer (as in the person who computes or uses computational
techniques), to improve their respective models. Every human
intellectual artefact is improved by extending its boundary of ap-
plicability. In order to extend the boundary of applicability, one
needs to know the location of the boundary. With the advent
of computational techniques, we have gone from the binocular

vision of experiment and theory to trinocular vision. It is easy
to do theory and computation with no reference to reality. It
is easy to accumulate experimental data with no reference to
theory or computation.

One observation must be made here with reference to this
trinocular view. It is obviously effective only on the intersec-
tion of the three views. Herein lies the problem and source of
tension. A theoretical observation that is easy to state and com-
pute may be difficult to achieve in experiment. For example, we
want to setup a flow field with zero velocity in room. This is
possible to do, relatively easily in computation. Extremely easy
for the theoretician, ~V = 0. Very difficult if not impossible for
the experimentalist to achieve. At the other extreme, to swirl
a glass of water around and drink it would be a relatively easy
experiment to perform, which involves considerable (to under-
state the facts) difficulties for the theoretician and computer.
The point is that, in order for the trinocular vision to work,
continuous effort must be made to seek test cases in the over-
lap region. The individual disciplines of theory, experiment and
computation themselves are enhanced by an effort to increase
the overlap.

Computers

There are numerous books out there to explain the workings
of computers with various degrees of detail. We will look at an
analogy to understand the issues involved when it comes to
high performance computing which is the realm in which CFD
resides.

We will use the student registration system as it was run
the first time it was started at Indian Institute of Technology
Madras (IITM). For the sake of the analogy I have tweaked a
few of the details.

The Layout: IITM is located in a 650 acre campus. At
the centre is a five storied central administrative build-
ing (adblock). On the fifth floor of this building is the
senate room where students are to be registered for the
new semester.

Cast of Characters: The students are to be registered
by the “Professor in Charge of the Unregistered”. We
will call this person the CPU. The CPU is a busy person
and does not like to be kept idling. The students are
located about a kilometre away in ten different hostels
(or dormitories). Each hostel houses 192 students.

The Program: Each student
(1) needs some discussion with the CPU. (about 4 min-

utes)
(2) will fill out a registration form. (about 4 minutes)

(3) will hand the form to the CPU who will verify that
everything is fine with the form and sign it. (about
4 minutes)

The Time Element: Each student takes ten minutes to
bicycle down to the adblock. It takes a couple of min-
utes up the elevator into the senate room and then 12
minutes (3 × 4 for each of the above steps) to finish
registering.

This can be implemented in various ways.

(1) The first simple minded solution is to have the CPU
call the hostel. The student bicycles down and registers
after which the next student is called. Now while the
student is bicycling down and taking the elevator the
CPU is idling. Each student takes about 25 minutes
to process and the CPU is going to be stuck there for
days.

(2) As it turns out, the lobby of adblock can comfortably
handle 32 students. We could use the institute minibus
to fetch 32 people from the hostel to adblock. The
bus has a capacity of 16 students. Corralling the 16
and bringing them in would take about ten minutes.
Now all that the CPU has to do is call down to the
lobby and ask for the next student to be sent up. The
student takes a couple of minutes up the elevator and
can then proceed with the registration. From the CPUs
perspective, each student takes about 15 minutes to
process. There is still idle time present. When sixteen
of the students are done in the lobby they get bussed
back to the hostel and the next sixteen replaces them.

(3) We can now add a wrinkle to the above scenario. Out-
side the senate room there is an ante-room which can
accommodate four students. Now the CPU only rings
a bell which is a signal to the next student to enter the
senate room. In this fashion we have eliminated the
ride up the elevator showing up on the CPUs clock.

(4) If we pay attention to the CPU, he/she talks to the stu-
dent and then waits while the student fills up the form.
If instead of waiting, the CPU gets another student in
and talks to the second student while the first is filling
up forms, that idle time is eliminated. The CPU can
verify the first students registration form while the sec-
ond student is busy filling out his/her form. The first
student can then be replaced by another student. So,
the CPU has a pipeline with at most two students in it
at any given time. With this structure or architecture
we have reduced the time between students leaving the
senate room on completion of registration to about 8
minutes per student instead of 12. Can we do better?

(5) We could have two professors in the senate room. One
advises one student after another. The students move
over one seat and fill out the registration form. The
second professor verifies the forms and signs them. The
pipeline has three stages and we get a student out every
4 minutes.

(6) We could organise another pipeline in the conference
room adjacent to the senate room. and process 30
students per hour instead of 15 students per hour.

The last is very clearly a great improvement from the first
version of about two students per hour. Now the analogy. In the
computer, the CPU would be the Central Processing Unit. The
Hostels would be the computer memory. The minibus would be
the memory bus connecting the CPU to the memory. Fetching
students sixteen at a time and keeping them waiting in the
lobby is called caching. Having a smaller cache on the fifth
floor basically means we have a two level cache. Typically in
computers the cache on the top floor is called the level one
cache or the L1 cache. The cache on the ground floor would
be the L2 cache. The cost of not having a data item in the L1
cache is high. The cost of not finding it in the L2 cache is very
high.

Another point to consider: can we go to four rooms with
four CPUs or eight rooms with eight CPUs? Remember the
elevator can only handle 120 students per hour and the bus can
handle about 96 students per hour. The two lessons we get from
this, try to access the data in the order in which it is available
in the cache. The rate at which data can come into the CPU is
a strong determinant of the performance of the computer. We
cannot just keep on increasing the number of CPUs.

A final note of caution here. The example given above fall
into the category of an embarrassingly parallel problem. That
is, the registration of one student did not depend on the other.
The students could be registered in any order. We have not
looked at the flow of the data relevant to each of the students
to the CPU. Nor have we looked at the nature of the courses.
If courses had constraints on the number of students that can
register for a given course, then we start to see complications.

How does one deal with two students in two different rooms
contending for the last seat in a given course. How does one
know the state of the course at any time? For example, how do
you know there is only one seat left?

The objective here was to give a reasonable picture of the
computer so that the student can endeavour to write good pro-
grams. Warning: If you reached this appendix because of a
reference from chapter 2 you may wish to go back now. You
could continue reading. However, you may encounter terms that
are defined in chapters that follow chapter 2. We can now see
how we can go about writing programs on computers.

How do we actually write these programs?

As I had indicated in the introduction we need to bring to-
gether different skills to this material. Fluid Mechanics, Math-
ematics and Programming. In an introductory book, the fluid
mechanics maybe restricted and the mathematics may predom-
inate the discussion. However, you really should code if you
want to really understand the process.

So, how does one go about developing these codes. My
intent is not to introduce serious design methodologies here.
However, using a little common sense, one can easily create
functionally correct code – meaning it works.

I would classify people who write code into five different cat-
egories based on an aerospace engineering analogy. Let’s look
at someone programming equivalent to designing and building
an airplane.

Duh: Code? I know section 212 of the motor vehicles act.
Nothing wrong with being in this state. If you want

“to CFD” though you will need to put in the minimal
amount of effort required to switch to the next level. I
would suggest that you pick up a relatively high level
programming language. My personal preference right
now is Python.

Novice: Code is like the Wright flyer: It works. This
is fine. You can get by with a little help from your
friends. You can learn “to CFD” which is one of the
aims of this book. On the other hand, anytime we start
working on something, by the time we are done, we
usually know a better way to do it, having now had the
experience of doing it the first time. I have noticed that
people in the novice state (remember, no one was born
programming) tend to cling to code that they should
discard, since they barely got it working. Practice and
paying attention to the process of programming will get
you to the next level.

