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ABSTRACT

KEYWORDS: combustion instability; premixed flame; flame blowout; Ruelle-

Takens route to chaos; frequency locking route to chaos; intermit-

tency; nonlinear time series analysis; recurrence analysis; nonlin-

ear coupled oscillator.

Confined combustion is known to result in spontaneously excited, self-sustained pres-

sure oscillations, due to the establishment of a positive feedback between unsteady heat

release rate and the acoustic field of the combustor. Technically referred to as thermoa-

coustic instability, the occurrence of such oscillations in practical combustion systems

such as gas turbines, industrial burners etc., is a major engineering problem. In par-

ticular, the fact that low emission systems running on lean equivalence ratio are more

susceptible to this instability makes it is a hindrance to advances in cleaner combustion

technology.

In this thesis, nonlinear thermoacoustic oscillations have been investigated from the

point of view of the dynamical systems theory. The focus of this work is based on the

study of nonlinear transitions in a simple thermoacoustic system through an experimen-

tal bifurcation analysis. Self-excited thermoacoustic oscillations are investigated using

nonlinear time series analysis. Results indicate that the dynamics of thermoacoustic os-

cillations are not limited to limit cycle oscillations. Thelimit cycle state obtained at the

onset of the instability undergoes further bifurcations leading to a variety of complex

nonlinear states. Bifurcation scenarios in two laboratoryflame configurations, a single

conical laminar flame and a multiple laminar flame configuration, confined within a

duct, have been investigated.

In the case of a single flame, a ducted laminar premixed conical flame stabilized on

a fully developed circular jet flow was studied. The relativeflame location with respect

to the duct was considered as the bifurcation parameter. According to the bifurcation
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analysis, nonlinear transitions undergone by thermoacoustic oscillations follow an in-

termittency route to flame blowout. The primary bifurcationto limit cycle oscillations

from a non-oscillatory state was observed to occur via a subcritical Hopf bifurcation.

The limit cycle oscillations underwent a further bifurcation to quasi-periodic oscilla-

tions characterized by strong flame modulations featuring nonlinear effects such as lift-

off, cusping, flame elongation and subsequent pinch-off. The quasi-periodic state loses

stability, resulting in an intermittent state identified astype-II through recurrence analy-

sis of phase space trajectories reconstructed from the timetrace of acoustic pressure. At

this state, the flame undergoes repeated lift-off and reattachment. Instantaneous flame

images suggest that the intermittent flame behavior is influenced by jet flow dynamics.

These experiments suggest a link between the phenomena of thermoacoustic instability

and flame blowout. Intermittency occurs as a precursor to thermoacoustically induced

flame blowout.

The investigation was extended to the bifurcation analysisof a ducted multiple in-

jection burner. By implementing advanced nonlinear time series analysis on exper-

imentally obtained pressure and intensity (CH* chemiluminescence) time series, the

dynamics of the obtained oscillatory states was characterized. By changing a control

parameter, the location of the source of combustion, it was observed that the transition

to self-excited, limit cycle oscillations is shown to occurvia the subcritical Hopf bi-

furcation. Following this transition, the system enters a chaotic state through either a

quasi-periodic route (the Ruelle-Takens scenario) or via frequency-locking. These two

routes to chaos obtained in the investigated thermoacoustic system have also been re-

ported in several other nonlinear systems. The route followed by the system depends

on the operating parameter, particularly the equivalence ratio. In this thesis, cases cor-

responding two different operating condition have been presented to illustrate the two

routes to chaos. The highly nonlinear interaction between the flames and the acoustic

modes of the duct is clearly reflected in the high speed flame images acquired simulta-

neously with acoustic pressure oscillations.

With the aim of replicating the experimental results, a nonlinear model consisting of

two coupled oscillators with time delay is formulated. The essential aspect, the Ruelle-

Takens route to chaos observed in experiments, was capturedquite well by this model.
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CHAPTER 1

INTRODUCTION

The term thermoacoustic instability refers to self-sustained oscillations in pressure and

heat release rate. Such instability arises in systems involving confined combustion,

when the acoustic driving due to interaction between acoustic modes of the confine-

ment and unsteady heat release rate exceeds the acoustic losses in the system (Rayleigh,

1878). The acoustic field in a medium is the spatially and temporally alternating com-

pression and rarefaction manifested as oscillations in local thermodynamic variables

(pressure, density, temperature) and velocity oscillations. The fluctuations of unsteady

heat release rate can constructively interact with the acoustic field of the confinement

and lead to the onset of thermoacoustic oscillations. Illustrating with an example, an

electrically heated mesh when placed in a hollow duct would produce audible sound

as a result of the development of thermoacoustic instability. This is the Rijke tube,

which often serves as a prototypical model for investigations of thermoacoustic insta-

bility. Industrial gas-turbines, rocket motors, furnacesand boilers and other systems

involving confined combustion often face the risk of detrimental high amplitude pres-

sure oscillations that appear due to the development of thermoacoustic instability within

the system (Zinn and Lieuwen, 2005; McManuset al., 1993). Hence, the subject of

thermoacoustic instability is currently of a major importance.

The main problem associated with thermoacoustic instabilities is the high ampli-

tude pressure pulsation that is detrimental to the combustion system. The self-sustained

oscillations can induce structural vibrations within the combustor and other structural

components of the system in general, leading to reduced lifespan of the combustion

system, reduced efficiency and even complete system failureas in the case of rocket

engines (Zinn and Lieuwen, 2005). Figure 1.1 shows parts of agas-turbine combustor

damaged due to such pressure pulsations. Another issue, notless concerning, is that the

instability stands as an obstacle to the development of new generation, low emission

combustion systems such as gas turbine engines, engines foraero and power genera-

tion. A shift towards cleaner system is currently the subject of a worldwide campaign



Figure 1.1: Pictures of damaged structural components of a gas turbine illustrating the
consequences of high amplitude thermoacoustic oscillations. Figures are
reproduced with permission from Preetham (2007).

to prevent serious damage to the environment. In combustionsystems, one strategy to

achieve lower emissions, particularly NOx emissions, is tooperate at lean equivalence

ratios. Doing so primarily lowers the flame temperature, thus lowering NOx emissions.

However, lean combustion causes the system to become more susceptible to thermoa-

coustic instabilities. In order to achieve high efficiency with low emissions, active and

passive control techniques are employed to disrupt the thermoacoustic coupling. How-

ever, the efficacy of the available control strategies is still limited and hence, research

efforts to investigate the dynamics of thermoacoustic oscillations continue.

On a historical note, the issue of oscillating flames occurring simultaneously with

audible sound was noticed in applications that involved combustion within confine-

ments such as tubes or vessels more than two centuries ago. In1777, Higgins (as

reported by Plavnik, 2006) observed the phenomenon of soundgenerated due to con-

fined combustion while working with slow hydrogen stream combustion in a vessel.

The unexpected generation of sound was interesting and caught the attention of more

investigators. In 1857, Tyndall (1857) published his report on the process of sound

generation within tubes of different lengths enclosing hydrogen flames of varying sizes.

He confirmed that the sound generated corresponded to the fundamental note and the

octaves of the enclosing ducts. Additionally, he reported the effect of externally intro-

duced sound on the flame: ‘As the sounds of the flame and siren approached perfect

unison, the flame shook, jumping up and down within the tube’. A report by Le Conte

(1858) included the observation of flames responding to music played by instrumental-
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ists in a party hall. These reports incited further detailedinvestigations on the source of

flame oscillations and the associated sound generation. Themost notable work among

early investigations is by Rayleigh (1878). He put forth a scientific reasoning for the

phenomenon of thermoacoustic instability which is now referred to as the Rayleigh

criterion, which forms the basis of investigations even now. However, Rayleigh crite-

ria, gives only the condition necessary for the occurrence of thermoacoustic instability

and cannot be used in the original form for prediction. Further, it does not reveal the

mechanisms that result in the unsteady heat release rate.

1.1 Rayleigh Criteria

A sound explanation for the occurrence of thermoacoustic instability was first presented

by Rayleigh (1878). The explanation was later formulated mathematically by Putnam

(1971) and is now popularly referred to as the Rayleigh criterion. The criterion states

that during the occurrence of thermoacoustic instability,unsteady heat release rate and

acoustic pressure oscillations are in phase. When in phase,the interaction between

the two contributes to the acoustic energy within the systemor in other words, acts as

acoustic driving. A simple mathematical representation ofthe criterion is as follows

∫

V

∫ T

0

p′( ~xf , t) q
′( ~xf , t) dt >

∫

V

∫ T

0

∑

i

Ei( ~xf , t)dtdV (1.1)

The equation gives a necessary condition for thermoacoustic instability, in terms of

acoustic driving and damping. Here,V is the volume of the system over which the

integration is performed,T is the time period of one oscillation.p′( ~xf , t) is the pressure

fluctuation at the flame locationxf , at time t. q′( ~xf , t) is the unsteady heat release

rate at timet at flame location,xf . Ei( ~xf , t) represents acoustic energy losses due to

different mechanisms such as viscous dissipation and loss of acoustic energy at system

boundaries. The correlation betweenp′( ~xf , t) andq′( ~xf , t) given on the left hand side

of Eqn. (1.1) is the acoustic driving due to flame-acoustic coupling. When acoustic

driving due to this correlation is greater than acoustic losses in the system, oscillations

in the system grow leading to thermoacoustic instability.

