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ABSTRACT

KEYWORDS: combustion instability; premixed flame; flame wbut; Ruelle-
Takens route to chaos; frequency locking route to chaostrmt-
tency; nonlinear time series analysis; recurrence arglgsinlin-

ear coupled oscillator.

Confined combustion is known to result in spontaneouslytegciself-sustained pres-
sure oscillations, due to the establishment of a positigdliack between unsteady heat
release rate and the acoustic field of the combustor. Tealhnreferred to as thermoa-
coustic instability, the occurrence of such oscillatiompractical combustion systems
such as gas turbines, industrial burners etc., is a majdneagng problem. In par-
ticular, the fact that low emission systems running on leguiv&lence ratio are more
susceptible to this instability makes it is a hindrance teeades in cleaner combustion

technology.

In this thesis, nonlinear thermoacoustic oscillationsshiasen investigated from the
point of view of the dynamical systems theory. The focus & tork is based on the
study of nonlinear transitions in a simple thermoacouststesn through an experimen-
tal bifurcation analysis. Self-excited thermoacousticiltsions are investigated using
nonlinear time series analysis. Results indicate thatynamhics of thermoacoustic o0s-
cillations are not limited to limit cycle oscillations. Thienit cycle state obtained at the
onset of the instability undergoes further bifurcatioredieg to a variety of complex
nonlinear states. Bifurcation scenarios in two laboraftanme configurations, a single
conical laminar flame and a multiple laminar flame configoraticonfined within a

duct, have been investigated.

In the case of a single flame, a ducted laminar premixed chitécae stabilized on
a fully developed circular jet flow was studied. The relafteene location with respect

to the duct was considered as the bifurcation parameterordow to the bifurcation



analysis, nonlinear transitions undergone by thermodimascillations follow an in-
termittency route to flame blowout. The primary bifurcattorlimit cycle oscillations
from a non-oscillatory state was observed to occur via argidad Hopf bifurcation.
The limit cycle oscillations underwent a further bifurcatito quasi-periodic oscilla-
tions characterized by strong flame modulations featurorginear effects such as lift-
off, cusping, flame elongation and subsequent pinch-ofé qimsi-periodic state loses
stability, resulting in an intermittent state identifiedgge-Il through recurrence analy-
sis of phase space trajectories reconstructed from thetéoe of acoustic pressure. At
this state, the flame undergoes repeated lift-off and &attant. Instantaneous flame
Images suggest that the intermittent flame behavior is infleé by jet flow dynamics.
These experiments suggest a link between the phenomenarofdhcoustic instability
and flame blowout. Intermittency occurs as a precursor tortbacoustically induced

flame blowout.

The investigation was extended to the bifurcation analyse ducted multiple in-
jection burner. By implementing advanced nonlinear timeeseanalysis on exper-
imentally obtained pressure and intensi§H* chemiluminescence) time series, the
dynamics of the obtained oscillatory states was charaetgri By changing a control
parameter, the location of the source of combustion, it viseved that the transition
to self-excited, limit cycle oscillations is shown to ocada the subcritical Hopf bi-
furcation. Following this transition, the system enterdhaadtic state through either a
qguasi-periodic route (the Ruelle-Takens scenario) ornaguency-locking. These two
routes to chaos obtained in the investigated thermoaaosysiem have also been re-
ported in several other nonlinear systems. The route fatblwy the system depends
on the operating parameter, particularly the equivaleatie.rin this thesis, cases cor-
responding two different operating condition have beersgmeed to illustrate the two
routes to chaos. The highly nonlinear interaction betwaerflames and the acoustic
modes of the duct is clearly reflected in the high speed flanag&® acquired simulta-

neously with acoustic pressure oscillations.

With the aim of replicating the experimental results, a me@dr model consisting of
two coupled oscillators with time delay is formulated. Tlssential aspect, the Ruelle-

Takens route to chaos observed in experiments, was cagjurtedvell by this model.
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CHAPTER 1

INTRODUCTION

The term thermoacoustic instability refers to self-susgéioscillations in pressure and
heat release rate. Such instability arises in systemsvimglconfined combustion,
when the acoustic driving due to interaction between acousbdes of the confine-
ment and unsteady heat release rate exceeds the acoustgilothe system (Rayleigh,
1878). The acoustic field in a medium is the spatially and tafy alternating com-
pression and rarefaction manifested as oscillations ial ldeermodynamic variables
(pressure, density, temperature) and velocity osciltgtid he fluctuations of unsteady
heat release rate can constructively interact with the staotield of the confinement
and lead to the onset of thermoacoustic oscillations. thidisig with an example, an
electrically heated mesh when placed in a hollow duct woutiipce audible sound
as a result of the development of thermoacoustic instgbillthis is the Rijke tube,
which often serves as a prototypical model for investigetiof thermoacoustic insta-
bility. Industrial gas-turbines, rocket motors, furnaeesl boilers and other systems
involving confined combustion often face the risk of detnma high amplitude pres-
sure oscillations that appear due to the development afib@coustic instability within
the system (Zinn and Lieuwen, 2005; McMaretsal., 1993). Hence, the subject of

thermoacoustic instability is currently of a major importa.

The main problem associated with thermoacoustic instegdslis the high ampli-
tude pressure pulsation that is detrimental to the comtnusiistem. The self-sustained
oscillations can induce structural vibrations within tlembustor and other structural
components of the system in general, leading to reducedpiée of the combustion
system, reduced efficiency and even complete system fakuiia the case of rocket
engines (Zinn and Lieuwen, 2005). Figure 1.1 shows partsgafsaturbine combustor
damaged due to such pressure pulsations. Another issuessaoncerning, is that the
instability stands as an obstacle to the development of ravemtion, low emission
combustion systems such as gas turbine engines, enginasrfimand power genera-

tion. A shift towards cleaner system is currently the subpé@ worldwide campaign



a) Transition piece b) Combustion liner

Figure 1.1: Pictures of damaged structural components asdwgbine illustrating the
consequences of high amplitude thermoacoustic oscitigtid-igures are
reproduced with permission from Preetham (2007).

to prevent serious damage to the environment. In combusyistems, one strategy to
achieve lower emissions, particularly NOx emissions, isgerate at lean equivalence
ratios. Doing so primarily lowers the flame temperaturestlowering NOx emissions.
However, lean combustion causes the system to become nswepdible to thermoa-
coustic instabilities. In order to achieve high efficienaghnow emissions, active and
passive control techniques are employed to disrupt thentb@coustic coupling. How-
ever, the efficacy of the available control strategies islstiited and hence, research

efforts to investigate the dynamics of thermoacousticliadicins continue.

On a historical note, the issue of oscillating flames ocogrsimultaneously with
audible sound was noticed in applications that involved lmastion within confine-
ments such as tubes or vessels more than two centuries agb77W Higgins (as
reported by Plavnik, 2006) observed the phenomenon of sgandrated due to con-
fined combustion while working with slow hydrogen stream bostion in a vessel.
The unexpected generation of sound was interesting ancht#ug attention of more
investigators. In 1857, Tyndall (1857) published his répmmr the process of sound
generation within tubes of different lengths enclosingrogeén flames of varying sizes.
He confirmed that the sound generated corresponded to tdariental note and the

octaves of the enclosing ducts. Additionally, he reportedldffect of externally intro-

duced sound on the flameAs the sounds of the flame and siren approached perfect

unison, the flame shook, jumping up and down within the’tueeport by Le Conte

(1858) included the observation of flames responding to cplayed by instrumental-



ists in a party hall. These reports incited further detaithwestigations on the source of
flame oscillations and the associated sound generationmbsé notable work among
early investigations is by Rayleigh (1878). He put forth eestfic reasoning for the
phenomenon of thermoacoustic instability which is now nref@ to as the Rayleigh
criterion, which forms the basis of investigations even nélewever, Rayleigh crite-
ria, gives only the condition necessary for the occurrericeermoacoustic instability
and cannot be used in the original form for prediction. Fenthit does not reveal the

mechanisms that result in the unsteady heat release rate.

1.1 Rayleigh Criteria

A sound explanation for the occurrence of thermoacoussiability was first presented
by Rayleigh (1878). The explanation was later formulatedhematically by Putnam
(1971) and is now popularly referred to as the Rayleigh ate The criterion states
that during the occurrence of thermoacoustic instabilihgteady heat release rate and
acoustic pressure oscillations are in phase. When in plilasanteraction between
the two contributes to the acoustic energy within the systein other words, acts as

acoustic driving. A simple mathematical representatiothefcriterion is as follows

T = T
/V/O p(xf,t)q(:c},t)dt>/v/0 Z:Ei(:c},t)dtdv (1.1)

The equation gives a necessary condition for thermoaaurstability, in terms of
acoustic driving and damping. Her&, is the volume of the system over which the
integration is performed;’ is the time period of one oscillatiop’ (27, t) is the pressure
fluctuation at the flame location;, at timet. ¢'(z},t) is the unsteady heat release
rate at timet at flame locationg ;. E;(z7},t) represents acoustic energy losses due to
different mechanisms such as viscous dissipation and fessooistic energy at system
boundaries. The correlation betweg(ry, t) and¢' (2, ) given on the left hand side
of Eqgn. (1.1) is the acoustic driving due to flame-acoustigpting. When acoustic
driving due to this correlation is greater than acoustisdéssn the system, oscillations

in the system grow leading to thermoacoustic instability.



These basic feedback mechanisms that lead to thermoacmstbility incorpo-
rates complexities that are yet to be completely understdmdong the physical pro-
cesses involved with thermoacoustic oscillations, acowsave propagation is fairly
well-understood. However, evaluating the interactionmdteady heat release rate with
acoustic field is quite complex. In thermoacoustic systehesmentioned coupling is
often affected significantly by additional factors such gdrbdynamics. The unsteady
heat release rate is also a strong function of the amplitndefr@quency of acoustic
oscillations. In the simplest thermoacoustic system, tlikeRube, local heat release
rate from the surface of individual wires is governed by @mtive heat transfer to the
mean flow. This process is coupled to the dynamics of the ldysramic zone that
envelopes the wire mesh. The onset of thermoacoustic ihstatauses fluctuations
in the mean flow velocity, which in turn affects the heat tfans Thus, we can see
that the physics of thermoacoustic instability in a Rijkbaus dependent not only on
the coupling between acoustic pressure oscillation anteadg heat release rate but
also on the hydrodynamics in the near field of the wire meshrig@ypan and Sujith,
2011). In practical systems, the source of heat releaséas tnirbulent flame stabilized
over a complex flow field. The phenomenon of thermoacoussi@bility within such
systems is a result of an interplay between several phyproglesses and therefore,
requires a more detailed treatment. Additionally, evahgpthe acoustic energy losses
term on the right hand side of Eqn. (1.1) is difficult and quifeen simplified models

or approximations are employed.

Adding to the complexities described in the previous paplyyis the inherent non-
linear nature of thermoacoustic instability. The exporamrowth of thermoacoustic
oscillations is arrested by nonlinear mechanisms in thieesysThe asymptotic state of
the instability is then governed by the nonlinear dynamicthe thermoacoustic sys-
tem. Such considerations inspire investigations on thaoowostic instability beyond

the Rayleigh criterion, and form the subject of many curmeweéstigations.

Figure 1.2 is a schematic sketch to explain the existencesifipe feedback mech-
anism between the acoustic field in the combustor and theadgtheat release rate.
The two sketches at the bottom demonstrate the standingsvilaaewill be established

in the combustor chamber, depending on the boundary conditithe acoustic energy
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Figure 1.2: The above figure is a schematic representatitineoimoacoustic system.
It demonstrates how flame-acoustic coupling lead to sedfesned oscil-
lation. The two plots in the bottom row represent the acousiddes of
the system for open-open and closed-open boundaries teghecin the
case of closed boundapy is maximum whereas velocity fluctuatian is
minimum. For open boundary conditiphis minimum and velocity fluctu-
ationu’ is maximum.

generated by the combustion-acoustic interaction is grélaan the amount of acoustic
energy losses in the system. The acoustic field of the comdousttamber causes mod-
ulation in the flame shape, Fig. 1.3 shows the image of steadyef(a) and wrinkled
flame (b and c). This flame area modulation modifies the ungtheadt release rate
which further modifies the acoustic energy of the systemgtesical insight gained
from the rationale suggested by Rayleigh (1878) is thatrfstability to occur, a feed-
back interaction between unsteady heat release rate anstaqaressure oscillations is
a necessary. There are several mechanisms that causedyristaarelease rate in com-
bustors, for instance, flame surface area modulationgteffeoherent structures in the
flow, inherent flame instabilities, flame kinematics inchglstretch/strain effects and
chemical kinetics. In laminar premixed-flame systems, ffeceof acoustic field on
flame stabilization plays a dominant role (Schuéeal., 2003; Ducruixet al,, 2005). In
industrial combustion systems such as in dump combustarmsswvirl combustors, the
effect of coherent hydrodynamic structures associateld vattex shedding (Schadow
and Gutmark, 1992) or vortex breakdown (Paschereit andkepli998) becomes dom-
inant. Apart from these, factors such as fluctuations inlleqaivalence ratio or flow
rate (Zinn and Lieuwen, 2005) or swirl number fluctuationbi{@laet al., 2010; Palies

et al, 2011) also play an important role.

The critical parameters that determine if a system is suddepo instabilities are

the time scales associated with the mechanisms generatstgady heat release: con-
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Figure 1.3: Instantaneous images of a laminar conical flamel@own here. The im-
ages illustrate flame wrinkling during the occurrence ofrih@acoustic in-
stability. Image a is a steady flame image acquired in theralesef flame-
acoustic interaction. Images b and ¢ show oscillatory flaeteatior, ac-
quired during self-sustained oscillations in the system.

vective time scales of the flame surface area fluctuationsexshedding frequency
and convection time for equivalence ratio fluctuationshéde time scales match with
the time scale of acoustic modes of the combustor, instalaippears in the system.
An in-phase relationship between unsteady heat releasenak pressure oscillations
then ensures that energy from combustion is transferreddossic energy resulting in

self-sustained oscillations.

Flame surface area modulation forms the dominant sourcastéady heat release
rate in gas turbine combustors, particularly systems nmon premixed combustion.
Further, flame surface area fluctuations are a result ofrdiftemechanisms, each of
which can play a governing role in the occurrence of therraostic instability, de-
pending on the system under consideration. Listed belowlasical mechanisms that
directly or indirectly (via flame surface area modulatioapse unsteady heat release

rate oscillations in premixed flame systems.



1.2 Sources of Unsteady Heat Release Rate in Premixed

Systems

1.2.1 Acoustic Disturbances

Anillustration of the effect of acoustic oscillations orearlinar premixed conical flame
is shown in Fig. 1.4. Acoustic oscillations result in digtances in the flame that orig-
inate at the flame base. These disturbances are then cahedotg the flame leading
to flame surface wrinkling (Candel, 2002). As a result, tlieative surface area of the
flame is modulated as seen in Fig. 1.4. In premixed flames,retsise rate fluctua-
tions (') due to combustion is proportional to oscillations in theaktsurface area of the
flame ') i.e. ¢’ oc X'. During self-excited instability, unsteady heat releage via this
mechanism is coupled to acoustic modes of the system. Famestic coupling based
on flame surface area modulations has been extensivelyigaesl previously (Candel,
2002; Lieuwen, 2003; Karinat al., 2009), particularly through flame transfer function

studies. These studies are discussed in more detail in @h&pt
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Figure 1.4: Flame wrinkling caused by acoustic oscillaidh). In the case of self-
excited instability in a confined flame system, downstreaousiics (A)
cause modulations of the flame surface. Flame wrinkling tsolee caused
by upstream acoustics (B) when coupling is establisheddmivthe flame
and burner tube acoustics or in the presence of upstreamgorc
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Figure 1.5: In a typical combustion chamber, acoustic pe&tions move upstream of
the burner into the gas and air supply lines and lead to asoills primarily
in the air supplied to the burner. This results in an osantafuel-air equiv-
alence ratio within the flame. Equivalence ratios fluctuatiteads to heat
release rate fluctuations from the flame which could coupike eombustor
acoustics causing thermoacoustic oscillations.

1.2.2 Equivalence Ratio Fluctuations

Equivalence ratio fluctuations actively contribute tovgatidermoacoustic instability in
combustion systems running on partially premixed gaseaxsiras, in systems where
the air or fuel supply lines are susceptible to downstreaessure fluctuations. As
seen in the schematic in Fig. 1.5, acoustic fluctuationsggae upstream of the burner
and cause oscillations in the fuel/air supply, thus gemegahhomogeneities in the
fuel-air mixture. These inhomogeneities in the fuel-aiximie are convected till the
flame by the mean flow; at the flame they cause heat releases@liattons (Ducruix
et al, 2005). Lieuweret al. (1998, 2001) have shown that lean premixed combustion is
highly sensitive to equivalence ratio fluctuations. Aduhtlly, they have shown that the
convection time scale associated with the convection oivatgnce ratio fluctuations
from the fuel inlet till the flame is one of the parameters gougy thermoacoustic
instability. This was further confirmed by Richards and 3a(1098) who reported
shifts in stability characteristics with variation in thenigth of the fuel nozzle. They
also successfully demonstrated that effect of equivaleatie fluctuations is strong

enough to be used for controlling oscillations (Richaztal., 1999).

Fluctuations in the equivalence ratio cause unsteady leézdse rate directly via
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Figure 1.6: A schematic representation of periodic vorteedsling in dump combustor.
Often this periodic shedding couples to system acousticsiicg generation
of thermoacoustic oscillations in the system.

fluctuations in the local flame speed and heat of reaction.ill@smns in the local
flame speed in turn lead to flame surface area oscillations,d¢husing unsteady heat
release rate indirectly, in addition to its direct influenCao (2005) presented a detailed
discussion on the role of the mentioned mechanisms in theefl@sponse of laminar
flames to equivalence ratio oscillations. Their analysiBcated that flame response

depends critically on the Strouhal number.

1.2.3 Coherent Structures in the Flow

Flame stabilization in most engineering flows is based ormrstayer formation, for
instance in dump combustors and combustion systems baseldiftbody stabilized
or swirl-stabilized flames. Shear layers are associatdutivt development of Kelvin-
Helmholtz instability that grow into coherent flow struasr Periodic vortex shedding
in such systems is primarily responsible for oscillatorgthelease rate. Figure 1.6 il-
lustrates the phenomenon of vortex shedding in a dump cab&uch vortex shed-
ding was clearly observed through schlieren visualizatiaing combustion instability
in a dump combustor by Schadow and Gutmark (1992). Venkatng2000) showed
that this flame-vortex interaction is the dominant mecharfa combustion instability
in lean premixed dump combustors. During the occurrencasifibility, a feedback
loop is formed where the vortex shedding frequency match#s tve frequency of
acoustic oscillations in the system. Helical instabititie swirl flows have also been

identified to participate in thermoacoustic instabilityPgschereiét al. (1998).

On the basis of these known mechanisms, both linear andramlapproaches have
been developed for explaining the occurrence and chaistatsrof thermoacoustic os-

cillations. Linear analysis is based on the descriptionashloustion-acoustic interac-



tions in the limit of small amplitude perturbations. The bgbility of such methods
is limited to simple systems and its prediction capabsitiee limited to only the basic
features of the instability. This is primarily due to theostg inherent nonlinear nature

of thermoacoustic instability.

1.3 Nonlinear Aspect: An Outstanding Issue

It has been shown before in a number of investigations (Ekra@nd Proscia, 1999;
Dowling, 1999) that the nonlinear response of flame to acmsiescillations is the rea-
son for the nonlinear behavior of thermoacoustic instgbilfhese studies concentrate
on measuring the nonlinear flame describing functions thataxcterize the forced non-
linear response of flame to acoustic perturbations. Suctoappes have been success-
ful in predicting several nonlinear features of thermoaticunstability such as limit
cycle and triggering (Noiragt al, 2008). However, complex flame dynamics, which
cannot be characterized by describing functions, are weebin the phenomenon of
self-excited thermoacoustic instabilities. These comfllEme dynamics may lead to
more complex states such as intermittency, quasi-peitgdind chaos. Hence, flame-
response based approaches do not provide a complete diescopthermoacoustic
oscillations. The gap in our understanding of self-excttegrmoacoustic instabilities
needs to be covered in order to be able to efficiently supphesgroblem of thermoa-

coustic instabilities in real systems.

In the quest towards the ultimate goal of having a compleitg¢robof the complex
phenomenon of thermoacoustic instability in practicateyss, it is quite important to
first establish a thorough physical understanding of theambty in simpler config-
urations such as the Rijke tube (driven by electric heatdtaones). This approach
has previously resulted in fundamental results on the phenon of thermoacoustic
instability. Building on the existing knowledge, underslang the nonlinear dynam-
ics of thermoacoustic instability in a laminar premixed feadriven Rijke-type model

thermoacoustic setup forms the basis of this thesis.
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1.4 Motivation

Understanding the nonlinear aspects of thermoacoustiahiitisy is extremely crucial
to deal with the problem in real systems. Studies on nonlisgatems have shown
that several physical systems with inherent nonlinearig@ehibit complex nonlinear
oscillations and follow well-defined routes to determiitishaos. Thermoacoustic sys-
tems also have been previously reported to exhibit nonlibehavior such as quasi-
periodicity and chaotic oscillations. However, detailadastigations focused on this
facet of thermoacoustic instability are lacking. As a capusace, currently it is often
implicitly assumed that thermoacoustic oscillations appa the form of limit cycle
oscillations (Zinn and Lieuwen, 2005). From an industriainp of view, the major
drawback of this assumption is that the assessment of thacingb self-excited insta-
bility is underestimated. The extent of potential damagg ¢an be caused by complex
oscillation states when compared to limit cycle oscillatavill be higher. This is at-
tributed to the presence of several frequencies and signtfiycle-to-cycle amplitude
variations in the pressure oscillations, for instance iasiyperiodic and chaotic oscilla-
tions. Such oscillations can result in an augmented cyatigtdie, crack formation and
crack propagation within structural components of the casidr (Suresh, 1998; Kurz
and Brun, 2007). Clearly, control techniques tailored fonitl cycle oscillations will
fail in the presence of other nonlinear states. As a redwdtptain objective of running

combustion systems with lower maintenance costs and Idiigapans is hampered.

A complete description of thermoacoustic instabilitiesidbinvolve characteriz-
ing and explaining the occurrence of complex nonlinear Behan addition to limit
cycle oscillations. Hence, it is required to particularlyestigate the self-excited state
of thermoacoustic instability in the framework of nonlinelynamical systems the-
ory (Strogatz, 1994). Such an approach will provide insigtd the fundamental non-
linear mechanisms associated with thermoacoustic ingyednd will assist in exposing
and resolving the shortcomings of currently employed maar approaches to predict
the characteristics of thermoacoustic oscillations. Thekvpresented in this thesis is
motivated by the need to understand the dynamical naturelfeéscited thermoacous-

tic instability.
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1.5 Obijective of the Present Work

The objective of this investigation is to study self-exdittermoacoustic oscillations in
a simple laboratory setup through a detailed experimeiftaldation analysis (Strogatz,
1994). The oscillations will be investigated through noelr time series analysis of
experimentally acquired data. The study will include batialgative and quantitative
analysis. In particular, identifying the route followed the system from a steady state

to aperiodic oscillations through periodic limit cycle dktions will be emphasized.

To investigate these fundamental nonlinear aspects aftberoustic instability, a
prototypical Rijke tube system using laminar flame configaraas the source of com-
bustion will be studied. Two flame configurations, a singleical flame and a multiple
injection flame configuration will be investigated. Bothdbeconfigurations have been
used in several previous investigations, as the flame dyssamthese configuration can
be clearly studied and modeled. Hence, the two configuraomof particular research
interest and will be employed in this study. The acoustisguee in the system, instan-
taneous flame images a@iH* chemiluminescence will be acquired, characterized and
compared simultaneously, in an attempt to understand theefkcoustic interaction

during the appearance of nonlinear self-excited thermastamoscillations.

1.6 Overview of the Thesis

This thesis is primarily aimed at investigating the nordinasymptotic states of ther-
moacoustic oscillations. In order to understand the ugaweyiphysics behind the occur-
rence of thermoacoustic instabilities and to acceleraettorts in developing effective
control strategies, careful experiments are requiredvesitigate the nonlinear dynam-
ics of thermoacoustic systems. The approach currenthgtaeopted to deal with these
instabilities is to avoid them by defining safe operatingarg of combustion systems
in terms of their operating parameter. It is believed that sensitive operating parame-
ter is changed, thermoacoustic instability appear in the fof limit cycle oscillations,
when the driving and damping processes in the system achidatance (Zinn and

Lieuwen, 2005). In the process of understanding the ingtgla natural question that
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arises is whether these oscillations remain in this limdgleyehavior as the operating
parameter is further changed. The current study is aimegbaiding an answer to this
guestion. In particular, the present work is based on thécgtion of nonlinear time
series analysis to experimentally obtained results frommale laboratory combustion

system.
The rest of the thesis is divided into the following chapters

A survey of significant contributions in the field of thermoastic instability and
investigations related directly to the present invesiogats presented ifChapter 2.
Focus has been placed on premixed flame systems. Fundanmeetdlgations based
on linear and nonlinear approaches including recent dpustmts have been discussed.
The section closes with a review of literature on the ingzdion of thermoacoustic

instability from a dynamical systems perspective.

The details of the experimental setups studied are descitb€hapter 3. The
setups are similar to Rijke-burners driven by premixed flamveo flame configuration
are studied, a single laminar premixed flame and multipleypsed flames. The setups
are designed in such a way so that bifurcation analysis caeldermed by changing
the location of the flame relative to combustion chamber. iAsgrumentation and

measurement techniques used have also been discussed.

Chapter 4 elaborates the details of the analysis techniques implexdem experi-
mentally acquired data. Discussions, relevant concemt$eaminologies from dynam-
ical system theory are explained. Fundamentals of the edibgdheorem and phase

space reconstruction have also been discussed.

Chapter 5 presents the result and discussions on the sequence afdiitur present
prior to thermoacoustically induced lean flame blowout. fidsilts presented are based
on the experimentally obtained pressure time series. Otemmgnting the nonlinear
time series analysis on the pressure time series, the ricandizal nature of thermoa-
coustic oscillations are shown. Further, the nonlineagradtion between the flames
and the acoustic modes of the duct is also reflected in the $pgled flame images

acquired simultaneously with pressure and flame intensgigsurements.

Chapter 6 presents the result and discussions based on the expesipefarmed
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on Rijke tube driven by multiple premixed flame. Through mo@r time series analy-

sis, possible routes to chaos has been established foiotfigaration.

A simple phenomenological formulation of the thermoacimusgstem in terms of
nonlinear coupled oscillator is presenteddhapter 7. The main objective of the for-
mulation is to capture the route to chaos (Ruelle-Takensast® reported irChapter
6. The thesis ends with conclusions@mhapter 8 and an outlook for future investiga-

tions inChapter 9.
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CHAPTER 2

LITERATURE SURVEY

Intensive research has been conducted on the subject ofidheoustic instability in
combustion systems over the last 50-60 years. From studiesstability in solid and
liquid rocket propulsion systems in the 60’s (Crocco andchkil, 1969; Crocco and
Cheng, 1956), to the present-day investigations focuseddstability in gas-turbine
combustors, an immense amount of research has been pedforthes field. The focus
of this research has been on the fundamental mechanisnmssisie for self-sustained
combustion instability. Through experiments, numerigaiwations and theory, the
impact of pressure and velocity coupling (Culick, 1970; Atkrishnaret al., 2005),
flame-hydrodynamic interactions (Schadow and Gutmark21B6insot and Veynante,
2005), coupling to equivalence ratio fluctuations (Zinn ameliwen, 2005) , entropy
waves (Nicoud and Poinsot, 2005; George and Sujith, 201d)irmerent nonlinear
dynamics (Jahnke and Culick, 1994; Subramareial., 2010) were identified. In ad-
dition to fundamental research, more applied investigativere also performed in the
development of low-order models (Merk, 1956; Schuernetrad.,, 2000). These mod-
els helped in understanding the dynamics of flame-acouggcaction which helped to
adapt better control strategies (for reviews on activerobsee McManugt al,, 1993;

Dowling and Morgans, 2005) and for suppressing the instgliil practical systems.

Prior to being a concerning issue in gas-turbines, thermaosc instabilities were
a major problem in solid and liquid rocket propulsion syssearound the 60’s (Crocco
and Cheng, 1956; Crocco and Mitchell, 1969). Consequeatigrge part of the the-
ory of thermoacoustic oscillations was conceived in thofing decades. In particu-
lar, the Galerkin approach and its extension to includeineal effects was developed
by Zinn and co-workers (Powell and Zinn, 1969) and Culick andvorkers (Culick,
2006). Triggering instability and hysteresis in thermasstae systems was first identi-
fied and investigated in the content of instability in rockedtors (Levine and Baum,

1983; Blomshielcket al,, 1997; Knoopet al,, 1997). Models based on the assumption of



nonlinear gas dynamics was proposed (Culick, 1990). Lategs identified that com-
bustion response and not nonlinear gas dynamics plays i role in triggering.
More recently Ananthkrishnagt al. (2005) confirmed that nonlinearity in combustion
response (velocity coupling) is responsible for nonling@nomenon triggering insta-
bility in thermoacoustic systems. Mariappan and Sujithl(BOhave recently shown
incorporation of pressure coupling and non-modal effeatsexplain transient dynam-

ics and triggering instability in solid rocket motors.

From investigations, it is clear that in industrial prendxgas turbine combustors,
where reported acoustic pressure amplitudes are of theairgle p~ 1—5% (Dowling,
1997; Peracchio and Proscia, 1999; Lieuwen, 2002), theceafrnonlinearity is the
flame’s response to acoustic field not the nonlinear gas digahprocesses. Therefore,
it is essential to include nonlinear dynamics of combustoaustic interaction into

analytical/numerical modeling and prediction approaches

In the subsequent sections is given, a brief overview oflirgend certain nonlinear
approaches is presented. This is followed by an overview®irvestigations on the
dynamics of self-excited thermoacoustic oscillationsulaject most pertaining to the

investigation presented in this thesis.