Proficient: I can fly it. Not sure whether anyone else
can operate it. At this point code writing should not
be such a hassle that you cling to any particular piece
of code. At this point you can not only learn “to CFD”,
you can actually do decent research in CFD without the
need of a collaborator to take care of the coding. This
level of proficiency gives you the confidence to check out
new algorithms. Now, if you paid attention, you would
realise that your confidence may be justified by the fact
that you are able to capture many of the mistakes that
you make. If you will recognise two things:
a. Every one makes mistakes, no one is infallible

b. Every one acquires habits and quirks. If you pay at-
tention while you are learning something, (and here
I will admit it helps if you have someone to help
you out) you can make sure you acquire habits that
make you less likely to make an error and conse-
quently, more efficient.

Reeeeealy Good: My programs are robust. Can be used
for scheduled flights of an airline, However, they need
to be flown by experienced pilots. You have the right
habits. You know that errors occur because of bad
programming practice and that you the individual has
only one responsibility: to learn from every mistake.

Super Programmer: Someone who is absolutely not tech-
savvy can use this code; the average person can fly to
work. Well, you have the gift, enjoy. Incidentally, I
have this little program that I want written... Finally,
in this stage it is very easy to stop learning, the process
never ends, the day you cease learning is the day you
no longer are.

So, where should you be as far as your programming skills
are concerned. You really have to at least be at the novice level.
You have to be able to create functionally correct code.

Here are some simple rules.

First: Don’t Panic. Don’t look at the whole problem and
wonder: How am I ever going to get this done? Where
do I begin?

Second: We begin, as always, with the analysis of the
problem at hand. This is because we are attempting
the creation of something that does not exist till we

write it - a program. This is done by synthesis - or
putting the parts that make up our program together.
To this end try to see if you can identify what parts
and steps make up your problem. For example, if you
are looking at solving the one-dimensional first order
Euler’s equation, we see that
• We need to decide the scheme to be used: say
FTCS

• FTCS requires data at the current time step and
will generate data at the next time step. [I need
to have an array in which to store my current data
and one in which to store the new data]

• My algorithm will use Q and E, whereas I am in-
terested in Q̃. All of these may have to be stored
at each grid point.

• Need to apply boundary conditions on the left and
right.

• Need to be able to take one FTCS step for all the
interior grid points.

• Need to take a lot of time steps and then decide
when we are done.

• Need to visualise results or get some idea as at what
is the state of the code

• Clearly, we need to interact with the user.
• What programming language should I use. [Any
thing in which you are proficient will do for now,
remember the Wright flyer. You want to develop a
functionally correct program not some super-duper
code]

The actual process is a little more involved. This will
suffice for now.

Third: Extract out stuff to be done. Sort them out so
that you can identify things that can be done directly.

Fourth: You need to decide how you will handle Q and
Q̃. In Python they could be implemented as classes as
follows:
(1) ConsFlowParm represents Q,
(2) NonConsFlowParm represents Q̃,
(3) FluxE represents the flux term E.

Gamma = 1.4 # Cp / Cv

Gm1 = Gamma - 1.

class ConsFlowParm:

""" Manages the conservative flow parameters"""

def __init__(self):

self.Q = numpy.zeros(3)

def Rho(self):

return self.Q[0]

def RhoU(self):

return self.Q[1]

def RhoEt(self):

return self.Q[2]

def U(self):

return self.Q[1] / self.Q[0]

def P(self):

return Gm1*(self.Q[2]-0.5*self.Q[1]*self.U())

class NonConsFlowParm:

"""Manages non-conservative flow parameters"""

def __init__(self):

self.Q_ = numpy.zeros(3)

def Rho(self):

return self.Q_[0]

def U(self):

return self.Q_[1]

def P(self):

return self.Q_[2]

class FluxE:

"""Manages the x-component of the flux"""

def __init__(self):

self.E = numpy.zeros(3)

def MassFlux(self):

return self.E[0]

def MomFlux(self):

return self.E[1]

def EnergyFlux(self):

return self.E[2]

def SetFlux(self, Q):

self.E[0] = Q.RhoU()

self.E[1] = Q.RhoU() * Q.U() + Q.P()

self.E[2] = (Q.RhoEt() + Q.P()) * Q.U()

def GetFlux(self):

return self.E

Fifth: Having defined the two types of flow parameters
Q, Q̃ and the flux term E, we look at evaluating these
terms from each other as required in our algorithms. As
we have seen earlier our equations are in terms of Q and
we are planning on marching in time and obtain Q from
the governing equation. To solve the equations, given
Q at some time step we need to evaluate E at that
step. We need Q̃ as they are typically the parameters
in which we are actually interested.

We need to implement and test functions that
• given Q̃ return Q is done using NonCons2Cons,
• given Q return Q̃ is done using Cons2NonCons,
• given Q return E, this has actually been imple-
mented as a method in the class FluxE.

• given Q find a, the speed of sound

def Cons2NonCons(Q):

"""Converts from the Conservative flow parameters

to the Non-Conservative flow parameters"""

tmp = NonConsFlowParm()

tmp.Q_[0] = Q.Rho()

tmp.Q_[1] = Q.RhoU() / Q. Rho()

tmp.Q_[2]=Gm1*(Q.RhoEt()-0.5*Q.RhoU()*tmp.Q_[1])

return tmp

def NonCons2Cons(Q_):

"""Converts from the Non Conservative flow

parameters to Conservative flow parameters"""

tmp = ConsFlowParm()

tmp.Q[0] = Q_.Rho()

tmp.Q[1] = Q_.Rho() * Q_.U()

tmp.Q[2] = Q_.P()/Gm1 + 0.5*tmp.Q[1]*Q_.U()

return tmp

What do all of these items have in common? They have nothing
to do with grids or the kind of solver one is going to use. In fact
they form a part of a core structure that one should implement.
Each of these functions should be tested. Once you know they
work, set them aside to be used by any of your solvers. Make
sure you test them thoroughly.

Sixth: We will now need to create two arrays of Q, E
and Q̃. Where are these arrays created? Right now
that can be in your main program. What is the size of
theses arrays? We may need to interact with the user
to find out.

Seventh: Determine all the interactions with the user.
Try to keep all of this in one place in your program. Typ-
ical interactions for the one-dimensional Euler’s equa-
tion solver would be
• Physical extent of the problem?
• Inlet condition: Subsonic? Data?
• Exit condition: Subsonic? Data?
• How many grid points?

• σ?
• Convergence criterion: How many time steps?

This interaction is simple enough that it may be done
through one function.

Eighth: Go ahead and create all the arrays. The ones
at the current time step need to be initialised. The
creation and initialisation can be done a function.

Ninth: Now we can write the main part of the code.
Write a function
• given Q and σ, find time step.
• Given Q at the current time step takes a step using
our chosen scheme.

Tenth: Code the program that will call all of these func-
tions to achieve our goal.

class FlowManager:

"""Manages the full problem...uses some solver"""

def __init__(self):

self.N = input(" How many grid points \

including the boundary? ")

Should really generalise this later

to take care of supersonic and other

self.InletBC = SubSonicInlet()

self.ExitBC = SubSonicExit()

self.x = [] # to store the coordinate locations

self.dx = [] # This is used for computations

self.Qlist = []

self.Q_list = []

self.E_list = []

self.SetInitialCond() # Will populate above list

self.SingleStep = FTCS

self.pm = plotmanager.PlotManager()

def SetInitialCond(self):

""" Set the conditions at time t = 0"""

DX = 1.0 / (self. N - 1.)

for i in range(self.N):

CQ = ofp.ConsFlowParm()

ambient pressure throughout the duct

CQ.Q[0] = self.ExitBC.Rhoa

CQ.Q[1] = 0.0 #Initial velocity is zero...

uses the above fact here...