3



These basic feedback mechanisms that lead to thermoacoustic instability incorpo-

rates complexities that are yet to be completely understood. Among the physical pro-

cesses involved with thermoacoustic oscillations, acoustic wave propagation is fairly

well-understood. However, evaluating the interaction of unsteady heat release rate with

acoustic field is quite complex. In thermoacoustic systems,the mentioned coupling is

often affected significantly by additional factors such as hydrodynamics. The unsteady

heat release rate is also a strong function of the amplitude and frequency of acoustic

oscillations. In the simplest thermoacoustic system, the Rijke tube, local heat release

rate from the surface of individual wires is governed by convective heat transfer to the

mean flow. This process is coupled to the dynamics of the hydrodynamic zone that

envelopes the wire mesh. The onset of thermoacoustic instability causes fluctuations

in the mean flow velocity, which in turn affects the heat transfer. Thus, we can see

that the physics of thermoacoustic instability in a Rijke tube is dependent not only on

the coupling between acoustic pressure oscillation and unsteady heat release rate but

also on the hydrodynamics in the near field of the wire mesh (Mariappan and Sujith,

2011). In practical systems, the source of heat release is often turbulent flame stabilized

over a complex flow field. The phenomenon of thermoacoustic instability within such

systems is a result of an interplay between several physicalprocesses and therefore,

requires a more detailed treatment. Additionally, evaluating the acoustic energy losses

term on the right hand side of Eqn. (1.1) is difficult and quiteoften simplified models

or approximations are employed.

Adding to the complexities described in the previous paragraph, is the inherent non-

linear nature of thermoacoustic instability. The exponential growth of thermoacoustic

oscillations is arrested by nonlinear mechanisms in the system. The asymptotic state of

the instability is then governed by the nonlinear dynamics of the thermoacoustic sys-

tem. Such considerations inspire investigations on thermoacoustic instability beyond

the Rayleigh criterion, and form the subject of many currentinvestigations.

Figure 1.2 is a schematic sketch to explain the existence of positive feedback mech-

anism between the acoustic field in the combustor and the unsteady heat release rate.

The two sketches at the bottom demonstrate the standing waves that will be established

in the combustor chamber, depending on the boundary condition, if the acoustic energy
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Figure 1.2: The above figure is a schematic representation ofthermoacoustic system.
It demonstrates how flame-acoustic coupling lead to self-sustained oscil-
lation. The two plots in the bottom row represent the acoustic modes of
the system for open-open and closed-open boundaries respectively. In the
case of closed boundaryp′ is maximum whereas velocity fluctuationu′ is
minimum. For open boundary conditionp′ is minimum and velocity fluctu-
ationu′ is maximum.

generated by the combustion-acoustic interaction is greater than the amount of acoustic

energy losses in the system. The acoustic field of the combustion chamber causes mod-

ulation in the flame shape, Fig. 1.3 shows the image of steady flame (a) and wrinkled

flame (b and c). This flame area modulation modifies the unsteady heat release rate

which further modifies the acoustic energy of the system.Thephysical insight gained

from the rationale suggested by Rayleigh (1878) is that for instability to occur, a feed-

back interaction between unsteady heat release rate and acoustic pressure oscillations is

a necessary. There are several mechanisms that cause unsteady heat release rate in com-

bustors, for instance, flame surface area modulations, effect of coherent structures in the

flow, inherent flame instabilities, flame kinematics including stretch/strain effects and

chemical kinetics. In laminar premixed-flame systems, the effect of acoustic field on

flame stabilization plays a dominant role (Schulleret al., 2003; Ducruixet al., 2005). In

industrial combustion systems such as in dump combustors orin swirl combustors, the

effect of coherent hydrodynamic structures associated with vortex shedding (Schadow

and Gutmark, 1992) or vortex breakdown (Paschereit and Polifke, 1998) becomes dom-

inant. Apart from these, factors such as fluctuations in local equivalence ratio or flow

rate (Zinn and Lieuwen, 2005) or swirl number fluctuations (Almelaet al., 2010; Palies

et al., 2011) also play an important role.

The critical parameters that determine if a system is susceptible to instabilities are

the time scales associated with the mechanisms generating unsteady heat release: con-
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Figure 1.3: Instantaneous images of a laminar conical flame are shown here. The im-
ages illustrate flame wrinkling during the occurrence of thermoacoustic in-
stability. Image a is a steady flame image acquired in the absence of flame-
acoustic interaction. Images b and c show oscillatory flame behavior, ac-
quired during self-sustained oscillations in the system.

vective time scales of the flame surface area fluctuations, vortex shedding frequency

and convection time for equivalence ratio fluctuations. If these time scales match with

the time scale of acoustic modes of the combustor, instability appears in the system.

An in-phase relationship between unsteady heat release rate and pressure oscillations

then ensures that energy from combustion is transferred to acoustic energy resulting in

self-sustained oscillations.

Flame surface area modulation forms the dominant source of unsteady heat release

rate in gas turbine combustors, particularly systems running on premixed combustion.

Further, flame surface area fluctuations are a result of different mechanisms, each of

which can play a governing role in the occurrence of thermoacoustic instability, de-

pending on the system under consideration. Listed below arephysical mechanisms that

directly or indirectly (via flame surface area modulation) cause unsteady heat release

rate oscillations in premixed flame systems.
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1.2 Sources of Unsteady Heat Release Rate in Premixed

Systems

1.2.1 Acoustic Disturbances

An illustration of the effect of acoustic oscillations on a laminar premixed conical flame

is shown in Fig. 1.4. Acoustic oscillations result in disturbances in the flame that orig-

inate at the flame base. These disturbances are then convected along the flame leading

to flame surface wrinkling (Candel, 2002). As a result, the effective surface area of the

flame is modulated as seen in Fig. 1.4. In premixed flames, heatrelease rate fluctua-

tions (q′) due to combustion is proportional to oscillations in the total surface area of the

flame (Σ′) i.e. q′ ∝ Σ′. During self-excited instability, unsteady heat release rate via this

mechanism is coupled to acoustic modes of the system. Flame-acoustic coupling based

on flame surface area modulations has been extensively investigated previously (Candel,

2002; Lieuwen, 2003; Karimiet al., 2009), particularly through flame transfer function

studies. These studies are discussed in more detail in Chapter 2.

Figure 1.4: Flame wrinkling caused by acoustic oscillations (II). In the case of self-
excited instability in a confined flame system, downstream acoustics (A)
cause modulations of the flame surface. Flame wrinkling can also be caused
by upstream acoustics (B) when coupling is established between the flame
and burner tube acoustics or in the presence of upstream forcing.
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Figure 1.5: In a typical combustion chamber, acoustic perturbations move upstream of
the burner into the gas and air supply lines and lead to oscillations primarily
in the air supplied to the burner. This results in an oscillating fuel-air equiv-
alence ratio within the flame. Equivalence ratios fluctuations leads to heat
release rate fluctuations from the flame which could couple with combustor
acoustics causing thermoacoustic oscillations.

1.2.2 Equivalence Ratio Fluctuations

Equivalence ratio fluctuations actively contribute towards thermoacoustic instability in

combustion systems running on partially premixed gaseous mixtures, in systems where

the air or fuel supply lines are susceptible to downstream pressure fluctuations. As

seen in the schematic in Fig. 1.5, acoustic fluctuations propagate upstream of the burner

and cause oscillations in the fuel/air supply, thus generating inhomogeneities in the

fuel-air mixture. These inhomogeneities in the fuel-air mixture are convected till the

flame by the mean flow; at the flame they cause heat release rate oscillations (Ducruix

et al., 2005). Lieuwenet al. (1998, 2001) have shown that lean premixed combustion is

highly sensitive to equivalence ratio fluctuations. Additionally, they have shown that the

convection time scale associated with the convection of equivalence ratio fluctuations

from the fuel inlet till the flame is one of the parameters governing thermoacoustic

instability. This was further confirmed by Richards and Janus (1998) who reported

shifts in stability characteristics with variation in the length of the fuel nozzle. They

also successfully demonstrated that effect of equivalenceratio fluctuations is strong

enough to be used for controlling oscillations (Richardset al., 1999).

Fluctuations in the equivalence ratio cause unsteady heat release rate directly via
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Figure 1.6: A schematic representation of periodic vortex shedding in dump combustor.
Often this periodic shedding couples to system acoustics causing generation
of thermoacoustic oscillations in the system.

fluctuations in the local flame speed and heat of reaction. Oscillations in the local

flame speed in turn lead to flame surface area oscillations, thus causing unsteady heat

release rate indirectly, in addition to its direct influence. Cho (2005) presented a detailed

discussion on the role of the mentioned mechanisms in the flame response of laminar

flames to equivalence ratio oscillations. Their analysis indicated that flame response

depends critically on the Strouhal number.