2.1 Linear Stability Analysis

In the prediction of thermoacoustic characteristics of bostors, linear stability anal-
ysis plays a significant role. It is simple in formulation aisdeasy to handle com-
putationally or numerically. Hence, it is an essential tbpredict the stability of

thermoacoustic systems at the design phase. Moreovemptra analysis of the sys-
tems through linear modeling is useful not only for predigtbasic characteristics of
thermoacoustic instability but also for gaining insightoirthe physical mechanisms

involved in the phenomenon.
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Figure 2.1: A one-dimensional model for a combustor. Geogmeinsists of an up-
stream section filled with cold reactive mixture and a dove@n section
with hot products from combustion. Planar acoustic wavesaoh sec-
tion can be decomposed into forward traveling (f, i) and skl traveling
waves (b, r). The flame and the area change at the flame aredrast
discontinuities.

2.1.1 Helmholtz Equation

The basis of linear stability analysis is the linearisatodrthe conservation equations
about a steady state. In the absence of discontinuities asicdhocks and flames,
the system acoustics is well represented by the resultivg wgquation (Dowling and
Williams, 1983; Rienstra and Hirschberg, 2004). Solutioithe wave equation are ob-
tained by representing the acoustic oscillations in thentdex as a sinusoidal variation
of acoustic variables in time; i.ef = Re(p(X)e™") andu’ = Re(u(X)e™"). Substi-
tuting these representations for acoustic pressure awndityeinto the wave equation
results in the Helmholtz equation fpr Acoustic mode shapes that satisfy the bound-
ary conditions and the corresponding eigenfrequenciesheanbe obtained by solving
the Helmholtz equation. Since this is a linear formulatithe, final solution is a linear

combination of all possible solutions.

Complexities in geometry such as area changes, which existdtance at the dump
plane of a combustor, are resolved by considering the iategjrlinearized govern-
ing differential equations across the area change to obtaiditions relating acoustic
guantities upstream and downstream. The flame is treatedd&ss@ntinuity and the
jump in the acoustic variables across the flame are retrieyélde linearized Rankine-
Hugoniot relations (Poinsot and Veynante, 2005). Figufeillustrates a simplified
one-dimensional realization where acoustics upstreandanchstream are treated as
planar waves and downstream acoustics is related to upsteaustic by the jump

conditions.
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The eigenfrequencies)] are in general complex numbers. Real part of the eigen-
frequencies gives the frequency of acoustic oscillatidie imaginary part determines
whether the particular mode corresponding to this frequeunit grow or decay in time.
For an acoustic system with no source or sink of acoustiagygntre imaginary part is
zero. This is the case for duct acoustics in the absence ab@ifiticg acoustic energy
source and/or acoustic damping mechanisms. However, iprésence of a flame,
which acts as a source of acoustic energy, certain eigardreies, depending on the
system configuration, will have a negative imaginary padidating an exponential
growth in acoustic oscillations corresponding to the feggy given by the real part
of w. Hence, through a linear treatment of a thermoacoustiesyst becomes possi-
ble to obtain the operating conditions at which a particatade will become unstable

causing instability to set-in and the corresponding moa@gsh

2.1.2 The n-tau Model

The most crucial aspect of modeling thermoacoustic inktyls to model the coupling
of unsteady heat release rate to the acoustic field. Such alnsdtie key to providing
closure to the linear system of equations. The n-tau modslgnesented by Crocco
and Cheng (1956) provides such a closure for a thermoacaysgtem. A simplified

expression for the n-tau model is:

q o u(xy,t —tau) (2.1)

The model states that unsteady heat release ¢aite proportional to velocity fluctua-
tionsu’ at the flame location delayed by a time-delay tau, with an sttoamplification,

n. Adaptations of this model to engineering system lead tagmmnparisons between
predictions and experiments, primarily because mechanmtributing to thermoa-
coustic instability involve inherent time-delays thatykakey role in determining the

onset of thermoacoustic instability (Dowling and Stow, 200

Predicting the frequency of the instability and the coroespng mode shapes are
essential for obtaining the stability boundaries of a syséand can be found through

linear stability analysis. Additionally, the results cdsabe employed in active/passive
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control strategies. Hence, the linear approach was fourzktan effective analysis
techniques for prediction of thermoacoustic instabilBeveral notable investigations
were based on this approach. Though this linear model oftbacoustic instability
had its own limitations, it is effective for preliminary dgsis. The n-tau model given
by Crocco and Cheng (1956) was extensively implemented/igrakindustrial and aca-
demic investigations in the field of combustion instabjlggme of which are described
below. Although simple in its formulation, the model yietbeffective prediction. This
model has been verified on various types of combustion systeits basic form or with
logical extensions in order to establish the relation betwihe unsteady heat release

rate and the flow velocity.

Bloxsidgeet al. (1988) experimentally determined the frequency of inditgitas-
sociated with reheat buzz in an afterburner model. Theygqsep an empirical time-
delayed heat release rate response to velocity fluctuadidghe flame stabilization. The
model incorporated two time delays associated with the @ection of heat release rate
oscillations with the mean flow and the inherent delay in flassponse to velocity
fluctuations. On similar lines, (Macquisten, 1995) invgated instability in a twin-
stream afterburner with a V shaped flame holder, both exmetially and theoretically.
He showed that disturbances generated in the flow velocitg bha impact on the heat
release rate fluctuations. The oscillations convect tél flame and produce acoustic
disturbances in the flame, justifying the use of a time-dbsed model. The theoreti-
cal predicted frequency of oscillations were found to corapeell with those observed

in experiments.

Dowling (1997) presented a time-domain simulation of costioun instability based
on the empirical time-delay model developed by Bloxsidgal.(1988) for heat release
rate response. Based on experimental results where lowdney oscillations were ob-
served, she modified the time-delay model for heat releasereaponse to acoustic
oscillations to suppress the overestimated amplificattdmgh frequencies. Further-
more, the model was extended to include a saturation of besige rate in response to
velocity fluctuations. With this type of saturation nonkamity, the time-domain model
was able to account for the observation of limit cycles arahges in the oscillation fre-

quency with variations in the equivalence ratio. Resultghefar analysis incorporating
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nonlinear combustion response were found to corresporsdmehly with experiments
by Langhorne (1988).

Dowling (1999) modeled the flame dynamics for a bluff body8ized flame via
a linear approach extended to incorporate nonlinear sfiesstociated with flow rever-
sal. The flame response to fluctuations was derived from tlegu@tion. The results
of linear flame response modeling were found to correspomanairical time-lag for-
mulations by Bloxsidgeet al. (1988). Nonlinear flame response was introduced by
employing a nonlinear boundary condition at the flame arinfggroint. Based on vi-
sual observations, when total gas velocity exceeded flamedsglame was assumed
to be attached to the anchor. When flame speed exceeded thelgeisy, the flame
was considered to propagate upstream. Modeling selfexkaitstabilities with the de-
rived flame response model in a time-domain analysis wasdftapredict limit cycle
behavior. Further, a methodology of implementation of adbsg function approach
to obtain limit cycle amplitudes and frequencies was suggesA describing func-
tion evaluates the flame response not only at different #aqies but also at different

forcing amplitudes.

The amplification (n) and delay (tau) in the n-tau formulatior laminar premixed
flames can be derived analytically from the G-equation. iasbeen shown previously
by Lieuwen (2003); Ducruiet al. (2005). However, the n-tau model in its fundamental
form is insufficient to model complex flame behavior as obséiwn practical systems.
Accordingly, extensions of the n-tau model have been deesldo incorporate detailed
physics of flame response. The basic n-tau model, Eqn. (&slin@es localized fuel
injection, compact combustion and no dispersion (Lieuvi2®®3; Schuermanst al.,
2004). Schuermaret al. (2004) proposed a distributed time-lag model to be employed

for turbulent swirl flames, where the mentioned assumptteerly do not hold true.

Equivalence ratio fluctuations which form a dominant sowftansteady heat re-
lease rate also cannot be directly modeled using the batsiac model as pointed out
by Lieuwen (2003). An extension of the n-tau formulationriolude equivalence ra-
tio oscillations was proposed in this review. According he proposed formulation,
unsteady heat release rate in response to equivalencelwatioations is a result of

temporal change of flame speed perturbations in addition@ection time-delay, re-
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quired for mean flow to convect till the effective flame locati Detailed implications
of nonlinear flame dynamics, including the effects of nofonmities in the flow dis-
turbances, boundary conditions and flame aspect ratio orefl@sponse have been

discussed in Preethaet al. (2008).

2.1.3 Forced Flame Dynamics

Thermoacoustic instability is an interplay of several pbgigprocesses, and understand-
ing the interaction amongst these contributing processerstical. Analytical thermoa-
coustic models applied currently for understanding theteactions are based on sim-
plifications, primarily of the flame response to acoustictfiations. These models can
predict only the linear stability of the system. It is reguairto consider models which
take into account system dynamics which is inherently dtre§nonlinear interactions,
based on a detailed physical understanding. By studyinfg#itares of oscillations ex-
cited due to flame-acoustic coupling, one can expect to aont the important effects
which need to be incorporated into a thermoacoustic modal.ths purpose, simple
systems such as confined or unconfined laminar Bunsen-typeat@remixed flames
are an ideal configuration. Owing to the simplicity, they bareasily realized in experi-
ments and in models. The basic flame-acoustic interactistillipreserved. Therefore,
numerous investigations have been conducted on such systedhthe results have
provided significant insight. In particular, forced flamspense has been extensively
investigated. The flame transfer functio#&] F' obtained from such investigations are
employed in network models (see Candel, 2002) to describgeflacoustic coupling

and subsequently obtain stability characteristics of &esys

Perry and Blackshear (1993) developed an one-dimensicarakfvork on the in-
teraction of flame with acoustic waves. They concluded tlzahél surface area per-
turbations cause amplification or damping of acoustic wpassing the flame. Am-
plification or damping is determined by the lag between \glogerturbations and
flame area perturbations. Subsequently, in the same igagisin, experiments on self-
excited instability in ducted laminar single and multiplaniles was studied and the

one-dimensional model was found to adequately explainrexeats.
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Boyer and Quinard (1990) studied the response of anchoesdiped V-flame to
homogeneous flow oscillations and modulation of the flamedoyKarman street. An-
alytical modeling of fluctuations was also conducted in thetlof small flame wrin-
kling and compared to experiments. They found that lineaekiatic models could
explain flame dynamics only in the regime of weak perturlvetioNonlinear features

such as cusp formation could not be explained.

Fleifil et al. (1996) conducted a time domain and frequency domain simuolaff
forced flame dynamics for a laminar premixed flame stabiliaed pipe flow veloc-
ity profile. The flame response to inlet velocity fluctuatiovess modeled by an n-tau
model similar to that used by Bloxsidge al. (1988). Instead of two time-delays used
by Bloxsidgeet al. (1988) to account for convection of perturbations on the éasur-
face and resulting unsteady heat release rate, a singledhag was employed. A
low-pass nature of the flame was identified. The flame surfeez @scillations were
found in good agreement to those reported in experimentselogy Rnd Blackshear

(1993).

Schulleret al. (2002), conducted a detailed investigation of the effeatdtream
acoustic perturbations on the flame. Experiments were coedpa numerical modeling
based on thé&-equation. The model could additionally account for flamsping. The
basic formulation of thez-equation can be found in the works of Williams (1985)
and Kersteiret al. (1988). A revised formulation of inlet velocity perturbatis on the
flame in Schulleet al. (2003) was found to explain flame response in a wide range of
frequencies. Specifically, deviation of flame response tsddeobservations regarding

flame behavior at high frequencies could be resolved.

A significant amount of work has been performed on the eviainaif transfer func-
tions of laminar premixed flames through flame responseesutirough both experi-
ments (Boyer and Quinard, 1990; Bailltal., 1992; Birbaucet al., 2006) and model-
ing (Candel, 2002; Lieuwen, 2003; Karimai al., 2009). It was found that the flame has
a low-pass nature, implying that amplification of acoustaves incident on the flame
occurs strongly only at low Strouhal number. The mechanisanmplification for per-
fectly premixed flames was identified as the wrinkling of tteerfé surface as a result

of fluctuations that originate at flame anchoring positiod aanvect along the flame
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surface. For industrial premixed flames, the mechanisnuded effects of equivalence

ratio fluctuations upstream.

Forced flame dynamics and by extension, self-excited thacowstic instability is
also affected by factors such as chemical kinetics, tramgt@nomena, flame stretch
effects. As such, it is also important to investigate thésmnpmena. Clavin (1985) has
reviewed the effect of chemical kinetics and transport gsses for wrinkled premixed
flames. Stretch effects have been recently investigated déyg\at al. (2009). De-
tailed reviews of flame-acoustic interactions have beeergby Lieuwen (2003). Can-
del (2002) presented an extensive discussion on the roléfefaht mechanisms in
thermoacoustic instability, with focus on flame-acoustieraction and current active
and passive control techniques in his review. A report omerurunderstanding and
important investigations on flame transfer functions haanbgiven by Ducruixet al.
(2005) and Schulleet al. (2003). Hemchandra (2010) has summarized the recent de-
velopments in the modeling of flame-acoustic interactior eXplained the effect of
small amplitude disturbance on both rich and lean premixa@udl the results reveal
that both flames behaves differently. He further concluthed the difference is due to

the dependence of equivalence ratio on flame speed and hreaictibn rate.

Investigation of flame response to equivalence ratio fgreias conducted by Sreekr-
ishnaet al. (2010) based on a reduced order modeling approach. Thesmalgs
performed taking into account that equivalence ratio taains cause unsteady heat
release rate via local fluctuations in the flame speed anddieataction. They con-
cluded that due to the difference in flame speed sensitiwigquivalence ratio oscil-
lations between lean and rich flames, the flame response darfuentally different.
Flame stretch effects were found to play a non-trivial rdldigh Strouhal numbers.
Nonlinear flame response was also investigated. Howeairltseat high frequencies
and high amplitudes were found to deviate from the DNS of tamd response to
equivalence ratio fluctuations (Santosh, 2011). The caudéit deviation, as reported
in Santosh (2011), was attributed to an increased influehbgdyodynamic coupling
and increased damping of equivalence ratio fluctuationsgdt &amplitudes and high

frequencies.
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2.1.4 Network Model: A Linear Approach

The importance of studies on forced flame dynamics lies niyt ionits capability of
providing an insight into flame-acoustic interaction, bisbats application in stability
analysis of complex systems. The network modeling apprealdpted from control
theory can be used for fast and efficient implementation @ictassical linear analysis
of thermoacoustic instabilities in the frequency domaiactitelement of a combustion
system, fuel/air supply ducts, combustion chamber, bauesland the burner geom-
etry is described by its own transfer matrix relating thetrgem acoustic field to the
downstream acoustic field. The transfer functions of eveament, including the trans-
fer matrix of the flame, can be combined into a system of likegrations of the form
Az = b. Eigenvalues of the system mattikdetermine the stability of the system and
the corresponding eigenfunctions describe the acoustitersbape. The network mod-
eling approach has been implemented on practical systedrissmimet with significant

success in predicting instabilities.

Extensive work has been performed on the subject of netwodeting by Paschereit
and co-workers (Paschereital,, 1999; Paschereit and Politke, 1998; Schuernedhas,
2000) and Polifke and co-workers (Polifke¢ al., 2001). Further, it has also been im-
plemented in industrial systems such as annular combukyoksebset al. (1999);
Pankiewitz and Sattelmayer (2003). Experimental deteation of transfer matrix of
a swirl flame have been presented by Pascheteal. (1999) and Paschereit and Po-
lifke (1998). By introduction of two sets of acoustic extiba, once from the upstream
and then from the downstream (or equivalently simultanesxestation from the up-
stream and downstream), two independent test conditiombeareated and used to
obtain the elements of the transfer matrix. On incorpogathre transfer matrix in a
network analysis, a good comparison was found between #digbed and measured
frequency spectrum of pressure oscillations. The low-pasisre of the flame was also
identified. Recently, Andrét al. (2009) has developed a network model to predict the
combustion instability for lean premixed EV burner (Alstprihis kind of approach is
helpful in understanding the system response to an extehtthat implementation of
active control in suppressing instability in the systemdmees easy. A review of net-

work modeling techniques, flame transfer function measaregain industrial systems
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and implementation of network analysis has been presegtBaschereiét al. (2005).
However, being linear in formulation, the network analys@not predict nonlinear

behavior.

2.2 Nonlinear Flame Describing Function Approach

In order to explain nonlinearities in forced flame response @ infer about nonlin-
ear dynamics of self-excited oscillations from flame resgostudies, the linear flame
transfer function had to be extended to incorporate noatidgnamics. In particular,
the describing function approach suggested by Dowling 7)1 %®ads to a promising

approach.

The nonlinear flame transfer function was first obtained erpentally by Durox
et al. (1997) for a V-flame configuration. Noiragt al. (2008) obtained the nonlin-
ear flame describing function for multiple premixed flamegesxnentally for variable
burner length. The important distinction between a nom@lirtkescribing functiodv D F
and a linear flame transfer functidfil' F' is that N D F' is evaluated for all relevant fre-
quencies at different amplitudes of input perturbationgdlevh T F’ is evaluated for a
single small amplitude, small enough to be considered aliperturbation. Linear and
nonlinear flame response has been shown via flame imaging byniKet al. (2009)
for different equivalence ratios. Fluctuations in upstneffow velocity with forcing
amplitudes tillu’/u(w) of 0.9 were investigated for a single laminar conical flame. In
recent developments, the nonlinear describing functignaarh has been shown to pre-
dict nonlinear phenomenon such as triggering and hysgeesiddition to limit cycle
frequency and amplitude (Lieuwen and Neumeier, 2002; Nataal., 2008). Moeck
and Paschereit (2012) developed a multi-input descrihingtfon approach where they
have considered two linearly unstable mode of the systemrdsept the dynamical

nature of the thermoacoustic oscillations.

A study of the response of heat release rate to pressuréatiscis in experiments
for a lean premixed flame gas turbine was conducted by LieamdriNeumeier (2002)

by forcing at discrete frequencies and measuring pressut€l* radical chemilumi-
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nescence oscillations. Saturation of the heat releaseespense at large amplitudes
was identified. Further, they studied the nonlinear intievadetween forced and natu-

ral modes of the combustor that lead to frequency-locking.

The current trend of investigations on thermoacoustiainitty is towards achiev-
ing a firm understanding of the nonlinear mechanisms thatitore to the phenomenon.
In particular, it is essential to understand the self-ediature of these combustion-
driven oscillations. It is not surprising that several istigations have been performed
previously in this area as well. In the following section wdl discuss the dynamics of

self-excited thermoacoustic instability.

2.3 Dynamics of Thermoacoustic Instability

A systematic approach of investigating thermoacousti@libty is to conduct numer-
ical or laboratory experiments on the effect of system patamchanges on system
dynamics. Such an investigation facilitates the evalumatibthe effect of individual
parameters on system stability (stability maps) and dyosmf the unstable system.
Technically referred to as bifurcation analysis (Stroga®94), such investigations have
previously been performed on academically relevant thagoostic systems such as an
electrically driven Rijke tube (Matveev, 2003; Subramaretal.,, 2010; Juniper, 2010)
system and on industrially relevant, combustion drivertesys (Knoopet al, 1997;
Lieuwen, 2002). These investigations primarily focus oa tifansition of the system
from a steady state to instability which is typically reatto occur in the form of limit
cycle oscillations. The studies have shown the existensalwéritical and supercritical
Hopf bifurcation scenarios in thermoacoustic systems.cdgeitis well-established that
in thermoacoustic systems, transition to instability asdihrough a Hopf bifurcation,
often through a subcritical Hopf bifurcation. The subcatinature of transition results
in interesting nonlinear phenomena such as triggering gsteresis, observed in the
subcritical zone of instability (Matveev, 2003; Balasuheaian and Sujith, 2008; Mari-
apparet al, 2010; Juniper, 2010). Such dynamical behavior is padityiundesirable

in practical combustion systems.

26



2.3.1 Triggering Instability

Linear theories and their predictive capabilities, in &éiddito flame response studies
form a firm ground for the analysis of thermoacoustic insiis. The insight provided
by these approaches cannot be denied. However, inherelimieamnities involved in the
phenomenon of thermoacoustic instability lead to a muchemvariant dynamics, in
addition to exponential growth and saturation to limit @c(Dowling, 1997). In the
following paragraphs, the nonlinear aspects of thermastcowscillations and their

analysis from a dynamical systems theory perspective cuidsed.

One of the most interesting nonlinear behavior of thermosto systems, identi-
fied in early investigations was the phenomenon of triggemnstability. Technically,
the appearance of instability in a linearly stable systerthenntroduction of finite am-
plitude disturbances is termed as triggering instabiktyopular approach in the 60’s
to assess the stability of combustion system, particularliquid and solid propellant
rocket systems, was to introduce pulses within the systamxplosions and study the
system response. This approach led to the diagnosis of-pidgered or triggering in-
stability in thermoacoustic systems. In a linearly stalytgam, instability would arise
due to the introduction of finite amplitude disturbancesisTimding prompted a train

of investigations.

Atfirst, studies on obtaining triggering instability in meld of thermoacoustic insta-
bility met with very little success primarily because a noeér treatment of combustion
was still not accounted for. Further, in the 60’s, the subpémonlinear dynamics was

in its infancy.

A major contribution to the analysis of bifurcation dynasaf thermoacoustic in-
stability with focus on triggering instability was made bghihke and Culick (1994).
Through a numerical continuation approach, they were ablebtain qualitative fea-
tures of the bifurcation scenario. They obtained the stgluf the steady state and the
limit cycle states. Towards the end of the analysis, resu#ts indicated the presence
of quasi-periodic oscillations in a six-mode approximataf the formulation. How-
ever, triggering was not observed. Later on the basis ofrexeats, Maet al. (1991)

pointed out that the inclusion of a threshold nature of tHeary coupling was impor-
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tant along with a nonlinear combustion model to model triggginstability. Ad hoc
velocity coupling models in addition to nonlinear combastiesponse implemented in
a numerical investigation by Levine and Baum (1983) and \fiek al. (1996) showed
the presence of triggering instability. Later, by inclusiaf a threshold velocity cou-
pling (Burnley and Culick, 2000) could obtain a bifurcatidiagram which included
triggering instability.

In addition to triggering, the issue of hysteresis is alsaadesirable and a critical
issue for combustion systems. Hysteresis occurs in sydteahsindergo a subcritical
Hopf bifurcation. Due to hysteresis, stability in a therrooastically unstable system
cannot be ensured by changing the operating parametergdmeters at which the
system was previously observed as stable, unless the égsteegion is completely
escaped. As subcritical bifurcation is often observed mloostion systems, several re-
ports on the observation of hysteresis can be found (Kmebap, 1997; Matveev, 2003;
Mariappanet al, 2010). A detailed study of hysteresis for instance, waslooted
by Matveev (2003) on an electrically heated horizontal Rijibe system. Hysteresis
with respect to changes in heater power for a few mass flowafasggr through the

electric heater was reported.

It is important to know the threshold amplitude requiredtfagggering instability in
systems in order to predict and control triggering instbiln this area, the most en-
couraging results are from the recent investigations bydyat al. (2008) and Boudy
et al. (2011) considering single acoustic mode of the system. Tépgrted, both ex-
perimentally and theoretically that using the nonlineasatiding function approach,
that it is possible to predict various nonlinear charastes of thermoacoustic systems
including triggering instability, mode switching and hgrssis. A flame transfer func-
tion based interpretation of triggering instability wasafecently presented by Kim
and Hochgreb (2012).

Lieuwen (2002) has shown for a lean premixed combustor thahe subcritical
zone, system can get triggered not only with the disturbgmoeided to the system
externally but even from the background noise (Lieuwen aadaBzuk, 2005), if the
noise level is sufficient enough. The susceptibility of aypseed combustor with a swirl

stabilized flame to acoustic disturbances has been inastidy Moeclet al. (2008)
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experimentally. They were also able to reproduce the exyarial results on triggering
and hysteresis through simulations incorporating linemuatics and a nonlinear re-
sponse of the flame to upstream air flow rate fluctuations.désgan and Sujith (2012)
have studied noise-induced transition to instability ie subcritical zone through ex-
periments on a ducted diffusion flame system. The dynamitteofoacoustic systems

is also sensitive to parametric uncertainties, which iBadilt to quantify even for sim-

ple systems. Naiet al. (2010) and Waugh and Juniper (2011) have recently presented
an approach which could be used as an effective alternatiseriventional uncertainty

quantification techniques for real systems.

In recent developments, it was pointed out by Balasubraamaaind Sujith (2008)
that the concept of non-normality also has a significantirotbermoacoustic systems.
Non-normality results in transient growth of infinitesinaégturbances in a linearly sta-
ble system. In the subcritical zone, triggering can occthiff transient amplification of
disturbances crosses the threshold amplitude requiragddgering. Balasubramanian
and Sujith (2008) have shown that thermoacoustic interastin a confined diffusion
flame system are non-normal. Subramanian and Sujith (2@Lhdfthat ducted pre-
mixed flames were also exhibit transient growth due to namaadity in the system.
For a horizontal Rijke tube Juniper (2010) has shown thatdtige non-normal nature
of governing equations, the triggering amplitude requivgdhe system for transition
to instability is lower than the amplitude of unstable liroyicle oscillation. Applying
dynamic mode decomposition on experimentally acquired,daariapparet al. (2011)
have shown that the system eigen-vectors for a horizonealrecally-driven Rijke tube
system are non-orthogonal, indicating the presence ofmoomality in the system. In
addition to the effects of non-normality and nonlinearityhe subcritical zone, Juniper
(2010), based on a dynamical systems approach, gives anggrattween triggering
in thermoacoustic systems and bypass transition in fluidazip, 1992). These inves-
tigations reveal that parallels can be drawn between tranf laminar fluid flows to

turbulence and triggering of thermoacoustic systems.

The dynamical nature of nonlinear systems is charactelyexbcillation states and
bifurcations. These nonlinear characteristics are foonlet strikingly similar in dif-

ferent physical systems. The application of dynamicalesysttheory has been found

29



to be instrumental in identifying the nonlinear charastiees of systems and catego-
rizing them according to the bifurcation scenarios andllasgicin states observed. The
following sections illustrate this point. Subsequentiyg\pous investigations focusing
on analysis of thermoacoustic instability through the egapilon of dynamical systems

theory have been discussed.

2.3.2 A Few Examples of Nonlinear Systems in Nature

In the 70’s and the 80’s, significant advances were made ithéwy of nonlinear sys-
tems with findings of low dimensional chaos and strangedtira in physical systems
such as in turbulent flows Ruelle and Takens (1971), the T&twette flow (Swinney,
1983), Rayleigh-Bénard convection cells (Brandstéteal,, 1983) and in chemical re-
actions (Rowet al,, 1981). Furthermore, simultaneous developments of thengeaal
analysis of the phase space (Packatr@dl., 1980; Broomhead and King, 1986) facili-
tated the analysis of experimentally acquired data andditification of well-defined

routes to chaos which forms an integral part of the charaties of a nonlinear system.

Simultaneously, propelled by the new findings of the nomingystems theory,
similar developments were being made in the investigatiomacoustics, combustion
and thermoacoustic instability. Kitaret al. (1983) reported chaos through a period-
doubling route in a simple acoustic system composed of mpiwoe, speaker, amplifier
setup with a nonlinear circuit. The time-delay between kpeautput detected by the
microphone positioned at a distance from the speaker wascatin the delay-induced

instability.

2.3.3 Periodic and Aperiodic Nature of Thermoacoustic Osdations

A subcritical Hopf bifurcation causes transition from aashg state to self-excited limit
cycle oscillations in acoustic variables and the unsteady release rate from combus-
tion. Subsequent to the Hopf bifurcation, there alwaystexaspossibility for further
bifurcations of the limit cycle. Nonlinear bifurcationscacomplex dynamical states

such as quasi-periodic behavior of thermoacoustic ofioifia was first reported in a
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numerical investigation on a combustor model by Jahnke anidk3(1994).

Yazaki et al. (1987) identified route to chaos for a gas column system drine
temperature gradients. The setup studied was a standdrdgugation to realize Taconis
oscillations. During the instability, two natural modesrevesimultaneously excited
at certain operating conditions. Based on this observatioey concluded that the
guasi-periodic route to chaos observed appears due to atitimpbetween the natural

instability modes of the systems.

In combustion driven thermoacoustic systems, Keaeiral. (1989) reported the
presence of low dimensional chaos in ramjet combustion. ekpéanation for the ob-
servation of low dimensional chaos postulated was that tiggnal high dimensional
behavior of turbulence in the system transforms to a low dsf@al chaos when order
is brought about within the system due to the coupling of flalyreamics with system

acoustics.

Sterling and Zukoski (1991) investigated thermoacouststabilities in a dump
combustor characterized by vortex shedding associatédcarmbustor acoustics. Non-
linear analysis of self-excited oscillations revealed tha stable attractor occupies a
dimension greater than one which indicated the presencqudisi-periodic-like attrac-
tor rather than a limit cycle. They reasoned that the highimi of the systems due
to the Rayleigh mechanism causes cycle to cycle variatieadimhg to deviation from
a limit cycle state. It was concluded that the inherent tofeéays associated with mix-
ing, reaction rates and response of vortical structure twstec oscillations that can
be modeled only by delay-differential equation causes yisées to evolve on a high
dimensional attractor and thus, transition to chaos is aipiisy. Later Sterling (1993)
confirmed the presence of quasi-periodicity in the systemidi#onally, through sim-
ple modeling with two different types of nonlinear combastmodels, he obtained a

period-doubling route to chaos.

Based on the work by Sterling (1993), Lei and Turan (2009) e¢ported a period-
doubling route to chaos in a numerical investigation withszigete-dynamic model of
the system including vaporization process in addition eyt combustion response.