CQ.Q[2] = self.ExitBC.Pa / Gm1

NQ=ofp.NonConsFlowParm()# create object

NQ=ofp.Cons2NonCons(CQ)# initialise object

self.Qlist.append(CQ)

self.Q_list.append(NQ)

self.dx.append(DX)

self.x.append(DX * i)

def Step(self, L = 0.0002):

e2 = 0.01 # added to in book

e4 = 0.001# to help format line

dQ = self.SingleStep(self.Qlist,L)

dQ2 = SecondOrderDissipation(self.Qlist)

dQ4 = FourthOrderDissipation(self.Qlist)

for i in range(len(self.Qlist)):

self.Qlist[i].Q-=dQ[i]-e2*dQ2[i]+e4*dQ4[i]

self.Qlist = self.InletBC.ApplyBC(self.Qlist)

self.Qlist = self.ExitBC.ApplyBC(self.Qlist)

self.pm.ShowX(self.Qlist, self.x)

Where PlotManager allows one to see plots of ρ, ρu, and ρEt

in a graphical form on the screen.

An example using the four step Runge-Kutta Scheme.

This algorithm will be given in a general form for the equation

(A.1)
d

dt

∫

σ

Qdσ = −
∫

S

~f · n̂dS

If we were to discretise our domain into small volumes with
volume ∆V having m faces each with area ~Ai = sin̂i, [no sum
over i], we could write for a volume

(A.2)
dQ

dt
∆V = −

m∑

i=1

~fi · ~Ai = −F (Q)

Where, Q now represents the mean values in the volume or cell
and F (Q) represents the net efflux from the volume.

We are given the initial condition Q0. In order to take one
time step of magnitude ∆t we do the following. note: read the
symbol ∀ as “for all”.

Given Q0, compute ~f 0, and the artificial dissipation D0.

(1) ∀ FVolumes use given Qn, ~fn and, D0

(a) Compute G(Qn) = F (Qn) +Dn.
(b) Set RQ = G.
(c) Compute Q∗ = Qn − 0.5×∆tG(Qn).

(d) Compute ~f ∗

(2) ∀ FVolumes

(a) Compute G(Q∗) = F (Q∗) +Dn.
(b) Set RQ = RQ− 2G.
(c) Compute Q∗ = Qn − 0.5×∆tG(Q∗).

(d) Compute ~f ∗

(3) ∀ FVolumes

(a) Compute G(Q∗) = F (Q∗) +Dn.
(b) Set RQ = RQ− 2G.
(c) Compute Q∗ = Qn − 0.5×∆tG(Q∗).

(d) Compute ~f ∗

(4) ∀ FVolumes

(a) Compute G(Q∗) = F (Q∗) +Dn.
(b) Set RQ = RQ−G.
(c) Compute Qn+1 = Qn −∆tRQ/6.

(d) Compute ~fn+1

(e) Compute Dn+1

(5) ∀ FVolumes compute the square of the error contributed
by that volume to the whole as

(A.3)

∆Esqr =
∑

i

(
RQi

Qi

)2

, do not divide by Qi when |Qi| > ǫ

If ∆Esqr is greater than a predetermined convergence crite-
rion then proceed back to step (1) to take the next time step.

We will use one the various versions of the Runge-Kutta
scheme to implement it in Python. We inherit from the earlier
FlowManager class. This simply says that the RK4FlowManager
is a FlowManager except that we have modified how a time step
is taken and consequently added a method: IntermediateStep
and a data element:Qnew to reach that end.
OneSixth = 1. / 6.

class RK4FlowManager(FlowManager):

"""

A flow manager that uses the four step

Runge-Kutta method to march in time.

"""

def __init__(self):

if hasattr(FlowManager, "__init__"):

FlowManager.__init__(self)

self.Qnew = copy.deepcopy(self.Qlist)

def IntermediateStep(self, L, alpha):

dQ = self.SingleStep(self.Qnew, L)

dQ2 = SecondOrderDissipation(self.Qnew)

dQ4 = FourthOrderDissipation(self.Qnew)

for i in range(len(self.Qlist)):

self.Qnew[i].Q = self.Qlist[i].Q -\

(dQ[i] - 0.01*dQ2[i] + 0.001 * dQ4[i]) * alpha

self.Qnew = self.InletBC.ApplyBC(self.Qnew)

self.Qnew = self.ExitBC.ApplyBC(self.Qnew)

def Step(self, L = 0.0002):

self.IntermediateStep(L, 0.25)

self.IntermediateStep(L, OneSixth)

self.IntermediateStep(L, 0.375)

self.IntermediateStep(L, 0.5)

self.IntermediateStep(L, 1.)

self.Qlist = copy.deepcopy(self.Qnew)

self.pm.ShowX(self.Qlist, self.x)

Programming

I will just collect things here as I remember them and then
collate later.

As computers evolve, some of these guidelines will change.
Even the ones that start with “Never”.

• Try not to subtract [I should say add things of opposite
sign]

• Add in preference to multiply
• multiply in preference to division
• square roots are expensive, trancendentals are worse.
• store multidimensional arrays as vectors.
• if you insist on using a multidimensional array, at least
access it the same way that your computer stores it.

• Readability matters. This means the srtucture of your
code is transparent, the choice of names (variables or
otherwise is logical and informative) and all of these do
what they claim to do and nothing else.

• Document! When an arbitrary choice is made (example:
store two dimensional arrays row wise) - document! Do
not drown the code and logic in documentation.

Parallel Programming

In this day and age of cheap computers and multi-core
CPUs, One necessarily has to pay attention to parallel com-
puting

There is a lot going in your computer in parallel. Computer
architecture has advanced to a stage where a lot of parallelisa-
tion is done in the CPU. One can benefit from this by simply
helping the modern CPU do its job.

Beyond this is the realm where we want to deliberately run
our program on multiple computers. We have so far seen the
kind of problems that we would like to solve. How about the
kinds of computers you are likely to encounter. Computers can
be classified in many ways. From the point of view of this
discussion we will restrict ourselves to simple classifications like
“tightly coupled” versus “loosely coupled” or “Shared Memory”
versus “distributed memory”. An extreme example of a tightly
coupled computer would be a vector computer. It has the capa-
bility of applying a single instruction of a vector of data [some
times called Single Instruction Multiple Data, SIMD for short].
Such a computer would definitely be a plus where our problem is
dominated by large number vector operations. It would however
pay a penalty if we did not have many vector operations.

At the other extreme we could have a bunch of computers
connected by a network of some sorts. They are individual
computers that are capable of performing a part of a task and
exchanging the data as required. These are clearly very loosely
coupled. They also have their own memory and other resources.
So these would also be called distributed memory systems and
the use of these together to solve a single problem is referred to

as distributed computing. In between these extremes we have
multiple CPU machines that share the same memory. Each CPU
sees the whole memory and can read and write to it. However,
they are not vector machines. Each will have its own “thread
of execution”

The fundamental problem of parallel computing is to break
up the problem into sub-problems. These sub-problems may be
related to each other very closely or may be completely inde-
pendent of each other. If they are completely independent of
each other we have an embarrassingly parallel problem. On the
other hand if they are related very closely, we should check to
see how we can loosen this coupling.

Here is a concrete example. Consider solving Laplace’s equa-
tion on a unit square (see 3). We have seen how this problem
can be solved numerically. We have also seen numerous ways
by which the convergence to the solution can be speeded up.

Now we will see if can gain further speed up using parallel
computing. Remember that every point was the average of its
neighbours. Let us look again at that [6×6] grid we used earlier.
It is redrawn with some embellishments in figure A.1.