1.2.3 Coherent Structures in the Flow

Flame stabilization in most engineering flows is based on shear layer formation, for

instance in dump combustors and combustion systems based onbluff-body stabilized

or swirl-stabilized flames. Shear layers are associated with the development of Kelvin-

Helmholtz instability that grow into coherent flow structures. Periodic vortex shedding

in such systems is primarily responsible for oscillatory heat release rate. Figure 1.6 il-

lustrates the phenomenon of vortex shedding in a dump combustor. Such vortex shed-

ding was clearly observed through schlieren visualizationduring combustion instability

in a dump combustor by Schadow and Gutmark (1992). Venkataraman (2000) showed

that this flame-vortex interaction is the dominant mechanism for combustion instability

in lean premixed dump combustors. During the occurrence of instability, a feedback

loop is formed where the vortex shedding frequency matches with the frequency of

acoustic oscillations in the system. Helical instabilities in swirl flows have also been

identified to participate in thermoacoustic instability byPaschereitet al. (1998).

On the basis of these known mechanisms, both linear and nonlinear approaches have

been developed for explaining the occurrence and characteristics of thermoacoustic os-

cillations. Linear analysis is based on the description of combustion-acoustic interac-
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tions in the limit of small amplitude perturbations. The applicability of such methods

is limited to simple systems and its prediction capabilities are limited to only the basic

features of the instability. This is primarily due to the strong inherent nonlinear nature

of thermoacoustic instability.

1.3 Nonlinear Aspect: An Outstanding Issue

It has been shown before in a number of investigations (Peracchio and Proscia, 1999;

Dowling, 1999) that the nonlinear response of flame to acoustics oscillations is the rea-

son for the nonlinear behavior of thermoacoustic instability. These studies concentrate

on measuring the nonlinear flame describing functions that characterize the forced non-

linear response of flame to acoustic perturbations. Such approaches have been success-

ful in predicting several nonlinear features of thermoacoustic instability such as limit

cycle and triggering (Noirayet al., 2008). However, complex flame dynamics, which

cannot be characterized by describing functions, are involved in the phenomenon of

self-excited thermoacoustic instabilities. These complex flame dynamics may lead to

more complex states such as intermittency, quasi-periodicity and chaos. Hence, flame-

response based approaches do not provide a complete description of thermoacoustic

oscillations. The gap in our understanding of self-excitedthermoacoustic instabilities

needs to be covered in order to be able to efficiently suppressthe problem of thermoa-

coustic instabilities in real systems.

In the quest towards the ultimate goal of having a complete control of the complex

phenomenon of thermoacoustic instability in practical systems, it is quite important to

first establish a thorough physical understanding of the instability in simpler config-

urations such as the Rijke tube (driven by electric heater orflames). This approach

has previously resulted in fundamental results on the phenomenon of thermoacoustic

instability. Building on the existing knowledge, understanding the nonlinear dynam-

ics of thermoacoustic instability in a laminar premixed flame driven Rijke-type model

thermoacoustic setup forms the basis of this thesis.
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1.4 Motivation

Understanding the nonlinear aspects of thermoacoustic instability is extremely crucial

to deal with the problem in real systems. Studies on nonlinear systems have shown

that several physical systems with inherent nonlinearities exhibit complex nonlinear

oscillations and follow well-defined routes to deterministic chaos. Thermoacoustic sys-

tems also have been previously reported to exhibit nonlinear behavior such as quasi-

periodicity and chaotic oscillations. However, detailed investigations focused on this

facet of thermoacoustic instability are lacking. As a consequence, currently it is often

implicitly assumed that thermoacoustic oscillations appear in the form of limit cycle

oscillations (Zinn and Lieuwen, 2005). From an industrial point of view, the major

drawback of this assumption is that the assessment of the impact of self-excited insta-

bility is underestimated. The extent of potential damage that can be caused by complex

oscillation states when compared to limit cycle oscillations will be higher. This is at-

tributed to the presence of several frequencies and significant cycle-to-cycle amplitude

variations in the pressure oscillations, for instance in quasi-periodic and chaotic oscilla-

tions. Such oscillations can result in an augmented cyclic fatigue, crack formation and

crack propagation within structural components of the combustor (Suresh, 1998; Kurz

and Brun, 2007). Clearly, control techniques tailored for limit cycle oscillations will

fail in the presence of other nonlinear states. As a result, the main objective of running

combustion systems with lower maintenance costs and longerlife spans is hampered.

A complete description of thermoacoustic instabilities would involve characteriz-

ing and explaining the occurrence of complex nonlinear behavior in addition to limit

cycle oscillations. Hence, it is required to particularly investigate the self-excited state

of thermoacoustic instability in the framework of nonlinear dynamical systems the-

ory (Strogatz, 1994). Such an approach will provide insightinto the fundamental non-

linear mechanisms associated with thermoacoustic instability and will assist in exposing

and resolving the shortcomings of currently employed nonlinear approaches to predict

the characteristics of thermoacoustic oscillations. The work presented in this thesis is

motivated by the need to understand the dynamical nature of self-excited thermoacous-

tic instability.
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1.5 Objective of the Present Work

The objective of this investigation is to study self-excited thermoacoustic oscillations in

a simple laboratory setup through a detailed experimental bifurcation analysis (Strogatz,

1994). The oscillations will be investigated through nonlinear time series analysis of

experimentally acquired data. The study will include both qualitative and quantitative

analysis. In particular, identifying the route followed bythe system from a steady state

to aperiodic oscillations through periodic limit cycle oscillations will be emphasized.

To investigate these fundamental nonlinear aspects of thermoacoustic instability, a

prototypical Rijke tube system using laminar flame configuration as the source of com-

bustion will be studied. Two flame configurations, a single conical flame and a multiple

injection flame configuration will be investigated. Both these configurations have been

used in several previous investigations, as the flame dynamics in these configuration can

be clearly studied and modeled. Hence, the two configurations are of particular research

interest and will be employed in this study. The acoustic pressure in the system, instan-

taneous flame images andCH* chemiluminescence will be acquired, characterized and

compared simultaneously, in an attempt to understand the flame-acoustic interaction

during the appearance of nonlinear self-excited thermoacoustic oscillations.

1.6 Overview of the Thesis

This thesis is primarily aimed at investigating the nonlinear asymptotic states of ther-

moacoustic oscillations. In order to understand the underlying physics behind the occur-

rence of thermoacoustic instabilities and to accelerate the efforts in developing effective

control strategies, careful experiments are required to investigate the nonlinear dynam-

ics of thermoacoustic systems. The approach currently being adopted to deal with these

instabilities is to avoid them by defining safe operating regions of combustion systems

in terms of their operating parameter. It is believed that asa sensitive operating parame-

ter is changed, thermoacoustic instability appear in the form of limit cycle oscillations,

when the driving and damping processes in the system achievea balance (Zinn and

Lieuwen, 2005). In the process of understanding the instability, a natural question that
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arises is whether these oscillations remain in this limit cycle behavior as the operating

parameter is further changed. The current study is aimed at providing an answer to this

question. In particular, the present work is based on the application of nonlinear time

series analysis to experimentally obtained results from a simple laboratory combustion

system.

The rest of the thesis is divided into the following chapters:

A survey of significant contributions in the field of thermoacoustic instability and

investigations related directly to the present investigation is presented inChapter 2.

Focus has been placed on premixed flame systems. Fundamentalinvestigations based

on linear and nonlinear approaches including recent developments have been discussed.

The section closes with a review of literature on the investigation of thermoacoustic

instability from a dynamical systems perspective.

The details of the experimental setups studied are described in Chapter 3. The

setups are similar to Rijke-burners driven by premixed flame. Two flame configuration

are studied, a single laminar premixed flame and multiple premixed flames. The setups

are designed in such a way so that bifurcation analysis can beperformed by changing

the location of the flame relative to combustion chamber. Theinstrumentation and

measurement techniques used have also been discussed.

Chapter 4 elaborates the details of the analysis techniques implemented on experi-

mentally acquired data. Discussions, relevant concepts and terminologies from dynam-

ical system theory are explained. Fundamentals of the embedding theorem and phase

space reconstruction have also been discussed.

Chapter 5 presents the result and discussions on the sequence of bifurcation present

prior to thermoacoustically induced lean flame blowout. Theresults presented are based

on the experimentally obtained pressure time series. On implementing the nonlinear

time series analysis on the pressure time series, the rich dynamical nature of thermoa-

coustic oscillations are shown. Further, the nonlinear interaction between the flames

and the acoustic modes of the duct is also reflected in the highspeed flame images

acquired simultaneously with pressure and flame intensity measurements.

Chapter 6 presents the result and discussions based on the experiments performed
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on Rijke tube driven by multiple premixed flame. Through nonlinear time series analy-

sis, possible routes to chaos has been established for this configuration.

A simple phenomenological formulation of the thermoacoustic system in terms of

nonlinear coupled oscillator is presented inChapter 7. The main objective of the for-

mulation is to capture the route to chaos (Ruelle-Takens scenario) reported inChapter

6. The thesis ends with conclusions inChapter 8 and an outlook for future investiga-

tions inChapter 9.
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CHAPTER 2

LITERATURE SURVEY

Intensive research has been conducted on the subject of thermoacoustic instability in

combustion systems over the last 50-60 years. From studies on instability in solid and

liquid rocket propulsion systems in the 60’s (Crocco and Mitchell, 1969; Crocco and

Cheng, 1956), to the present-day investigations focussed on instability in gas-turbine

combustors, an immense amount of research has been performed in this field. The focus

of this research has been on the fundamental mechanisms responsible for self-sustained

combustion instability. Through experiments, numerical simulations and theory, the

impact of pressure and velocity coupling (Culick, 1970; Ananthkrishnanet al., 2005),

flame-hydrodynamic interactions (Schadow and Gutmark, 1992; Poinsot and Veynante,

2005), coupling to equivalence ratio fluctuations (Zinn andLieuwen, 2005) , entropy

waves (Nicoud and Poinsot, 2005; George and Sujith, 2011) and inherent nonlinear

dynamics (Jahnke and Culick, 1994; Subramanianet al., 2010) were identified. In ad-

dition to fundamental research, more applied investigations were also performed in the

development of low-order models (Merk, 1956; Schuermanset al., 2000). These mod-

els helped in understanding the dynamics of flame-acoustic interaction which helped to

adapt better control strategies (for reviews on active control see McManuset al., 1993;

Dowling and Morgans, 2005) and for suppressing the instability in practical systems.