In another analysis with a one-mode dynamic model, a peisdlution was obtained
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in addition to period-doubling during transitions to chad3ynamics of self-excited
states were also investigated and it was found that changgsiem parameters cause
changes the periodicity of self-excited oscillations.i®&doubling route to chaos was
also shown recently by Subramanianal. (2010) for a model electrically powered
horizontal Rijke tube. Through numerical bifurcation gs& and on implementing
nonlinear time series analysis the route to chaos was fahfor the Rijke tube ther-

moacoustic system.

Very recently in experiments, Gotods al. (2011) through nonlinear analysis of
combustion induced self-excited oscillations in a gabite combustor reported the
transition of stochastic fluctuations in the system to lomelnsional chaos via periodic

oscillations.

According to numerical investigations till date, periodutbling to chaos is a recur-
rent theme. In contrast, dynamics associated with thermesic oscillations observed
in experiments indicate the presence of quasi-periodiditys clear that further in-
vestigation is required in order to establish a completenjgson of thermoacoustic
instability, including nonlinear dynamics. A specific aspthat forms a focal point
of this investigation is that, although it has been shown teaplex oscillations and
chaos exists in thermoacoustic systems, a complete routeatus has not been estab-
lished from experiments. Such an investigation is neede@dlidate numerical results
and to provide a unified explanation of the few reported olzems of dynamics such

as quasi-periodicity and chaos in thermoacoustic systems.

2.4 The Present Investigation

Several questions appear on the basis of previous invéstigalt is clear that features
such as quasi-periodicity and chaos exist in practicahtibacoustic systems and limit
cycle is not the only possible asymptotic state attained theemoacoustic system. It
needs to be clarified whether such nonlinear features arendesgtion of turbulence
in the system or a competition between acoustic modes teantaracting with the

flame. A complete route to chaos has been established naiherltowever, it has not
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been experimentally established till date. Furthermte period-doubling route found
in numerical bifurcation analysis is in contrast to seveeglorts on the observation of

qguasi-periodicity.

In the present investigation, through an experimentalbétions analysis, we study
the transition of steady state to aperiodic oscillatiomspgriodic states in a ducted lam-
inar premixed flame configuration. A relatively simple Rijkde type thermoacoustic
system is investigated. Two laminar flame configurationseHaeen studied: a single
conical flame and a multiple injection configuration. Thesefigurations have the ad-
vantage that the properties of combustion instability carstodied without significant
interference from turbulence and complexities of geomiemd in industrial systems.
In addition, the dynamics of laminar flames similar to whath®sen for the present
study, has been extensively studied before via forced flasponse studies, experi-
mentally (Matsui, 1981; Candel, 2002). This makes the candion well-suited for

fundamental studies on self-excited combustion instsbili

Study of the dynamics of self-excited thermoacoustic tawins through the anal-
ysis of the topological characteristics of phase spacedtajies reconstructed from
time series data of acoustic oscillations is at the hearhisfdtudy. The implementa-
tion of advanced nonlinear time series analysis techni(ft@stz and Schreiber, 2003)
on experimentally acquired acoustic pressure dataCitdchemiluminescence and si-
multaneous analysis of high speed flame images yields neghiriato the dynamics of
self-excited thermoacoustic oscillations. Since, leagrafing conditions are of partic-
ular importance to the thermoacoustic community, expeamnisibere are performed for
lean equivalence ratios. Obtained results show the pres#fimoany complex dynami-

cal states including chaos in a laminar premixed flame diilkermoacoustic system.
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CHAPTER 3

EXPERIMENTAL SETUP

In this chapter, we discuss the details of the experimeh&abketup and the measure-
ment techniques used in this study. The characteristichayfrtoacoustic instability
depend critically on the flame configuration and on the gepnwdtthe combustor. For
a fundamental study on self-excited thermoacoustic ingiala representative system
that preserves basic thermoacoustic interactions is nedyuiTowards a complete un-
derstanding and control of the occurrence of thermoaaoirstabilities, it is essential
to first identify the physical mechanisms and their role ie gihenomenon in simple
configurations. Complexities can then be systematicatignporated to generalize the
information gained. Simplicity in the experimental configtion is also important to

accelerate numerical and analytical investigations.

Based on these points, a Rijke-tube system is chosen forestudHowever, in-
stead of using an electrically heated mesh used as the heatso conventional Rijke
tubes, the more interesting case of a confined laminar pesirfiame system is em-
ployed here. As mentioned already, dynamics of unconfinedhlar flames has been
extensively studied before, particularly in flame respatadies and has been found to
display a rich nonlinear behavior such as flame cusping anefldt-off (Bourehla and
Baillot, 1998).

3.1 Setup

Two flame configurations were studied: (1) a single laminarica premixed flame
and (2) multiple laminar conical premixed flames stabilinach perforated block. The
two flame configurations are presented in Fig. 3.1. The uneedfsingle flame con-
figuration has been extensively studied in previous ingasibns (for example Durox
et al, 1997; Bourehla and Baillot, 1998; Lieuwen, 2002; Schutfeal., 2003; Karimi



et al, 2009). As we will find in Chapter 6, the multiple injectionrd@uration allows
for more dynamics in the system. Such a configuration has $ieelred previously by
many researchers including Matsui (1981), Noieawl. (2008) and Boudyt al.(2011)

in flame response investigations. A cylindrical borostkcglass duct was used as the
confinement in order to have optical access for investigdtaime dynamics. A closed-
open boundary condition for the confining glass duct was taaiad via a base plate as
shown in Fig. 3.1 for both cases. The advantage of havingsedlbottom end is that
the flame will not be affected by the air entrainment. Entr&nt can cause local equiv-
alence ratio fluctuations in the flame. To avoid such equiadeatio fluctuations from
contributing to the dynamics of thermoacoustic instapilitclosed-open configuration
was necessary. In addition, the quality of chemilumineseaneasurement€H*) is
also affected due to entrainment. During the occurrenceléfescited instability, the

quarter-wave duct acoustic mode and its harmonics interigicthe flame.

In the single flame configuration, the setup consists maihdysingle conical flame
burner confined within a closed-open glass dg6b, mm in length. The burner tube is
a cylindrical brass ducg00 mm in length with an inner diameter af) mm and a wall
thickness of).5 mm. The long burner tube length results in a fully developedutar
jet flow profile. Liquefied petroleum gas (LPG) is used as thed for combustion. A
lean equivalence ratiay(= 0.51) was maintained for the results reported, by fixing the

volumetric fuel flow rate and air flow rate 824 ccm and7.2 [pm respectively.

For the multiple flame configuration, multiple conical flanvesre stabilized on a
circular, perforated copper block. A mild steel tube of indemeterl 6 mm, thickness
1.5 mm and lengtt800 mm was used as the burner tube. The glass duct in this config-
uration was of lengtB00 mm with a diameteb6.5 mm. The perforated copper block,
18 mm in thickness, with seven holes of diamefemm was mounted on the burner
tube. A fine wire mesh is installed on top of the perforatedpesgblock to prevent

flame blow-off during the instability.

The burner tube in both flame configurations is connected ytirzdeical decoupler
of diameter200 mm and heigh00 mm. The decoupler creates an acoustically open
end for the burner tube and arrests the propagation of acasstillations into the fuel

and air supply lines. Upstream of the decoupler, LPG andraimaxed in a premixing
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Figure 3.1: Schematic of the thermoacoustic setup. A: apesed glass duct, B: burner
tube, C: LPG-air premixing chamber, D: decoupler, E: trageP: pressure
sensor, PMT: photomultiplier tube. Two flame configuratiorese inves-
tigated - single and multiple premixed flame. On the top righner are
steady state images (line of sight) of the two configuratighburner lay-
out for multiple flames is also shown just below the steady délamage of
the multiple flame.

chamber of 100nm in length and Gnm in diameter. Steel wool is stuffed inside the

premixing chamber to ensure proper mixing. In addition ts,tthe inlet of air and LPG

to the chamber is made perpendicular to each other for eedanixing.

The dimension of the burner tubes and the equivalence ratitiah experiments

were conducted for both flame configurations are summariz&dble 3.1.

In addition to the above stated specifications, the choiddebifurcation param-

eter is an essential detail. Net flow rate or the equivaleatie are obvious choices.

However, these are not the most appropriate because fichdyges in the flow rate

and/or equivalence ratio directly cause changes in mearefidraracteristics such as
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Table 3.1: Burner configuration and operating conditionsrésults presented in the

thesis
Flame types Burner configuration 0] Volumetric
air flow rate (Ipm)
Single flame Tube length= 860m
Material brass
Inner diameter = 1hm
Tube wall thickness = 0.5vm  0.51+0.014 7

Multiple flames Tube length= 80@&m

Inner diameter = 14m
Material mild steel

Tube wall thickness = 1.5vm
Individual hole diameter = 2vm
Number of holes =7 0.480.014 4

the flame height, angle and flame speed. Secondly, the aeaikaige for bifurcation
analysis with net flow rate/equivalence ratio as the bifuocaparameter is limited.
The resulting bifurcation diagram would be coarse with éaupcertainties resulting
from available measurement equipment. To side step thegsedsa suitable bifurcation
parameter would be the flame location in the confinement. Aslieshow later, this

choice of the bifurcation parameter suits ideally to thesobiye of this investigation.

Bifurcation analysis forms the basis of the present ingesibn and the flame lo-
cation relative to the glass duct confinement is considesdgtie@control parameter for
both the setups. In order to facilitate variation in relatlame location«;), a tra-
verse mechanism using which the flame location can be memdinvaried in steps
of 1 mm has been constructed. Traversing the glass duct was pe&dicsmoothly and
mechanically (using a rack and pinion mechanism), withbetise of electrical motors
that create noise and vibration, to ensure that the tesp setnot affected by sound
and vibration associated with the traverse system. Theebusnignited by bringing
the burner exit close to the open end of the enclosing ducg. flime location is then
varied slow enough to maintain a quasi-equilibrium stateaBurements were recorded

at everyl mm only after a waiting time of at least minutes to ensure that only
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asymptotic dynamics is captured. Following this, data gu@ed for a time interval of
30 seconds. It is to be noted that the spatial temperature distribuitotihe glass duct
will depend on the speed of traverse motion and whether theeflacation is changed
from closed towards open end or the opposite. Although, eamgtt has been made
to avoid these effects by moving the traverse very slowBvérsing speed determined
from preliminary investigations involving temperatureasarements), reported results

could include minor effects of differences in the spatiatalbution.

3.2 Measurements and Data Acquisition

For the analysis of self-excited instability, time seriasadfor duct acoustic pressure and
CH* radical emission from the flame were acquired. PressursessrfPCB piezotron-
ics, model number 103B02) were mounted at different looation the glass duct. At
locations unaffected by hot combustion products, for edampar the closed end, mi-
crophones were flush mounted as shown in Fig. 3.1. Pressatedtions due to stand-
ing waves in the duct have a maximum amplitude near the acallgtrigid end and
hence, the signal-to-noise ratio will be higher for presssignals acquired by micro-
phones mounted near to the closed end of the duct. MicropPdecated at a distance
of 50 mm from the bottom of the glass duct. Results are presenteatéurstic pressure
acquired by the microphone labelled P in the setup (Fig. 3/umetric fuel and air
flow rates were metered using calibrated glass rotametésawiaccuracy at% of the

full-scale reading.

CH* radical emission (chemiluminescence measurem&(}$ is known to be pro-
portional to heat release rate from premixed flames (Langhdr988). Hence, simul-
taneously with pressure oscillations, time serie€Céf* emission has been acquired
using a photomultiplier tube (Hamamatsu, H5784) equippid & narrowband filter
(bandwidth10 nm, centered a#31.4 nm). A 16-bit analog to digital conversion card
(NI-6143), interfaced to the pressure sensor via a signadliioner, was used to ac-
quire data at a sampling rate od kH > for a duration of30 sec. High speed flame
images were acquired using a high speed monochrome digiteéia (Phantom V. 12)

at5 kH > and additionally on a video camera (Panasonic) at a franaitegaf25 Hz as
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a method for visualization of mean flame shape and positigheranalysis of single

flame configuration.

In the preliminary experiments, it was found that environtaéconditions affected
experiments. Hence, it is important to maintain a certamr@ over the conditions at
which measurements are performed. In particular, the sysmustics, a major ele-
ment of the phenomenon under investigation, is quite Seasd fluctuations in ambi-
ent environment conditions (the conditions of the testitsgaenvironment are different
for instance, when conditions on a rainy day are comparetidset on a sunny day,
even when the room is air-conditioned). Prior to every expent, the exponential de-
cay rate of the acoustic pressure generated in the systeespomse to an internally
introduced acoustic pulse was evaluated (at cold flow cmmdi} for the characteriza-
tion of inherent acoustic damping. To ensure a consistemcpmditions for different
sets of experiments, experiments were performed when thenext of the measured

exponential decay falls withih0% of 16/s.

The analysis of results presented here is largely basedeimplementation of
nonlinear time series analysis techniques. The theoryndehie techniques and certain

details of their implementation are presented in the neaptgr.
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CHAPTER 4

DYNAMICAL SYSTEMS AND NONLINEAR TIME
SERIES ANALYSIS

4.1 Introduction

In this thesis, we have performed a nonlinear analysis oéexyentally obtained results
on thermoacoustic instability, based on dynamical syst#esry. A discussion of the
concepts involved and their implementation on the obtaresdlts have been presented
in this chapter. Certain specific details regarding the em@ntation of the techniques
described here have also been described along with thenedteesults. The discussion
of the techniques used for nonlinear analysis requiresdniction of terminologies
from the dynamical systems theory, which is presented réghter of our discussion
will the evolution of systentrajectoriesin the phase space In particular, We will
be focusing on the long term, asymptotic dynamics whosegkbpace representation
is termed as amttractor. The discussion here is limited to the requirements of the
thesis. Readers interested in the topics of dynamical syséad nonlinear time series
analysis may refer to specialized texts((Abarbagtall,, 1993; Kantz, 1994; Strogatz,
1994; Hilborn, 2000; Nayfeh and Balachandran, 2004)).

4.2 Dynamical Systems

X = ®(X) (4.1)

Equation 4.1 represents the evolution of a general dyndsyséem, defined by a set
of time-varyingstate variablesX. X is the first order time-derivative of the state
variables. The evolution follows a well-defined rule congl in®. Given an initial

condition that assigns specific values to the state vasadila reference time, the evo-

lution of a deterministicdynamical system, represented by Eqn. (4.1) can be used to



hf"'_‘:{-; HH‘M .-.n
o / . \ i
4 x -
™ . e [T I'[T}I}
...................... "\"k';_h' .. - - :‘\:3{- ___ >
f_
b
o N
Aw(t), @) "\
_ |' "
H '. |
I'-_l .I.'II
k‘“u , f,f
s

Figure 4.1: lllustration of the phase space trajectory (eated from sinusoidally vary-
ing state variables (a) of a hypothetical dynamical systelmtting the state
variables X = [z, 7]) against each other gives the phase space. Accord-
ingly, the values of the state variables at a particular {infe), (¢)) gives
the coordinates of a single point in the phase space.

determine a future state. The evolution ridecan assume a linear or a nonlinear form.
In the paragraphs that follow, a geometric approactptiese spacanalysis, which is

particularly effective in the analysis of nonlinear dynaalisystems is discussed.

4.2.1 The Phase Space Representation

Going back to the general equation for dynamical systems, @ql), the state vector

X consists of individual state variables that define the amred system.

X = [x1, 22,23, . .., Ty (4.2)
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represents a dynamical system which requiregate variables to define its state at any
given time. Thephase spacef the system is then amdimensional geometrical space
where every dimension corresponds to a single variable olaagly, values that the
state variables assume at a particular time correspond itogée goint in the phase
space; i.e., at a particular instant of tintethe system state corresponds to a point

Xt = (371“372”373“ oo 7xnt)'

4.2.2 Trajectories in Phase Space

Based on the above discussion, an initial condition at eefez time = 0, assigned to

the dynamical system, is given by a point in the phase spaea by

Xo = (T19, T2y, 39y - - - » Tng ) (4.3)

The system then evolves in time according to the governitegiruEgn. (4.1). In
the phase space, this evolution is represented as a lingdhatses the-dimensional
space, passing through points as they are being createa lyttamical system. This

line is thetrajectorythat represents the system’s time evolution graphically.

The concept of a phase space trajectory is illustrated ird=lg The sinusoidal time
evolution of the state variablesand, shown in Fig. 4.1 (a) is represented in a phase

space by a trajectory constructed by plotting%) at different time instants.

4.2.3 Attractors in Phase Space

Different initial conditions assigned to a dynamical systeill lead to different trajec-
tories in the phase space, that never intersect each oththie phase space, there exist
regions that attract phase space trajectories (attracteggons that repel phase space
trajectories (repellers) and regions that attract phaseesipajectories approaching from
certain directions but repels in other directions (saddMfer a certain transient, every
phase space trajectories are attracted towards a definitgdwse in the phase space.

This structure is thattractor of system dynamics. The attractor defines asymptotic
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Figure 4.2: A period? attractor. z = asin(2w fit) + bsin(2w fot); fi/fo = 2. The
double-looped closed structure is due to the presence diteasmonic.

system dynamics and its topological features correspoagtont or a loop or a fractal

objectin the phase space depending on the dynamical syStera.single parameter set
(dependence of a dynamical system on system parametessisded in Sec. 4.4), the
phase space can contain more than just a single attractoin. &iactor has its region

of influence called théasin of attractionHilborn, 2000).

In the case of multiple attractors, trajectories startirnipiv the basin of attraction
of a particular attractor have their fate tied to that speeaifiractor. This gives rise to an
interesting situation, that different initial conditigreould lead to different asymptotic
states. The asymptotic dynamics of a dynamical system asectlto the topological
characteristics of the phase space attractor. Dynamieradxsin most physical sys-

tems correspond to attractors that can be classified in¢e tiypes.

4.3 Attractor Classification

4.3.1 Fixed-point

A point is the most fundamental geometrical constructiothanphase space. The sta-
ble/unstabldixed-point attractoris a point in the phase space that attracts/repels tra-
jectories. At a fixed-point attractor, the system dynammsesponds state variables
that do not change in time. In multi-dimensional systemsengtdynamics is not con-

strained to a one-dimensional phase space, more georhstrieetures in addition to
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Figure 4.3: Attractor for a frequency-locked state. Suchatiractor is formed when
system dynamics is a result of two contributing frequenaygonents re-
lated rationally to each other= asin(27 fit) + bsin(2m f»t); for this illus-
tration, the frequency ratio is chosenag f, = 7/5.

fixed points for the phase space attractor are possible.

4.3.2 Periodic Attractor

Often in physical systems including thermoacoustic systesne finds periodic solu-
tions/dynamics where the state variables or an observesigaiyuantity varies period-
ically in time. Such system dynamics forms closed loopsé@ythase space. Depending
on the number of rotations made in the phase space befolaglos itself, periodic
attractors are termed as periadttractors, where is 1,2, 3, . ... The period? attrac-
tor is more often recognized by the nantimit cycle Figure 4.2 illustrates a periazl-
attractor with the distinct double loop structure formee ¢imthe subharmonic. A limit
cycle is a single loop, a periotlhas 4 loops and so on. Such perio@ttractors are

formed due to the presence of subharmonics in a system.

There exists another category of periodic attractors spoeding to the frequency-
locked state. For frequency-locking, the system has fregjes which are related by a
rational ratio. Such an attractor is shown in Fig. 4.3. Inejfrency-locked state, phase

space trajectories form form several loops before closmiself.
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Figure 4.4: Irrationally related frequency components idyaamical system lead to
guasi-periodic motion of the trajectories where they esa@ a torus never
closing on itself.x = asin(27 fit) + bsin(2w f,t). For this illustration, the

+V5

. : 1
frequency ratiof; / f» is chosen as the golden ratie; 5

4.3.3 Quasi-periodic Attractor

Quasi- or almost periodic attractors are formed in systeherg/two or more than two
frequencies that contribute to the dynamics in a systemrar@mmensurate or irra-
tionally related. As a result, the phase space trajectanynexer close itself. Presence
of quasi-periodic dynamics results in a toroidal structwéwo-torus for two incom-
mensurate frequencies, a three-torus for three and likew@uasi-periodicity is also
commonly observed in physical systems. An illustration guasi-periodic trajectory

Is presented in Fig. 4.4. Trajectories following a torus barclearly identified. Only
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a finite evolution of the trajectories is plotted resultimgapparently weaved structure
of the torus. The trajectories will further evolve and forrdense closed torus, never

exactly going back the initial point.

60,
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Figure 4.5: The Lorenz attractor (gray) obtained by solthegLorenz system of equa-
tions. The solid black lines and the dashed line are twodtajees starting
as neighboring trajectories. Due to the chaotic nature®ttbrenz attrac-
tor, the separation between the trajectories increasesea®lves on the
attractor.

4.3.4 Aperiodic Attractor

Aperiodic attractors in the phase space are identified byrange structure and a highly
sensitive dependence of trajectories on the initial comast In dissipative systems, the
irregular structure associated with the chaotic attraist@r fractal, possessing a non-
integer inherent dimension. In discussions on transito@marios to chaos, we will find
that chaotic attractors appear as a result of the breakdéwegalar periodic/quasi-
periodic attractors. The sensitive dependence of trajestto errors in the initial con-
dition means that two trajectories originating from irlitanditions differing by a small
measure deviate as they evolve on the chaotic attractas.ifiplies that a small error in

the prediction of the initial condition results in growingegiction errors subsequently.
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The well-known ‘butterfly effect’ is a hypothetical illusttion of the sensitivity of a
chaotic system to initial conditions. The chaotic Lorenzaator associated with the
inception of the ‘butterfly effect’ is given in Fig. 4.5. Theut solid line and dashed
lines in the phase space Fig. 4.5 illustrate how two neighlgdrajectories diverge from

each other as it evolves on the phase space.

4.4 Bifurcations

Physical mechanisms and interactions observed in a dya&system often depend
on certain critical parameters of the system. Dependencgystem parameters is a
feature inseparable from nonlinear dynamical systems.n@ihg critical parameters
would cause changes in the dynamical behavior of the systexhding this parametric

dependence in Eqn. (4.1), a more general formulation iSruddeas:
X = &(X, 1) (4.4)

X = 0 gives the fixed points of the dynamical system. Variationystem param-
eter, . can switch the stability of fixed points. The presence of astalle fixed point
gives rise to the possibility of the several possible attnacthat govern the asymptotic
system dynamics: limit cycles, quasi-periodic oscillai@and even chaotic states. De-
pending on®, the spectrum of possible equilibrium states for a pargicdlynamical
system is defined. Among these, the asymptotic state thatydtem will correspond
to depends om. In addition to changes in the fixed point stability, as a peaagery is
varied, the phase space undergoes transformations. rigxattractors can morph or dis-
appear and new attractors can be be created. Thereforepsgighamics for different
system parameters can be drastically different. By changisystem parameter sys-
tematically, transitions drifurcationsof a nonlinear dynamical system to different non-
linear asymptotic states can be observed. According toyhardical systems theory,
bifurcations have been categorized depending on the bguitn states participating in
the transition. It is well-understood that physical systdoilow standard bifurcations

such as pitch-fork, transcritical, saddle-node and thef Hifprcations (Strogatz, 1994).
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Figure 4.6: Movement of conjugate pair towards the right piane is an indication for
the occurrence of Hopf bifurcation in the systelis the eigenvalue.

For the discussion of results in the present investigatiersaddle-node, Hopf and the
Neimark-Sacker bifurcations are of particular importandesaddle-node bifurcation,
also referred to as the fold bifurcation, is when stable amstable solutions merge to-
gether. The point at which the merging occurs is the fold poiime Hopf bifurcation
results in the birth of a limit cycle solution while a NeimaBacker bifurcation is the

name given to secondary (Hopf) bifurcation of a limit cycle.

While on one hand, such bifurcations lend nonlinear systiis intrinsic com-
plexity, identical bifurcation scenarios in completelyrelated physical systems bring

together different systems giving rise to a certain unkns

4.4.1 Hopf Bifurcation, a Case Study

In the context of thermoacoustic instability, the Hopf bdation associated with the
formation of limit cycles and the subsequent bifurcatiores@t particular importance.
A Hopf bifurcation is characterized by a conjugate pair @feewvalues of the system
crossing the imaginary axis indicating loss of stabilitytioé fixed point. Figure 4.6
shows the crossing of eigenvalues in the imaginary plandyaaacteristic feature of
Hopf bifurcation. Hopf bifurcation is further classified sisbcritical Hopf bifurcation

and supercritical Hopf bifurcation. A limit cycle correspts to periodic oscillations of
the state variables appears when the system parametesses the critical point i.e.,

the Hopf point. The onset of thermoacoustic oscillationsuos through Hopf bifurca-
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Figure 4.7: An illustration of a supercritical Hopf bifutaan. Solid lines indicate stable
states and the dashed line indicates unstable states. Tfepbliot is the
point (G,) where transition to a limit cycle state (SL) from fixed poff)
occurs. The fixed point solution (F) loses stability beydmel Hopf point.

tion (Knoopet al., 1997; Zinn and Lieuwen, 2005). In nonlinear systems, twegaries
of Hopf bifurcations exist, supercritical and subcritietdpf bifurcation. Both these are
schematically explained in Fig. 4.7 & Fig. 4.8 respectivéljnie horizontal axis is the
parameter (C) axis and the vertical axis is the measuredimupl(V) of a state vari-
able from the system (for instance acoustic pressure). &blkeatl line denotes unstable
state. The solid curve in the bifurcation diagrams denablststate/attractors. In a
supercritical bifurcation (Fig. 4.7), a stable limit cy@#ractor is created at the Hopf
point. Beyond the Hopf point, the fixed point solution is aywattracted towards the
available stable attractor (SL) and hence, the asympttatie sf the dynamical system

is a limit cycle oscillation (SL).

In contrast, in a subcritical bifurcation (Fig. 4.8), thegfikpoint solution loses sta-
bility at the Hopf point (G) and simultaneously, an unstable limit cycle solution is
created (UL). In addition, the unstable limit cycle osditba exists before the Hopf
point along with the stable fixed point state (F). As a reghkpretically, beyond the
Hopf point, any infinitesimal deviation from the fixed pointlvcause the oscillation
to grow infinitely. However, this is not physical and the gystis attracted to a distant
stable attractor (SL) and eventually settles onto thaaetidr. It is important to note
that it is often reported that the distant attractor is al$ioné cycle. This is not a re-
quirement for a subcritical Hopf bifurcation and the distattractor can be a periazl-

or a quasi-periodic or any other variant of stable attrac{Strogatz, 1994; Nayfeh and
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Figure 4.8: A schematic representation of subcritical Hoifircation. The unstable
limit cycle (UL) is represented by dashed lines and soliédinepresent a
stable limit cycle (SL). F denotes the fixed point state. Tty ghner region
from the basin of attraction for the fixed point and the outexded region
forms the basin of attraction for SL. UL is a curve on the bdsandary.
For a two dimensional system, it is the separatix (Strod&24).

Balachandran, 2004; Moon, 2004).

The subcritical Hopf bifurcation scenario is explained ig.F.8. A stable fixed
point attractor (F) losses its stability and a new branch umstable limit cycle (UL)
is born at the Hopf point (¢J. Beyond the Hopf point, the only solution is the unsta-
ble fixed point and trajectories will be repelled until a drgt stable attractor is found
(shown as a limit cycle (SL) here for illustration). We seattim the region GC,, is a
region of bistability where two stable attractors, F and $kegist along with the un-
stable attractor/repeller UL, which acts as a separatavdesi thebasins of attraction

of the two stable attractors.

The concept of basins of attraction within the bistableaagn the case of subcrit-
ical bifurcation for a two dimensional system is illustici@ Fig. 4.9. The basin of
attraction of an attractor is the set of all the initial cdrmatis in the phase space (Stro-
gatz, 1994) such that the asymptotic state of the systenvéndiy the attractor. The
fixed point solution F, unstable limit cycle UL and stableilicycle SL are graphically
represented in the phase space representation as a pasteddoop and a solid loop.
Any initial condition of the system that lies within the daskaded regions will spiral
away from UL towards F. This set of points denoted by the daddsed region forms

the basin of attraction of F. Initial conditions outside the loop will spiral away to-
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Figure 4.9: Phase space illustration of the subcriticaéZona two dimensional system
that exhibits subcritical Hopf bifurcation. The unstabfait cycle (UL) is
represented by dashed lines and solid lines represent ke $itali cycle
(SL). F denotes the fixed point state. The grey inner regiom$ahe basin
of attraction for the fixed point and the outer shaded regoom$ the basin
of attraction for SL. UL then acts as a basin boundary shaydednd SL.

wards SL. Such points in the phase space form the basin atatin of SL. As such,
UL forms the basin boundary between the two attractors. Aitial condition on the
basin boundary continues to stay on the boundary. This, Yenwis an ideal situation
and as soon as perturbations or noise is present in the sytersystem will always
posses either of the two stable states asymptotically. heigd, the basin boundary is a
multi-dimensional hyper-surface with a complicated shajjee attributes of the basin
boundary govern transient system dynamics of thermoaicasttems as we have ob-
served in experiments (See Appendix A for more discussiarie@dynamics involved

in bistable region of a thermoacoustic system).

It can be seen that in the bistable region, if the dynamicslesy is forced away
from the stable fixed point towards the stable limit cycleottgh some mechanism, it
is possible to trigger a transition. According to the diagy@ne would have to intro-
duce a finite perturbation such that the initial conditiolfsfan the basin of attraction
of the stable limit cycle. The explosions and pulses thaewetroduced in liquid and
solid propellant rocket motors mentioned in Chapter 2, pled a mechanism for the
mentioned transition and pulse-triggered instabilityraggering was observed. Addi-
tionally to triggering, a system undergoing a subcritia@lifzation would also display
hysteresis behavior. With reference to Fig. 4.8, withouemally introduced pertur-

bations, transition to limit cycle oscillations will occat G,. However, variation of
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the system parameter backwards will cause transition fromt ¢ycle oscillations to a
steady state atGnstead of . Therefore, the entire bistable region or the subcritical
zone is also a region of hysteresis. Both triggering insitglaind hysteresis were sub-
jects of early investigations on thermoacoustic systerdscantinue to be so due to the

lack of a complete understanding of the phenomenon.