The grid points are marked squares and circles. The interior
points are indicated using filled circles and squares. The bound-
ary points are indicated using open (that is unfilled) squares
and circles. If you recollect, any interior grid point is obtained
as the average of its neighbours. Here, we take this description
one step further. Any interior square point the average of the
neighbouring circle points. Any interior circle point is the aver-
age of the neighbouring square points. This means that all the

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

23

24

25

26

272829303132

33

34

35

36

2221

Figure A.1. Grid points used to solve Laplace’s equation on
a unit square at the origin in the first quadrant. Any square
depends on its circular neighbours and similarly any circle
depends on the square neighbours. The boundary grids are
shown as open (not filled) circles and squares.

square points can be evaluated and updated at the same time.
That is

(A.4) φn+1
i r =

φn
i+1 b + φn

i−1 b + φn
i+N b + φn

i−N b

4

and

(A.5) φn+1
i b =

φn+1
i+1 r + φn+1

i−1 r + φn+1
i+N r + φn+1

i−N r

4
We have captured an inherent parallelism in the Gauss-Seidel

algorithm for this equation. On the other hand, if we would like
to keep it simple, we could use Gauss-Jordan instead. Since the
values are updated only after the full sweep, there is no coupling
between the computation of the steps.

If you pay attention to what we are doing (see equations
(A.4), (A.5)) we are performing the same operations or instruc-
tions. The data or domain is divided to provide the parallelism.
This clearly falls into the category of SIMD or SPMD [Single
Program Multiple Data] category. The process we are following
is called domain decomposition. Once we realise that we are
doing domain decomposition we can ask: Are there other ways
of decomposing the domain to get our parallelism?1

Figure A.2 shows another easy way to decompose the do-
main. In this case the domain is broken up into four parts.
These can now be solved separately. It should be noted how-
ever, that grid points 2,6,5 require data from points 3,7,10, and
9. This data needs to be obtained from the adjacent domains.

We can now ask the question: Is it possible to decompose
the problem in such a manner as to reduce the dependence on
the neighbouring domains?

1I hope this situation here looks familiar. The domain is like the support of a function. The

program here is analogous to the function. We seek orthogonality or independence. We typically

get it when the domains/support is non-overlapping.

1 2 3 4

5 6 7

9 10 11 12

13 14 15 16

17 18 19 20

23

24

25

26

272829303132

33

34

35

36

2221

8

A A′

B

B′

Figure A.2. Grid points used to solve Laplace’s equation on a
unit square at the origin in the first quadrant. The domain is
shown divided into four parts using two broken lines: A−A′,
B − B′. The grid points are indicated appropriately. It
should be noted that to compute some of these grid points
data from adjacent domains is required. This data needs to
be made available as and when required.

Some Mathematical

Background

You really should go out and get your mathematical back-
ground from books on the appropriate topics. However, I will
present the bare minimum here to get an understanding on why
we use entities like complex variables and matrices.

Complex Variables

We will do a quick review of complex variables to just about
meet the requirements of this book. A complex number is a
two dimensional entity that can be represented by a point on
a plane called the complex plane or an Argand diagram. If the
axes of the coordinates are labelled x and y, then an arbitrary
point on this complex plane is denoted by a complex variable
defined as

(B.1) z = x+ iy, where i =
√
−1

We will call this the Cartesian form of a complex number.
As we saw in section 2.4 the i basically stop you from adding

the x to the y. However, the algebra is interesting since i× i =
i2 = −1. Since, in our usual numbers we cannot imagine the
product of two numbers giving us a negative number, i is called
an imaginary number. In conversing about complex numbers,
iy (or moer often y) would be called the imaginary part of

the complex number. The non-imaginary part is called the real
part. A complex number where the real part is zero is called
purely imaginary. Consider two complex numbers

x

z̄ = x− iy = re−iθ

z = x+ iy = reiθ

y

r
θ

Figure B.1. The complex plane or the Argand diagram. An
arbitrary point z = x+ iy and its conjugate are shown. The
polar form is also indicated.

(B.2) z1 = x1 + iy1, and z2 = x2 + iy2

You can verify the following
We define a conjugate corresponding to any complex num-

ber which geometrically is a reflection off the x-axis. Alge-
braically it involves just changing the sign of the imaginary part
of the number. The conjugate of a complex number z is de-
noted by a “bar” on top as in z̄. In fact, placing the bar on a

operation result

+ (x1 + x2) + i(y1 + y2)

− (x1 − x2) + i(y1 − y2)

× (x1x2 − y1y2) + i(x1y2 + y1x2)

÷ (x1x2 + y1y2) + i(x2y1 − y1x2)

x2
2 + y22

Table B.1. Various operations on two complex numbers
z1 = x1 + iy1, and z2 = x2 + iy2

complex number is the operation of conjugation on the number.
So z = ¯̄z. Now, we define

(B.3) |z|2 = zz̄ = x2 + y2

|z| is our idea of the Euclidean distance of the point (x, y) from
the origin. Since it is the distance from the origin we are talking
about the position vector ~r and its magnitude is |~r| = r = |z|.
This suggests that we can write in polar coordinates the complex
number z as

(B.4) z = reiθ = r cos θ + ir sin θ

where, θ is the angle measured from the positive x-axis to the
position vector. This is called the polar form of the complex
number. Both the forms of representing a complex number are
useful. When adding or subtracting the standard for is useful.
When one needs to multiply complex number then the polar
form is very often easier to handle. The identity

(B.5) eiθ = cos θ + i sin θ

is called Euler’s Formula

y

z1 = x1 + iy1

z2 = x2 + iy2

z1 + z2

z1 − z2
z1
z2

x

Figure B.2. Composition of two complex numbers using var-
ious operations.

Assignment 2.1 Given z1 = 4.5 + i1.5 and z2 = 1.5 + i3,

(1) Find z1 + z2 and z1 − z2.

(2) Find
z1
z2
.

(3) Find z1z2.
(4) Repeat the last two problems using the polar form.
(5) Compare with the results plotted in figure B.2.

Matrices

A matrix is a mathematical mechanism to organise and op-
erate upon n-tuples. For example, the complex numbers we
have just encountered consist of a real part and an imaginary
part which is basically two numbers or a “double”. A posi-
tion vector in three spatial dimensions would consist of three
numbers or a “triple”. Along these lines we could represent n
distinct numbers or an n-tuple. Mathematically, if an entity can
be represented as a matrix, it is said to have a representation.

You have encountered many entities made up of n-tuples
just like the examples given above. We will now look at how
matrices organise and operate upon this data. A triple as we
encounter in vector algebra can be organised in two possible
ways in the matrix world, either a column matrix(column vector)
or a row matrix(row vector). This is shown in the following
equation

(B.6) Row Matrix: (x y z), Column Matrix:





x
y
z





The row matrix is said to be the transpose of the column matrix
and vice-versa. This is indicated as follows

(B.7) (x y z) =





x
y
z





T

, and





x
y
z



 = (x y z)T

The superscript, T , is the transpose operator and its action is to
generate the transpose of a matrix. If we have two vectors ~a and
~b represented by matrices as follows (a1, a2, a3) and (b1, b2, b3)

our conventional operation of the dot product of two vectors
defines the matrix product between a column matrix and a row
matrix in that order as
(B.8)

a1b1 + a2b2 + a3b3 = (a1 a2 a3)





b1
b2
b3



 = (b1 b2 b3)





a1
a2
a3



 .

Something that we would write as ~a ·~b we would write in matrix

form as ~a~bT . Bear in mind that I have defined the vectors as
row vectors. If I had defined them as column vectors then we
would have ~aT~b. Simply put, we take the element of the row
and the corresponding element of the column and multiply them
and accumulate the products to get the product of a row matrix
and a column matrix.