Prior to being a concerning issue in gas-turbines, thermoacoustic instabilities were

a major problem in solid and liquid rocket propulsion systems around the 60’s (Crocco

and Cheng, 1956; Crocco and Mitchell, 1969). Consequently,a large part of the the-

ory of thermoacoustic oscillations was conceived in the following decades. In particu-

lar, the Galerkin approach and its extension to include nonlinear effects was developed

by Zinn and co-workers (Powell and Zinn, 1969) and Culick andco-workers (Culick,

2006). Triggering instability and hysteresis in thermoacoustic systems was first identi-

fied and investigated in the content of instability in rocketmotors (Levine and Baum,

1983; Blomshieldet al., 1997; Knoopet al., 1997). Models based on the assumption of



nonlinear gas dynamics was proposed (Culick, 1990). Later,it was identified that com-

bustion response and not nonlinear gas dynamics plays a significant role in triggering.

More recently Ananthkrishnanet al. (2005) confirmed that nonlinearity in combustion

response (velocity coupling) is responsible for nonlinearphenomenon triggering insta-

bility in thermoacoustic systems. Mariappan and Sujith (2010) have recently shown

incorporation of pressure coupling and non-modal effects can explain transient dynam-

ics and triggering instability in solid rocket motors.

From investigations, it is clear that in industrial premixed gas turbine combustors,

where reported acoustic pressure amplitudes are of the order of p′/p̄∼ 1−5% (Dowling,

1997; Peracchio and Proscia, 1999; Lieuwen, 2002), the source of nonlinearity is the

flame’s response to acoustic field not the nonlinear gas dynamical processes. Therefore,

it is essential to include nonlinear dynamics of combustion-acoustic interaction into

analytical/numerical modeling and prediction approaches.

In the subsequent sections is given, a brief overview of linear and certain nonlinear

approaches is presented. This is followed by an overview of the investigations on the

dynamics of self-excited thermoacoustic oscillations, a subject most pertaining to the

investigation presented in this thesis.

2.1 Linear Stability Analysis

In the prediction of thermoacoustic characteristics of combustors, linear stability anal-

ysis plays a significant role. It is simple in formulation andis easy to handle com-

putationally or numerically. Hence, it is an essential toolto predict the stability of

thermoacoustic systems at the design phase. Moreover, parametric analysis of the sys-

tems through linear modeling is useful not only for predicting basic characteristics of

thermoacoustic instability but also for gaining insight into the physical mechanisms

involved in the phenomenon.
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Figure 2.1: A one-dimensional model for a combustor. Geometry consists of an up-
stream section filled with cold reactive mixture and a downstream section
with hot products from combustion. Planar acoustic waves ineach sec-
tion can be decomposed into forward traveling (f, i) and backward traveling
waves (b, r). The flame and the area change at the flame are treated as
discontinuities.

2.1.1 Helmholtz Equation

The basis of linear stability analysis is the linearisationof the conservation equations

about a steady state. In the absence of discontinuities suchas shocks and flames,

the system acoustics is well represented by the resulting wave equation (Dowling and

Williams, 1983; Rienstra and Hirschberg, 2004). Solutionsof the wave equation are ob-

tained by representing the acoustic oscillations in the chamber as a sinusoidal variation

of acoustic variables in time; i.e.p′ = Re(p̂(X)eiωt) andu′ = Re(û(X)eiωt). Substi-

tuting these representations for acoustic pressure and velocity into the wave equation

results in the Helmholtz equation for̂p. Acoustic mode shapes that satisfy the bound-

ary conditions and the corresponding eigenfrequencies canthen be obtained by solving

the Helmholtz equation. Since this is a linear formulation,the final solution is a linear

combination of all possible solutions.

Complexities in geometry such as area changes, which exist for instance at the dump

plane of a combustor, are resolved by considering the integral of linearized govern-

ing differential equations across the area change to obtainconditions relating acoustic

quantities upstream and downstream. The flame is treated as adiscontinuity and the

jump in the acoustic variables across the flame are retrievedby the linearized Rankine-

Hugoniot relations (Poinsot and Veynante, 2005). Figure 2.1 illustrates a simplified

one-dimensional realization where acoustics upstream anddownstream are treated as

planar waves and downstream acoustics is related to upstream acoustic by the jump

conditions.
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The eigenfrequencies (ω) are in general complex numbers. Real part of the eigen-

frequencies gives the frequency of acoustic oscillations.The imaginary part determines

whether the particular mode corresponding to this frequency will grow or decay in time.

For an acoustic system with no source or sink of acoustic energy, the imaginary part is

zero. This is the case for duct acoustics in the absence of fluctuating acoustic energy

source and/or acoustic damping mechanisms. However, in thepresence of a flame,

which acts as a source of acoustic energy, certain eigenfrequencies, depending on the

system configuration, will have a negative imaginary part indicating an exponential

growth in acoustic oscillations corresponding to the frequency given by the real part

of ω. Hence, through a linear treatment of a thermoacoustic system, it becomes possi-

ble to obtain the operating conditions at which a particularmode will become unstable

causing instability to set-in and the corresponding mode shape.

2.1.2 The n-tau Model

The most crucial aspect of modeling thermoacoustic instability is to model the coupling

of unsteady heat release rate to the acoustic field. Such a model is the key to providing

closure to the linear system of equations. The n-tau model first presented by Crocco

and Cheng (1956) provides such a closure for a thermoacoustic system. A simplified

expression for the n-tau model is:

q′ ∝ u′(xf , t− tau) (2.1)

The model states that unsteady heat release rate,q′ is proportional to velocity fluctua-

tionsu′ at the flame location delayed by a time-delay tau, with an acoustic amplification,

n. Adaptations of this model to engineering system lead to good comparisons between

predictions and experiments, primarily because mechanisms contributing to thermoa-

coustic instability involve inherent time-delays that play a key role in determining the

onset of thermoacoustic instability (Dowling and Stow, 2003).

Predicting the frequency of the instability and the corresponding mode shapes are

essential for obtaining the stability boundaries of a system and can be found through

linear stability analysis. Additionally, the results can also be employed in active/passive
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control strategies. Hence, the linear approach was found tobe an effective analysis

techniques for prediction of thermoacoustic instability.Several notable investigations

were based on this approach. Though this linear model of thermoacoustic instability

had its own limitations, it is effective for preliminary analysis. The n-tau model given

by Crocco and Cheng (1956) was extensively implemented in several industrial and aca-

demic investigations in the field of combustion instability, some of which are described

below. Although simple in its formulation, the model yielded effective prediction. This

model has been verified on various types of combustion systems in its basic form or with

logical extensions in order to establish the relation between the unsteady heat release

rate and the flow velocity.

Bloxsidgeet al. (1988) experimentally determined the frequency of instability as-

sociated with reheat buzz in an afterburner model. They proposed an empirical time-

delayed heat release rate response to velocity fluctuationsat the flame stabilization. The

model incorporated two time delays associated with the convection of heat release rate

oscillations with the mean flow and the inherent delay in flameresponse to velocity

fluctuations. On similar lines, (Macquisten, 1995) investigated instability in a twin-

stream afterburner with a V shaped flame holder, both experimentally and theoretically.

He showed that disturbances generated in the flow velocity have an impact on the heat

release rate fluctuations. The oscillations convect till the flame and produce acoustic

disturbances in the flame, justifying the use of a time-delaybased model. The theoreti-

cal predicted frequency of oscillations were found to compare well with those observed

in experiments.

Dowling (1997) presented a time-domain simulation of combustion instability based

on the empirical time-delay model developed by Bloxsidgeet al.(1988) for heat release

rate response. Based on experimental results where low frequency oscillations were ob-

served, she modified the time-delay model for heat release rate response to acoustic

oscillations to suppress the overestimated amplification at high frequencies. Further-

more, the model was extended to include a saturation of heat release rate in response to

velocity fluctuations. With this type of saturation nonlinearity, the time-domain model

was able to account for the observation of limit cycles and changes in the oscillation fre-

quency with variations in the equivalence ratio. Results oflinear analysis incorporating
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nonlinear combustion response were found to correspond reasonably with experiments

by Langhorne (1988).