4.5 Transition to Chaos

The transition from regular behavior to chaotic states envriety of nonlinear phys-
ical systems occurs via a small number of well-defined bétion scenarios. As a re-
sult, these few classes of transition scenarios are offerred to by the dramatic term
‘routes to chads The most commonly observed routes to chaos in nonlinestesys,

which are of importance also to this investigation are dised next.

4.5.1 Period-doubling Route to Chaos

The period-doubling scenario consists of a cascade of gieldaibling bifurcations. A
period-l attractor undergoes transition to a peribavhich undergoes bifurcation to
a period4 attractor and so on, until chaos. Between different systrasundergo
period-doubling bifurcations to chaos, the similarity & only in the scenario but also
in the parameter values at which individual bifurcatioretplace. It was pointed out
by Feigenbaum analytically (Feigenbaum, 1978) and haslsso found in experi-
ments (Libchabeet al, 1982) that a constant governs the parameter spacings et whi
successive period-doubling bifurcations occuc’lf C,,,; andC,, ., are the parameters

at which then', (n + 1), (n + 2)™ period-doubling bifurcations respectively, then

lim —Cn — G
n—=oo Upt1 — Cn+2

= 4.669 ... (4.5)

The number.669. .. is a constant (also called the Feigenbaum number) regarofes

the system undergoing period-doubling bifurcations tasha
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4.5.2 Quasi-periodic Route to Chaos

In the quasi-periodic scenario, a limit cycle is first getedavia a Hopf bifurcation.

With the introduction of a second frequency, incommensutatthe oscillation fre-

qguency corresponding to the limit cycle, quasi-perioglieippears in the system. This
causes phase space trajectories to evolve on a quasidpdnogs. The quasi-periodic
torus exists for a certain range of parameter values andeemtually ruptures leading
to chaos. Unlike the period-doubling route, the quasiqbd route to chaos involves
incommensurate frequencies. This route was identified mBll&and Takens (1971) in

hydrodynamics systems and hence is also referred to as #ikeRiakens scenario.

It is important in the context of results presented in thesth, to mention about the
phenomenon ofrequency-locking The bifurcation parameter is often associated with
the natural frequencies of the system. Changing the bifiarcgparameter might lead
to a change in the frequency excited in the system. If one efrdguencies leading
to quasi-periodicity varies, the ratio between the two ity might at some param-
eters become rationally related. Strong interaction betwee two rationally related
frequencies could resist further changes in system dyrsaimicesponse to variations
in the bifurcation parameter. This would lead to frequelumking in the system which

exists for a range of parameters before switching to quasegicity or chaos.

4.5.3 Intermittency Route to Chaos

This third route is associated with an apparently irregsigtching of a system between
chaotic and regular behavior. This phenomenon is knowintasmittency The inter-
mittency route to chaos was described by Pomeau and Malen@8i80). On the basis
of theoretical analysis, they categorized intermittenty ithree types: type-l, type-ll
and type-lll. Each type is associated with a particularrgétion prior to the intermit-
tent state. Type-I intermittency is associated with a saadde bifurcation. Type-Il oc-
curs due to a Hopf bifurcation and is associated with the agpee of a quasi-periodic
state. Finally, type-Ill intermittency is associated watlheverse-period doubling bifur-
cation (Okamoteet al, 1998). Intermittency was first studied in the Rayleigh-&&h

convection experiments and has been identified as a routegtialénce in hydrody-
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namic flows (Gollub and Benson, 1980; Swinney, 1983; Bétfgal., 1980). In most
observations of intermittency, the intermittent statelkived by a chaotic regime. The
evolution of the intermittent state with changes in the tmiéion parameter corresponds
to statistical features specific to the type of intermitiepesent (Pomeaet al., 1981,

Pomeau and Manneville, 1980).

All the above stated routes to chaos have been predicte@andtical models and
subsequently observed in experiments. The chaotic statdyisamical behavior of the
system and not an irregularity due to errors and noise. Basdbe theory of chaotic
dynamics, it is possible to quantitatively analyze the ahtaristics of the chaotic at-
tractor. The divergence between neighboring trajectahiesto chaos, associated with
the loss of determinism and predictability and the dimemsiocupied by the fractal
structure of the chaotic attractor in dissipative systearslme used to quantify chaotic

behavior and have been discussed next.

4.6 Measures of a Chaotic Attractor

The fundamental feature of the trajectories of a chaoti@etir is that neighboring
trajectories diverge in time as they evolve. The attrachar igs trajectories are always
bounded. Hence, due to the divergence, after a certain titeeval two trajectories
starting from nearby points might lie in different parts loé fattractor. To quantify these
diverging trajectories in an attractor, the concept of Lyamv exponent was established.
A second feature of chaos in dissipative systems is that lthegspace attractor is a
fractal object occupying a non-integer dimension in thesghspace. The correlation
dimension is the most commonly employed technique to caleuhe dimension of the
phase space attractor formed by a chaotic oscillations.gBoaty of chaotic attractors

also lies in the fractal nature of the phase space attractors

4.6.1 Lyapunov Exponent

Figure 4.10 illustrates the concept of diverging trajee®of a chaotic attractor within

a bounded region in a two dimensional phase space. Due &nsytnamics, it is seen

54



AXi

AX,

X2

Figure 4.10: Divergence of neighboring trajectories of aatlt system. The initial sep-
aration between the trajectories, X, increases as the trajectories evolve.
The Lyapunov exponent characterizing the chaotic systdraged on this
divergence (further discussion presented in text).

that the initial distance between closely spaced trajexgarows with time. Consider-
ing an exponential divergence of trajectories, the locadynov exponent is the rate
of exponential divergence of the trajectories. An attraatil have aspectrunof Lya-
punov exponents, each corresponding to a single phase spaa#inate. An average
of the local Lyapunov exponents over the trajectory reprissthe divergence charac-
teristics of the attractor. A positive average Lyapunovaagnt confirms the presence
of chaotic dynamics. Accordingly, for the identificationatfaos in a system, it is suffi-

cient to calculate the average maximal Lyapunov exponenthwh defined as (Kantz,

1994),
My = lim lim ~In <|AXt|) (4.6)

t—00 d—0 d

whered = |AXy|, the initial distance between the neighboring trajectorie

A positive maximal Lyapunov exponent indicates that on aeraye, there is di-
vergence between neighboring in the phase space attraxtaherefore, the system is

chaotic.

4.6.2 Correlation Dimension

In the discussion on chaotic attractors, the interestioggnty of the attractor being a

fractal was mentioned. To establish the inherent dimensiaphase space attractor,
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the organization of phase space trajectories making upttteeir needs to be quanti-
fied by an appropriate measure. The correlation dimensiondsuch measure. Taking
the analogy of a time-varying function, where correlatiodicates how the dependence
between values of the function occurring with a time differe varies with the time dif-
ference, correlation for points on the phase space attraatobe defined. In the phase
space, correlation between two points varies with the apséiparation between them.
In strange attractors (fractal attractors associated @htos), this correlation decays

with separation. The magnitude of decay is related to therentt fractal dimension.

To calculate the correlation dimension, the correlatian §i(r), given by Eqn. (4.7),

is calculated for the attractor.
1 . . .
C(r) =lim — (number of pairs of points witlvuc.dist. < r) , 4.7)
r—0 N2

where, N is the number of points in the phase space ahd.dist. is the Euclidean
distance between two points on the attractor. The coroglagum has a power law
dependence on r as-+» 0 and the power on r gives the correlation dimension of the
attractor (Moon, 2004). A non-integer correlation dimensis a direct indication that

the attractor is a fractal.

4.7 Nonlinear Time Series Analysis

It is clear from the introduction chapter of the thesis thartnoacoustic instability is a
phenomenon appears in the thermoacoustic system in thedffionigh amplitude pres-
sure oscillation. The limit cycle nature and the chaotiarabf the system is also well
known. Therefore, it is clear that like other physical sygsie nature, thermoacoustic
system should also follow a definite path towards aperiodjesiodic behavior. This
can be obtained even by solving the governing equationsedfythitem. The presence of
limitation in modeling and measurements in experimentsesalfficult to explain the
natural phenomena. In reality it is possible only to meaauesv system state variables
such as pressure, temperature, velocity. However, thaléositure of the thermoa-

coustic system makes it even difficult for measuring theseabkes. The embedding
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theory given by Takens (1981) becomes very useful for suahptioated systems, as
from measurements of a single quantity it is possible toagxtthe information about

the system dynamics without any ambiguity.

As linear stability theory can only give the decay, growthostillations and the
corresponding frequency, in order to understand dynarbiglaavior of a system from
system variables, nonlinear time series analysis is @aseBkplaining the dynamical
nature of self-excited thermoacoustic oscillations tigitoexperimentally acquired data

is the basis of the thesis.

The mostimportant step in the time series analysis teclesigeed here is the repre-
sentation of the asymptotic state of nonlinear oscillaimnan appropriate phase space
and investigation of the structure of the resulting atvacif system dynamics. This
attractor is a mapping of the actual process in a finite dino@as$ space created from
scalar observations. Topological measures of the so foatteatctor, such as the cor-
relation dimension and the Lyapunov exponents of the atiraan then be calculated.
These quantities are direct measures of the complexityeigsystem. Several nonlinear
systems have been successfully investigated in the ligtitesfe techniques and from
this study, it can be seen that the nonlinear nature of thacmastic oscillations can
also be studied through the application of these methods fdrdamental idea behind

the time series analysis techniques employed in this wogk/en below.

4.7.1 Reconstructed Phase Space

The asymptotic dynamics of any physical system as discussethe viewed in terms
of its evolution in a space formed by a set of independenaisées that unambiguously
define the system. The phase space attractor so formed igaaraimt, which means that
the asymptotic state of the system always corresponds tpdtieular attractor. Ad-

ditionally, once the system reaches the attractor, it oot to evolve on the attractor.
This would mean that identifying the topology of the phasacspattractor is identify-

ing the system dynamics. Scalar measurements of the systamed in an experiment

can be viewed at best as a mapping from the system state legriab

Clearly, the aim is to obtain system dynamics from the alséelacalar measure-
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Figure 4.11: A Sinusoidal time series generated in ordehtwsthe significance of
optimum time delay; the significance is shown in Figs. 4.12.

ments. The embedding theorem was first proposed by Take8%)fic®d reconstruction
of a phase space from scalar measurements within which asemative attractor of
system dynamics can be obtained. He proved that it is pessbleconstruct phase
space information from time series of a single measurem&nguime-delayed vec-
tors. The resulting phase space attractor would presepadgical information that
quantifies system dynamics and system complexity. The ‘oteth delays’ is the most
practical and widely applied method of reconstructing titkaetor of system dynamics
from experimental measurements as opposed to other tedwsych as the method of

obtaining derivatives from time series data suggested bigd?det al.(1980).

4.7.2 Optimum Time Delay

Time delay embedding involves obtainimgtime-delayed vectors (with a time-delay
between vectors correspondingitpfrom a single time series data. For a proper re-
construction, one is left with the task of obtaining an optimtime-delayr and an
optimum embedding dimension. Several methods exist faxioioly optimum values
for each of the quantities. The general prescription for pimmum time-delay comes
from the fact that the vectors representing the system digsashould be independent.
Subsequently, the optimum embedding dimension is the liodwegension at which tra-
jectory crossings occur due to the system dynamics and ratiodineir projection onto
a lower than required dimension. This is of course to endwatwhile evaluating the
reconstructed phase space structure, the topologicacteaistics obtained should be
due to system dynamics and not because the dimension claygesdnstruction is too

small to unambiguously represent the phase space struduwtetailed discussion on
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Figure 4.12: Importance of choosing an optimum time delaydoonstruction. In this
figure, a sinusoidal time series is used for reconstructidhe correct
phase space trajectory is a circle which can be seen as ia¢bestructed
phase space (a). The time delay chosen corresponds to orie-&b the
time period. When a non-optimal time delay is chosen, thesplspace
trajectories are distorted (b). As a result, the geomdtalaracteristics
of the phase space trajectories does not represent dynahtlos system
correctly.

the various algorithms for choosing the optimum time delag ambedding dimension
can be found in Kantz and Schreiber (2003) and AbarbaneB)199

Accordingly, the time-delayed coordinates from a timeesedata (Abarbanet al.,

1993),s(n) = s(to + n7s), wherer; is the sampling time interval would be

y(n) = [s(n),s(n+7),s(n+27),s(n+37),...]

Consider a sinusoidal signal as shown in Fig. 4.11. For a gnewave, at a time-
lag corresponding td/4¢h of the time period i.e. a phase shiftof2, correlation goes
to 0 (a cosine, which is equivalent to a sine being shifted by seludr /2, and a sine
are an orthogonal pair of functions). By choosing a time ylel$or reconstruction of
the phase space equal to a quarter of the signal time peredietvthe familiar limit
cycle loopin Fig. 4.12 a. However, choosing a time delayedéhtly leads to a distorted
limit cycle as seen in Fig. 4.12 b. By choosing vectors forgghgpace reconstruction
which are by some measure (here correlation), the leastlated, the optimum phase
space representation is reconstructed. The concept adlsigrrelation works in the
case of a single frequency limit cycle, but being essentelinear approach, it is not

effective for more complex oscillations such as quasiquic and chaotic oscillations.
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Figure 4.13: This figure shows a closed orbit in reconstdiptease spaces of different
dimensions. In the two dimensional reconstruction (ajettaries appear
to intersect each other. All the points at this intersectimuld be falsely
considered neighbors in the phase space (as seen in the daomiew,
b). This false intersection is resolved in a three dimeraicgtonstruction
(c) where a distinct limit cycle loop is observed. It is imfaort not to
choose a lower than optimal embedding dimension for recoctsbn.

4.7.3 Optimum Embedding Dimension

Once the delayed vectors are obtained, it is essential taled the embedding dimen-
sion that produces a proper reconstruction. Phase spamestaaction is essentially a
mapping of the original multivariate phase space, of dinmradity d, to a subspace
created from the time-delayed vector obtained from expeamisy in a manner such that
the invariants of the system remain constant. The dimensitime subspace, referred
to as the embedding dimensiafy, is one of the two important entities to be derived
for a proper mapping or embedding. A dimension equal to gelathan the embedding
dimension can be used for phase space reconstruction bosiogoa dimension lower
than the embedding dimension will lead to false embeddingprépriate embedding
dimension can be calculated from the measured times sesieg ane of the several
technigues available. A review of commonly used technigieth as singular-value
decomposition of the sample covariance matrix, saturatidh dimension of some
system invariant, the method of false nearest neighborghtenchethod of true vector

fields is given by Abarbandt al. (1993).

In Fig. 4.13, the situation of a false embedding caused dimater than optimum
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embedding dimension is shown. The phase space trajectamy gden on a two dimen-
sional space (Fig. 4.13 a) contains false crossings (FI1$. 4, zoomed view). Only by
choosing a higher dimension (Fig.4.13 c), this false emingdd remedied. As will be
seen later, the false nearest neighbor algorithm is basel@teating the percentage of
false crossings for an embedding dimension. Unless thisspége goes to zero, the

dimension is not appropriate for reconstruction and a higheension will be required.

Once the phase space trajectories are reconstructed irpampajpte phase space,
quantitative information about the phase space attract@siely the maximal Lya-
punov exponent and the correlation dimension can be olastaXiso, other phase space
analysis techniques such as recurrence plots that haverbpEmented in the analysis
here require a correct phase space reconstruction. Thennepitation of algorithms
for the calculation of the Lyapunov exponent and correfationension as well as other

techniques have been discussed together with results sequbnt chapters.
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CHAPTER 5

FLAME ACOUSTIC INTERACTION LEADING TO
INTERMITTENCY AND LEAN FLAME BLOWOUT

5.1 Introduction

In the present study, we investigate the bifurcation bedravi a confined, burner sta-
bilized, single conical premixed flame system. Such a cordigan is the most basic
combustion-driven thermoacoustic system. In this simptdiguration, we will attempt
to study the fundamental dynamics associated with thermic instability. As we
will see later in the results of the bifurcation analysigasition occurs from steady to
oscillatory dynamics through a Hopf bifurcation. This bdation is then followed by
further bifurcations resulting in complex dynamical ssaté&ventually, thermoacous-
tic oscillations lead to flame blowout. The oscillation dgmes prior to flame blowout
resemble the phenomenon of intermittency which we willassan detail in the follow-
ing section. The present study provides a more detailediigation of the occurrence

of intermittency in thermoacoustic oscillations.

5.2 Bifurcation Analysis

The experimental bifurcation analysis of the system untigtyssuggests that the non-
linear interaction between the laminar conical flame andattwustic field of the duct
results in different oscillation states. As seen in thergiition plot in Fig. 5.1, a clear
transition exists between oscillations with different idweristics. This bifurcation
plot, has been obtained using flame location as the contrahpeter, maintaining a con-
stant equivalence rati@(= 0.51). Starting with a steady state (absence of oscillations),

the flame location was gradually varied in step$ efm and the acoustic pressure data
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Figure 5.1: Experimental bifurcation plot for equivalemaéo, ¢ = 0.51. The plot is
divided into regions according to the nonlinear charasties of the self-
excited oscillations. Transition to instability occur&\a subcritical Hopf
bifurcation at the flame location;; = 56.5 cm, marked asc;,. Region |,
[l and Il correspond to limit cycle oscillations, quasifpalic oscillations
and intermittent behavior respectively.

was acquired corresponding to each location. The osaolfiaiate for each flame loca-
tion is then represented by plotting the amplitude of allldeal maxima in the pressure
time series present in a time interval®$ s. In the plot, the ordinate corresponds to the
values of the amplitude of local maxima in the acquired atoysessure time series,
corresponding to each flame location that was investigaiedn by the abscissa. It is
clear that all the local maxima amplitudes in limit cycle ilations, characterized by
periodic oscillations of a single dominant frequency, wdincide, resulting in a single
point on the bifurcation plot. Oscillations charactedatly different from limit cycle
oscillation will result in a set of points (correspondingte flame location at which the
oscillations occur) whose distribution will depend on tlagiations in the local maxima
amplitude values. In the light of this discussion, it is alved from the bifurcation
plot, Fig. 5.1, that at:; = z;,, a bifurcation occurs in the system and results in the
occurrence of thermoacoustic instability in the form ofiticycle oscillation. This bi-
furcation is a subcritical Hopf bifurcation whose subcatinature is evident from the
sudden jump; = 56.5 cm) in the pressure amplitude, clearly seen in the bifurcation
plot. Interestingly, at:; = 62 c¢m, a second bifurcation is observed to occur which is

clearly indicated by the appearance of a spread in the amdpktof the local maxima.
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Figure 5.2: Time series data of pressure fluctuations foit laycle oscillation &) at
xy = 56.5 cm, quasi-periodic at:; = 62 cm (b) and intermittent oscil-
lations €) atz; = 63.5 cm. In the case of intermittent oscillation, the
pressure time series is shown fidr sec to show the two types of burst and
the fixed point in between.

This spread increases gradually as the flame location isd/éurther and is followed
by a sudden change af = 63.5 cm, indicating the presence of another bifurcation
of the system. The points on the bifurcation plot after thfsroation are highly ir-
regular. No further bifurcation is observed to appear indpgtem and eventually at
zy = 69.5 cm, flame blowout occurs due to violent oscillations in acauptiessure as
well as the flame, as we shall see later. From the observedibehide entire bifur-

cation plot can be divided into three parts, marked as refjiinand Ill in Fig. 5.1.

The acquired pressure time series at= 56.5 cm (region 1),62 cm (region Il) and
63.5 em (region Ill) are shown in Fig. 5.2. Limit cycle oscillatiowith noticeable ef-
fects of the presence of superharmonics) in region | are iseléig. 5.2a. Oscillations
in Fig. 5.2b & ¢ posses dynamics that are quite different and need furtbatntient.
These oscillations are a direct consequence of the regpdsfurcations and identifi-
cation of the characteristics of the oscillations will difg indicate the nature of the
bifurcations. Towards this purpose, we will utilize thehieimjues for reconstruction of
the system dynamics in the phase space (representatigetattof system dynamics)

from the time series data of the pressure fluctuations.

5.2.1 Implementation of Nonlinear Time Series Analysis

For the investigations presented here, we have obtainadwpttime-delays for phase

space reconstruction based on the calculation of averageamunformation (Fraser
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and Swinney, 1986). The average mutual information betweermriginal vector and
a time-delayed vector indicates the extent of informatigrshared between the two.
Clearly, for reconstruction, the optimum time-delay witlrcespond to a small value of
the corresponding average mutual information. As pointgdog Fraser and Swinney
(1986), the time-delay at which the average mutual inforomaattains its first local

minima will result in a good reconstruction.

Considering a scalar time series data acquired at a santjplingntervalr,, p(n) =

p(to + n1y), the average mutual information at a time-detaig given as

AMI(T) = Z P(pi(n),p;(n+ 7)) logy PZO(ZZZ;ES)ﬁ(J]EZ;_—:)T))) .

The probability that the time seriggn), assumes a valyg(n) is given byP(p;(n)).
The joint probability of the event that the original timeisstp(n), and the delayed time
series,p(n + 7), simultaneously assume a valpg¢n) andp;(n + 7)) respectively, is
denoted byP (p;(n), pj(n + 7)).

The reconstruction matrix constructed using the optimumetdelay; can be rep-

resented as

y = [p(n),p(n+7),p(n+27),p(n+37),...].

Average mutual information calculated for pressure aatidhs during thermoa-
coustic instability acquired in our experiments is plotieérig. 5.3a, corresponding to
the three cases given in Fig. 5.2. The first minima of the pl@verage mutual infor-
mation is the time delay recommended for phase space regotigh. \We have recon-
structed a three-dimensional projection (Fig. b1 ¢) of the actual multi-dimensional

attractor that governs the system dynamics during the oecce of instability.

5.2.2 Reconstructed Phase Space

After obtaining the delayed vectors, we can represent systgnamics in a recon-
structed phase space with an appropriate dimension. I twdevoid false crossings

of the trajectories in the phase space due to a lower thaireepeconstruction dimen-
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Figure 5.3: Average mutual informatiom)(@nd percentage of false nearest neighbjpr (
calculations for the determination of optimum time delayl @mbedding
dimension respectively. The first minimum in the plot of age mutual
information gives the time-lag to be used for optimum timéayge At an
optimum embedding dimension, the percentage of false sieaegghbors
vanishes. Curves have been plotted corresponding to tleedaries data
presented in Fig. 5.2.

sion, it is important to calculate the optimum embeddingetision. For the analysis
presented here, we have used the false nearest neighbardnetiposed by Kennel
et al. (1992). According to the false nearest neighbor algoritttmevery dimension,

the false crossings of the reconstructed trajectoriesl@ileded in terms of the per-
centage of points that falsely appear in the vicinity of ofba@nts. Percentage of false
neighbors is calculated for increasing the reconstrudiomension and the dimension
for which this percentage goes very close to zero is an optinbedding dimension.
Figure 5.3) presents the plot between the percentage of false neighbarfunction of

the dimension for pressure time series acquired in our figaggon. This plot shows that
the dynamics of oscillations in all the three regions isriet&td to a four dimensional
phase space. The dominant features of the attractor carbalssualized in a three
dimensional projection with minimum loss of informationoaib the system dynamics.

For recurrence analysis, we have used a four dimensionaépace.

The frequency spectrum of each of the three oscillatioestate shown in Fig. 5.4
f). Figure 5.4q is the reconstructed phase portrait for limit cycle ostidlas. Limit
cycle oscillations exists for flame locations ranging froérb ¢m to 61.5 em (Fig. 5.1).
The single closed loop and the presence of a single domgqéataguency with its
higher harmonics confirms periodic behavior. The limit eyokcillations undergo a

bifurcation leading to oscillations whose phase spacadcitir resembles a torus. Such
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Figure 5.4: Reconstructed phase space attraciobsd) from time series data of pres-
sure fluctuations (see Fig. 5.1) and corresponding frequapectrum
(d,e, f) for limit cycle, quasi-periodic and intermittent oscillans ob-
served in the system in region I, Il and Il respectively. Thexuencies
aref =186 Hz, f1=139 Hz.

a structure indicates the presence of quasi-periodic bh@havhere unlike limit cy-
cle oscillation, the trajectory forming the phase spaceétibr does not come back
to the same point after every oscillation. The trajectorghess on a toroidal struc-
ture instead, never coming back to the initial point. Thislso reflected in the fre-
guency spectrum which shows the presenc@cdmmensuratébequency components
(f = 186 Hz and f; = 139 Hz). Essentially due to the presence of incommensu-
rate frequenciesf(— f; = 47 Hz, 2f, — f = 92 Hz), the oscillations are technically
aperiodic. The unique feature of quasi-periodic oscdlatis the presence of linear
combination of dominating frequency,{ in the system which helps to form the dense
toroidal structure in the phase space. Emergence of a geasidic state from limit
cycle oscillations is a result of a secondary Hopf bifur@atialso referred to as the
Neimark-Sacker bifurcation (Nayfeh and Balachandran4200his particular bifurca-

tion is quite common in nonlinear systems (Nayfeh and Baladhan, 2004).

The nextinteresting behavior appears in the system assseso; = 61.5 cm. In the
time series plot, Fig. 5.2, we find that the oscillation isreleéerized by sudden, irregular
and intermittentbursts. In the frequency spectrum, Fig. §.4we see a broadband

frequency content as opposed to clear dominant peaks. €hegstucted phase space,
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Figure 5.5: (a) Pressure time trace acquired at flame lotatio= 63.5 cm (Fig. 5.1,
region 1V). Two types of bursts are prese, and B;. b, ¢ andd - Fre-
quency spectrum of the laminar stdteB; and B; respectively.

Fig. 5.4¢, has two dense, concentric disks - an outer and an inner d8sist of the
dynamics occurs in these two disks. During the bursts, #jedtories are pushed to the
outer disk and then are re-injected back to the inner regldms oscillation is similar
to the intermittent oscillations observed in many otherlmear systems as a result
of the phenomenon referred to imsermittency This particular dynamics occurs as a
result of the breakdown of the quasi-periodic attractogg®sting that the intermittency

observed in our system is a type-Il intermittency.

Bifurcation of quasi-periodic oscillations leads to buystillations in region IV of
the bifurcation plot. In the pressure time series, irregblarsts are observed where
the amplitude attains about 10 times the amplitude obsearvénhit cycle and quasi-
periodic states. Pressure time trace, frequency specindmlaase space representation
for this state are shown in Fig. 5.2 and Fig. 5.1 respectiralgssure time series corre-

sponding ta30 s of burst oscillations is given in Fig. 5&

Intermittency in dynamical systems is the repeated tremmsiietween quiescent or
regular and burst or irregular states of the system. Suchgrhenon has been captured
in a number of experiments on fluid systems (Béegjal., 1980), solar activity (Platt
et al, 1993) and chemical kinetics (Pomeaual, 1981). Several models explaining
intermittency have also been constructed. However, tharosece of intermittency
in different systems are characteristically different.neke, categories of intermittency
(Type I, Il and lll, crisis-induced and on-off intermittenbeing the major categories)

have been proposed by theoreticians, primarily based distgtal characteristics of
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the apparently random transitions and associated biforeatintermittency also is one
of the routes from periodic to chaotic oscillations. In tledwing, we discuss the
dynamics of thermoacoustic oscillations observed in thetesy under investigation,

with emphasis on comparison with intermittency.

As marked in Fig. 5.5, two types of bursts were observe®; & B,, along with
sections of laminarl() state. Laminar state refers to regular periodic sectianser
tween burst oscillations. Power spectrum correspondinigdahree states are given in
Figs. 5.50, ¢ & d. Frequency spectra for the smaller buBst(Fig. 5.5¢) and the lami-
nar state (Fig. 5.5) consist of dominant peaks at identical frequencies. Hewew the
frequency spectrum faB,, we find additional peaks due to its deviation from the lami-
nar state. During the smaller burdt;, the system attempts to escape the laminar state
but is unable to escape and the burst eventually ends withaalsistate. FoB,, the
power spectrum shows a broadband frequency centerfd &t this state, the system
leaves the laminar state (periodic orbit) and temporagtylas to another non-periodic
(B; & B;) dynamical state. After spending some time in the non-plcistate, oscil-
lations decay to a steady state. A sudden decay in oscilatitarks the end of a burst.
A laminar state follows where there is a growth of oscillaof a single dominant
frequency. Beyond a certain oscillation amplitude, theesypsleaves the laminar state

leading to eithe3; or B, (Fig. 5.5a).

5.3 Characterization of Intermittent Oscillations

5.3.1 Return Map

We use a mapping technique for dynamical systemstetuen map(Nayfeh and Bal-
achandran, 2004; Strogatz, 1994) to further analyze ttierdift dynamical states ob-
served in the thermoacoustic system under investigatibis. tEchnique can be used to
investigate the evolution of extreme events such as localmaand minima or evolu-
tion of the periodicity, drift with time and so on. For insta in the first return map,
all the maximayp,, are collected and each maxima is plotted against the nexithmaax

that occurs and a two-dimensional plgt,vs. p,.1 is obtained. This would be equiv-
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Figure 5.6: Comparison of first return map for (a) limit cyabscillation ¢; =
56.5 cm), (b) Quasi-periodic oscillation:( = 62 c¢m) and (c) intermittent
burst oscillation {; = 63.5 cm).

alent to simply plotting successive values of a system b&jat points where the first
derivative goes to zero, against each other. If successas@ma/minima are equal,
mapping lies on the = y main diagonal; else it moves away from the main diagonal.
Hence, through this approach, significant information alacdynamical system can be
obtained even in two dimensions. It is an important techaitnat can be utilized to
study the underlying dynamics of the system. Return mapsrakkes it possible to
directly compare continuous systems with standard diseretps such as the logistic

map, circle map and tent map for instance.