We can build other matrices from our row matrices (all of
the same size of course) by stacking them up. If you stack up
as many row matrices as you have elements in the row we get a
square matrix. When we use the term matrix in this book, we
will be referring to a square matrix. We will use two subscripts
to index the matrix. For example aij. The first subscript, i,
indicates which row vector we are referring, the second one, j,

picks the element out of that row vector.
(B.9)




















1 2 3 · · · j − 1 j j + 1 · · · n

1 a1,1 a1,2 a1,3 · · · a1,j−1 a1,j a1,j+1 · · · a1,n
2 a2,1 a2,2 · · · · · · · · · a2,j · · · · · · a2,n

3 a3,1
... a3,3 · · · · · · a3,j · · · · · · a3,n

...
... · · · · · · · · · · · · ... · · · · · · ...

i− 1 ai−1,1 · · · · · · · · · · · · ai−1,j · · · · · · ai−1,n

i ai,1 ai,2 ai,3 · · · ai,j−1 ai,j ai,j+1 · · · ai,n
i+ 1 ai+1,1 · · · · · · · · · · · · ai+1,j · · · · · · ai+1,n
...

... · · · · · · · · · · · · ... · · · · · · ...
n− 1 an−1,1 an−1,2 · · · · · · · · · an−1,j · · · · · · an−1,n

n an,1 an,2 an,3 · · · an,j−1 an,j an,j+1 · · · an,n




















If the row vectors that make up the matrix are independent
of each other we have a matrix that is not singular. If we are
given a vector ~x we can project it onto these independent vectors

to get a kind of a projection ~b onto the space spanned by these
vectors. If we labelled this matrix as A then we could write

(B.10) A~x = ~b

For example, given the matrices C and ~x as given below in
equation (B.11) how would we find ~y = C~x?

(B.11) C =





5 2 7
0 11 1
3 8 10



 , and ~x =





4
6
9





We just go through the motions.

y1 = 5× 4 + 2× 6 + 7× 9 = 63(B.12)

y2 = 0× 4 + 11× 6 + 1× 9 = 75(B.13)

y1 = 3× 4 + 8× 6 + 10× 9 = 150(B.14)

Inspection of the equations (B.12) shows us that they could
also be rewritten as

(B.15)





y1
y2
y3



 =





5
0
3



× 4 +





2
11
8



× 6 +





7
1
10



× 9.

That is, ~y can also be thought of as a linear combination of the
vectors formed by the columns of the matrix. A given square
matrix can be viewed as a set of vectors stacked on top of
each other and would span a space called the row space of that
matrix or a set of column vectors placed side-by-side and would
then span a space called the column space of that matrix. Now
that we see that the square matrix can also be treated as a
composition of column vectors we can write, analogous to our
previous operation, ~z = ~xTC. You can verify that

(B.16)
(
4 6 9

)





5 2 7
0 11 1
3 8 10



 =
(
47 146 124

)

We have so far done the transpose operations to vectors.
We can also perform this operation on any general matrix. To
take the transpose of a square matrix A with entries aij we just
swap the elements aij with the element aji for all i < j.

Assignment 2.2

(1) Given the matrix

(B.17) A =

[
3 −1

−1 3

]

Find ~y using equation the ~y = A~x for various values ~x
lying on a unit circle centred at the origin. The easiest
way to pick various values of ~x is to take its compo-
nents to be

(
cos θ
sin θ

)
for various values of θ. Graph ~x

and the corresponding ~y. What can you say about the
relationship of ~x to ~y ? Do the same for ~z = ~xTA ?

(2) Repeat problem one with points taken from a circle of
radius two instead a unit circle.

(3) Given the matrix

(B.18) B =

[
1 2
3 2

]

Repeat the exercise in the first problem. What is the
difference between the two matrices?

(4) Finally repeat these exercises for the matrices

(B.19) C =

[
1 2
2 4

]

, D =

[
3 0
0 3

]

You should have seen from the assignment that for a unit
vector ~x the effect of A is to rotate the vector and to scale it to
obtain the vector ~y. This is true even in the case of ~z. We will
discuss this assignment. We start with the last problem first.

The matrixC is a bit strange. It rotated every vector enough
to get it pointed in the same direction and scaled it in that
direction. Effectively all the points on the plane collapse into
a line. Taking two independent vectors ~x no longer gives you
two independent ~ys. The matrix is said to be singular. This
happens as the two vectors that are stacked to form the matrix
are linearly dependent on each other. In fact, in this case they
were chosen so that one has components which are twice the
other. You can confirm this. The easiest way to find out if two
vectors are parallel to each other is to take the cross product.
For a 2×2 matrix this is called the determinant of the matrix. In
general for a matrix A =

(
a b
c d

)
the determinant can be written

as

(B.20) detA = det

(
a b
c d

)

=

∣
∣
∣
∣

a b
c d

∣
∣
∣
∣
= ad− bc

If the determinant of a matrix is zero, it is singular and vice-
versa. In this book we will use determinants of a three by
three matrix which we will now look at. You will need to know
how to find determinants of larger matrices and can followup
on references [Str06],[Kum00],[BW92],[Hil88]. If we have
three independent vectors we could find the volume of the par-
allelepiped that have those three vectors as edges. The volume
of the parallelepiped is the determinant of the matrix made up

of those vectors. So, we have
(B.21)∣
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣
∣

= a11

∣
∣
∣
∣

a22 a23
a32 a33

∣
∣
∣
∣
−a12

∣
∣
∣
∣

a21 a23
a31 a33

∣
∣
∣
∣
+a13

∣
∣
∣
∣

a21 a22
a31 a32

∣
∣
∣
∣

Now, let us get back to the fourth problem of the assign-
ment. The matrix D did stretch every vector. It did not rotate
any vector. Its action is said to be spherical in nature. The
matrix is variously referred to as an isotropic matrix or a spher-
ical matrix. We have employed the last problem to define the
determinants and spherical matrices. Let’s see what we can get
from the first two problems of the assignment.

In the first problem, before we look at the action of the
matrix, let us make an observation about the structure of the
matrix. You will notice that A = AT . Such a matrix is said to
be a symmetric matrix. Just for completeness, a matrix which
is identical to the negative of the transpose, that is A = −AT ,
is called a skew-symmetric matrix.

Now let us look at the action of the matrix on various vec-
tors. What was the effect or action of A on the unit vector
at an angle of 45 degree from the x-axis? It went through a
pure stretch and no rotation. The effect of multiplying by a
matrix in that direction turned out to be the same as multiply-
ing by a scalar. To check this we need to look at the second
problem. We see that the magnitude in this direction again
doubled. Along the ~x(45◦) matrix multiplication is like scalar

multiplication. That is

(B.22) A~x(45)◦ = 2~x(45)◦ , ~x(45)◦ =

[
1/
√
2

1/
√
2

]

Is there another direction like this where the action of the matrix
A is a pure “stretch”. If you haven’t found it check out the vec-
tor along the line through the origin at angle of 135 degrees from
the x-axis. The direction is called a characteristic direction of
A or an eigenvector of A. Corresponding to the direction is the
amount of stretch, did you check the stretch for the 135 degree
direction? The amount of the stretch is called a characteristic
value or an eigenvalue. The two matrices A, B given above
have two eigenvectors and each has a corresponding eigenvalue.
The student should recollect that we have encountered the idea
of a characteristic direction before. In that case the partial dif-
ferential equation reduced to an ordinary differential equation
along the characteristic direction.