Dowling (1999) modeled the flame dynamics for a bluff body stabilized flame via

a linear approach extended to incorporate nonlinear effects associated with flow rever-

sal. The flame response to fluctuations was derived from the G-equation. The results

of linear flame response modeling were found to correspond toempirical time-lag for-

mulations by Bloxsidgeet al. (1988). Nonlinear flame response was introduced by

employing a nonlinear boundary condition at the flame anchoring point. Based on vi-

sual observations, when total gas velocity exceeded flame speed, flame was assumed

to be attached to the anchor. When flame speed exceeded the gasvelocity, the flame

was considered to propagate upstream. Modeling self-excited instabilities with the de-

rived flame response model in a time-domain analysis was found to predict limit cycle

behavior. Further, a methodology of implementation of a describing function approach

to obtain limit cycle amplitudes and frequencies was suggested. A describing func-

tion evaluates the flame response not only at different frequencies but also at different

forcing amplitudes.

The amplification (n) and delay (tau) in the n-tau formulation for laminar premixed

flames can be derived analytically from the G-equation. Thishas been shown previously

by Lieuwen (2003); Ducruixet al.(2005). However, the n-tau model in its fundamental

form is insufficient to model complex flame behavior as observed in practical systems.

Accordingly, extensions of the n-tau model have been developed to incorporate detailed

physics of flame response. The basic n-tau model, Eqn. (2.1) assumes localized fuel

injection, compact combustion and no dispersion (Lieuwen,2003; Schuermanset al.,

2004). Schuermanset al. (2004) proposed a distributed time-lag model to be employed

for turbulent swirl flames, where the mentioned assumptionsclearly do not hold true.

Equivalence ratio fluctuations which form a dominant sourceof unsteady heat re-

lease rate also cannot be directly modeled using the basic n-tau model as pointed out

by Lieuwen (2003). An extension of the n-tau formulation to include equivalence ra-

tio oscillations was proposed in this review. According to the proposed formulation,

unsteady heat release rate in response to equivalence ratiofluctuations is a result of

temporal change of flame speed perturbations in addition to convection time-delay, re-
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quired for mean flow to convect till the effective flame location. Detailed implications

of nonlinear flame dynamics, including the effects of nonuniformities in the flow dis-

turbances, boundary conditions and flame aspect ratio on flame response have been

discussed in Preethamet al. (2008).

2.1.3 Forced Flame Dynamics

Thermoacoustic instability is an interplay of several physical processes, and understand-

ing the interaction amongst these contributing processes is critical. Analytical thermoa-

coustic models applied currently for understanding these interactions are based on sim-

plifications, primarily of the flame response to acoustic fluctuations. These models can

predict only the linear stability of the system. It is required to consider models which

take into account system dynamics which is inherently a result of nonlinear interactions,

based on a detailed physical understanding. By studying thefeatures of oscillations ex-

cited due to flame-acoustic coupling, one can expect to learnabout the important effects

which need to be incorporated into a thermoacoustic model. For this purpose, simple

systems such as confined or unconfined laminar Bunsen-type conical premixed flames

are an ideal configuration. Owing to the simplicity, they canbe easily realized in experi-

ments and in models. The basic flame-acoustic interaction isstill preserved. Therefore,

numerous investigations have been conducted on such systems and the results have

provided significant insight. In particular, forced flame response has been extensively

investigated. The flame transfer functions,FTF obtained from such investigations are

employed in network models (see Candel, 2002) to describe flame-acoustic coupling

and subsequently obtain stability characteristics of a system.

Perry and Blackshear (1993) developed an one-dimensional framework on the in-

teraction of flame with acoustic waves. They concluded that flame surface area per-

turbations cause amplification or damping of acoustic wavespassing the flame. Am-

plification or damping is determined by the lag between velocity perturbations and

flame area perturbations. Subsequently, in the same investigation, experiments on self-

excited instability in ducted laminar single and multiple flames was studied and the

one-dimensional model was found to adequately explain experiments.
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Boyer and Quinard (1990) studied the response of anchored premixed V-flame to

homogeneous flow oscillations and modulation of the flame by Von Karman street. An-

alytical modeling of fluctuations was also conducted in the limit of small flame wrin-

kling and compared to experiments. They found that linear kinematic models could

explain flame dynamics only in the regime of weak perturbations. Nonlinear features

such as cusp formation could not be explained.

Fleifil et al. (1996) conducted a time domain and frequency domain simulation of

forced flame dynamics for a laminar premixed flame stabilizedon a pipe flow veloc-

ity profile. The flame response to inlet velocity fluctuationswas modeled by an n-tau

model similar to that used by Bloxsidgeet al. (1988). Instead of two time-delays used

by Bloxsidgeet al. (1988) to account for convection of perturbations on the flame sur-

face and resulting unsteady heat release rate, a single time-delay was employed. A

low-pass nature of the flame was identified. The flame surface area oscillations were

found in good agreement to those reported in experiments by Perry and Blackshear

(1993).

Schulleret al. (2002), conducted a detailed investigation of the effect ofupstream

acoustic perturbations on the flame. Experiments were compared to numerical modeling

based on theG-equation. The model could additionally account for flame cusping. The

basic formulation of theG-equation can be found in the works of Williams (1985)

and Kersteinet al. (1988). A revised formulation of inlet velocity perturbations on the

flame in Schulleret al. (2003) was found to explain flame response in a wide range of

frequencies. Specifically, deviation of flame response models to observations regarding

flame behavior at high frequencies could be resolved.

A significant amount of work has been performed on the evaluation of transfer func-

tions of laminar premixed flames through flame response studies through both experi-

ments (Boyer and Quinard, 1990; Baillotet al., 1992; Birbaudet al., 2006) and model-

ing (Candel, 2002; Lieuwen, 2003; Karimiet al., 2009). It was found that the flame has

a low-pass nature, implying that amplification of acoustic waves incident on the flame

occurs strongly only at low Strouhal number. The mechanism of amplification for per-

fectly premixed flames was identified as the wrinkling of the flame surface as a result

of fluctuations that originate at flame anchoring position and convect along the flame
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surface. For industrial premixed flames, the mechanism includes effects of equivalence

ratio fluctuations upstream.

Forced flame dynamics and by extension, self-excited thermoacoustic instability is

also affected by factors such as chemical kinetics, transport phenomena, flame stretch

effects. As such, it is also important to investigate these phenomena. Clavin (1985) has

reviewed the effect of chemical kinetics and transport processes for wrinkled premixed

flames. Stretch effects have been recently investigated by Wang et al. (2009). De-

tailed reviews of flame-acoustic interactions have been given by Lieuwen (2003). Can-

del (2002) presented an extensive discussion on the role of different mechanisms in

thermoacoustic instability, with focus on flame-acoustic interaction and current active

and passive control techniques in his review. A report on current understanding and

important investigations on flame transfer functions has been given by Ducruixet al.

(2005) and Schulleret al. (2003). Hemchandra (2010) has summarized the recent de-

velopments in the modeling of flame-acoustic interaction. He explained the effect of

small amplitude disturbance on both rich and lean premixed flame; the results reveal

that both flames behaves differently. He further concluded that the difference is due to

the dependence of equivalence ratio on flame speed and heat ofreaction rate.

Investigation of flame response to equivalence ratio forcing was conducted by Sreekr-

ishnaet al. (2010) based on a reduced order modeling approach. The analysis was

performed taking into account that equivalence ratio oscillations cause unsteady heat

release rate via local fluctuations in the flame speed and heatof reaction. They con-

cluded that due to the difference in flame speed sensitivity to equivalence ratio oscil-

lations between lean and rich flames, the flame response is fundamentally different.

Flame stretch effects were found to play a non-trivial role at high Strouhal numbers.

Nonlinear flame response was also investigated. However, results at high frequencies

and high amplitudes were found to deviate from the DNS of the flame response to

equivalence ratio fluctuations (Santosh, 2011). The cause for this deviation, as reported

in Santosh (2011), was attributed to an increased influence of hydrodynamic coupling

and increased damping of equivalence ratio fluctuations at high amplitudes and high

frequencies.
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2.1.4 Network Model: A Linear Approach

The importance of studies on forced flame dynamics lies not only in its capability of

providing an insight into flame-acoustic interaction, but also its application in stability

analysis of complex systems. The network modeling approachadopted from control

theory can be used for fast and efficient implementation of the classical linear analysis

of thermoacoustic instabilities in the frequency domain. Each element of a combustion

system, fuel/air supply ducts, combustion chamber, boundaries and the burner geom-

etry is described by its own transfer matrix relating the upstream acoustic field to the

downstream acoustic field. The transfer functions of every element, including the trans-

fer matrix of the flame, can be combined into a system of linearequations of the form

Ax = b. Eigenvalues of the system matrixA determine the stability of the system and

the corresponding eigenfunctions describe the acoustic mode shape. The network mod-

eling approach has been implemented on practical systems and has met with significant

success in predicting instabilities.

Extensive work has been performed on the subject of network modeling by Paschereit

and co-workers (Paschereitet al., 1999; Paschereit and Polifke, 1998; Schuermanset al.,

2000) and Polifke and co-workers (Polifkeet al., 2001). Further, it has also been im-

plemented in industrial systems such as annular combustorsby Krebset al. (1999);

Pankiewitz and Sattelmayer (2003). Experimental determination of transfer matrix of

a swirl flame have been presented by Paschereitet al. (1999) and Paschereit and Po-

lifke (1998). By introduction of two sets of acoustic excitation, once from the upstream

and then from the downstream (or equivalently simultaneousexcitation from the up-

stream and downstream), two independent test conditions can be created and used to

obtain the elements of the transfer matrix. On incorporating the transfer matrix in a

network analysis, a good comparison was found between the predicted and measured

frequency spectrum of pressure oscillations. The low-passnature of the flame was also

identified. Recently, Andréet al. (2009) has developed a network model to predict the

combustion instability for lean premixed EV burner (Alstom). This kind of approach is

helpful in understanding the system response to an extent such that implementation of

active control in suppressing instability in the system becomes easy. A review of net-

work modeling techniques, flame transfer function measurements in industrial systems
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and implementation of network analysis has been presented by Paschereitet al.(2005).