In Fig. 5.6, we have plotted the first return map for limit & &), quasi-periodic
(b) and intermittent €) oscillations. We used values of local maxima extractedhfro
the acoustic pressure time series for creating the plotslifad cycle oscillations, the
return map is a single point on the main diagonal. This is beeas discussed for the

bifurcation plot, all the local maxima are of the same amié. For quasi-periodic
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oscillations, the return map gives a circular loop arouredrtiain diagonal. Bifurcation
of the quasi-periodic state results in breaking down of thasgperiodic return map
pattern. The burst oscillations that emerge, when prajectea first return map gives
scattered points. On careful inspection, we find that albeg t= y diagonal, the points
follow a trend of gradually drifting away from it. This reséias the return map of the
simple logistic map which displays similar distributiongdints on the return map dur-
ing its intermittent state. Several other systems suchtasnmittent states in hydrody-
namic systems (Batis&t al., 2001) where one finds turbulent bursts distributed among
laminar states also show such resemblance. Looking atékésnblance, we can say
that the nonlinear phenomenon of intermittency and thetlmssllations observed in
our system may be related. If so, intermittency (Pomeau aadndville, 1980), which
has been investigated in rigorous detail by specialistsarfield of nonlinear dynamics,
could to certain extent describe features of thermoaaoustiability and its behavior
just before flame blowout phenomena. Additionally, the theat a subcritical Hopf bi-
furcation gives rise to oscillations indicates that theetgp intermittency involved with

burst oscillations could be type-Il intermittency.

We analyse the dynamics of the observed thermoacoustiliabiecis in a recon-
structed phase space derived from the time series measuienfeacoustic pressure.
In particular, we investigate the intermittent behaviocurcing prior to flame blowout

as a result of nonlinear bifurcations in the system by stuglyhe recurrence behav

ior of the system dynamics (Klimaszewska and Zebrowski920@& more elaborate

discussion is presented below.

5.3.2 Recurrence Plots

Recurrence plots (RPs) were introduced by Ecknetral. (1987) as a tool for studying
the recurrences of phase space trajectories. An RP is drigata a recurrence matrix
which contains information about whether or not pairs ofpmin the phase space occur
close to each other (indicating the recurrence of phaseespajectories). Starting from
the phase space attractor (the reconstructed attractog tisie-delay embedding for

experimentally acquired data), every region in the phaseespccupied by the phase
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space attractor is checked for recurrences by the phase $pgectory. The binary

recurrence matriR;;| n « v is then defined for a phase space attractor withoints as:

Ry =0O(c = [|7; = 7l)), 4j=1,....N

where© is the Heaviside functior,is a predefined threshold,|| is the norm between
two points that is evaluated for recurrenag,is a point on the attractor in the phase
space. The threshold for recurreneedetermines the upper limit of the separation
between pairs of points in the phase space that can qual#yesurrence pair. It is im-
portant to choose a suitabidor the recurrence plots. If the threshold is high, too many
recurrence pairs in the recurrence plot will mask the fineufes of the recurrence plot.

If chosen too low, recurrences due to system dynamics willimerestimated. There
are several approaches to choosing an optimum thresh@daewvanet al., 2007).
One method for choosingis to fix the recurrence density such that for each point
considered, the number of points qualifying recurrencexedfiiMarwan, 2003). This
method however is computationally more expensive thanguaifixed the recurrence
threshold. Our implementation uses a fixefr all points, with a value equal to0%

of the attractor diameter (Marwan, 2003). For evaluatimgireence, commonly the,
norm is used. However, the; and L., norm can also be used (a more detailed dis-
cussion is presented in Marwan, 2003). For results preddmgee, thel, norm was

applied for recurrence analysis.

The recurrence plot then consists of black and white pditégk denoting that two
points are sufficiently close-by in the phase space indigadirecurrence of the phase
space trajectory. Points on the main diagonal are alwayklftiue to the trivial fact
that every point is definitely close to itself). Several salifeatures of the dynamical
system can be studied on a recurrence plot. For periodittaigm such as limit cycle,
the 45° lines parallel to the main diagonal line are always equablgced, indicating
the single time period with which the system is oscillatifihe recurrence plot of a
periodic signal is dominated by long dark lines parallelie imain diagonal. Random
uncorrelated noise will result in a uniform but random dlsttion of black and white
points. The salient features of RP has been discussed \eaglycby Marwan (2003)

for periodic, aperiodic and noisy system. The features &@Rman be changed depend-
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Figure 5.7: Recurrence plots for limit cycle oscillatiorgii)) and quasi-periodic 0s-
cillations (b(ii)). Equally spaced diagonal lines indiedhe presence of a
single dominant frequency in the limit cycle oscillatioR®r quasi-periodic
oscillations it is seen that diagonal line segments areraggghby unequal
vertical spacings; a manifestation of irrationally rethfeequencies com-
prising the quasi-periodic state. A four dimensional spsas used to con-
struct the recurrence plot, with a specified recurrencestioiel ¢) of 0.03
and 0.0% for limit cycle and quasi-periodic oscillations respeetiv

ing on the system dynamics. To quantify the dynamical behrdurther, treatment of
the RP is needed depending on the amount of quantitativeniafiton ones is seeking
about the system dynamics. A significant advantage is tHeyata infer critical in-

formation about the dynamical system even from short tinneselata. As mentioned
by Eckmanret al. (1987), an RP is essentially a time plot and through the R¥Ppbs-

sible to identify dynamics on large and small time scalesuiemeously. Owing to its
potential, the method of recurrence plots has been apmiptiysical and physiologi-
cal data in several investigations, more recently by Marn{@@®3). In the presence of
intermittency, the structure of diagonal segments in ansRRddified depending on the

type of intermittency present (Klimaszewska and Zebroy2809).

The recurrence plots for the pressure time series for 56.5 cm andzy = 63 cm,
are shown in Fig. 5.7. From our previous discussion, we ke atz; = 56.5 cm
the pressure oscillations exhibits limit cycle behaviorevdas forz; = 63 cm the os-

cillations are quasi-periodic in nature. The dynamics éadly represented in the RPs.
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Figure 5.8: Intermittent oscillation for flame location = 63.5 cm is shown in plot a
and recurrence plot corresponding to intermittent ogalhes (a) is shown
in (b). Embedding dimension #, ¢ = 0.4V. In c, a closer look into the
patterns comprising the recurrence plot is presented. Thdeo&laminar
phases correspond to elongated structures, whose kit@hgearance indi-
cates type-Il intermittency. Acoustic pressure amplitudéhe time series
corresponding to recurrence plots is in Volts.

Equally spaced diagonal lines parallel to the main diagdealote periodic behavior
as is seen in Fig. 5.7 a(ii) which corresponds to limit cydeiltation. As already dis-
cussed, a RP is essentially a time plot and hence tempotakdésasuch as the time
period (vertical spacing between diagonal lines) can bectir obtained. Presence of
a second incommensurate frequency in quasi-periodiclasoiis translates to diago-
nal lines parallel to the main diagonal but separated by walegertical spacings (Zou,
2007). This is also what is observed in the RP correspondingiasi-periodic oscilla-

tion, as seen in Fig. 5.7 b(ii).

The obtained RP from the time series data of acoustic pressuresponding to
intermittent oscillations is showed in Fig. 5.8 b. The dehkek patches on the RP
plot correspond to laminar states (dynamics prior to bumstdhe system. The laminar
states are interrupted by bursts, which are still osciiatio nature, as seen in the time

series. During these bursts, the system dynamics is sutlthhaecurrence of phase
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space trajectories is significantly reduced. In effect,d@esity of the black region is
thinned by white regions. This can be seen clearly by compgatie pressure oscilla-
tion time series, Fig. 5.8 a with the corresponding RP shawlfig. 5.8 b. Bursts are
associated with the absence of recurrence in the RP. A zoamadw of the RP is

given in Fig. 5.8 c. The kite like elongation (Fig. 5.8 c) seemthe top right is a char-
acteristic of type-Il intermittency (Klimaszewska and Zalski, 2009). Klimaszewska
and Zebrowski (2009) presented an analysis to identify berinittency types based
on the recurrence plot analysis. Type-Il and type-lll werenfd to have similar large
scale patterns, black squares. However, a closer lookatetidhat the kite-like struc-
ture differentiates type-Il from type-Ill. Accordinglyhé recurrence plot obtained for

the intermittent oscillations in our system indicates tyjpatermittency.

ﬂ.15
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Time {51
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Figure 5.9: Recurrence behavior of the system prior to atlftop-left frame). The
evolution of the system entering a burst state is analyzeidlbywing the
main diagonal. Windows a-c as marked indicate the tramstifdhe system

from limit cycle to quasi-periodic oscillations before tbecurrence of a
burst.
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Further magnification of the recurrence plot reveals thatiwithe kite-like struc-
ture, more detail about the system transition to bursts iseslded. An RP indicating
system dynamics prior to entering the burst phase is givéign5.9. Figures marked
a, b and c are windows taken from the RP on the top left. Foligwihe main diagonal
in RPs is essentially following the temporal evolution oé thystem. Before entering
a burst, the system dynamics is characterized by limit cgs&llations (window a).
Gradually, the limit cycle undergoes transformation ta¥gaquasi-periodic behavior
(window b). Just before a burst, the RP is strongly indi@tiquasi-periodic dynam-

ics.

An additional feature associated with intermittency is¢hange in the intermittent
behavior itself as the control parameter is changed. PorasduManneville (1980)
reported that for intermittent oscillations, the averagegth of laminar phases decreases
as the control parameter is gradually varied. A similardresnsseen in the present case
for the flame locations:; between63.5 cm and 69.5 cm (see Fig. 5.1), region IV.
Initially, just after the transition from quasi-perioditate to intermittent state, bursts
are temporally spaced quite distant from each other. As#nedfllocation is varied, the
occurrence of bursts become more frequent. At a flame lotafi69.5 cm, the flame
is unable to form a stable attachment point to the burner richtaerefore oscillates
violently while in a lifted position and then blows off. Anwither change in flame

location leads to flame blowout.

Figure 5.11 shows the evolution of bursts as the flame locasovaried further
from the bifurcation point. As the flame location is gradyadéried, a higher number
of bursts are seen for the total data acquisition time. Biisagreement with the trends
reported in the literature on intermittency. Prior to flant@amout, in Fig. 5.1Q, the in-
termittent bursts occur quite frequently. Comparing tleeireence plots for oscillations
states at a flame location close to bifurcation, Fig. 5.8 dradflame location close to
lean blowout, Fig. 5.1%, shows that close to lean blowout, laminar states statesec
smaller and bursts occur more frequently (Fig. %LIThis is seen as smaller but a con-
siderably greater number of closely spaced dark patchéireturrence plot, Fig. 5.8.
A magnified view of the recurrence plot is presented in Figl%l. The high amplitude

pressure oscillations occurring rapidly during the intigtent state disturbs the flame
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stabilization point as we will discuss through flame imadatgr and eventually leads

to flame blowout.

The large scale patterns and the finer textures formed indtwrnence plot are
associated directly with the topological characteristitthe phase space attractor. As
such, a quantitative study of the recurrence plot will pdevinformation about the
system dynamics. Recurrence quantification techniques sugggested by Eckmann
et al.(1987), who mentions about the patterns and textures otthenence plot in her
investigation. A detailed study on recurrence quantifazatinalysis has been put forth
by Zbilut and Webber (1992) and Marwan (2003). Accordingese reports, one can
obtain the degree of determinism involved with a dynamigatem by examining the
ratio of points contributing to linear structures and indual points distributed in the

recurrence plot.

As an illustration, by definition, positive Lyapunov expoitein system dynamics
indicate divergence between nearby trajectories. Divergdetween two trajectories
would lead to an end of recurrence between the trajectoitiesaacertain time which is
determined by the magnitude of divergence between themceHine Lyapunov expo-
nent is then related to the longest linear structures ingbarrence plot. Accordingly,
the degree of determinism of a system goes down as lineatstes become shorter
and less pronounced in the recurrence plot. Here, we examenecurrence plot for
the intermittent states graphically. From the kite-likeisture present in the recurrence
plot, we arrive at the inference that the system has a typadimittency as pointed out
by Klimaszewska and Zebrowski (2009). However, furtheestigation of intermit-
tency in thermoacoustic systems with the help of recurramedysis techniques should

provide more details on the phenomenon.

5.4 Flame Dynamics

A gqualitative analysis of flame oscillations at the obsemedlinear states gives further
insight into the process. By analysing high speed flame is\age/as found that non-

linear dynamics of thermoacoustic oscillations identifimeugh nonlinear time series
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Figure 5.12: Sequence of instantaneous flame images (fgarata,5 & H z) for limit
cycle oscillation, a 9 ms, b =0.8 ms, c =1.4ms, d =2.8 ms, € =4.2 ms
and f =5.4 ms. A uniform periodic flame wrinkling about the mean flame
shape is observed during limit cycle oscillations

analysis of pressure oscillations is reflected in the flanmeadycs. Results show that
uniform flame surface modulation (Fig. 5.12) is restrictetiydor periodic limit cycle
oscillations. Figure 5.12 a to f are the instantaneous flanages corresponding to one
time period of oscillationi.4 ms). During a single time period, wrinkles appear to
originate at the base of the flame and propagate downstreang #ie flame surface.

The flame surface area modulations occur about the mean flzape.s

Flame oscillations corresponding to quasi-periodic tetonins feature flame elon-
gation, neck-formation, pinch-off and cusping, in additim fluctuations about the
mean flame shape. The various events associated with apprasilic flame oscillation
behavior are highlighted in Fig. 5.13. The arrows indicaaeni surface elongation and
the circles mark neck-formation, pinch-off and cuspingha flame that follows elon-
gation. Flames images presented are not equally spacederbtit have been chosen to
illustrate the differences with flame oscillations obseraaring limit cycle oscillations.
The dynamics are largely influenced by the oscillations énaboustic variables around
the burner exit. The amplitude of acoustic pressure osaifia for limit cycle and
quasi-periodic oscillations at a given duct location armparable (refer to Fig. 5.2).
The flame and the burner exit however experience differemiiste fields for the two
oscillation states in terms of pressure amplitude, whidgheésreason for differences in

the flame-acoustic interaction.

Nonlinear features in flame dynamics such as pinch-off haenlyeported previ-
ously in experiments based on forcing of unconfined flame8¢cfdar, 2007). The
introduction of acoustic forcing results in the creatiomisturbances at the flame base.

These disturbances travel along the flame surface conegctind lead to a global flame
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Figure 5.13: Sequence of instantaneous flame images (fgarate,5 k£ H =) at quasi-
periodic oscillations. a ¥ ms, b =2.6 ms, ¢ =4 ms, d =4.2 ms, e
= 4.4 ms, f = 4.6 ms and g =8 ms. Characteristic flame surface area
modulations during quasi-periodic oscillations involvanfle elongation
(b), neck-formation (c), pinch-off (d, e) and subsequerdpctormation
(). The arrows and circles mark the evolution of flame eldigaand
subsequent pinch-off during the quasi-periodic state. Adéight of the
flame tip is marked with the alphabet h to show that the flamey¢is
elongated as it moves towards cusping.

response. As the amplitude of acoustic forcing introducethe flame is increased, the
strength of disturbances generated at the flame base iesrand eventually flame re-
sponse characteristics such as pinch-off appear. In thexiasf this discussion and the
observation of complex nonlinear self-excited state ineyreriments, the experimen-
tal investigation presented by Bourehla and Baillot (19@8)f particular relevance.

Through an exhaustive analysis they reported that the flasponse can be quite var-
ied, ranging from uniform wrinkling to subharmonic and cti@oesponse, depending
on the amplitudes and the frequency of acoustic forcing. Mbehanism of flame sur-

face area fluctuations in our experiments is also similaotoifg experiments, as ob-
served from the flame images. Variation in the flame locati@nges the characteristics
of acoustic field affecting the flame and correspondinglyfids®e response. However,
unlike forced flame behavior, in a self-excited case, theradtion between flame and
acoustics is a feedback interaction. This means that clsang@ame response to chang-
ing acoustic field interacts with the system acoustics. ieractions in turn governs

the asymptotic system dynamics; bifurcation of a limit eystate to quasi-periodic os-
cillations and subsequent bifurcations are identified is pnesent study. Bifurcation

of the quasi-periodic state leads to intermittency and tteeacteristic flame dynamics

during intermittency are discussed next.

A sequence of flame images acquired during intermittency Wgeo camera and
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Figure 5.14: Flame dynamics during intermittent osciiasi - long exposure images
acquired at 25 Hz (top row) indicate the variation in mean #amape and
location during intermittent oscillations. Images areaaged in the order
of their occurrence (left to right). Frames acquired at: aszi0=0.76 s, c
=1.36s,d=14s,e=144s,f=152s,9g=156s,h=1.6s,i=4,.p8
=1.84s,k=188s,1=192s,m=2.0s,n=2.12s5,0=2.165S,pZ2.3
g=2.52s,r=2.6s. Exposure time corresponds to approxiyawycles
of the oscillation. Instantaneous images (bottom row) mankith circles
highlight the characteristic stretching, folding (i) ad#l extinction (j) in
the flame. The lifted flame oscillates in the jet transitiogioa, at about
5 burner tube diameters from the burner exit plane indigadinon-trivial
impact of jet flow dynamics. The chaotic flame oscillationsiniy the
lifted state is clearly discernible.

instantaneous high speed images acquired by a high speeztacame presented in
Fig. 5.14. Sudden bursts in acoustic oscillations (FigOpdre accompanied by re-
peated flame lift-off and reattachment behavior. Liftif§ead the flame occurs due to
the inability of the flame to sustain a stable attachment thiéburner during high am-
plitude oscillations. The images correspond to flame @gwmlhs prior to lift-off, during

lift-off and during reattachment. The low sampling rateasdmages give an idea of
the amplitude of flame oscillations and the mean flame shapegine different stages
of the flame during intermittency and the instantaneous @satustrate the stretching
and folding undergone by the flame. Oscillations in the flaoréase prior to the burst
phase, while it is still attached to the burner rim (imageesa, b in Fig. 5.14) are sim-
ilar to the flame surface area modulation as seen in limitecgskillations (Fig. 5.7).

Even following the detachment of the flame from the burner(beginning of the burst
phase), flame oscillations continue to exist (image franog ds in the acoustic pres-
sure (see Fig. 5.2). Itis seen that during this phase, flaci#ad®ns are composed of
high frequency oscillations (seen as blurred flame imagésartop row of Fig. 5.14)

superimposed over a slower trend of changing flame positidmaean shape.
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The intermittent state is characterized by a chaotic flanmadhycs marked by highly
irregular oscillations in the lifted flame. Prior to flametddff, changes in system dy-
namics were discussed earlier in terms of the acousticymefisctuation (see Fig. 5.9).
The lifting up of the flame marks the beginning of a burst stateé occurs simultane-
ously with the transition of the system dynamics from limycle to quasi-periodic.
During the lifted state, the flame is not stabilized on thenkurim and hence, flame
dynamics is not only affected by acoustics but significamh#aoscillatory behavior
is governed by the hydrodynamics associated with the @rgat emanating from the
burner tube and entering the glass duct confinement. Hydeodics associated with a
circular jet flow at Reynolds numbers has been extensivalyiest before (Becker and
Massaro, 1968; Liepmann and Gharib, 1992). At Reynolds mumk10?) (Reynolds
number associated with the circular jet for the configuratiee have studied here),
the exit flow from the burner tube forms a shear layer resylimthe development
of Kelvin-Helmholtz instability in the flow upstream of thdtéd flame. The lifted
flame oscillates at abouatburner diameters downstream of the burner exit plane (see
Fig. 5.15). This location corresponds to the transitiorglan of the circular jet where
instabilities originating in the shear flow develop into eodnt structures (Paschereit
et al, 1992). Hence, during intermittency, it is suspected tl&ecent flow structures

affect dynamics of the flame which is lifted during the oceuae of bursts. The inter-

Figure 5.15: Comparison of attached flame to the burner anafd lifted oscillating
flame ¢) during an intermittent burst oscillation, the white thigke indi-
cate the lifted distancé (cm). Flame images were acquired using a video
camera (Panasonic, AGDVCG62) with framing rateofH =z
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mittent state, as explained with the bifurcation plot (oeglll in Fig. 5.1) eventually

leads to flame blowout.

5.5 Discussions

The appearance of thermoacoustic instability in combostistems due to interaction
between the acoustic field and the combustion processedsswnof significant con-
cern. Recent experiments have shown that the nonlinearenafuthis interaction is

reflected in the complex dynamics of the self-excited ostedhs.

In this investigation, we reported results of an experirakbtfurcation analysis
of a ducted conical premixed flame, with flame location as th@rol parameter. At
the onset of instability, the interaction between the heltase rate oscillations due to
flame surface fluctuations and acoustic oscillations leadisnit cycle oscillations via
a subcritical Hopf bifurcation. The subcritical nature Isazly seen in the bifurcation
plot. On changing the flame location further a secondary Bdpfcation was observed
leading to quasi-periodic oscillations. The quasi-padaxkcillations undergo further
transition to an intermittent state which in accordancéliie bifurcation scenario is
a type-ll intermittency. The different oscillatory state@sre analyzed through phase
space reconstruction using nonlinear time series anali##sne dynamics associated
with limit cycle oscillations was characterized by unifqrperiodic flame wrinkling
behavior. Whereas, for quasi-periodic oscillations, mdr features such as flame

pinch-off were observed in addition to flame surface wrimdli

The intermittent state was characterized and discussestai through the applica-
tion of phase space based nonlinear time series analyhsitees. Features of type-Ii
intermittency were also observed in further analysis ofittiermittent state via re-
currence plots. Simultaneously during intermittencyeiasting flame dynamics were
observed as seen in high speed flame images. Bursts in acossiilations were ob-
served to occur simultaneously with flame lift-off. Througgturrence plots, the re-
peated flame lift-off behavior was found to be associatet thi¢ temporal transition of

the system to quasi-periodic dynamics. Extreme stretchahging and local extinction
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that characterize flame dynamics during intermittency sstggcomplex dynamics gov-
erning the flame behavior during the intermittent state.s€hatermittent oscillations
eventually lead to flame blowout indicating that the dynahstate of intermittency is

a precursor to flame blowout induced by thermoacousticlasioihs.

The high speed flame images provide some evidence that tleevelsdynamics
of the system in this bifurcation analysis is a result of &aoins in flame dynamics in
response to changes in the acoustic field affecting the flasmieh occurs as the flame
location is varied. This hypothesis is supported by flameaese studies (Bourehla
and Baillot, 1998; Bondar, 2007; Candel, 2002). Howevef]ase dynamics is sig-
nificantly affected also by hydrodynamics, the cause of demponlinear behavior
could be the effect of acoustic perturbations on a confinefige, particularly during
intermittency when the flame is detached from the burnerthEurinvestigations on
combustion systems conducted from the point of view of dyinahsystems theory are

necessary to extend the results presented here to indagipilecations.

5.6 Interim Conclusions

The results reported here demonstrate that thermoacantti@action possesses rich
nonlinear behavior. Analysis of results from the point adwiof dynamical systems
theory sheds new light into the nonlinear aspects of thecawstic instability. The
observation of intermittency indicates firstly that the Inoear process of thermoa-
coustic instability can posses quite complex dynamics,lainin several attributes
to nonlinear interactions in other physical systems. A sdcgsue associated with
lean combustion is the problem of lean flame blowout (Shagbéset al., 2009). Al-
though a vast amount of literature is available on lean flaloedwt, the problem is
still far from solved. Studies on lean flame blowout invohexeloping techniques for
blowout detection (Nair and Lieuwen, 2005) and efforts tpmess the appearance
of blowout (Shashvat, 2007). Overcoming problems assediaith flame blowout in
practical systems primarily involve strategies that iaseethe safe operating range. For
instance, in gas turbine combustors, a swirl stabilizeddlaonfiguration is commonly

used, where in the wake of recirculation zone mixing of tteetants takes place. Due
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to vortex breakdown, a region of reverse flow exists whicbiszes the flame. How-
ever, swirl flames too are prone to flame blowout. Chemilusgeace imaging and
laser scattering results on swirl dump combustor shown bygstutandam and Seitz-
man (Tuscon, Arizon, 10-13 July, 2005) shows that the p@sen cold reactants in
the inner core of the recirculation zone is the sole reasorildme extinction. Stohr
et al. (2011) investigated lean blowout using chemiluminescemaging, stereo-PIV
(Particle Image Velocimetry) and PLIF (Planar Laser IndLERIOrescence) to demon-
strate mechanisms involved with flame stabilization claselowout. This is a step
towards a complete understanding, prediction and contrblesmoacoustic instability

and thermoacoustically induced flame blowout.
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CHAPTER 6

ROUTES TO CHAOS IN THERMOACOUSTIC
OSCILLATIONS

In the previous chapter we saw that even in the most simplentbecoustic config-
uration, complex oscillations in acoustic pressure anddlamensity were observed.
Furthermore, through the analysis, it was found that nealiraspects of thermoacous-
tic instability are related to the process of lean flame blatwdiowever, due to lean
flame blowout, a comprehensive bifurcation scenario leadinchaos could not be
covered. Towards this objective, a second configuratiodapged - a confined multiple
premixed flame system. The configuration has the advantagehéhproperties of com-
bustion instability can be studied without significant niéeence from hydrodynamic
instability. In addition, the dynamics of laminar flames eged to acoustic perturba-
tions has been extensively studied through experimentsd€a2002) and numerical
investigations (Noiragt al., 2008). This makes the configuration ideal for fundamental

studies on self-excited combustion instability.

6.1 Transition to Chaos via the Ruelle-Takens Scenario

Similar to the single flame, an experimental bifurcationlgsia of the system was
performed. Interestingly, the main features of the ealifircations, namely subcrit-
ical Hopf bifurcation leading to limit cycle oscillationsd a secondary bifurcation to
quasi-periodic oscillations was observed in this configansas well. The application
of nonlinear time series analysis, particularly, techegjbased on phase space recon-
struction from acquired pressure data, reveals rich dycarbehavior and the existence
of several complex states. Route to chaos for thermoacoustability is established
experimentally for the first time. We show that, as the flanoation gradually varied,

self-excited periodic thermoacoustic oscillations ugddransition to chaos.
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Figure 6.1: Bifurcation plot summarizing the experimentpened for equivalence ra-
tio ¢ = 0.48: Hopf point atz; = 13.8 cm. The Roman numerals (I-VIII)
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state and region Vlll-steady state.

6.2 Bifurcation Analysis

As we gradually change the flame location, the system gogsdrsteady state to a self-
excited oscillatory state. From the point of the onset ofrtiacoustic instability, if the
flame location is varied further, properties of the selfimdtstate change dramatically.
In order to track the changes in oscillations with respec¢hé&oflame location, we plot
bifurcation diagram (Fig. 6.1). Corresponding to every fidocation ¢ ), we plot the
amplitudes of the local maxima (Strogatz, 1994) in the aegupressure time series
for that particularz;. The number of local maxima, at a given parameter, gives the
period of oscillations: a single local maxima indicatesmaitlicycle oscillation, two
local maxima values suggest period two oscillations andnsolthe Roman numerals
(I-VIIl) are used to indicate different regions in the bifation plot. Time series and
frequency spectra for oscillations in these regions aregmted in Fig. 6.2. A longer
time window is used for more complicated oscillations sd tha essential features of

the oscillations are clearly depicted.

The onset of instability occurs at; = 13.8 cm, one-eighth of the total duct length
from the open end. At this point, there is a qualitative cleainghe system from steady

state to finite amplitude oscillations. This is an indicataf a subcritical Hopf bifur-
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cation (Strogatz, 1994). It is quite common to encountecstibal Hopf bifurcation
in practical combustion-driven thermoacoustic systench s1$ gas-turbine combustors
and rocket combustors (Zinn and Lieuwen, 2005). The poimtrath the bifurcation
occurs is referred to as the Hopf point. The bifurcation ltesa a single frequency,
‘limit cycle’ oscillation with a frequencyf ~ 570 Hz. This is close to the second har-
monic of the duct acoustic mode. The time series and frequgpectrum of this state

are shown in Fig. 6.2 lla & llb respectively.

The limit cycle oscillation state persists for a small range values beyond which
it is followed by a bifurcation of the limit cycle to anothepte of oscillation with more
than one dominating frequency,(~ 570 Hz, fo ~ 364.1 Hz), as shown in Fig. 6.2
llla. As we change the flame location, the frequencies coenpéth each other and
eventually towards the end of this state, the time seriag @2 Illa) and the frequency
spectrum (Fig. 6.2 llIb) changes to the one depicted in E@lléc & 11l1d respectively.
The dominant frequency also changes frénto f,, which is close to the first harmonic

duct acoustic mode.

The next bifurcation occurs at; = 19.2 cm, the amplitude of local maxima in-
creases to about5 times (150 Pa). The irregularity in the oscillations can be clearly
seen in Fig. 6.2 IVa. The corresponding frequency spectkig),6.2 IVb shows the
presence of a broad band of frequencies (along with the agpeaof a new indepen-
dent frequencyf; ~ 524 H z) suggesting the presence of low dimensional chaos. On
changing the flame location, we observe that the signatutedime series has changes
atz; = 21 cm, within region IV. We observe regularity in the time seriesl alistinct
peaks in the frequency spectrum plots (Figs. 6.2 IVc & IVdheTrequencies in the
spectrum are rationally related as opposed to the broadbeoekencies. Following this

state, the oscillations become regular again in region V .