In general the equation (B.22) gives us the clue to find-
ing these directions. We rewrite it since we do not know the
characteristic direction and would like to find out what the char-
acteristics are. So, in general we want to find a number λi and
a corresponding direction ~xi as

(B.23) A~xi = λi~xi

The subscript i is used to remind ourselves here of the corre-
spondence between the stretch λi and the eigenvector ~xi. We
can rearrange this equation as

(B.24) (A− Iλi)~xi = ~0

Now, one obvious ~x that satisfies this equation is the zero vector.
This is of no use to us. We could hope for a non-zero ~x if the
matrix multiplying it were singular. The matrix is singular when

(B.25) |A− Iλ| = 0

This gives us the so called characteristic polynomial. We will
work it out for the matrix from the first problem in the as-
signment B-2. To find the eigenvalues and the corresponding
eigenvectors of the matrix A =

(
3 −1

−1 3

)
, solve the following

equation for λ.

(B.26)

∣
∣
∣
∣

3− λ −1
−1 3− λ

∣
∣
∣
∣
= 0

This gives us the characteristic polynomial equation in λ

(B.27) λ2 − 6λ+ 8 = 0

Fortunately the left hand side of equation (B.27) can be factored
as (λ− 2)(λ− 4) which gives us two eigenvalues

(B.28) λ1 = 2, or/and λ2 = 4

Now we need to find the corresponding eigenvectors ~x1 and
~x2. Let us find ~x1 using λ1. We can do this from equation
(B.24). If we were to substitute λ1 = 2, we would make the
matrix singular. As a consequence we cannot get both the
components of ~x1 independently. We rewrite equation (B.24)
here for convenience after the substitution

(B.29)

[
−1 1
1 −1

](
x1,1
x2,1

)

=

(
0
0

)

where x1,1 is the first component of the first eigenvector and
x2,1 is the second component of the first eigenvector. Solving

any one of the equations gives x1,1 = x2,1 (normally I solve both
equations, I check my algebra by solving the second equation
and make sure that I get the same answer as from the first).
In this case, if x1,1 = a, then an eigenvector corresponding to
λ = 2 is (a, a). We can set the vector ~x1 to the unit vector in
that direction as

(B.30) ~x1 =

(
1/
√
2

1/
√
2

)

Assignment 2.3

It is advisable to do these calculations employing a calculator
instead of programming them or using a package to find the
eigenvalues and eigenvectors. Pay attention to the relationship
between the matrices in the two problems and the way they
relate to the eigenvalues and eigenvectors.

(1) Find the eigenvalues and eigenvectors for the matrices
given in the previous assignment B-2.

(2) Repeat problem one for the transpose of the matrices
from the previous assignment.

Now, for each of the matrices you have the matrix X whose
entries xi,j provide the ith component of the jth eigenvector
corresponding to the eigenvalue λj. Notice that the eigenvectors
are being stacked as columns, side-by-side. From the definition
given in equation (B.23) we can write

(B.31) AX = XΛ

where Λ is a diagonal matrix1 having λj on the diagonal. Make
sure you understand the right hand side of the equation; XΛ 6=
ΛX. If we pre-multiply equation (B.31) by X−1, we get

(B.32) X−1AX = Λ

We have a scheme to diagonalise the matrix A. It also interest-
ing to see what happens when we post-multiply equation (B.32)
by X−1. We get

(B.33) X−1A = ΛX−1

This equation looks something like equation (B.31), but not
quite. In general if we have a matrix Re whose columns are
made of vectors ~re such that

(B.34) ARe = ReΛ.

The vectors ~re are called the right eigenvectors of A. In a
similar fashion if the the matrix Le is a matrix whose rows are
made up of vectors ~le such that

(B.35) LeA = ΛLe.

the vectors ~le are called left eigenvectors. Now we can write
using equations (B.34) and (B.35)

(B.36) A = ReΛR−1
e = L−1

e ΛLe

If we were to calculate Re and Le they should relate as Re =
cL−1

e , where c is a constant. In fact we could set

(B.37) Le = R−1
e

1Note: It may not always be possible to get a diagonal form for A.

Assignment 2.4

(1) For the matrices A and B given in the earlier assign-
ment find the left and right eigenvectors.

Is there a way for us to get an estimate of the magnitude
of the eigenvalues? Yes there is. There is an extremely useful
result called the Gershgorin’s circle theorem. If we have a matrix
A and we partition the matrix into two as follows

(B.38) A = D + F ,

where D is a diagonal matrix made up of the diagonal of A.
Consequently F has a zero diagonal and the off-diagonal entries
of A. If di is the ith entry of D and fij are the entries of F
then we define an Ri as

(B.39) Ri =
∑

j

|fij|

Remember that fii = 0. If z is a complex number then the
Gershgorin’s circle theorem says that the circular disc |z−di| <
Ri has an eigenvalue in it if it does not overlap other discs. If
a set of ω such discs overlap, then ω eigenvalues are contained
in the union of those discs. Of course if the di = 0 then the
circle is centred at the origin. To make sure you understand the
meaning of this theorem try out the following exercise.

Assignment 2.5

Find / draw the circles as indicated by the Gershgorin’s theorem
for the matrices given below. Find the eigenvalues.

(1)





3 1 0
1 1 0
1 0 −3





(2)





0 1 0
1 0 1
0 a 0



, a = 1, 2, 3

Matrices are a popular mode of representation for mathe-
matical entities. This is so extensive that a mathematical entity
is said to have a representation if it has a matrix representation.
You will see in chapter 5 that tensors can be represented by
matrices. As an example for now, consider the matrices

(B.40) 1 =

(
1 0
0 1

)

, i =

(
0 −1
1 0

)

What do these matrices represent? Evaluate the product i ∗ i
and find out. Did you get it to be −1. So, what does 51+ 2i
represent? Check out the appendix B. A note of caution here.
A mathematical entity may have a representation. That does
not mean that every matrix is a representation. Specifically, a
complex number can be written in terms of 1 and i. Every ma-
trix does not represent a complex number. (1 2

3 4) is an obvious
example. In a similar fashion, every tensor may have a matrix
representation. Every matrix does not represent a tensor.

Since we have so many other applications of matrices, we
will look at some useful decompositions of matrices. Any square
matrix A can be written as the sum of

(1) a symmetric matrix and a skew symmetric matrix,

(B.41) A =
1

2

(
A+AT

)
+

1

2

(
A−AT

)

(2) a spherical and a deviatoric matrix,

(B.42) A =
1

3
tr (A) I +

{

A− 1

3
tr (A) I

}

Assignment 2.6

Perform the decomposition on a few of the matrices given
the previous assignments.

Fourier Series

There are numerous resources for Fourier series – an indi-
cation of the importance of the topic. I am just citing a few
here: [Act90], [Lat04], [Bha03],[Tol76], and [Stu66]. If you
are encountering Fourier series for the first time it would help
if you completed chapter 2. It would also help if you reviewed
trigonometric identities and integration rules.

We have seen in chapter 2 that we can use a variety of
functions as a basis to represent functions. The box functions
and Haar functions had discontinuities in the representation.
The hat function and the higher order spline functions resulted
in a smoother representation, but lost the important property
of orthogonality. We look at using trigonometric functions as
a basis from the observation that on the interval [0, 2π] the
functions 1, sin x, cos x, sin 2x, cos 2x, ..., sinnx, cosnx, ...
are orthogonal to each other. Let us take a look at this more
closely. We will look at the trigonometric functions now and
look at the constant function later.

First, we remind ourselves of the definition of the scalar
product of functions defined on the interval (0, 2π).