However, being linear in formulation, the network analysiscannot predict nonlinear

behavior.

2.2 Nonlinear Flame Describing Function Approach

In order to explain nonlinearities in forced flame response and to infer about nonlin-

ear dynamics of self-excited oscillations from flame response studies, the linear flame

transfer function had to be extended to incorporate nonlinear dynamics. In particular,

the describing function approach suggested by Dowling (1997) leads to a promising

approach.

The nonlinear flame transfer function was first obtained experimentally by Durox

et al. (1997) for a V-flame configuration. Noirayet al. (2008) obtained the nonlin-

ear flame describing function for multiple premixed flames experimentally for variable

burner length. The important distinction between a nonlinear describing functionNDF

and a linear flame transfer functionFTF is thatNDF is evaluated for all relevant fre-

quencies at different amplitudes of input perturbations while FTF is evaluated for a

single small amplitude, small enough to be considered a linear perturbation. Linear and

nonlinear flame response has been shown via flame imaging by Karimi et al. (2009)

for different equivalence ratios. Fluctuations in upstream flow velocity with forcing

amplitudes tillu′/ū(ω) of 0.9 were investigated for a single laminar conical flame. In

recent developments, the nonlinear describing function approach has been shown to pre-

dict nonlinear phenomenon such as triggering and hysteresis in addition to limit cycle

frequency and amplitude (Lieuwen and Neumeier, 2002; Noiray et al., 2008). Moeck

and Paschereit (2012) developed a multi-input describing function approach where they

have considered two linearly unstable mode of the system to present the dynamical

nature of the thermoacoustic oscillations.

A study of the response of heat release rate to pressure oscillations in experiments

for a lean premixed flame gas turbine was conducted by Lieuwenand Neumeier (2002)

by forcing at discrete frequencies and measuring pressure and CH* radical chemilumi-
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nescence oscillations. Saturation of the heat release rateresponse at large amplitudes

was identified. Further, they studied the nonlinear interaction between forced and natu-

ral modes of the combustor that lead to frequency-locking.

The current trend of investigations on thermoacoustic instability is towards achiev-

ing a firm understanding of the nonlinear mechanisms that contribute to the phenomenon.

In particular, it is essential to understand the self-excited nature of these combustion-

driven oscillations. It is not surprising that several investigations have been performed

previously in this area as well. In the following section we will discuss the dynamics of

self-excited thermoacoustic instability.

2.3 Dynamics of Thermoacoustic Instability

A systematic approach of investigating thermoacoustic instability is to conduct numer-

ical or laboratory experiments on the effect of system parameter changes on system

dynamics. Such an investigation facilitates the evaluation of the effect of individual

parameters on system stability (stability maps) and dynamics of the unstable system.

Technically referred to as bifurcation analysis (Strogatz, 1994), such investigations have

previously been performed on academically relevant thermoacoustic systems such as an

electrically driven Rijke tube (Matveev, 2003; Subramanian et al., 2010; Juniper, 2010)

system and on industrially relevant, combustion driven systems (Knoopet al., 1997;

Lieuwen, 2002). These investigations primarily focus on the transition of the system

from a steady state to instability which is typically reported to occur in the form of limit

cycle oscillations. The studies have shown the existence ofsubcritical and supercritical

Hopf bifurcation scenarios in thermoacoustic systems. Hence, it is well-established that

in thermoacoustic systems, transition to instability occurs through a Hopf bifurcation,

often through a subcritical Hopf bifurcation. The subcritical nature of transition results

in interesting nonlinear phenomena such as triggering and hysteresis, observed in the

subcritical zone of instability (Matveev, 2003; Balasubramanian and Sujith, 2008; Mari-

appanet al., 2010; Juniper, 2010). Such dynamical behavior is particularly undesirable

in practical combustion systems.
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2.3.1 Triggering Instability

Linear theories and their predictive capabilities, in addition to flame response studies

form a firm ground for the analysis of thermoacoustic instabilities. The insight provided

by these approaches cannot be denied. However, inherent nonlinearities involved in the

phenomenon of thermoacoustic instability lead to a much more variant dynamics, in

addition to exponential growth and saturation to limit cycles (Dowling, 1997). In the

following paragraphs, the nonlinear aspects of thermoacoustic oscillations and their

analysis from a dynamical systems theory perspective is discussed.

One of the most interesting nonlinear behavior of thermoacoustic systems, identi-

fied in early investigations was the phenomenon of triggering instability. Technically,

the appearance of instability in a linearly stable system onthe introduction of finite am-

plitude disturbances is termed as triggering instability.A popular approach in the 60’s

to assess the stability of combustion system, particularlyin liquid and solid propellant

rocket systems, was to introduce pulses within the system via explosions and study the

system response. This approach led to the diagnosis of pulse-triggered or triggering in-

stability in thermoacoustic systems. In a linearly stable system, instability would arise

due to the introduction of finite amplitude disturbances. This finding prompted a train

of investigations.

At first, studies on obtaining triggering instability in models of thermoacoustic insta-

bility met with very little success primarily because a nonlinear treatment of combustion

was still not accounted for. Further, in the 60’s, the subject of nonlinear dynamics was

in its infancy.

A major contribution to the analysis of bifurcation dynamics of thermoacoustic in-

stability with focus on triggering instability was made by Jahnke and Culick (1994).

Through a numerical continuation approach, they were able to obtain qualitative fea-

tures of the bifurcation scenario. They obtained the stability of the steady state and the

limit cycle states. Towards the end of the analysis, resultsalso indicated the presence

of quasi-periodic oscillations in a six-mode approximation of the formulation. How-

ever, triggering was not observed. Later on the basis of experiments, Maet al. (1991)

pointed out that the inclusion of a threshold nature of the velocity coupling was impor-
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tant along with a nonlinear combustion model to model triggering instability. Ad hoc

velocity coupling models in addition to nonlinear combustion response implemented in

a numerical investigation by Levine and Baum (1983) and Wickeret al. (1996) showed

the presence of triggering instability. Later, by inclusion of a threshold velocity cou-

pling (Burnley and Culick, 2000) could obtain a bifurcationdiagram which included

triggering instability.

In addition to triggering, the issue of hysteresis is also anundesirable and a critical

issue for combustion systems. Hysteresis occurs in systemsthat undergo a subcritical

Hopf bifurcation. Due to hysteresis, stability in a thermoacoustically unstable system

cannot be ensured by changing the operating parameters to parameters at which the

system was previously observed as stable, unless the hysteresis region is completely

escaped. As subcritical bifurcation is often observed in combustion systems, several re-

ports on the observation of hysteresis can be found (Knoopet al., 1997; Matveev, 2003;

Mariappanet al., 2010). A detailed study of hysteresis for instance, was conducted

by Matveev (2003) on an electrically heated horizontal Rijke tube system. Hysteresis

with respect to changes in heater power for a few mass flow rateof air through the

electric heater was reported.

It is important to know the threshold amplitude required fortriggering instability in

systems in order to predict and control triggering instability. In this area, the most en-

couraging results are from the recent investigations by Noiray et al. (2008) and Boudy

et al. (2011) considering single acoustic mode of the system. Theyreported, both ex-

perimentally and theoretically that using the nonlinear describing function approach,

that it is possible to predict various nonlinear characteristics of thermoacoustic systems

including triggering instability, mode switching and hysteresis. A flame transfer func-

tion based interpretation of triggering instability was also recently presented by Kim

and Hochgreb (2012).

Lieuwen (2002) has shown for a lean premixed combustor that,in the subcritical

zone, system can get triggered not only with the disturbanceprovided to the system

externally but even from the background noise (Lieuwen and Banaszuk, 2005), if the

noise level is sufficient enough. The susceptibility of a premixed combustor with a swirl

stabilized flame to acoustic disturbances has been investigated by Moecket al. (2008)
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experimentally. They were also able to reproduce the experimental results on triggering

and hysteresis through simulations incorporating linear acoustics and a nonlinear re-

sponse of the flame to upstream air flow rate fluctuations. Jegadeesan and Sujith (2012)

have studied noise-induced transition to instability in the subcritical zone through ex-

periments on a ducted diffusion flame system. The dynamics ofthermoacoustic systems

is also sensitive to parametric uncertainties, which is difficult to quantify even for sim-

ple systems. Nairet al. (2010) and Waugh and Juniper (2011) have recently presented

an approach which could be used as an effective alternative to conventional uncertainty

quantification techniques for real systems.

In recent developments, it was pointed out by Balasubramanian and Sujith (2008)

that the concept of non-normality also has a significant rolein thermoacoustic systems.