Figure 6.2 Va & Vb gives the time series and frequency spatilots of a repre-
sentative state in region V (Fig. 6.1). The peaks in the feagy spectrum correspond
to fa, f2/2 and f,/4. This is an indication of the oscillations being period fauna-
ture, but since the contribution from the sub-harmonicseis/vess compared to the
dominant frequency, it is not clearly visible in the timeissror in the bifurcation plot

(Fig. 6.1). The system exists in this state for a large rarige walues {; = 25.8 cm
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Figure 6.2: Time series and power spectrum for various lasicity states observed in
the system, labeled according to the bifurcation plot, Bid. The flame
location corresponding to each dynamical state is markedethe time se-

spectrum density. The dominating frequemnstydppeared

in the system along with higher harmonicsfis~ 570 Hz. This is close
to the second harmonic of the duct acoustic mode.~ 364.1 Hz seen
for flame locationz; = 19.2 em. The third frequency which appears in the
system and causes the bifurcation of torugsisv 524 H z suggesting the
presence of low dimensional chaos. To confirm on the torupessknce of
low dimensional chaos nonlinear time series analysis idempnted sys-

ries and power
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to Fig. 6.2 IVa, as depicte

= 33.9 ¢m) and is followed by another state similar to the state cpoeding

d in Fig. 6.2 Vla & b. The frequenpgarum shows three

broadband regions centered arowhd H z, 370.2 Hz and185.1 Hz, wherel85.1 Hz
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is the sub-harmonic df70.2 Hz. We increase the flame location further and this state
changes to a period two oscillation in region VIl (Fig. 6.19 &n intermittent state. The
time series and frequency spectrum of the intermittent aedoeriod two oscillatory
state are given in Figs. 6.2 Vic & d and Vlla & b respectively.eTihtermittent state
has intervals of period two and the irregular state coegdibgether. A transition from
period two to irregular oscillations can be observed in Big.Vic. Beyond this region,
changing the flame location brings the system back to a ststatly atr; = 43.9 cm,

which is close to half the duct length.

6.3 Nonlinear Time Series Analysis

For further analysis, techniques that specifically deahwitnlinear systems are called
for. Itis crucial to implement nonlinear time series anayschniques for understand-
ing the dynamics of the thermoacoustic system. Nonlingae series analysis tech-
niques provide tools for systematic analysis and identiboaof characteristics and
structures in time series data generated by nonlinear psesewith emphasis on the
determination of properties of a special class of nonlilnsaillations, the chaotic oscil-
lations. Chaotic oscillations are quite commonly obselivetbnlinear systems and in
the absence of appropriate analysis, the broadband fregs@ectrum resulting from
chaotic dynamics could be misinterpreted to be a result &fenoTherefore, imple-
mentation of phase-space based nonlinear time seriesssgdghniques is essential to

extract detailed information about the complex nonlingacpsses.

6.3.1 Average Mutual Information

The variation of AM () with time delay for all the time series discussed above is
shown in Fig. 6.3. The top three curves in Fig. 6.3 are forgakci oscillations with
rationally related frequencies, regions II, V and VII (F&g1). The other curves belong
to oscillations with either irrationally related frequéss or broadband frequencies, re-
gions lll, IV and VI (Fig. 6.1). The optimal time delay for pb@space reconstruction

varies from0.4 — 0.9 ms, in the various regions, as seen in Fig. 6.3.
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bifurcation plot (Fig. 6.1).
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6.3.2 False Nearest Neighbors

A typical plot obtained for each of the cases discussed ithisis has been reported in
Fig. 6.4. The trend of the variation of the percentage offaksarest neighbor estimates
for different oscillations with respect to the embeddingension g, suggestdz = 5

as an optimum embedding dimension since the percentagésefriaarest neighbors
for all the states vanishes @ = 5. Henceforth, quantitative information from phase

space reconstruction of strange attractors has been dersiegd; = 5.

6.3.3 Reconstructed Phase Portraits

The three-dimensional phase portrait representationseof/érious states obtained in
our system are arranged in the order of their occurrenceeibitrcation plot (Fig. 6.1)
in Fig. 6.5, starting with the limit cycle. We find that the caeteristics of simultane-
ously measured flame intensity time series data are sinoilret pressure time series
data in Sec. 6.6. Phase space structures seen in the rectedtphase portraits from
chemiluminescence time series (Fig. 6.6) are observed sinhiéar to those obtained

from the pressure time series (Fig. 6.5).

Limit cycle (Fig. 6.5 lla), as expected, is represented bingls loop in the phase
space. But, the introduction of new frequencies due to thx¢ Iiurcation results in
aperiodic oscillations and the loop turns into a dense dal@structure, as can be seen
in pressure oscillations (Figs. 6.5 llla & 11Ib). A toroidsiructure in the phase space,
is an indication of quasi-periodic oscillations. Quasiipéicity is also reflected in
the power spectrum (Figs. 6.2 lllb & 1lld) in the form of inconensurate frequency
components365.3 & 571.3 Hz). Due to the presence of incommensurate frequen-
cies, the phase space trajectory evolves on the surface aisg, thever closing on
itself. As we change the control parameter, flame positiahiwithe quasi-periodic
region (region Ill) in Fig. 6.1, there is a competition beemethe two major frequen-
cies eventually leading to the introduction of a third incoensurate frequency{in
Fig. 6.2 IVb) causes the toroidal structure to become utestaid break down resulting
In a strange attractor as seen in Fig. 6.5 IVa. This struatareesponds to the time

series and the frequency spectrum that shows the presehboeagiband frequency con-
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Figure 6.5: Reconstructed phase portraits from measussspre time series for differ-
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in the bifurcation diagram, Fig. 6.1. The labels are in adaace with the
bifurcation plot.
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tent in Fig. 6.2 IVb. Broadband frequency content and staattyactor hints towards

the presence of chaotic oscillations.

The similar sequence of phase evolution of the system isrebddor the system
through intensity time series. The reconstructed phaseesfma limit cycle, quasi-
periodic oscillations, two period oscillations, periodifascillation and chaotic oscil-

lation in order of appearance of the oscillations in theaysis arranged in Fig. 6.6.

6.4 Strange Attractors

To identify whether the obtained attractor (Fig. 6.5 IVadistrange attractor (possesses
an inherent dimension which is not an integer but rather eifma), we evaluate the
correlation dimension of the attractor using the Grassdreagd Procaccia (1983) algo-
rithm. Subsequently, to find out if the oscillations are diam nature, we calculate
the maximal Lyapunov exponent using the algorithm suggdsgdantz (1994). These

are discussed in the following paragraphs (see appendix &dorithm).

6.4.1 Correlation Dimension and Maximal Lyapunov Exponent

According to the Grassberger-Procaccia algorithm, theetaiion dimension is ob-
tained from the calculation of the correlation sum of all jments in the phase space.

This correlation sum is given by

1 number of pairs of point
C(r) = lim Nz : (6.1)
Voo x;, X; ith distance€uc.dist. < r

where N is the total number of points, Euc.dist is the Euclideanadiise in the phase
space, between points andx;). As r — 0, this function is found to have a power law

dependence,

lim C(r) o< ré (6.2)
r—0
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whered,. is an estimate of the correlation dimension of the attradtdfigs. 6.7 and 6.9
the plot for C(r) vs. r for the attractors, correspondingdgion 1V and VI is given. It

Is seen that a scaling region where the power law dependamceecseen is found for

r in the range~ 20 — 100. Corresponding to these plots, the value of local slope with
respect to r, for dimensiort 8, 10 and12 have been given in Figs. 6.8 and 6.10. In
the scaling region, the value of slopes gives an estimatesotdrrelation dimension of
the particular attractor. For region 1V, the value of slopéhe scaling region fluctuates
significantly. However, at high dimensions, it seems to heaterated. For region VI,
slopes in the scaling region, calculated for different disiens follow a more robust
trend. For the two attractors in region IV and region VI, tlegrelation dimension,

calculated from the curve at dimensitis found to be5.5 +0.4 and4.6 +0.3 respec-

tively.
10° , |
10” | Dimensions 6, 8, 10, 12 |
=
o
107 |
-10|
10 - \
1 Dn 1 D‘ . ; DE

Figure 6.7: Variation of correlation sum as a function ofrrtlee attractor in region 1V,
Fig. 6.5 IVa. The variation with respect to r is plotted fonginsions 6, 8,
10 and 12. Arrow points towards increasing embedding dimen#\ data
set with 16000 points was considered for obtaining the plot.

Chaotic dynamics in a dynamical system is indicated by tlesgce of positive
Lyapunov exponents. Lyapunov exponents, by definition ameasure of the expo-
nential divergence in time, of two neighboring phase spagjedtories. A positive

exponent implies that any uncertainty in estimation of teahical state of the system
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Figure 6.8: Slopes of the correlation sum in Fig. 6.7 as atfan®f r. The correlation
dimension is evaluated from the curve corresponding to aedgion 12
(in black). Arrow points towards increasing embedding disien. The
correlation dimension is obtained from the scaling regi¢rere a constant
slope exists for a range of correlation radius, r.

will grow exponentially in time. To identify the presence @faotic dynamics in our
system, we calculate the maximal Lyapunov exponent usigithod given by Kantz
(1994). According to the algorithm, one finds the averagarsgjpn between neighbor-
ing trajectories in the reconstructed phase space as tioheasvand the evolution in the
average separation is searched for an exponential trente 8pecifically, the average

separatiort(An) is calculated as a function of temporal separatton

T
S(An) = % tzl In (@ Z dist (X¢, Xi; An)) : (6.3)

€Uy

wherel, is the neighborhood of any point i the phase space adést(x;, x;; An) is

defined as
dist(x¢, X;; An) = [X¢1An — XitAn| - (6.4)

The quantityS(An) scales linearly withAn in an intermediate range with a slope cor-
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Figure 6.9: Plot for the correlation sum for the attractoragion 1V, Fig. 6.5 Vla. The
variation with respect to r is plotted for dimensions 6, 8ab@ 12. Arrow
points towards increasing embedding dimension. A data #gét 16000
points was considered for obtaining the plot.

responding to the maximal Lyapunov exponent. Further deghiout the algorithm and
its implementation on experimentally acquired time sedias can be found in Kantz
(1994), Kantz and Schreiber Kantz and Schreiber (2003).

According to the bifurcation analysis of our system, regitvi and VI in the bi-
furcation plot are the possible chaotic states. In accaelavith the Kantz algorithm,
variation in.S(An) with An with an embedding dimension df 6, 8, 10 and 12 for
region IV and VI is given in Fig. 6.11 and Fig. 6.12 respedtivd he slope of a linear
fit to the curves for embedding dimension 12, shown by the ethéihe gives values
0.00041 and 0.00051 per time step. As data has been acqutred sampling rate of
10k H z, the maximal Lyapunov exponent corresponding to theseeslogpmes out to
be 4.1+ 1.4 and 5.1+ 0.6 for region IV and region VI respectively. The rangeof to
be searched for, to obtain the scaling region is quite lardpoth cases owing to the high
sampling rate. In both cases, exponential divergence legtweighboring trajectories
occurs amidst a highly cyclic trend of the time series (hunabeycles corresponding

to aAn of 1000~ O(10)). The maximal Lyapunov exponent for both the regions is a
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Figure 6.10: Local slopes of the correlation sum in Fig. @8 correlation dimension
is evaluated from the curve corresponding to a dimensionriBléck).
Arrow points towards increasing embedding dimension.

positive value, indicating the chaotic nature of the systiiow that all the states have

been characterized individually, we will discuss the enbifurcation scenario.

In our experiments, the quasi-periodic state is followedgotic oscillations. The
system follows a torus breaking route to chaos starting fadimit cycle evolving into
a two-frequency quasi-periodic state and eventually tleetbsus structure of the quasi-
periodic attractor breaks down as a result of a third incomsueate frequency, thus
leading to the emergence of a chaotic state. This torus inga&ute to chaos is also
called the Ruelle-Takens scenario (Ruelle and Takens,)19#e strange attractor is
then followed by periodic mode-locked oscillations featgrseveral rationally related
frequencies (Fig. 6.2 IVd). The phase space representatigiven by Fig. 6.5 IVb.
The structure is a closed loop which indicates a periodigneatf the oscillation, while
following several turns before closing on itself which ischase of the presence of a

number of frequencies.

Following this state, the system once again enters a stateperiodic oscillations
given in Fig. 6.2 Va. The frequency spectrum (Fig. 6.2 Vb)taors frequencieg,
f2/2, f2/4 indicating this could be a period-4 state. The contribufram f,/2 and
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Figure 6.11: Estimation of the maximal Lyapunov exponert {4 1.4) (region V) for
dimensionst, 6, 8, 10 and12. A data set of 16000 points was considered
for calculations. Arrow points towards increasing embaddiimension.
The dashed line indicates a linear fit the arrow points towardreasing
embedding dimension

f2/4 being of very low order when compared foresult in an attractor which consists
of two very closely spaced loops in Fig. 6.5 Vb. This pericshiate exists for a long
range of control parameter before the next bifurcation Whésults in another aperiodic

State.

Region (VI) exhibits chaotic oscillations resulting frombdurcation of the peri-
odic state. From the frequency spectrum, Fig. 6.2 VIlb and¢henstructed attractor,
Fig. 6.5 Vla, it is observed that this could be another steadgaotic attractor. Fig-
ure 6.5 Vla is a strange attractor, corresponding to the serees data obtained for
ry = 33.9 cm, and clearly shows the characteristics of the chaotic hehabserved
in region (VI). The correlation dimension for this strang&actor is calculated to be
4.6 and the positive maximal Lyapunov exponendis+0.6. As discussed earlier, this

state goes through an intermittent transition to periogdliations.

In the reconstructed phase space for pressure (Fig. 6.5 Wéhave shown phase
space representation of the intermittent oscillations afternate between period-two

and a two-period quasi-periodic attractor. The dark loothes period-two attractor

100



E*_; Dimensions 4, 6, 810,12

0 1000 2000 3000 4000
An

Figure 6.12: Estimation of the maximal Lyapunov exponert §50.6) (region VI) for
dimensions 4, 6, 8, 10 and 12. Arrow points towards increasmbed-
ding dimension. A data set of 16000 points was considereddtmula-
tions. The dashed line indicates a linear fit.

which is embedded within a quasi-periodic attractor regmésd using light dotted

markers in the reconstructed phase portrait. Once the flaca¢idn is changed, the sys-
tem evolves to a period-two attractor via a very narrow winab stable quasi-periodic

attractor. The window of this stable quasi-periodic oatidin is too insignificant to be

labeled separately as another region. The phase spacsesfaton of the period-2 os-
cillations for region VII (Fig. 6.1) is shown in Fig. 6.5 VIT.he system seems to follow
a reverse quasi-periodic transition from chaotic to pedascillations. Region VIII

(Fig. 6.1) is again the steady state (fixed point) to whichsystem eventually returns.

6.5 Discussions

We have presented an experimental bifurcation analysidwmiad on a prototypical
combustion driven thermoacoustic system. Changing théi@o®of the combustion
zone with respect to the duct causes the appearance ofatiscifl in the flames and

in the acoustic pressure. This first bifurcation in the gysie a subcritical Hopf bi-
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furcation leading to limit cycle oscillations. Howevergtdynamics of thermoacoustic
oscillations in combustion systems is not limited to linyitke oscillations and although
the system we study is a highly simplified version of a pratteombustion system,
variation of the flame location induces additional bifurgas. Bifurcation of limit cy-
cle oscillations gives rise to quasi-periodic oscillas@nd changing the flame location
further gives rise to chaotic oscillations. The sequendaifafcations we observed in

our experiments is summarized below:

Subcritical Hopf bifurcatiop

. . Neimark-Sacker Bifurcation
> Periodic

> Quasi-periodic

Steady

Ruelle-Takens Scenaliochaotic— Mode-locked—s Period-4—s Chaotic—s

Two-period quasi-periodie+> Period-2— Steady

The sequence of bifurcations to chaotic oscillations, lexéd by the system is similar to
the route to chaos in other physical systems, such as theighyBénard convection,
popularly known as the quasi-periodic route to chaos or thellB-Takens scenario.
Transitions to complex oscillation states and the speafite to chaos observed in the
present investigation arise from complex interactionsveen several processes; flame
dynamics, acoustics, hydrodynamics and heat transfeglieegamost significant pro-
cesses. A strong coupling between these processes existg the occurrence of com-
bustion instability. However, it is still possible to shaght on the most likely cause
of the presence of interesting system dynamics seen hesedlzm previous investi-
gations that hint towards the importance of flame-acousteraction in combustion

driven thermoacoustic systems.

The presence of combustion in an acoustic field, in partichiaflame response to
acoustic fluctuations, is known to be responsible for n@amaspects of thermoacous-
tic instability. A simplified analytical treatment of comdiion instability (for instance,
refer to the analysis by Dowling (1999)) indicates that alimear response of the flame
to the incident acoustic fluctuations can explain nonlirfeatures such as the pres-
ence of limit cycles, subcritical bifurcation and triggegi This is further supported by
the more recent describing function analysis (Nokeawl., 2008) of combustion insta-

bility, for a combustor similar to the present investigatidComplex nonlinear states
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in addition to limit cycle oscillations have also been rapdr for instance by Jahnke
and Culick (1994), where quasi-periodic thermoacoustaillations were obtained in
a dynamical system analysis using numerical continuafigmnaach of thermoacoustic
instability and by Sterling (1993) in a numerical bifurcatianalysis where a period
doubling scenario was observed. Incorporation of nontiflaene-acoustic interaction
to explain the observed results in the analytical/num#&egperimental treatment of

thermoacoustic instability is the common feature of thevabuentioned studies.

Based on the results summarized above and other previoestigations, we can
surmise that a nonlinear flame response largely governsthavior of thermoacoustic
oscillations, including the bifurcations leading to ch#uat have been observed in this
report. Specifically in our experiments, changes in the fleoation directly change the
location of the combustion zone with respect to the acotisiid of the duct (standing
wave). This in turn leads to changes in flame response ancthikaoverall dynamics

of the self-excited heat release and pressure oscillations

Flame surface area oscillation is the dominant mechanisrargéng unsteady heat
release rate (cf. Schull@t al, 2003) in our experiments. The unsteady heat release
rate gets coupled to pressure fluctuations during combuststability. Changes in this
flame-acoustic interaction at different oscillation statereflected in pressure oscilla-
tions as well as in flame surface oscillations, as can be sdeigh speed flame images
in Sec. 6.6.

In addition, it should also be noted that along with flametatic interactions, other
important processes, also contribute to the dynamics ollatsans. In practical com-
bustion systems, complex fluid flow interactions (Schadod @ntmark, 1992) in the
periphery of the confined combustion zone play a non-trikoé in determining the
resulting thermoacoustic oscillations. Also importanthe role of oscillatory heat
transfer at the burner (Merk, 1956). These processes andisamt and need to be
considered in detailed modeling approaches. However,ezamy our experiments,
these processes might not undergo changes at differentli@atéons and therefore, do
not participate in the bifurcation behavior. Hence, we sfae that, nonlinear flame-
acoustic response turns out to be the most plausible messhamisponsible for the

observed dynamics.
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6.6 Frequency Locking Route to Chaos

A qualitative change in the behavior exhibited by any dyreainsystem on varying a
control parameter is termed as bifurcation. Bifurcatioot pbr the system under inves-
tigation is given in Fig. 6.14. The bifurcation plot (Fig1@) has been shown till flame
locationz; = 50 cm as the system remains stable (fixed point) beyond this p®hm.
vertical axis is the pressure amplitudeHascalsobtained from pressure microphone P
(Fig. 3.1). For each flame location, local maxima from the&gponding pressure time
series, about 100 cycles long, have been plotted. For adiyule oscillation, this will
be a single point, corresponding to the peak amplitude absieélation. Figure 6.14 (a)
represents the bifurcation diagram for increasing flamation and Fig. 6.14 (b) for de-
creasing flame location. While increasing the flame locatiloa system jumps from a
stable to an unstable statexgt= 13.5 cm (z,). The set of ordinates corresponding to
this particularz i.e., the amplitudes of all the local maxima in the pressime series
are of the same magnitude and hence, the oscillations praistre particular location
are limit cycle oscillations. As we go beyond this point, ilirtycle oscillations exist
till z; = 14 cm. Atthis point, there is sudden change in the behavior ofllagicins - a
second bifurcation occurs. The local maxima in the osailfet no longer have the con-
stant amplitude, which as we will see later, is also refleatetie Fourier spectrum in
the form of the emergence of additional frequencies. Furthanging the flame loca-
tion leads to a series of bifurcations in the system. Theegyseturns to its steady state
at the flame locatiom; = 48.5 cm. In the reverse direction, we find that the system
exhibits hysteresis for each region as shown in Fig. 6.14Tbjs hysteresis in system
behavior is evident from the fact that there is a jump fromlthmt cycle oscillation
back to the steady state, @t, = 10 c¢m, instead ofz;, (Fig. 6.14). The hysteresis
behavior suggests that the bifurcation at the onset of hilgtais a subcritical Hopf
bifurcation. The region of hysteresis;, — z,, is formally known as the subcritical

zone or the bistable region.

From Fig. 6.14, it is seen that the oscillations observetastystem assume several
characteristically different periodic and aperiodic etatln the following sections, the
oscillating behavior obtained for each flame locatian)(is characterized from the

time series data of pressure and intensity oscillationt thie application of concepts
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Figure 6.13: Stability map of the system indicating the #itglregimes of the system
for a air flow rate 4000 ccm). Results have presented here doe 0.50

from dynamical systems theory - phase space representdtibe system and Poincaré

sections. These concepts are briefly discussed below.

We will now continue with the results obtained by nonlingard series analysis of
data acquired for the thermoacoustic system under studyhEoesults presented here,
the maximum embedding dimension was found to be four. A tdmeensional space
was found adequate to represent the phase portrait anchtafydgualitative differences
between various classes of oscillations obtained. Theepbpace representation will
be in a three dimensional space constructed from time-ddlagctors %(¢), p(t +
7), p(t+27))and ((t), I(t+ 1), I(t + 27)) obtained from pressure time series and
intensity time series respectively with time delay caltedafor each case. We will

discuss these different regimes with reference to Fig.&.14

A Poincaré section depicts the intersection of an orbit & phase space with a
plane called the Poincaré plane. Unlike the phase plotsusésd above where we
continuously follow the evolution of a system, in a Poincae&tion we look at the
state of the system only at discrete time intervals. Heneeget a set of points in the
phase plane. Each classification of periodic and aperioditom has its own signature
in the Poincaré section. To illustrate with examples, them&é section of a simple

limit cycle orbit will be a single point in a usual Poincaré&sen wherein the Poincaré
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Figure 6.14: Bifurcation diagram with respect to flame lawa(V,, at4000 ccm, V; at
68 ccm). The block arrows indicate the direction of change in thenéa
location. (a) Increasing flame location and (b) Decreaseyd location.
Local maxima in the pressure time series have been plottezhfth flame
location. Inset shows a few cycles of a sample time serids laial max-
ima marked with black dots.

plane is a semi-infinite plane, i.e., it extends only in oneation and two points in
case of a two-sided Poincaré sections with an infinite pleoeperiodic solutions with

the presence of &/n subharmonic in the signal along with the dominant frequency
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Figure 6.15: Phase portraits (i), Poincaré sections (id énequency spectra (iii)
for pressure time series, for different types of oscillaipsequentially
arranged in the order of their occurrence in the bifurcatiagram,
Fig. 6.14a. fi = 570.2 Hz, f, = 366.3 Hz. In Fig. iia(iii) and Fig.
iib(iii), markersa, b, c andd point to frequencies63.6 Hz, 202.7 Hz,
406.6 Hz and529.9 H = respectively. Properties of acquired data in region
V are similar to the attractor in region Ill and hence, havebeen shown
here.

(formally called a period: limit cycle), the two sided section will haven points.
For quasi-periodic solutions, the two sided Poincare seaonsists of bunch of points
which fill up two closed curves. In contrast, for chaotic $wns, the points on the

Poincaré section fill up regions in the phase space which are than a curve and these
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Figure 6.16: Phase portraits (i), Poincaré sections (i) faeguency spectra (iii) for in-
tensity time series, for different types of oscillatiorsggentially arranged
in the order of their occurrence in the bifurcation diagrdfg. 6.14a.
f1 =570.2 Hz, fo = 366.3 Hz. In Fig. iia(iii) and Fig. iib(iii), markers
a, b, candd point to frequencies63.6 Hz, 202.7 Hz, 406.6 Hz and
529.9 H z respectively. Properties of acquired data in region V arelar
to the attractor in region Il and hence, have not been shawve.h

regions also form a fractal structure. Poincaré sectiotaiméd from the reconstructed
phase portraits using pressure and heat release time fserrethe experiments will be

presented in the following sections.
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6.6.1 Limit Cycle Oscillations: Region Il

The appearance of periodic oscillations from a steady &dbest observed in the sys-
tem atr; = 13.5 cm (see Fig. 6.14 a). The self-excited state is a limit cyclellasion,
resulting from a Hopf bifurcation. Owing to the subcriticature of the bifurcation, the
change in the system dynamics is marked by an abrupt jump iodtillation amplitude.
The characteristics of the resulting oscillations are give=igs. 6.15-11 a & -11b for the
pressure time series and the intensity time series regpBctiThe frequency spectra
(Figs. 6.15-I1 a(iii) & -1l b(iii)) shows the presence of angjle frequencyf; along with
the super-harmonics. Correspondingly, the structurecegmtative of the system dy-
namics (referred to as the attractor henceforth) is a dissingle loop (Figs. 6.16-11a(i)
& -Il b(i)). To investigate the structure of the attractorewse Poincaré sections. A
Poincaré section (Nayfeh and Balachandran, 2004) is acautéPoincaré plane here)
in the phase space, intersecting the trajectories of thegobace attractor. In the case
of a limit cycle, the intersection will give a single poing abserved in the Figs. 6.16-
lla(ii) & 1l b(ii). The Poincaré plane for different casespresented here was chosen
differently for different cases for easier visualisatidnttoe dynamics. The Poincaré
plane used for the phase portraits for limit cycle and othésequent cases is given in

the phase space diagram as a dotted rectangle.

Simultaneously acquired instantaneous flame images havedresented as images
a — h in Fig. 6.17. During the limit cycle oscillations, flames @ngo sinusoidal mod-
ulations as seen in the flame images. The first six frammesf represent flame shape
during different phases of oscillation, arranged in a saqaeFrameg andh are given
to illustrate that for the case of limit cycle oscillationise flame shapes occurring after
time intervals of integral multiples of the oscillation #nperiod are identical - as seen
in image pairs & g andd & h. This regular behavior is as expected since, the time
traces also show regular behavior. As the flame locationrieddurther, we observe

interesting changes in the dynamics of the self-excitedlasons.
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Figure 6.17: Instantaneous flame images for limit cyclellagimns. The tagged dots in
the pressure time series have corresponding flame imagé=dnay the
same lowercase alphabets as used for the tags.
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Figure 6.18: Instantaneous flame images for quasi-periosiidlations. The tagged
dots in the pressure time series have corresponding flangesmaarked
by the same lowercase alphabets as used for the tags.
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6.6.2 Quasi-periodic Oscillations: Region Il

In region-lIl, oscillations qualitatively different frorimit cycle oscillations are ob-
served as a result of subsequent bifurcation of limit cyskgltations. A second period-
icity ensues in the system, which is revealed in the powettap® (Figs. 6.15-1lla(iii)

& -llIb(iii)) as a second frequency, along with other frequencies with smaller con-
tributions. When at least two frequencies of an oscillatoa irrationally related, the
oscillation will be aperiodic and the trajectories canroti a closed loop, but instead,
they evolve on the surface of a torus - a 2-torus if two suctjfemcies are present and
covers the torus densely as it evolves. This is seen in theepbartrait in Figs. 6.15-
[l a(i) & -1l b(i). Such oscillations are referred to as cgigeriodic oscillations. The
Poincaré section (Figs. 6.15-IIl a(ii) & -III b(ii)), furér illustrates the inner structure of
the quasi-periodic attractor that we have obtained in ose c@ihe intensity time series
and the pressure time series both exhibit similar behawmithie phase space and in the
power spectra. This secondary bifurcation of a limit cyeleding to the emergence of a
second frequency is known formally in the theory of nonlingygamics as Hopf-Hopf

or a Neimark-Sacker bifurcation (Nayfeh and Balachandz@64).

Since, reporting a large number of flame images will not besides, we have lim-
ited the number of image frames to eight. The differencesden the trends in flame
oscillation have been reported instead. The periodicitycivwas present in the case
of limit cycle oscillations, is absent in this case. The lo§periodicity can also be
seen in the flame shape modulations (Fig. 6.18). Here, athouages:, b, d, f and
g correspond to local maxima in the pressure time series, @@tiem is significantly
different from the other. Imagesandh are observed for two local pressure minima.
The image:, showing an elongated flame shape, is acquired while pessaund the

flame location is building up towards a local maxima.

6.6.3 Frequency-locked Oscillations: Region IV

As the trajectories are moving on the surface of the torwesfréquencies become ra-
tionally related and lead to frequency-locked oscillasiolm the power spectrum of the

pressure and intensity time series (Figs. 6.15-1V a(iii)l\& b(iii)), we see frequencies
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Figure 6.19: Instantaneous flame images for frequencyelbdscillations. The tagged
dots in the pressure time series have corresponding flangesmaarked
by the same lowercase alphabets as used for the tags.

that are rationally related tfy, leading to a frequency-locked behavior (Hilborn, 2000).
In the phase portrait (Figs. 6.15-1V a(i) & -1V b(i)), we finti¢ trajectory no longer
wanders on a torus, but instead, closes onto itself and harpriodic loop is formed.
The time period is very long so we see many loops in the phaseagoThis is further
seen in the Poincaré section (Figs. 6.15-1V a(ii) & -IV B(iWhich has distinct points
where the loop intersects the dotted Poincaré plane. Thetaken by the system to
complete one full cycle, seen in the time series, is equitdtethe time duration be-
tween pointae and the local maxima adjacent to, and following painfFig. 6.19).

Images: — h correspond to different phases of the signal within thistohration.

Although oscillations are periodic in nature, since thaltéime period (time re-
quired for phase space trajectories to come back to thalipmint) is much longer than
a limit cycle, it is difficult to come to the same conclusionlbpking at the instanta-
neous flame images. The flame oscillations are stronger wdrepared to limit cycle
and quasi-periodic oscillations although the pressurditudp from the time traces is
the same. In imagé¢, for example, the flame leaves the tip of the burner whereas in
imagee, it is on the verge of extinction. Imagesb, c ande are all at local maxima

in the pressure time series, but each one has a completédyedif shape. The most
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Figure 6.20: Instantaneous flame images for period-2 asicitis. The tagged dots in
the pressure time series have corresponding flame imagéd®aniay the
same lowercase alphabets as used for the tags.

interesting of the images shown is imagevhere different flames in the multiple injec-
tion burner assume different lengths. As the flame locasamaried, the flame location
with respect to acoustic modes of the duct gets changed. fldet ean be seen in flame

images and also in the pressure and intensity time traces gie interaction is coupled.