(B.43) 〈f, g〉 =
∫ 2π

0

fgdx

Using this definition,
(B.44)

〈sin x, sin x〉 =
∫ 2π

0

sin2 xdx =

∫ 2π

0

1− cos 2x

2
dx = π

So, the norm of sin on the interval (0, 2π) is
√
π. Is it

obvious that this is the same for cos? Check it out. What
about the norm for an arbitrary wave number n?
(B.45)

〈sinnx, sinnx〉 =
∫ 2π

0

sin2 nxdx =

∫ 2π

0

1− cos 2nx

2
dx = π

Since the norms of all of the functions are the same we
have an interesting possibility here. We could redefine our dot
product so that the functions have unit norm. We redefine the
dot product as

(B.46) 〈f, g〉 = 1

π

∫ 2π

0

fgdx

I have boxed the definition so that it is clear that this is the one
that we will use. Now, check whether sin and cos are orthogonal
to each other.
(B.47)

〈sin x, cos x〉 = 1

π

∫ 2π

0

sin x cos xdx =
1

π

∫ 2π

0

sin 2x

2
dx = 0

You can verify that the sets {sinnx} and {cosnx} are orthonor-
mal both within the set and between the sets.

What happens to the constant function which we have ten-
tatively indicated as 1?

(B.48) 〈1, 1〉 = 1

π

∫ 2π

0

dx = 2

To normalise the constant function under the new dot product,
we define C0(x) = 1/

√
2. So, the full orthonormal set is

(B.49)

S0(x) = 0, C0(x) =
1√
2
, S1(x) = sin x, C1(x) = cos x,

S2(x) = sin 2x, C2(x) = cos 2x, · · · ,
Sn(x) = sinnx,Cn(x) = cosnx, · · ·

Now, a periodic function f(x) can be represented using the
Fourier series by projecting it onto this basis. By taking the dot
product, we will find the components along the basis vectors,
or the Fourier coefficients as they are called, as follows

an =
1

π

∫ 2π

0

f(x)Cn(x)dx(B.50)

bn =
1

π

∫ 2π

0

f(x)Sn(x)dx(B.51)

We then try to reconstruct the function using the Fourier com-
ponents. The representation f̃ is given by

(B.52) f̃(x) =
∞∑

n=0

anCn(x) + bnSn(x)

It will be identical to f , if f is smooth. f̃(x) will differ from
f , when f has a finite number of discontinuities in the function
or the derivative. We will just use f(x) instead of f̃(x) as is

usually done and write

(B.53) f(x) =
∞∑

n=0

anCn(x) + bnSn(x)

A more convenient form of the Fourier series is the complex
Fourier series. Now we can use the deMoivre’s Formula2 given
by

(B.54) einx = cosnx+ i sinnx

In order to substitute into equation (B.53), we need to obtain
expressions for cosnx and sinnx. As it turns out we can use
the fact that cos is an even function and that sin is an odd
function by replacing x in equation (B.54) by −x to get

(B.55) e−inx = cosnx− i sinnx

From which we can see that

cosnx =
einx + e−inx

2
(B.56)

sinnx =
einx − e−inx

2i
(B.57)

Substituting back into equation (B.53) we get

(B.58) f(x) =
∞∑

n=0

an
einx + e−inx

2
+ bn

einx − e−inx

2i

This is the same as

(B.59) f(x) =
∞∑

n=0

an − ibn
2

einx +
an + ibn

2
e−inx

2deMoivre’s Formula is a variation of Euler’s formula defined in section B

If we were to define

cn =
an − ibn

2
(B.60)

c−n =
an + ibn

2
= c̄n(B.61)

then, the Fourier series expansion can be written as

(B.62) f(x) =
∞∑

n=−∞

cne
inx

Since einx is complex, we need to define the dot product appro-
priately so as to get a real magnitude. The dot product now is
redefined as follows

(B.63) 〈f, g〉 = 1

2π

∫ 2π

0

f ḡdx

where ḡ is the complex conjugate of g. Note that 〈f, f〉 is real.
If g is real then the dot product degenerates to our original
definition (apart from the normalising factor).

Assignment 2.7

(1) In the case where f and g are complex, what is the
relation between 〈f, g〉 and 〈g, f〉?

(2) Verify that the set {einx} is orthonormal using the norm
given in equation (B.63)

(3) Find the Fourier components of the function f(x) =
x(x− 2π).

We see that

(B.64) cn =
1

2π

∫ 2π

0

fe−inxdx

We can recover our original an and bn using equations (B.60)
as

an = cn + c−n = cn + c̄n(B.65)

bn = i(cn − c−n) = i(cn − c̄n)(B.66)

It is clear that given a function f(x) on an interval [0, 2π], we
can find the corresponding Fourier coefficients.

Bibliography

[Act90] F. S. Acton, Numerical methods that work, The Mathematical Association of America,

1990.

[Act96] , Real computing made real : Preventing errors in scientific and engineering

calculations, Princeton University Press, 1996.

[Ahl79] L. V. Ahlfors, Complex analysis, McGraw-Hill Book Company, 1979.

[Ame77] F. W. Ames, Numerical methods for partial differential equations, Academic Press Inc,

1977.

[Ari89] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover Publica-

tions, Inc, 1989.

[Arn04] V. I. Arnold, Lectures on partial differential equations, Springer-Verlag, 2004.

[Bha03] R. Bhatia, Fourier series, Hindustan Book Agency, 2003.

[BM80] W. R. Briley and H. McDonald, On the structure and use of linearised block implicit

schemes, Journal of Computational Physics 34 (1980), 54–73.

[Boo60] G Boole, Calculus of finite differences, Chelsea Publishing Company, 1860.

[Bra00] R. N. Bracewell, The fourier transform and its applications, McGraw-Hill Book Company,

2000.

[Bri87] W. L. Briggs, A multigrid tutorial, SIAM Press, 1987.

[BW92] T. Banchoff and J. Wermer, Linear algebra through geometry, Springer, 1992.

[CFL67] R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations of Mathe-

matical Physics, IBM Journal (1967), 215:234.

[Cha90] S. C. Chang, A critical analysis of the modified equation technique of Warming and

Hyett, Journal of Computational Physics 86 (1990), 107–126.

[Chu77] R. V. Churchill, Complex variables, McGraw-Hill Book Company, 1977.

[CJ04] R. Courant and F. John, Introduction to calculus and analysis, Springer-Verlag, 2004.

[Ded63] R. Dedekind, Essays on the theory of numbers, Dover Publications, Inc., 1963.

[ea99] J. F. Thompson et al, Handbook of grid generation, CRC Press, 1999.

[Fel68] W. Feller, An introduction to probability theory and its applications, vol. I, John Wiley

and Sons, 1968.

[FH74] Warming R. F. and B. J. Hyett, The modified equation approach to the stability and

accuracy analysis of finite difference methods, Journal of Computational Physics 14

(1974), 159–179.

[Gea71] C. W. Gear, Numerical initial value problem in ordinary differential equations, Prentice-

Hall Inc., 1971.

[GF82] I. M. Gelfand and S. V. Fomin, Calculus of variations, McGraw-Hill, 1982.

611

[GL83] G. H. Golub and C. F. Van Loan, Matrix computations, The Johns Hopkins University

Press, 1983.

[Gol91] D. Goldberg, What every computer scientist should know about floating-point arithmetic,

ACM Computing Surveys 23 (1991), no. 1, 5–48.

[GU72] Goscinny and Uderzo, Asterix and the soothsayer, Dargaud, 1972.

[Ham73] R. W. Hamming, Numerical methods for scientists and engineers, Dover Publications,

1973.

[Hil88] D. R. Hill, Experiments in computational matrix algebra, Random House, 1988.

[HP03] J. L. Hennessy and D. A. Patterson, Computer architecture—a quantitative approach,

Morgan Kaufmann Publishers, 2003.

[HY81] L. A. Hageman and D. M. Young, Applied iterative methods, Academic Press, 1981.