Non-normality results in transient growth of infinitesimaldisturbances in a linearly sta-

ble system. In the subcritical zone, triggering can occur ifthis transient amplification of

disturbances crosses the threshold amplitude required fortriggering. Balasubramanian

and Sujith (2008) have shown that thermoacoustic interactions in a confined diffusion

flame system are non-normal. Subramanian and Sujith (2011) found that ducted pre-

mixed flames were also exhibit transient growth due to non-normality in the system.

For a horizontal Rijke tube Juniper (2010) has shown that dueto the non-normal nature

of governing equations, the triggering amplitude requiredby the system for transition

to instability is lower than the amplitude of unstable limitcycle oscillation. Applying

dynamic mode decomposition on experimentally acquired data, Mariappanet al.(2011)

have shown that the system eigen-vectors for a horizontal, electrically-driven Rijke tube

system are non-orthogonal, indicating the presence of non-normality in the system. In

addition to the effects of non-normality and nonlinearity in the subcritical zone, Juniper

(2010), based on a dynamical systems approach, gives an analogy between triggering

in thermoacoustic systems and bypass transition in fluids (Drazin, 1992). These inves-

tigations reveal that parallels can be drawn between transition of laminar fluid flows to

turbulence and triggering of thermoacoustic systems.

The dynamical nature of nonlinear systems is characterizedby oscillation states and

bifurcations. These nonlinear characteristics are found to be strikingly similar in dif-

ferent physical systems. The application of dynamical systems theory has been found
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to be instrumental in identifying the nonlinear characteristics of systems and catego-

rizing them according to the bifurcation scenarios and oscillation states observed. The

following sections illustrate this point. Subsequently, previous investigations focusing

on analysis of thermoacoustic instability through the application of dynamical systems

theory have been discussed.

2.3.2 A Few Examples of Nonlinear Systems in Nature

In the 70’s and the 80’s, significant advances were made in thetheory of nonlinear sys-

tems with findings of low dimensional chaos and strange attractors in physical systems

such as in turbulent flows Ruelle and Takens (1971), the Taylor-Couette flow (Swinney,

1983), Rayleigh-Bénard convection cells (Brandstäteret al., 1983) and in chemical re-

actions (Rouxet al., 1981). Furthermore, simultaneous developments of the geometrical

analysis of the phase space (Packardet al., 1980; Broomhead and King, 1986) facili-

tated the analysis of experimentally acquired data and the identification of well-defined

routes to chaos which forms an integral part of the characteristics of a nonlinear system.

Simultaneously, propelled by the new findings of the nonlinear systems theory,

similar developments were being made in the investigationson acoustics, combustion

and thermoacoustic instability. Kitanoet al. (1983) reported chaos through a period-

doubling route in a simple acoustic system composed of microphone, speaker, amplifier

setup with a nonlinear circuit. The time-delay between speaker output detected by the

microphone positioned at a distance from the speaker was a critical in the delay-induced

instability.

2.3.3 Periodic and Aperiodic Nature of Thermoacoustic Oscillations

A subcritical Hopf bifurcation causes transition from a steady state to self-excited limit

cycle oscillations in acoustic variables and the unsteady heat release rate from combus-

tion. Subsequent to the Hopf bifurcation, there always exists a possibility for further

bifurcations of the limit cycle. Nonlinear bifurcations and complex dynamical states

such as quasi-periodic behavior of thermoacoustic oscillations was first reported in a
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numerical investigation on a combustor model by Jahnke and Culick (1994).

Yazaki et al. (1987) identified route to chaos for a gas column system driven by

temperature gradients. The setup studied was a standard configuration to realize Taconis

oscillations. During the instability, two natural modes were simultaneously excited

at certain operating conditions. Based on this observation, they concluded that the

quasi-periodic route to chaos observed appears due to a competition between the natural

instability modes of the systems.

In combustion driven thermoacoustic systems, Keaniniet al. (1989) reported the

presence of low dimensional chaos in ramjet combustion. Theexplanation for the ob-

servation of low dimensional chaos postulated was that the original high dimensional

behavior of turbulence in the system transforms to a low dimensional chaos when order

is brought about within the system due to the coupling of flamedynamics with system

acoustics.

Sterling and Zukoski (1991) investigated thermoacoustic instabilities in a dump

combustor characterized by vortex shedding associated with combustor acoustics. Non-

linear analysis of self-excited oscillations revealed that the stable attractor occupies a

dimension greater than one which indicated the presence of aquasi-periodic-like attrac-

tor rather than a limit cycle. They reasoned that the high driving of the systems due

to the Rayleigh mechanism causes cycle to cycle variations leading to deviation from

a limit cycle state. It was concluded that the inherent time-delays associated with mix-

ing, reaction rates and response of vortical structure to acoustic oscillations that can

be modeled only by delay-differential equation causes the system to evolve on a high

dimensional attractor and thus, transition to chaos is a possibility. Later Sterling (1993)

confirmed the presence of quasi-periodicity in the system. Additionally, through sim-

ple modeling with two different types of nonlinear combustion models, he obtained a

period-doubling route to chaos.

Based on the work by Sterling (1993), Lei and Turan (2009) also reported a period-

doubling route to chaos in a numerical investigation with a discrete-dynamic model of

the system including vaporization process in addition to delayed combustion response.

In another analysis with a one-mode dynamic model, a period-3 solution was obtained
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in addition to period-doubling during transitions to chaos. Dynamics of self-excited

states were also investigated and it was found that changes in system parameters cause

changes the periodicity of self-excited oscillations. Period doubling route to chaos was

also shown recently by Subramanianet al. (2010) for a model electrically powered

horizontal Rijke tube. Through numerical bifurcation analysis and on implementing

nonlinear time series analysis the route to chaos was identified for the Rijke tube ther-

moacoustic system.

Very recently in experiments, Gotodaet al. (2011) through nonlinear analysis of

combustion induced self-excited oscillations in a gas-turbine combustor reported the

transition of stochastic fluctuations in the system to low dimensional chaos via periodic

oscillations.

According to numerical investigations till date, period-doubling to chaos is a recur-

rent theme. In contrast, dynamics associated with thermoacoustic oscillations observed

in experiments indicate the presence of quasi-periodicity. It is clear that further in-

vestigation is required in order to establish a complete description of thermoacoustic

instability, including nonlinear dynamics. A specific aspect that forms a focal point

of this investigation is that, although it has been shown that complex oscillations and

chaos exists in thermoacoustic systems, a complete route tochaos has not been estab-

lished from experiments. Such an investigation is needed tovalidate numerical results

and to provide a unified explanation of the few reported observations of dynamics such

as quasi-periodicity and chaos in thermoacoustic systems.

2.4 The Present Investigation

Several questions appear on the basis of previous investigations. It is clear that features

such as quasi-periodicity and chaos exist in practical thermoacoustic systems and limit

cycle is not the only possible asymptotic state attained by athermoacoustic system. It

needs to be clarified whether such nonlinear features are a manifestation of turbulence

in the system or a competition between acoustic modes that are interacting with the

flame. A complete route to chaos has been established numerically; however, it has not
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been experimentally established till date. Furthermore, the period-doubling route found

in numerical bifurcation analysis is in contrast to severalreports on the observation of

quasi-periodicity.

In the present investigation, through an experimental bifurcations analysis, we study

the transition of steady state to aperiodic oscillations via periodic states in a ducted lam-

inar premixed flame configuration. A relatively simple Rijke-tube type thermoacoustic

system is investigated. Two laminar flame configurations have been studied: a single

conical flame and a multiple injection configuration. These configurations have the ad-

vantage that the properties of combustion instability can be studied without significant

interference from turbulence and complexities of geometryfound in industrial systems.

In addition, the dynamics of laminar flames similar to what ischosen for the present

study, has been extensively studied before via forced flame response studies, experi-

mentally (Matsui, 1981; Candel, 2002). This makes the configuration well-suited for

fundamental studies on self-excited combustion instability.

Study of the dynamics of self-excited thermoacoustic oscillations through the anal-

ysis of the topological characteristics of phase space trajectories reconstructed from

time series data of acoustic oscillations is at the heart of this study. The implementa-

tion of advanced nonlinear time series analysis techniques(Kantz and Schreiber, 2003)

on experimentally acquired acoustic pressure data andCH* chemiluminescence and si-

multaneous analysis of high speed flame images yields new insight into the dynamics of

self-excited thermoacoustic oscillations. Since, lean operating conditions are of partic-

ular importance to the thermoacoustic community, experiments here are performed for

lean equivalence ratios. Obtained results show the presence of many complex dynami-

cal states including chaos in a laminar premixed flame driventhermoacoustic system.
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CHAPTER 3

EXPERIMENTAL SETUP

In this chapter, we discuss the details of the experimental the setup and the measure-

ment techniques used in this study. The characteristics of thermoacoustic instability

depend critically on the flame configuration and on the geometry of the combustor. For

a fundamental study on self-excited thermoacoustic instability, a representative system

that preserves basic thermoacoustic interactions is required. Towards a complete un-

derstanding and control of the occurrence of thermoacoustic instabilities, it is essential

to first identify the physical mechanisms and their role in the phenomenon in simple

configurations. Complexities can then be systematically incorporated to generalize the

information gained. Simplicity in the experimental configuration is also important to

accelerate numerical and analytical investigations.