6.6.4 Quasi-periodic Oscillations with Subharmonic Freqency Con-

tent: Region V

Following this state, the next bifurcation @t = 25.5 cm, results in a quasi-periodic
state where the strength of the frequericgecreases anf} emerges as the dominating
frequency along with a frequenc%%. Thisis region Vin Fig. 6.14. The attractor for this
case is similar to the one discussed for the quasi-pericdilations in region lll, the
difference being in the presence of a subharmonic. The digsasidominated mostly
by quasi-periodicity, except for a small region (the bulgéim region V, Fig. 6.14a),
where the subharmonic content grows but subsides beforgygiem eventually goes

to a period-2 oscillation.
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6.6.5 Period-2 Oscillations: Region VI

The quasi-periodic region witlfi, and its subharmonic now changes to a periodic 0s-
cillation, with frequency components, and% (Figs. 6.15-VI a(iii) & -VI b(iii)).
The presence of a sub-harmonic leads to double-loopedtaitren the phase space
(Figs. 6.15-VI a(i) & -VI b(i)); i.e. the trajectories need toop twice before coming
back to the initial point. Since the orbit is periodic, we ¢wb distinct dots in the
single-sided Poincaré section for the pressure time s@figs. 6.15-VI a(ii)) and set

of four dots (scattered due to the noise in signal) in the teslded Poincaré section

(Figs. 6.15-VI b(ii)), in the case of flame intensity timeisgrmeasurement.

In the flame shape modulations (Fig. 6.20), it can be seemétaiuse of the period-
2 nature, image frames separated by the time period comdsppto2 f, are different.
The pairs ofimagess & c,b& d, e& f andg & h are each acquired almost at the same

phase, separated by a time mterxét?k and are different in their intensities due to the
2

: S . .. 1
period-2 nature of oscillations. One period of the osddlas correspond?.
2

As we vary the flame location gradually, the system moves fp@mod-2 oscil-
lation to a chaotic state via quasi-periodic states. Thesigoeriodic route to chaotic
oscillations has been observed in several nonlinear sgstrmh as Taylor-Couette
flow (Brandstateet al., 1983) and Rayleigh-Bénard convection (Gollub and Benson,
1980).

6.6.6 Chaotic Oscillations: Region VII

At the onset of region VII, a strange attractor (Nayfeh anthBaandran, 2004; Stro-
gatz, 1994) emerges in the system. An attractor is termetr@sge when its calcu-
lated dimension is not an integer i.e. when the structurefiacal. There are several
measures to estimate the dimension of a set of points (Md@¥%;2Grassberger and

Procaccia, 1983). The correlation dimension is one suclsurea

The correlation dimension calculated for the attractomsho Fig. 6.15-VII a(i)
observed in region (VII) is 2.63 - an indication that it is aasige attractor. To check

if the oscillations are chaotic, we need to calculate theimakLyapunov exponent.
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Figure 6.21: Instantaneous flame images for chaotic osoilis. The tagged dots in the
pressure time series have corresponding flame images maykbd same
lowercase alphabets as used for the tags.

The maximal Lyapunov exponent is a measure of the exponentexrgence or conver-
gence of neighboring trajectories of an attractor. A clwaatiractor will have at least
one positive Lyapunov exponent. On application of Kantoatgm (Kantz, 1994) for
calculation of Lyapunov exponent for the chaotic attractiotained here, we obtain a
value of 0.16 which indicates that the attractor is chadfite route taken by our sys-
tem to chaotic oscillations is the frequency-locking qyaeiiodic route to chaos similar
to that observed in the circle map (Hilborn, 2000). As the #dotation is changed,
several incommensurate frequencies appear in the osmiatvhich eventually merge
to form spectrum with broadband frequency peaks, as seeigé €.15-VII a(iii)) &
-VII b(iii). The intersection of this chaotic attractor Withe Poincaré plane as shown
in Figs. 6.15-VII a(ii) & -VII b(ii) leads to a set of points attered throughout the plane

due to the chaotic nature of oscillations.

Figure 6.21 gives the flame shapes at various phases as niatkedoressure time
series data. The chaotic nature of oscillations is refleict¢lde flame images. We find
that the flame exhibits irregular modulations. Chaotic lte#tdns in the system are
accompanied by rolling of the flame surface (imagdifting-off (imagesc andg) and

elongation (images ande).
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Following this chaotic state, the system jumps back to thélststate at:; =
48.5 em. Going in the reverse direction (Fig. 6.14b) all the statesussed above ap-
pear again in exactly the reverse order but with a hystenesie flame location values

where the different bifurcations occur.

6.7 Discussions

In summary, it can be said that thermoacoustic oscillatexigbit a variety of nonlinear
phenomena. A simple laboratory combustor running on leempted combustion is
used to illustrate this point. For a constant equivalentie,rthe system goes from a
steady state to limit cycle oscillations through a subzaitHopf bifurcation, as flame
location is varied. This is followed by a second Hopf bifurca (Neimark-Sacker
bifurcation) to a quasi-periodic state. On changing the é&wcation further, the quasi-
periodic state becomes a periodic, frequency-locked statded by several distinct
peaks in the frequency spectrum at rationally related ®eaqies. Further, the system
goes to another quasi-periodic state with sub-harmongué&ecy content. This state
exists for a long range of control parameter values and levield by period-2 oscil-
lations. The next bifurcation leads to a chaotic state amthally the system comes
back to the steady state from the chaotic state directly.cbhgplex nonlinear behavior
of the system was reflected in the pressure time series, the flatensity time series
and simultaneously in the flame surface modulations in tsiairianeous flame images.
Nonlinear time series analysis made it possible to lookabttillations through their
phase space representation. This was instrumental infigagtthe characteristics of
oscillations and differentiating them from each other. Anpto note further, is that due
to the subcritical nature of the Hopf bifurcation, it is pibés that, for different operat-
ing conditions, limit cycle oscillation is an unstable staThe self-excited oscillations
at the Hopf point can be a period-2 oscillation generatedsei@ondary bifurcation.
In fact, when the experiments were performed for differepiealence ratios or flow
rates, the self-excited oscillations obtained at the Haphtpwere either period-2 or
even quasi-periodic oscillations. A possible explanatarrihe rich nonlinear behavior

is as follows. The phenomenon of combustion instabilityt{ie system under study)
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is a result of interaction between the flame and the duct éicausdes. Depending on
the flame location, different acoustic modes are exciteca Aesult, the acoustic fluctu-
ations at the flame location (combination of excited aceustdes of the duct) varies
as the flame location is changed. The nonlinear response dlattmes to this acoustic
field that is varying with the flame location could lead to tlmeeegence of complex
nonlinear oscillations. This complex nonlinear behavier., bifurcations and different
oscillation states, can also be observed if other parasisteh as the equivalence ratio

or the mean flow rate are chosen as the control parameter.

Thermoacoustic instability, in general, induces high atagé pressure oscillations
within combustion systems. Looking at the results from acfical standpoint, the
presence of nonlinear oscillations such as quasi-peritrdiguency-locked and chaotic
oscillations, will cause further increase in thermal ancthamical loading to the com-
bustor walls. Thus, leading to premature failure, accéderarack growth, amplified
wear and tear of structural components and higher fatigadihg. All these factors
contribute to the reduction in the life span of combustortg¢Sh, 1998). Furthermore,
limit cycle oscillations consist of a single dominant freqay whereas, other classes
of oscillations consist of a range of frequencies, whichhigclude frequencies close
to the natural frequency of some of the structural compaehthe system. As a re-
sult, thermoacoustic oscillations can cause resonandeuictsral components leading
to violent vibrations in the system or even structural fic@luA controller designed to
handle a single frequency or a set of frequencies mightriaihé presence of frequen-
cies that have not been considered in the design process.tRexresults on high speed
flame images, it is also seen that along with changes in tiggidrecy content of pres-
sure signals, the flame dynamics drastically changes, grge to extreme behavior
such as lift-off and flame extinction. Such behavior is alstauorable for real practical

systems.

6.8 Interim Conclusion

The above analysis presents that a simple thermoacoustiensycan exhibit a rich

variety of dynamics. In addition to limit cycle oscillatisywe see states such as, quasi-
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periodic, frequency-locked, period-2 and chaos as thedafion parameter is varied.
It is well known that the flame dynamics plays a crucial rolehe phenomenon of
thermoacoustic instability. The observed oscillationseniavestigated in the light of
nonlinear dynamics. Changing other parameters or chanpmgame parameter for
different conditions will give a different trend, howevénge characteristics of the ob-
served oscillations are expected to remain similar. Nealirtime series analysis en-
ables us to obtain an understanding of the system dynamie$/gbhrough experimen-
tal data. The information acquired could be critical in domsting accurate models for

thermoacoustic systems and designing effective contratiegies.
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CHAPTER 7

NONLINEAR COUPLED OSCILLATORS

7.1 Introduction

Investigations on scenarios of transition to chaotic dyicarhas a special place in the
study of nonlinear systems. It brings together physicalesys from a variety of scien-
tific disciplines. In the last few decades, several systématsexhibit common routes to
chaos have been identified and studied intensely, both ncaigrand experimentally,
providing evidence in support of the idea of universalityransition scenarios to chaos.
Period doubling cascades (Ott, 1993), transition via migency (Manneville, 1990)
and the Ruelle-Takens route to chaos (Ruelle and Taken§; D2Widet al., 1982) are

the most commonly observed routes to chaotic dynamics ifimear systems.

From a theoretical point of view, the nonlinear dynamicakéees of thermoacous-
tic systems have not been well explored yet. However, duledaignificant relevance
in many practical applications, a deeper theoretical wtdading of thermoacoustic
instability is required. In particular, low-dimensionabdels, that focus on the most
significant aspects of the process, are essential to gaghinsto the process. In Chap-
ter 6, it was established that thermoacoustic instalslitrethe prototypical premixed
laminar flame-based Rijke tube system undergoes trangroom limit cycle oscilla-
tions to chaotic oscillations via the Ruelle-Takens sdenaln an attempt to capture
the various nonlinear states of thermoacoustic oscitigtend the bifurcation scenario
observed in experiments, a low dimensional model of a Rijitee system is investi-
gated in this chapter. The results of a numerical bifurcaéinalysis on the model are

in accordance with the experiments, where quasi-perioditsition was observed.



7.2 Low Dimensional Model

A four-dimensional model is derived that captures the cetepbifurcation scenario
observed experimentally in a thermoacoustic system (€n&pt The Rijke tube model
has been studied to investigate thermoacoustic instabyitseveral researchers (Bal-
asubramanian and Sujith, 2008; Juniper, 2010; Subramatialy 2010) and is con-
sidered here as a starting point. A reduction of the highetisitonal phase space to a
few relevant modes is made for this specific system to capharenain physical inter-
actions and nonlinearities found in any thermoacoustitesysA Rijke tube is an ideal
representation of a thermoacoustic system that can be oseduidying the features
of thermoacoustic instability. It is a simple straight dudth heat source located at
some location such that the heat source is compact with cegpéhe acoustic length
scale. Its dynamics is governed by the linearized dimehsssrmomentum and energy

equations for the acoustic field (Balasubramanian andi5@j@08)

ou 1 dp
dp

0
— M —(p+ K
ox

W;ﬂ(t_ﬂ

whereu, p, x andt are the dimensionless acoustic velocity, acoustic prespassition

- i] S(x—%;)  (7.2)

ot V3

along the axial direction and time, respectivély,is the dimensionless position of the
flame,y the ratio of specific heats of the mediui,the Mach number of the mean flow,
K the dimensionless heater power anid a time delay that makes explicit the effect
of thermal inertia of the heat transfer on the acoustic vgloc is the total amount
of damping in the system so that, when we expand the acousiocity in Fourier

series asi = > ° _ a,e'"" we have, from Eqn. (7.1) = Zq_foo M €% and

(p = Z;’i_m 2§qwq”Maq @ where(, is the damping coefficient of the mogeand

the dot denotes time differentiation. By incorporatingstaexpressions in Egns. (7.1)

and (7.2), a single ordinary differential equation for eawbdeq is obtained as

Gg + g0 + bylry = —K

1—1—2 0 — T

Inot to be mistaken as the time-delay for phase space reuootistr

1 (7.3)
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Figure 7.1: Bifurcation plot for the first oscillatad is the amplitude of local maxima

in the time series of the variable for various flame locatign A config-
uration with both open ends is considered with parameteregal = 3,
ap = b = 1/4ay = 3/4by = 0.1 andT = 0.4 in Eqns. (7.4)-(7.7).
The Roman numerals (I-VIII) are used to indicate the diffén@gions in
the bifurcation plot. Region I-steady state, II-limit cg¢lll-quasi-periodic
behavior, IV-chaos, V-period-two oscillation, VI-qugseriodic behavior,
Vll-chaos, VllI-period-two oscillation.

where a small time delay approximatiop(t—7) ~ «,—7¢, is introduced. Rescalings,

g — —2ige’™r /3, K — - have been made and we have defirfgds= ie/,
a, = ¢* andb, = 2(,w,. After these transformations, it is observed that the R..HbfS
Eqn. (7.3) is the same for all Fourier modes. Since all mod#sshort wavelengths are
strongly damped, only two dominant modes,andq, are considered. In the following
text, labelsl or 2 refer to either mode respectively. Further defining: a4, y = aq,

s = as—ay andz = as—dyq, the following system of four coupled differential equaiso

is obtained
i =y (7.4)
§ = —az—by—K [\/|1 Y@ — T fit (5—72)fo] - 1] (7.5)
s = =z (7.6)
Z = —aps —byz + (a1 —az)x + (by — by)y (7.7)

The parameterg; and f, will be real valued and will depend on the experimental
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boundary conditions (by incorporating both and f_, within f,). Boundary condi-
tions allow the Fourier coefficients to have certain symgnptoperties. For both open
ends they are antisymmetrical i.ex, = —a_, while for open-close ends they are
symmetricala, = a_,. On substituting these expressions in the Fourier expansio
the sum, previously going from = —oo to ¢ = 400 can be reduced to run between
g = 1 and 40 (g=0 is excluded). For a Rijke tube with both ends open , weshav
fi = —cos(2q17y) — cos(2¢gezs) and f, = —cos(2¢.7¢). For a closed-open tube,
fi = sin(2q175) + sin(2¢27f) and fo = sin(2¢g.z5). Since the nonlinear dynamical
features can be generally described in terms of the parasngtand f, and the val-
ues of these parameters include all possible boundary tonslithrough their specific
functional relationships to the experimental control pagterz;, the model given by

Eqns. (7.4) to (7.7) is universal for the class of systemisshare the same bulk dynam-
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Figure 7.2: a-c: Time series for third oscillatofor limit cycle oscillation, d-f: quasi-
periodic oscillation, g-i: chaotic oscillation, j-l:ped two. Same parameter
values as in Fig. 7.1

(x*,y*, s*, 2*) = (0,0,0,0) is clearly a fixed-point of the system of Eqns. (7.4) to
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(7.7). Alinear stability analysis shows that it is stabléat z ; until a Hopf bifurcation
occurs, atf, y = 2b;/(KT). A two-timing method performed on the above model,
considering a small coupling of the oscillators and smalbeigies (the expansion is
done around the fixed-point), shows that the bifurcatiorutscstical: for a small per-
turbation around the unstable fixed poiifit & f1 ) the perturbation grows linearly as
~ |(x—1y) f1+(s—72) f2|. Ittends to saturate only wheéfx—7y) f1+(s—72) f2| >> 1.

In such a situation, the system ends performing a limit cgtleigh amplitude. After
the Hopf point, the system jumps discontinuously from aestdialmost zero amplitude
to an oscillatory state with amplitude higher than unityisTlimit cycle of high ampli-
tude disappears in a saddle node of periodic orbits whertdwerters the unstable limit

cycle arising from the Hopf, whefy < fi 4.

7.3 Results and Discussions

Equations (7.4)-(7.7) were numerically integrated usingM4AB (R2009a) ode23s
function, to obtain asymptotic system dynamics. The bdtion plot obtained from the
model Eqns. (7.4)-(7.7), with the non-dimensional flameatmn (z,) as the control
parameter, is shown in the Fig. 7.1 whetds the amplitude of local maxima in the
time series of the variable for various flame location A configuration with both
open ends is considered with parameter valdés= 3, a; = by = 1/4 ay = 3/4
by, = 0.1 and7 = 0.4 in Egns. (7.4)-(7.7). Instability appears in the systeneradt
subcritical-Hopf bifurcation of the steady state. At = 0.02, the emergence of limit
cycle oscillations is observed. Time series and the frequepectrum for this state is
shown in Figs. 7.2 a and b respectively. As the flame locasoraried further, quasi-
periodic oscillations arise at; = 0.06 as a result of a secondary Hopf-bifurcation. The
corresponding time series and frequency spectrum are sdegs. 7.2 d and e. Due
to the presence of incommensurate frequencies, the wayeat the attractor makes a
dense toroidal structure in the phase space (Fig. 7.2 f)hdrRuelle-Takens route to
chaos, the quasi-periodic state is immediately followedcbhgotic oscillations. This
is also what is observed in our case. The toroidal structexeldps distortions and

the power spectrum shows the presence of broadband fregeentponents. This
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Figure 7.3: Maximum Lyapunov exponent for regions Il, IN,and V in the bifurcation
diagram in Fig. 7.1 as a function of the dimensionless flarnatlonz,. A
transition from quasi-periodic behavior in region Il toadtic behavior,
with a positive Lyapunov exponent, in region |V is observedregion V,
stable period-two oscillations are found and the Lyapungoeaent decays
again to zero.

transition occurs at; = 0.07. The phase space trajectories can be seen in Fig. 7.2 i.

The chaotic state is followed by periodic oscillationgat= 0.1. This is a period-
two oscillation as seen in Figs. 7.2 j, k and |, the correspantime series, frequency
spectrum and phase space trajectories. The period-2 rsggain followed by another
chaotic regime. The bifurcation diagram Fig. 7.1 summaribe different transitions
displayed by the thermoacoustic model. In other parametgmes (results not shown)
we found frequency-locked states, as also observed in fhexiexents (refer Chapter 6).
A sequence of periodic and aperiodic oscillations and theeagance of two bands
of chaotic oscillations has also been observed in a difteplysical context in the
triatomic molecule by Traet al.(1990). It is to be noted that, while the model in Tran
et al. (1990) requires six equations, which are first order in tiow, model requires

only four, since it involves only two nonlinearly coupledcdkators.

In Fig. 7.3, the maximum Lyapunov exponent, calculatedgidiie algorithm pro-
posed by Sprott (2003), is shown for the first transition icih@os in the bifurcation
diagram in Fig. 7.1. On the oscillatory regime with stabfeiticycles or quasi-periodic
behavior, the maximum Lyapunov exponent is zero indicatiagginal stability. How-
ever, in region IV of the bifurcation diagram, a positive pygov exponent proves
the existence of chaotic behavior in such regime, a stateigh@ached from quasi-

periodicity in Region Il through the Ruelle-Takens routechaos. This behavior is
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also found in the experiments (Chapter 6). The model reeslgualitatively all dy-

namical behavior found in the experiments as well as the evhidlircation scenario.

It is to be noted that, since the frequency of the oscillaismot an experimental
control parameter, the system cannot be externally tunédve tori with frequencies
arbitrarily close to the golden mean ratio on the quasiguiciregime. The oscillations
are intrinsic to the system, and although their frequeneybEaquantitatively estimated
close to the fixed point at (0,0,0,0), the effective frequesof the oscillators are signif-
icantly affected by the high amplitude of the limit cyclespthne subcritical Hopf point.
These limit cycles are highly non-harmonic because of tleeifip form of the nonlin-
earity and the transitions into chaos cannot be generallyeted in these situations by

the circle map, since in the latter the coupling between Hudlators is harmonic.

This four-variable model can qualitatively describes thalmear dynamical be-
havior and routes to chaos found in experiments on the thecoustic instability. The
model consists of two nonlinearly coupled oscillators, fingt of them containing a
square root nonlinearity that reflects the effect of the raaisfer on the acoustic field,
and the second one being simply a linearly forced and damgaltiator. Further refine-
ments of the model might include additional linearly foraestillators like the second
oscillator. It is remarkable that all effects of the nonanéy can be accounted for in
only one oscillator, which forces linearly all the othersiig oscillator, containing the
nonlinear term, is responsible for the main subcritical Hmfurcation structure found
theoretically and in the experiments (Chapter 6). Becafisis simplistic nature, the
model also opens the possibility of devising systematichraeisms for the control of

the thermoacoustic instability, a concerning problem imyn@ngines.
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CHAPTER 8

CONCLUSIONS

The most important aspect of thermoacoustic instabiligt theeds to be understood
is the nonlinear interaction of the acoustic field with costian and other processes
active in the combustion zone. Previous studies have shiogvaexistence of dynamics
such as quasi-periodicity and chaos. The root of such neslibehavior and therefore,

the inherent nonlinear nature of thermoacoustic instaslhowever remains unclear.

The basis of this investigation is to conduct a deeper inyason of self-excited
instabilities from the point of view of dynamical systemeainy. The self-excited oscil-
lations are studied through measurements of acousticyreessthin the duct, chemilu-
minescence and flame imaging. In particular, phase spaeel laaslysis is performed
on the time series data of acoustic pressure and chemilsoegnee. The information
that can be derived from the results of this investigatiadidates that nonlinearities
involved in the thermo-acoustic coupling tend to confornthte universal behavior of
general nonlinear systems that has been established theoagnsive numerical, an-
alytical and experimental studies on different nonlinegtems. The most striking
similarity is in the bifurcation scenarios that charaaeriransition from steady state to
chaotic oscillations. These results are obtained on the shogle thermoacoustic sys-
tem involving combustion, the laminar premixed flame driiRjke tube. This suggests
that the complex nonlinear states obtained in the bifusoadinalysis are a result of in-
herent thermoacoustic interactions and not a manifestafi@ther complexities such
as turbulence (in the base flow or the flame). It is to be not&eekier that, large scale
hydrodynamic structure do play an important role as is nefiéthrough modulations in

the flame during different oscillatory states.

The investigation was first performed on a single flame bagkd Ribe type system
operating at a lean equivalence ratio. It was observedithatdycle oscillations appear
in the system as a result of a subcritical Hopf bifurcatios.tAe flame location is fur-

ther varied, another bifurcation takes place leading tcethergence of quasi-periodic



oscillations through a secondary Hopf bifurcation. Thiséen in the acoustic pres-
sure time trace as well as in the power spectrum. The phase spacture formed by
these oscillations resembles a toroidal structure. As #medllocation is further varied,
the smooth structure of the toroidal attractor as seen imdbenstructed phase space
ruptures and eventually leads to burst oscillations. Theadyics is similar to what is
referred to as intermittency in the theory of dynamical eys, where the dynamical be-
havior of nonlinear systems exhibits random transitiortasben stable oscillations and
chaotic bursts. The chaotic bursts were found to be sinoléné dynamical behavior
of intermittency using return maps. Further, through resnee analysis, intermittency
was identified as a type-Il intermittency. The intermittstdte is followed by flame
blowout. This observation suggests a connection betweeptltanomenon of thermoa-
coustic instability and the process of flame blowout. Thergiition scenario clarifies
how this connection becomes apparent. According to thedafion theory, once limit
cycle undergoes transition to quasi-periodic oscillaiahe system can undergo fur-
ther transitions to chaos. In such a transition, intermdyeis one of the standard in-
termediate states. However, as intermittency developsstébilization of the flame is
repeatedly disturbed. At a certain point, prior to a traosito complete chaos, burst

oscillations cause flame blowout to occur.

The issue of flame blowout continues to exist as a unsolveblgm This study
provides a lead that could be further investigated to aeh#&certain level of under-
standing of the phenomenon from the dynamical systems @etigp. An inference is
made directly from the investigations that intermitteney e seen as a precursor to
flame blowout. In addition, results of flame imaging during thtermittent state, prior
to blowout, indicate that inclusion of hydrodynamics isesggl to model system dy-
namics. The strength of the hydrodynamic coupling variesifone oscillation state to
another. For instance, hydrodynamic interactions playraidating role during burst
oscillations and the effect can be observed even in instantss line of sight flame
images. This statement is a hypothesis based on flame imagthgeeds further inves-
tigation. But it can clearly be stated that a complete exatusf hydrodynamics will

not capture full system dynamics.

The case of multiple flame configuration has also been iryegstil, again in the
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frame work of dynamical systems theory through analysisefthase space represen-
tation of the system and the bifurcation behavior. A varietyattractors - periodic,
quasi-periodic and chaotic states, were observed in thersyass the control parameter
was changed. A route to chaos for thermoacoustic osciiai®established experimen-
tally for the first time in a thermoacoustic system. It hast&®wn experimentally that
as the location of the combustion source is gradually vageti-excited periodic ther-
moacoustic oscillations undergo transition to chaos waRhelle-Takens scenario and
the frequency-locking route to chaos. Modulations of thenéiaurface area were found
to differ significantly from one oscillatory state to the ethDuring quasi-periodic and
chaotic states, interaction of individual flames with eatireo was observed. These

observations reveal new aspects of thermoacoustic demilta

In the last section of this investigation, a coupled osmlanodel has been con-
structed to reproduce theoretically the nonlinear dynahtiehavior and routes to chaos
found in experiments on the thermoacoustic instability.e Tinodel consisted of two
nonlinearly coupled oscillators. The first oscillator cistesd of a square root nonlin-
earity used to model the effect of the heat release rate oacthestic field. The second
one was simply a linearly forced and damped oscillator. A effects of the nonlin-
earity can be accounted for in only one oscillator, whicltcésr the other oscillators
linearly. This oscillator, containing the nonlinear teiisyesponsible for the subcritical
Hopf bifurcation structure found theoretically and in thgperiments. The coupled os-
cillator model was also found to capture the Ruelle-Takefusdation scenario and the

associated nonlinear oscillatory states found experiatignt

Information on the nonlinear aspects of thermoacousti@kty reported in this
thesis are quite critical for obtaining accurate modelgtiermoacoustic instability and
designing effective control techniques. Nonlinear timgeseanalysis enables us to ob-
tain an understanding of the system dynamics purely froneexyental data. Findings
reported in this thesis has significant implications. Recattcombustion systems are
highly susceptible to frequencies corresponding to theralinodes of structural com-
ponents, which can set the system to resonance and can |leath&irophic failure.
Such structural resonance is more likely to happen durigigoeriodic, mode-locked,

chaotic and intermittent oscillations because of broadlsgectral content. Addition-
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ally, these aperiodic behavior are associated with vagiabiplitude, which will cause
a higher fatigue loading to the structures compared to ligtte oscillations and hence

can reduce the performance and life span of the system.
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CHAPTER 9

DIRECTIONS FOR FUTURE WORK

The main aspect that needs further investigation is the fleld fnteracting with the
flame during thermoacoustic instability. Results have shtvat hydrodynamics has
a dominant role to play during the various nonlinear setfied states. More insight
into the phenomenon can be obtained by the identificatiomloéent structures in the
flow that directly affect flame dynamics. Simultaneouslygmes in the flow field in re-
sponse to acoustic oscillations in the system during diffenonlinear states needs char-
acterization. Instantaneous flow field determination, fatance through high-speed

Particle Image Velocimetry, will be required towards thisle

Secondly, to asses the universality of the results obtaameldto asses the applica-
bility of the inferences made to general thermoacoustitesys, similar investigations
need to be conducted on more thermoacoustic systems, inglather simple configu-
rations such as the electrically heated Rijke tube, diffagiame, V-flame and flat-flame
systems. Such investigations accompanied with numenchhaalytical investigations
on nonlinear self-excited states, particularly with theorporation of flame kinemat-
ics formulation in the presence of multiple frequencies tiedeffect of coherent flow

structures.

Of equal importance is to investigate industrial systentk wie application of dy-
namical systems theory and nonlinear time series analffsighermore, the effect of
nonlinear oscillations such as quasi-periodic, frequéacked and chaotic oscillations
on structural components of combustion systems will beegiifterent when compared
to limit cycle oscillations. Therefore, the effect of suaghly nonlinear behavior in in-
dustrial systems should be evaluated. Such behavior afhttecoustic instability could
enhance crack growth which would eventually decreasefispan of the system. This
may be unacceptable in gas turbines systems, where mamgropierating hours and

minimizing maintenance is important.



The scenario of flame blowout in the single flame system inyat&td here opens
up a new approach to looking at the phenomenon of flame blowthgrmoacoustic
instability was found to be associated with flame blowout mmermittency was found
to be a precursor to flame blowout. Further investigationhwsé aspects of flame
blowout is expected to yield new results and understandihgs certain that flame
stretch and strain effects become particularly importaitrgo flame blowout. The
pinch-off behavior of the flame during quasi-periodic datibns causes nonlinearities
that are currently not accounted for in laminar flame respansdeling. Investigations
are required to evaluate the effect of features such as flanocb-pff and subsequent
cusp formation. The strong participation of hydrodynaniicthe process of repeated
flame blowout has been hypothesized here. Analysis to astehe specific role of

hydrodynamics in the process of thermoacoustic osciltatie essential.

The simple model presented in Chapter 7 is powerful enougbpgmduce results
obtained experimentally in Chapter 6. This model can bestigated and developed
further by incorporating the effects of critical factorschuas the temperature distribu-
tion within the duct. Numerical continuation analysis canpgerformed on the system

of equations to understand the physics behind nonlineargghenon such as hysteresis.
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APPENDIX A

INVESTIGATION OF SUBCRITICAL INSTABILITY
IN DUCTED PREMIXED FLAMES

An experimental investigation of the bistable region ottafmlity in a thermoacoustic
system comprising of ducted, premixed laminar flames has pedormed. The sta-
bility diagram of the system is obtained and the bistabléoredor a range of flame
locations at different fuel-air mixture equivalence ratis identified. Subsequently,
threshold amplitudes for triggering instability in the 8 using externally introduced
sinusoidal acoustic forcing, is obtained. It is observed ttepending on how close the
system is to the Hopf point and the nature of oscillatione@Hopf point, the triggered

oscillations can exhibit different dynamical behavior.