[Jr55] J. Douglas Jr, On the numerical integration ∂2u
∂x2 + ∂2u

∂y2 = ∂u
∂t

by implicit methods,

Journal of the Society for Industrial and Applied Mathematics 3 (1955), no. 1, 42–65.

[Knu81] D. E. Knuth, The art of computer programming - seminumerical algorithms, vol. II,

Addison-Wesley, 1981.

[KPS97] P. E. Kloeden, E. Platen, and H. Schurz, Numerical solution of sde through computer

experiments, Springer, 1997.

[Kre89] E. Kreysig, Introductory functional analysis with applications, Wiley, 1989.

[Kum00] S. Kumaresan, Linear algebra: A geometric approach, Prentice-Hall of India Private

Limited, 2000.

[Lat04] B. P. Lathi, Linear systems and signals, Oxford University Press, 2004.

[Lax73] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of

shock waves, SIAM, 1973.

[LR57] H. W. Liepmann and A. Roshko, Elements of gasdynamics, John Wiley & Sons, 1957.

[LW60] P. D. Lax and B. Wendroff, Systems of conservation laws, Communications on Pure and

Applied Mathematics 13 (1960), no. 2, 217–237.

[Moo66] R. E. Moore, Interval analysis, Prentice-Hall, 1966.

[Moo85] , Computational functional analysis, Ellis-Horwood limited, 1985.

[NA63] Sarmin E. N. and Chudov L. A., On the stability of the numerical integration of systems

of ordinary differential eqautions ariding in the use of the straight line method, USSR

Computtaional Mathematics and Mathematical Physics 3 (1963), no. 6, 1537–1543.

[PJ55] D. W. Peaceman and H. H. Rachford Jr, The numerical solution of parabolic and elliptic

differential equations, Journal of the Society for Industrial and Applied Mathematics 3

(1955), no. 1, 28–41.

[Roa00] P. Roache, Validation, verification, certification in cfd, ??, 2000.

[Roe81] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,

Journal of Computational Physics 43 (1981), 357–372.

[RS81] D. H. Rudy and J. C. Strikwerda, Boundary conditions for subsonic compressible Navier-

Stokes calculations, Computers and Fluids 9 (1981), 327–338.

[Sam03] H. Samet, Spatial data structures, Morgan-Kaufmann, 2003.

[Sha53] A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow, The Ronald

Press Company, 1953.

[Smi78] G. D. Smith, Numerical solution of partial differential equations: Finite difference meth-

ods, Clarendon Press, 1978.

[Sne64] I. Sneddon, Elements of partial differential equations, McGraw-Hill, 1964.

[SS82] J. L. Synge and A. Schild, Tensor calculus, Dover Publications, Inc, 1982.

[Str86] G. Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, 1986.

[Str06] , Linear algebra and its applications, 4th ed., Thompson Brooks/Cole, 2006.

[Stu66] R. D. Stuart, An introduction to Fourier analysis, Chapman and Hall, 1966.

[Tol76] G. P. Tolstov, Fourier series, Dover Publications, 1976.

[Var00] R. S. Varga, Matrix iterative analysis, 2nd ed., Springer-Verlag, 2000.

[Wes04] P. Wesseling, Principles of computational fluid dynamics, Springer, 2004.

[Win67] A. M. Winslow, Numerical solution of the quasi-linear Poisson equation in a non-uniform

triangle mesh, Journal of Computational Physics 1 (1967), 149–172.

[You93] E. C. Young, Vector and tensor analysis, Marcel-Dekker Ltd, 1993.

[ZT86] E. C. Zachmanoglou and D. W. Thoe, Introduction to partial differential equations with

applications, Dover Publications, 1986.

	Preface
	Introduction
	What is Computational Fluid Dynamics?
	Modelling the Universe
	How do we develop models?
	Example I - Air
	Example II - A Nozzle

	Modelling on the Computer
	Important ideas from this chapter

	Representations on the Computer
	Representing Numbers on the Computer
	Machine Epsilon

	Representing Matrices and Arrays on the Computer
	Representing Intervals and Functions on the Computer
	Vector Algebra

	Functions as a Basis: Box Functions
	Box Functions
	Polynomial on the Interval [0,1]

	Linear Approximations: Hat Functions
	Higher Order Approximations
	Linear Interpolants on an Interval

	Local Error Estimates of Approximations
	Representing Derivatives - Finite Differences
	Differential Equations
	Grid Generation I
	Important ideas from this chapter

	Simple Problems
	Laplace's Equation
	Convergence of Iterative Schemes
	Contraction Maps and Fixed Point Theory

	Properties Of Solutions To Laplace's Equation
	Accelerating Convergence
	Successive Over Relaxation - SOR

	Neumann Boundary Conditions
	First Order Wave Equation
	Numerical Solution to Wave Equation: Stability Analysis
	Courant number or CFL number

	Numerical Solution to Wave Equation:Consistency
	Numerical Solution to Wave Equation:Dissipation, Dispersion
	Solution to Heat Equation
	A Sampling of Techniques
	Boundary Conditions
	A Generalised First Order Wave Equation
	The ``Delta'' form
	The One-Dimensional Second Order Wave Equation
	Important ideas from this chapter

	One-Dimensional Inviscid Flow
	What is one-dimensional flow?
	The Governing Equations

	Analysis of the One-dimensional Equations
	A Numerical Scheme
	Stability Analysis

	Boundary Conditions
	The Delta Form
	Boundary Conditions Revisited
	Boundary Conditions - a compromise

	Running the Code
	Preconditioning
	Finite Volume Method
	Roe's Averaging

	Quasi-One-Dimensional Flow
	Important ideas from this chapter

	Tensors and the Equations of Fluid Motion
	Laplace Equation Revisited
	Tensor Calculus
	Equations of Fluid Motion
	Conservation of Mass
	Conservation of Linear Momentum
	Conservation of Energy
	Non-dimensional Form of Equations

	Important ideas from this chapter

	Multi-dimensional flows and Grid Generation
	Finite Volume Method
	Computing Fluxes
	Computing Derivatives in Finite Volume Method
	Applying Boundary Conditions

	Finite Difference Methods
	Two Dimensional Euler Equations
	Alternating Direction Implicit scheme
	LU - approximate factorisation
	Three-Dimensional Euler Equations
	Addition of Artificial Dissipation

	Grid Generation
	Why Grid Generation?
	A Brief Introduction to Geometry
	Properties of Space Curves
	Surfaces and Manifolds

	Structured Grids
	Algebraic grids
	Elliptic Grids
	Parabolic and Hyperbolic Grids

	Generating Two Dimensional Unstructured Grids
	Triangulation
	Cartesian Meshes
	Unstructured Quadrilateral Meshes

	Three Dimensional Problems
	Stacking Two-dimensional grids

	Hybrid Grids
	Overset grids
	Important ideas from this chapter

	Advanced Topics
	Variational Techniques
	Three Lemmas and a Theorem
	Representing Functions revisited
	Extension To Two Dimensional Problems
	The Soap Film Problem

	Random Walk
	Random Number Generators
	Doing the Random Walk
	Stochastic Differential Equations

	Multi-grid techniques
	Applying the Multi-Grid Scheme to the Euler's Equation

	Unsteady Flows
	Standard Schemes?
	Pseudo Time stepping
	Stability Analysis using Pseudo Time stepping
	One-Dimensional Euler's Equation

	Important ideas from this chapter

	Closure
	Validating Results
	Computation, Experiment, Theory

	Computers
	How do we actually write these programs?
	 An example using the four step Runge-Kutta Scheme

	Programming
	Parallel Programming

	Some Mathematical Background
	Complex Variables
	Matrices
	Fourier Series

	Bibliography