The transition of a thermoacoustic system from steady i state (fixed
point) to an oscillatory state, on variation of operating@itions occurs in two ways
- through a supercritical Hopf bifurcation or a subcrititddpf bifurcation (Lieuwen,
2002). In the first scenario, there exists a clear demarcaigtween steady and oscil-
latory states with respect to the bifurcation or controlgpagter. The transition from
the stable to oscillatory state and vice versa is gradualoaodrs exactly at the same
parameter value. On the other hand, in the case of a sulat#tapf bifurcation, as we
vary the control parameter, at the critical (Hopf) poing 8ystem jumps from steady
equilibrium state to a high amplitude oscillation. Whilemggin the reverse direction,
transition back to the steady state does not take place &tdpepoint; the control pa-
rameter value needs to be changed further, till the foldtq&@trogatz, 1994) to restore
the steady non-oscillating state of the system. Thus, &tein the system behavior is
a manifestation of subcritical Hopf bifurcation (Lieuwe02; Strogatz, 1994). This
region of hysteresis is called the subcritical zone or te&bie zone. This bistable zone
as we infer from the discussion alone, has two possiblesstatee steady state that ex-

ists when the zone is approached from a stable state anddiflatosy state that exists



when the zone is approached from an initially unstable stateny operating condi-
tion, within the bistable zone, it is possible to ‘triggeHetsystem from a stable state to
the corresponding oscillatory state, through the intréidnoof finite amplitude pertur-
bations. This phenomenon is known as triggering instgbilithe combustion instabil-
ity parlance (Wickeet al,, 1996; Blomshielcet al, 1997; Lieuwen, 2002). Triggering
instability is a concern because the subcritical regiorenafit occurs, is linearly stable
but nonlinearly unstable; i.e. small amplitudes of peratidns will not cause transition
but finite amplitudes might trigger instability. Hence, tassical stability analysis and
the linear flame transfer function cannot predict trigggiimstability. In recent inves-
tigations, Noirayet al. (2008); Boudyet al.(2011), have reported, both experimentally
and theoretically that using the nonlinear describing fiomg it is possible to predict
various nonlinear characteristics of thermoacousticesgstsuch as triggering instabil-
ity, mode switching and hysteresis. Previous studies télseathermoacoustic systems
often exhibit subcritical Hopf bifurcation (Lieuwen andrigeszuk, 2005; Wickeet al.,
1996; Moecket al,, 2008). Blomshielcet al. (1997)reported observation of triggering

instability during full scale tactical motor stability tss

In this study, we investigate the bistable region of a singoi@nar ducted premixed
flame. The flame location with respect to the duct is used akithication parameter.
We identify the bistable regions of the system for differeret-air mixture ratios. Self-
sustained oscillations are triggered in the system, witinbistable regions, through
resonant forcing of the system. The triggering of self-sn&d oscillations at different
flame locations and fuel-air mixture ratios is then discdsgeor a single equivalence
ratio, we find that the amplitude required for triggering epdndent on the value of
the control parameter - the flame location. The variatiorrigfyering amplitude with
respect to flame location is discussed. Finally, we disdusphenomena of triggering
instability within the framework of dynamical systems thed/Me observe that attrac-
tors other than the limit cycle oscillations exist in thethide zone. This has a bearing
on the overall dynamics of the system in this zone. Based®retults, we support the
conjecture that, an analogy could be drawn between triggenstability and bypass

transition in hydrodynamic flows.
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A.1 Experimental Setup

The bifurcation analysis is conducted on a premixed conoopess depicted in Fig. A.1.

A multipoint injection burner, similar to the configuratiased by Matsui (1981) for
flame transfer function measurements of premixed, lamiaardk, is employed in this
study. A similar burner configuration has also been usednticey Noiray et al.
(2008) and Boudyet al. (2011) for nonlinear flame transfer measurements. The pre-
mixed burner has seven conical LPG (Liquefied Petroleum @agremixed flames
(A) anchored on a8 mm thick copper block. The top view of the burner is given on
the top right of Fig. A.1. In preliminary experiments, it walsserved that the onset of
instability causes flame blowout. In order to facilitategstigation, a fine wire mesh is
used to stabilize the flames. The burner tube (B)ismm long with an inner diameter
of 14 mm and thickness ot.5 mm. The burner is connected to a decoupler (D) as
shown, which is in turn connected to a premixing chamber ¢ehhanced mixing of
the fuel and air. The burner is enclosed in a glass ducty®);nm long, closed at the
bottom. This glass duct acts as the combustion chambern®tite experiments, the
acoustic modes of the duct get coupled with the heat releasdluctuations leading to
self-excited oscillations. The volumetric fuel flow rat&) is maintained a4 ccm and

72 cem and the volumetric air flow ratéf) at3.7 [pm, measured using rotameters with
an accuracy oR%. The corresponding uncertainty in the equivalence ratsisnated

to be aroun®.8%. For the results on bifurcation analysis, reported in thests, two

cases, with the equivalence ratig,at0.50 and0.57, have been studied.

Three pressure microphones (model:103B02, PCB piezasanake), P1, P2 and
P3, flush mounted on the walls of the glass duct, as shown ilAFlg were installed to
monitor the unsteady pressure oscillations. The resydsrted here are based on pres-
sure time serie(t)) obtained from the microphone P1, which is mounted at aniigta
of 20 em from the top. A 16-bit analog to digital conversion card @43) was used
for data acquisition which has a resolution(®of5 mV taking the input voltage range
as+5V. The uncertainty in pressure microphone measurement 4sRa.1 Two sub-
woofers, driven by an amplifier connected to a function gatoey are installed outside
the duct, as shown in Fig. A.1, for generating acoustic $ggnd microphone (P4) is

mounted close to the sub-woofers to monitor the generaimastic signals. The inten-
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Figure A.1: Schematic of the setup, A-multiple flames, Bfepksed glass duct, C-
burner tube, D-decoupler, E-LPG-Air premixer, F-TraverBé&, P2, P3
& P4-pressure microphones. Two subwoofers , oriented wsvire duct
open end are mounted outside the duct for external exaitaiiop view of
the burner is given at the top right corner of the figure. Afhdnsions in
mm.

sity fluctuations {(¢)), which are proportional to the heat release rate osaltatin the
flame, were detected simultaneously with pressure osoifisiusing a photomultiplier
tube (model no. H5784, Hamamatsu make) equipped wi@H4 filter (bandwidth

10 nm, centered ati31.4 nm). The flame location was measured using a ruler with

least countl mm.

A.2 Results and Discussions

We focus here primarily on triggering instability and howetthreshold amplitude
changes with respect to the control parameter within thealblis region and the dy-
namics of triggered oscillations. It is possible to triggestabilities in a thermoacoustic
system by introducing a perturbation, in the bistable negrath a large enough pertur-
bation. The perturbation (or the initial condition) giverthe system governs the system
evolution. However, unfortunately, in experiments, itfieea quite difficult to introduce

well-determined and controlled initial conditions. Indipresent investigation, we force
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the system using sinusoidal acoustic forcing at the obdeireguency of self-excited
limit cycle oscillations at Hopf point of our systenfi & 563.4 Hz). This frequency is
close to the second harmonic of a quarter-wave tube withthecgyresponding to the

length of the glass duct used in the experiments.

In subcritical Hopf bifurcation, at the Hopf point, the sialquilibrium fixed point
attractor losses its stability and a new branch - an unstablecycle is born. This
branch is turned backwards and exists before the Hopf guant;e, the term subcritical
bifurcation (Strogatz, 1994). A saddle-node bifurcatiStrg¢gatz, 1994; Moon, 2004)
of the unstable limit cycle creates a stable limit cycle lstariThis branch can undergo
further bifurcations on changing the control parametedgadly, as reported in Chap-
ter 6. Beyond the Hopf point, all trajectories originatingan the fixed point attractor
spiral out and settle on the nearest attractor (Hilborn,020MHence, we have three

attractors in the subcritical zone, a fixed point, a limitley@nd an unstable limit cycle.

In order to identify the bistable region of the system, aifitglmap of the system
is first constructed. The volumetric air flow ratg,]) is fixed at3.7 ipm. Stability
of the system is then assessed for all flame location valuesyalumetric fuel flow
rates {/y) in the range6 ccm — 80 cem. This corresponds to a lean fuel-air mixture.
The range is chosen to maintain well-stabilized conicalpgll flames. The stability
diagram of the system is given in Fig. A.2. At each fuel-aixtie ratio, the flame
location is gradually varied for both increasing and desirgadirections with respect to
the open end of the duct. The system is identified as stabdéfifastained oscillations
in pressure and intensity measurements are absent. Onhigvehatnd, the presence of
such oscillations indicates instability. The dark greydggaregion in Fig. A.2 marks the
linearly unstable regions, where the system is unconditipmnstable. As this region
is approached from an initially stable state, oscillatianse spontaneously as the value
of the flame location crosses the boundary of this region. pidaet at which this jump
in the behavior of the system is observed is the linear stabibundary for the system
corresponding to the particular operating condition (tlo@Hpoint Strogatz, 1994). The
light-shaded region is linearly stable, but nonlinearlgtaible, as the system is unstable
if approached from an unstable state and stable is apprddicire a stable state. This

region, is known as the bistable region as two possible iquiin states exist - the
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Figure A.2: Stability diagram of the system for an air flonerit, = 3.7 LPM). Flame
locationz; measured from the open end of the duct. Shaded region is un-
stable irrespective of the state it is approached from. ddotégion corre-
sponds to the bistable or subcritical zone. Other flameilmtaare stable.
System remains stable beyond the range of flame locatioevalown in
the plot.

stable state with no oscillations and an oscillating staltéciv we call unstable. In
present study we conduct experimental analysis of thioregnd discuss the results

from a dynamical systems point of view.

It should be noted that the boundaries drawn are extremelsitse to changes
in the operating parameters, the magnitude of noise in teegyand any changes in
the system configuration. The aim of the present investigas to study the system
behavior in the bistable region. Establishing the sengjtof the stability boundaries
to noise and constructing a full stability diagram for alkpible fuel-air combinations

will be a topic of future investigations.

Experiments are performed first & = 64 ccn. At a flame location in the
bistable region) mm from the Hopf point, we introduce acoustic forcing to the-sys
tem (f = 563.4 Hz), using sub-woofers mounted outside as shown in Fig. A.1s Th
forcing excites a single acoustic duct mode and also the ffanface area oscillations.
The system evolution is reported in terms of reconstructease portraits (Abarbanel
et al,, 1993) from pressure (from microphone P1, Fig. A.1) andisity measurements.
A phase portrait is extremely helpful in understanding thelwion of the dynamical
system and the embedding theorem (Takens, 1981) enablés mo@nstruct the phase

portrait from data acquired experimentally. We will dissumiefly about phase space

137



reconstruction from time series data.

Since, the acoustic forcing is applied with frequency same af the duct acoustic
modes (the second harmonic), due to resonance, the presaptitude of oscillations
within the duct are observed to grow. After a predeterminaeibon of time, the forc-
ing is stopped and the system evolves on its own. The dynaofitse system then
depends on the control parameter value and the amplitudedy the oscillations by
the end of the forcing. If a threshold amplitude is crossdtiimprocess, self-sustained
oscillations are set up in the system, otherwise, resorramith is followed by a decay

in the amplitude of oscillations.

To understand subcritical Hopf bifurcation and transitioom stable equilibrium
state to oscillatory state within the subcritical zone, w# wtroduce concepts from
the dynamical systems theory. From the reconstructed pemee, Fig. A.3a, it is
seen that the reconstructed trajectories of the systemestt@m a steady equilibrium
state (fixed point), as marked in Fig. A.3, and spirals outatals the inner black loop
due to resonant amplification. The inner loop correspondbeocobtained threshold
amplitude of oscillations that system needs to cross inrdalget triggered. Forcing
is discontinued at the time corresponding to the time taketib trajectories to reach
the inner loop. The system evolves on this threshold looafehile before spiralling
out again towards the self-sustained limit cycle state otiter black loop in Figs. A.3a
& b. If forcing is ceased earlier, or if it is continued for anlger time, oscillations will
decay to the steady state or immediately grow exponentialiye self-sustained state.
The same behavior is seen in the phase portrait recongdrirota flame intensity time
series (Fig. A.3b).

In the case just discussed, the bistable region was foune tortited to5 mm
(Fig. A.2). This restricts the number of flame locations tbah be investigated for
triggering. To overcome this limitation, we perform expeents with a different set of
operating conditionsl(, = 3.7 Ipm, V; = 72 ccm). The bistable region for this set of
operating conditions is wider with respect to the paramspeice, allowing us to ob-
serve the differences in triggering amplitudes at diffefeame locations. In addition,
self-sustained instabilities that emerge in the systerheatopf point are period-2 os-

cillations instead of limit cycle oscillations. The timerjmal of oscillation, for the case
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Figure A.3: Triggering to limit cycle oscillations. Figwe, a.i and a.ii correspond to
phase portrait, power spectra after forcing is stopped ameépspectra for
self-sustained oscillations from pressure time seriggures b, b.i and b.ii
similarly are obtained from flame intensit€id*) time series.

Table A.1: Threshold amplitudes for triggering as given ig.FA.5. The threshold
amplitude is stated as the percentage of self-sustaindthtiea amplitude.

Image Flame Locationiy) Threshold amplitude (%)

a 10.4cm 46.0
b 11.4cm 30.8
c 11.9¢cm 25.6
d 12.1ecm 12.1

of a period-2 oscillation is doubled when compared to lingitle oscillations (hence,

the name period-2). The Fourier spectrum, correspondimgiytains a subharmonic

frequency and in the phase space representation, thetattvalt be a doubled looped

structure. This period-2 oscillation is a result of a peritmlibling bifurcation that must

have occurred in the parameter space prior to the Hopf pé&iatther analysis of the

bistable region is required to illustrate the system dymamiithin this region.

Similar experiments as discussed above are conducted ibigtable region for

Vi = 72 cem at four different flame locations in the bistable region. Theeshold

amplitudes are obtained for each flame location along wighatimplitude of triggered
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Figure A.4: Bistable region fov, = 3.7 [pm andV; = 72 ccm. Filled circles indicate
the amplitude of self-sustained oscillations. Double ddscate period-2
oscillations. Empty circle represent threshold amplisuduired for trig-
gering. Filled rectangle marks the hopf point. Hand drawmvesi connect

the experimentally obtained point. Arrows indicate jumpha system be-
havior.
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Figure A.5: Pressure time series for triggering instapilia. resonant forcing at differ-
ent flame locations (Refer Table A.1). Shaded regions qoores to the
duration of forcing.
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oscillations. This information when plotted gives us Figd AAs the control parameter
(the flame location) is varied, self-sustained oscillagispontaneously arise at the point
marked by a filled rectangular marker;,, = 13.6 cm, the Hopf point, from a set of 20
readings, the standard deviation in the Hopf point locatias found to bé).46 mm.

In the reverse direction, system jumps to steady non-asuilf state at flame location,
xry = xs,. This flame location is the point where the saddle-node taftion of the
unstable limit cycle branch must have occurred. These twatgmark the extremities
of the bistable region. The arrows indicate a jump in theesysbehavior. Empty
circles in the figure denote the threshold amplitudes obthat different flame locations
and filled circles represent the amplitude of triggered-sed#itained oscillations, the
two filled circles for each flame location represents thellotaxima of the measured

pressure time series.

Table A.1 gives the threshold amplitudes as a percentageedfiggered oscilla-
tions. In Fig. A.4, hand drawn curves have been drawn comtetite experimentally
obtained points to get an idea of the trend followed by trigggeamplitude using reso-
nant forcing. Since, the triggering amplitude cannot beginted exactly, a band has
been drawn instead of a sharp line. Furthermore, the triggemplitude inherently

depends on the type of forcing or disturbance given to theesy$§Wwickeret al., 1996).

Time traces from pressure microphone P1 ( see Fig. A.1) sporaling to trigger-
ing at the four flame locations is given in Fig. A.5a-d. Theygshaded region in the
figure corresponds to the time duration for which sinusordabnant forcing is pro-
vided. The amplitude of pressure oscillations remains teoidor a few cycles and
grows exponentially towards period-2 oscillations. Retnrcted phase portraits and
power spectra corresponding to Fig. A.5c are given in Fig. Ahe period-2 nature of
triggered oscillations is evident from the power spectraressure and intensity time
series (Fig. A.7a.ii & b.ii) which contains the dominantfteency/f and its subharmonic
f/2. In the phase portraits (Fig. A.7a & b) three outer loops aens This is because
the system first goes to limit cycle oscillations (singlegpb@and immediately transi-
tions to period-2 oscillations (refer Fig. A.6). The fregag component of the signal in

Fig. A.7a.i & b.i again indicates that system dynamics fillsrexthan two dimensions.

The dynamical properties of a nonlinear system and chamgéggidynamics as a
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Figure A.6: Detailed analysis of time series showed in FidghcA Oscillations first get
triggered to a limit cycle state and then immediately goesyeriod-2 state.
a, b represent the time series and phase portrait of thedyulé state and
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result of bifurcations can be studied in a vector space fdrbnethe state variables of
the system (Moon, 2004) - the phase space. A systemmitbgrees of freedom can
be represented in ardimensional phase space constructed by the state variablee
phase space is filled by trajectories that denote the ewvolofithe system starting from
a point in the phase space - the initial condition in termdatiesvariables. Every point
in the phase space is a possible initial condition. Embedldehis phase space are
sets of points called attractors. Trajectories are atthtdwards these attractors and
eventually evolve on them, once transients have died. Hénere exists a set of points
in the phase space such that trajectories originating fleoed points settle on one of
the attractors present in the phase space. This set fornfmsie of attraction for that
particular attractor (Moon, 2004). Figure A.8 illustratee concept of attractors and
their basin of attraction in a 3-dimensional phase spa@ante seen that the evolution
depends on the direction in which disturbance has been givdthe amplitude. If the
given disturbance is such that the system has entered thetyiof the dark region
of the Fig. A.8, then the system eventually will settle to #igactor A2 and if the
disturbance is such that instead of falling in the dark regidalls in the grey region
then it eventually settles to the attractor A1L. In a real @ystthere could be other
attractors embedded in the phase space. The dark patch kigth&.8 is the basin of
attraction of the attractor A2 and the grey is the basin oation for A1. The boundary
which separates the basins of attraction is called basindary. The Fig. A.4 is the
obtained result of the present study which explains thatttseexistence of more than

two attractors in the subcritical zone.

Phase space representation of results as discussed ired¢limnsreveals the inter-
esting dynamics in the bistable region. The extent of thiables region is highly depen-
dent on the system and the operating conditions. Additiprtale stability boundaries
are strongly affected by the presence of noise and otheurbestces in the system.
Having said that, it is still possible to study the generalgarties of the bistable region
in thermoacoustic systems. For the model thermoacoustip skscussed here, we ob-
serve that for two different operating equivalence ratibs,self-excited oscillations at
the Hopf point exhibit two different dynamics - limit cycle@ period-2 oscillations.
The limit cycle is a result of a subcritical Hopf bifurcatiand the period-2 oscillation

results from a standard period doubling bifurcation (Hitlga2000; Strogatz, 1994).
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Figure A.8: A sketch of basin of attraction in phase space,aftl A2 are differ-
ent attractors, they are surrounded by their own basin ohciibn, the
line bounding the each basin of attraction is called separadapted
from Hilborn (2000)

For the same system as discussed here, it is possible theydteam undergoes further
bifurcations to chaotic oscillations as reported in Chafteln practical systems with
a higher degrees of freedom and several control paramétessexpected that such

behavior will be more significant and complex.

Another approach of looking at the results is through tha mfdasins of attraction.
The phase space of the dynamical system as explained ab®vedians which attract
the system dynamics - the attractors, each having its owin b&attraction and a basin
boundary. For the results reported here, the system hasstasattraction belonging to
three stable attractors namely, the fixed point, limit cydeillation and period-2 oscil-
lation. Depending on the operating conditions and ampditafcbscillations present, the
system goes to one of the attractors. Again, larger and noon@lex systems can be ex-
pected to have a more complicated phase space structugehd$direct bearing to the
implementation of control approaches and the safe operatinge of thermoacoustic

systems.

Although the structure of the phase space is responsiblié&asymptotic states
assumed by the system, the transition scenario from a fixed fwoanother attractor,
within the bistable region, is observed to be same for thedifferent cases seen here.
On introduction of the acoustic forcing, the oscillation@itude grows and depending

on the amplitude level at the time forcing is ceased, systees ¢o a self-excited state
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or back to the fixed point state. A special case occurs wheartt@itude is just at the
threshold level. The oscillations then continue at the samplitude level for a certain
time, before growing towards one of the stable attractamst(tycle or period-2, in the

cases presented here).

An analogy could be drawn between the observations in thairgdd results and
the scenario of bypass transition to turbulence observiegdrodynamic flows (Drazin,
1992). For hydrodynamic flows, the basins of attraction ef¢haotic attractor, corre-
sponding to turbulence and the fixed point attractor, cpoeding to the laminar state
are separated by a basin boundary. Similarly, the osailldimit cycle state and the
fixed point steady state are separated here by an unstaltleyitte. The unstable limit
cycle lies on the surface of the basin boundary and is likgoarsdrix which separates
the two basins of attraction (Duguettal,, 2008). If initial perturbations take the system
across the basin boundary, into the basin of attractioneftthble limit cycle oscilla-
tions, system evolves to the self-sustained oscillata@testf the initial condition falls
within the basin of attraction of the stable fixed point statgcillations decay to zero.
A similar explanation has been given by Juniper (2010) ferabcurrence of triggering
instability in thermoacoustic systems. In the subcritreglion, thermoacoustic systems
have two competing attractors - the fixed point and the sedfasned oscillatory state,
separated by afy — 1- dimensional basin boundary surface, wharés the number of

degrees of freedom of the system.

The characteristics of the disturbance introduced to tiseegy within the bistable
region determines the threshold amplitudes required iggéring in addition to decid-
ing the attractor that attracts the system dynamics. Thisascordance with the above
discussion on the basin of attraction. Wickerl. (1996) had discussed their numerical
analysis on triggering instability in rocket motors withiegar conclusion. This inher-
ent property of dependence on the type of disturbance caulbstbause of the complex
structure of the basin boundary. If the basin boundary is@etsurface enclosing a
finite region in the phase space created out of state vasiald containing the fixed
point attractor, the direction and magnitude of the init@hdition vector will determine
if the system is taken out of the basin boundary of the fixestpddepending on the

structure of the basin boundary, certain directions mighirtore favourable (in terms
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of amplitude required for transition) and hence, a lower nitagle of perturbation will

be required when compared to initial conditions in otheeclions.

In this study, the system is forced using a single frequemoustic excitation.
Equivalently, the phase space representation (Fig. A.Fand\.7) shows the evolution
to be localised on a plane (a dimensionality of two). Throagheral experiments we
have determined the amplitude which is just enough for tistesy to evolve to self-
sustained oscillations - either a limit cycle or a periodszilbation. The frequency
of forcing was chosen as the second harmonic of the duct singas found to be
most effective in establishing interaction between flamallasions and acoustics of
the duct. The point where forcing is ceased is the initialditon from where the
system evolves on its own. Before getting attracted towHreldimit cycle or period-
2 oscillation, oscillations stay at a constant amplitude dacertain interval of time
(oscillations at the threshold or the inner loops in Fig. A& b and Fig. A.7 a &
b). The superharmonics observed in the power spectrum \Hgleoscillation is at
the threshold amplitude indicate that the dimensionalithe system during that time
interval is higher than two. This state corresponds to ataltesattractor towards which
the system is initially attracted before going towards alstattractor. Additionally, the
fact that this unstable attractor has a dimension highertiva indicates that the basin

boundary is a structure more complicated than a simple loop.

A.3 Conclusions

In the present study, experimental investigation of théabig region in a simple lam-
inar ducted premixed flames, with respect to the flame logdies been conducted.
Resonant acoustic forcing is used to drive oscillationhiendystem. The evolution of
the system after the external forcing is discontinued isnmeed in terms of pressure
and heat release rate through flame intensity time series datthe bistable region
for our system, it was observed that instability could bggered in the system, which
is linearly stable, if oscillations are forced beyond certdareshold amplitude. Two
cases with different equivalence ratios were chosen foemxents. In the first case,

we found that limit cycle oscillations emerged in the sysisrthe control parameter
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crossed the Hopf point. The triggered oscillations alsocewignit cycles oscillations.
Whereas, in the second case, the self-sustained oscikatibthe Hopf point and the
triggered oscillations in the bistable region were per2odscillations. The threshold
amplitudes for triggering thermoacoustic oscillationa vsonant acoustic forcing is
determined for the latter case for different flame locatiang a bifurcation plot for the

bistable region is constructed.

This study, if seen from a dynamical systems perspectivehgs into the sub-
critical zone through a specific section in the phase planetis determined by the
sinusoidal acoustic forcing provided. This forcing takes $ystem towards the unsta-
ble limit cycle which lies on the basin boundary between tkedipoint attractor and
the stable limit cycle attractor. From the phase space amgipspectrum, it is clear
that the phase space trajectories evolve on a surface whidbsely, but not exactly
aligned with the unstable limit cycle loop. In the bistaldgion as the flame location
is changed, the extent of the unstable limit cycle loop ckang he shape and extent
of the corresponding basin boundary is also expected togehas the flame location is
varied. The basin boundary could be a complex structuretheutinstable limit cycle
is a loop on that basin boundary. Investigation in the bistedgion by using different
shapes of perturbations will help to explore the overaligture of the basin bound-
ary. These observations of the bistable zone could aid imawpg currently available

techniques for prediction of thermoacoustic instabsitie
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APPENDIX B

Algorithms

Algorithm B.0.1: AVERAGE MUTUAL INFORMATION(T)

comment: Calculating the average mutual information, for a giveretidelay

Input time series (T1)

Specify time-lagy

Create time-lagged time series (T2), using T1 and

Divide the amplitude range of T1 (or T2) into N bins

L =length(T1) = length(T2)

Initialize: AMI =0

fori < 1to N

(for j<1toN

'A = (Count#[All x in T1 such that xe (:** bin)])
B = (Count#[All'y in T2 such that ye (5** bin)])
AB = (Count#[All xin T1, y in T2 such that x¢ (:*" bin) AND

do g y € (% bin) simultaneously])
0
Pa=A/(L—7)
Pb= B/(L—7)

Pab= AB/(L — 1)
AMI = AMI + Pab x log,(Pab/(Pa x Pb))




Algorithm B.0.2: FALSE NEARESTNEIGHBORS(d, 7)

comment: Calculating percentage of false nearest neighbors

Input time series (T)

Specify time-delayr

Specify dimension to be evaluatet,

D = points ind-dimensional reconstructed phase space
D1 = points in @+1)-dimensional reconstructed phase space
L = length(D)

© = threshold to identify false neighbdrs

Initialize: FNN =0

fori<« 1to L

(XD(i) = Current pointin D

Yp(i) = Nearest neighbor t& (i) in D

Ap(i) = [|Xp(2) — Yp(i)]|

Xp.1(i) = Xp(i) in D1

Ypy1(i) = Yp(i) in D1

Api1(i) = [|Xp41(1) = Ypia(i)]]

A =[Ap(i) = Apya(i)]

if A>06

do

(Xp(i),Yp(i)) is a false nearest neighbor pair
FNN =FNN +1

then

\

Calculate the percentage of false nearest neighbors

The dimensiond at which the percentage of false nearest neighbors goesth® i

optimum dimension for phase space reconstruction.

1 Recommendations for optimum thresholds can be found in@&eghd Balachandran

(2004); Moon (2004).
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Algorithm B.0.3: CORRELATION DIMENSION(d, 7)
comment: Calculating the correlation dimension of a reconstructaaetor

Input time series (T)

Specify time-delayr

D = points ind-dimensional reconstructed phase space

L = length(D)

Roin, Rmae: = Minimum and maximum radiug) to check for a scaling in the
correlation integral C

Initialize: C'(r) =0

forn<«1to L

(for 7 4 Ryin 10 Ryax

(X(n) = Current pointin D
do do X;(n) = Other points in D
N(n,r)=H(r —|X(n) — X;(n)|), H here is the Heaviside function
\ | C(r) =C(r)+ N(n,r)

C(r)=C(r)/L?

Within the scaling region((r) « ¥, wherev gives the correlation dimension.
Scaling between the correlation integral andill exist for a smallr, compared to the

attractor size.

T Rnin and R, Will depend on the size of the recontructed attractor.
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Algorithm B.0.4: MAXIMAL LYAPUNOV EXPONENT(d, 7)
comment: Calculating the maximal Lyapunov exponent in a reconsg¢aiettractor

Input time series (T)

Specify time-delayr

Define a neighborhood size,

ANpnin, An,,.. = range of time-steps to be considered for evaluating S
D = points ind-dimensional reconstructed phase space

L = length(D)

Initialize: S(An) =0

fori<« 1to L

(for An < Angin 10 Anpin

(XHM = Current point in D shifted in time b}An

do XZ?'JFM = Points withine neighborhood ofX;, shifted byAn

do .
D(Zu An) = E ‘XZ'JrAn - XZ‘JJrAn‘
J

- \D(z’, An) = D(i,An)/e
S(An) = — ZlnD(i,An)

For a chaotic systeny(An) will vary linearly with An in a certain intermidiate
range ofAn values. The slope of this linear curve gives the maximal Lyey expo-
nent.

1 Size of the neighborhood, should be chosen with consideration to several factors

such as the amount of noise in the data and the total numbeirtsgonsidered. For a

detailed discussion, see Kantz (1994)
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