Based on these points, a Rijke-tube system is chosen for studies. However, in-

stead of using an electrically heated mesh used as the heat source in conventional Rijke

tubes, the more interesting case of a confined laminar premixed flame system is em-

ployed here. As mentioned already, dynamics of unconfined laminar flames has been

extensively studied before, particularly in flame responsestudies and has been found to

display a rich nonlinear behavior such as flame cusping and flame lift-off (Bourehla and

Baillot, 1998).

3.1 Setup

Two flame configurations were studied: (1) a single laminar conical premixed flame

and (2) multiple laminar conical premixed flames stabilizedon a perforated block. The

two flame configurations are presented in Fig. 3.1. The unconfined single flame con-

figuration has been extensively studied in previous investigations (for example Durox

et al., 1997; Bourehla and Baillot, 1998; Lieuwen, 2002; Schulleret al., 2003; Karimi



et al., 2009). As we will find in Chapter 6, the multiple injection configuration allows

for more dynamics in the system. Such a configuration has beenstudied previously by

many researchers including Matsui (1981), Noirayet al.(2008) and Boudyet al.(2011)

in flame response investigations. A cylindrical borosilicate glass duct was used as the

confinement in order to have optical access for investigating flame dynamics. A closed-

open boundary condition for the confining glass duct was maintained via a base plate as

shown in Fig. 3.1 for both cases. The advantage of having a closed bottom end is that

the flame will not be affected by the air entrainment. Entrainment can cause local equiv-

alence ratio fluctuations in the flame. To avoid such equivalence ratio fluctuations from

contributing to the dynamics of thermoacoustic instability, a closed-open configuration

was necessary. In addition, the quality of chemiluminescence measurements (CH*) is

also affected due to entrainment. During the occurrence of self-excited instability, the

quarter-wave duct acoustic mode and its harmonics interactwith the flame.

In the single flame configuration, the setup consists mainly of a single conical flame

burner confined within a closed-open glass duct,860 mm in length. The burner tube is

a cylindrical brass duct,800mm in length with an inner diameter of10mm and a wall

thickness of0.5 mm. The long burner tube length results in a fully developed circular

jet flow profile. Liquefied petroleum gas (LPG) is used as the fuel for combustion. A

lean equivalence ratio (φ = 0.51) was maintained for the results reported, by fixing the

volumetric fuel flow rate and air flow rate at124 ccm and7.2 lpm respectively.

For the multiple flame configuration, multiple conical flameswere stabilized on a

circular, perforated copper block. A mild steel tube of inner diameter16mm, thickness

1.5 mm and length800 mm was used as the burner tube. The glass duct in this config-

uration was of length800 mm with a diameter56.5mm. The perforated copper block,

18 mm in thickness, with seven holes of diameter2 mm was mounted on the burner

tube. A fine wire mesh is installed on top of the perforated copper block to prevent

flame blow-off during the instability.

The burner tube in both flame configurations is connected to a cylindrical decoupler

of diameter200 mm and height200 mm. The decoupler creates an acoustically open

end for the burner tube and arrests the propagation of acoustic oscillations into the fuel

and air supply lines. Upstream of the decoupler, LPG and air are mixed in a premixing
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Figure 3.1: Schematic of the thermoacoustic setup. A: open-closed glass duct, B: burner
tube, C: LPG-air premixing chamber, D: decoupler, E: traverse, P: pressure
sensor, PMT: photomultiplier tube. Two flame configurationswere inves-
tigated - single and multiple premixed flame. On the top rightcorner are
steady state images (line of sight) of the two configurations. A burner lay-
out for multiple flames is also shown just below the steady flame image of
the multiple flame.

chamber of 100mm in length and 6mm in diameter. Steel wool is stuffed inside the

premixing chamber to ensure proper mixing. In addition to this, the inlet of air and LPG

to the chamber is made perpendicular to each other for enhanced mixing.

The dimension of the burner tubes and the equivalence ratio at which experiments

were conducted for both flame configurations are summarized in Table 3.1.

In addition to the above stated specifications, the choice ofthe bifurcation param-

eter is an essential detail. Net flow rate or the equivalence ratio are obvious choices.

However, these are not the most appropriate because firstly,changes in the flow rate

and/or equivalence ratio directly cause changes in mean flame characteristics such as
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Table 3.1: Burner configuration and operating conditions for results presented in the
thesis

Flame types Burner configuration φ Volumetric
air flow rate (lpm)

Single flame Tube length= 860mm
Material brass

Inner diameter = 10mm
Tube wall thickness = 0.50mm 0.51±0.014 7

Multiple flames Tube length= 800mm
Inner diameter = 14mm

Material mild steel

Tube wall thickness = 1.50mm
Individual hole diameter = 2mm

Number of holes = 7 0.48±0.014 4

the flame height, angle and flame speed. Secondly, the available range for bifurcation

analysis with net flow rate/equivalence ratio as the bifurcation parameter is limited.

The resulting bifurcation diagram would be coarse with large uncertainties resulting

from available measurement equipment. To side step these issues, a suitable bifurcation

parameter would be the flame location in the confinement. As results show later, this

choice of the bifurcation parameter suits ideally to the objective of this investigation.

Bifurcation analysis forms the basis of the present investigation and the flame lo-

cation relative to the glass duct confinement is considered as the control parameter for

both the setups. In order to facilitate variation in relative flame location (xf ), a tra-

verse mechanism using which the flame location can be mechanically varied in steps

of 1 mm has been constructed. Traversing the glass duct was performed smoothly and

mechanically (using a rack and pinion mechanism), without the use of electrical motors

that create noise and vibration, to ensure that the test setup is not affected by sound

and vibration associated with the traverse system. The burner is ignited by bringing

the burner exit close to the open end of the enclosing duct. The flame location is then

varied slow enough to maintain a quasi-equilibrium state. Measurements were recorded

at every1 mm only after a waiting time of at least2 minutes to ensure that only
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asymptotic dynamics is captured. Following this, data is acquired for a time interval of

30 seconds. It is to be noted that the spatial temperature distributionin the glass duct

will depend on the speed of traverse motion and whether the flame location is changed

from closed towards open end or the opposite. Although, an attempt has been made

to avoid these effects by moving the traverse very slowly (traversing speed determined

from preliminary investigations involving temperature measurements), reported results

could include minor effects of differences in the spatial distribution.

3.2 Measurements and Data Acquisition

For the analysis of self-excited instability, time series data for duct acoustic pressure and

CH* radical emission from the flame were acquired. Pressure sensors (PCB piezotron-

ics, model number 103B02) were mounted at different locations on the glass duct. At

locations unaffected by hot combustion products, for example near the closed end, mi-

crophones were flush mounted as shown in Fig. 3.1. Pressure fluctuations due to stand-

ing waves in the duct have a maximum amplitude near the acoustically rigid end and

hence, the signal-to-noise ratio will be higher for pressure signals acquired by micro-

phones mounted near to the closed end of the duct. MicrophoneP is located at a distance

of 50mm from the bottom of the glass duct. Results are presented for acoustic pressure

acquired by the microphone labelled P in the setup (Fig. 3.1). Volumetric fuel and air

flow rates were metered using calibrated glass rotameters with an accuracy of2% of the

full-scale reading.

CH* radical emission (chemiluminescence measurementsI(t)) is known to be pro-

portional to heat release rate from premixed flames (Langhorne, 1988). Hence, simul-

taneously with pressure oscillations, time series ofCH* emission has been acquired

using a photomultiplier tube (Hamamatsu, H5784) equipped with a narrowband filter

(bandwidth10 nm, centered at431.4 nm). A 16-bit analog to digital conversion card

(NI-6143), interfaced to the pressure sensor via a signal conditioner, was used to ac-

quire data at a sampling rate of10 kHz for a duration of30 sec. High speed flame

images were acquired using a high speed monochrome digital camera (Phantom V. 12)

at5 kHz and additionally on a video camera (Panasonic) at a framing rate of25 Hz as
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a method for visualization of mean flame shape and position inthe analysis of single

flame configuration.

In the preliminary experiments, it was found that environmental conditions affected

experiments. Hence, it is important to maintain a certain control over the conditions at

which measurements are performed. In particular, the system acoustics, a major ele-

ment of the phenomenon under investigation, is quite sensitive to fluctuations in ambi-

ent environment conditions (the conditions of the test facility environment are different

for instance, when conditions on a rainy day are compared to those on a sunny day,

even when the room is air-conditioned). Prior to every experiment, the exponential de-

cay rate of the acoustic pressure generated in the system in response to an internally

introduced acoustic pulse was evaluated (at cold flow conditions) for the characteriza-

tion of inherent acoustic damping. To ensure a consistency in conditions for different

sets of experiments, experiments were performed when the exponent of the measured

exponential decay falls within10% of 16/s.

The analysis of results presented here is largely based on the implementation of

nonlinear time series analysis techniques. The theory behind the techniques and certain

details of their implementation are presented in the next chapter.
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CHAPTER 4

DYNAMICAL SYSTEMS AND NONLINEAR TIME

SERIES ANALYSIS

4.1 Introduction

In this thesis, we have performed a nonlinear analysis of experimentally obtained results

on thermoacoustic instability, based on dynamical systemstheory. A discussion of the

concepts involved and their implementation on the obtainedresults have been presented

in this chapter. Certain specific details regarding the implementation of the techniques

described here have also been described along with the obtained results. The discussion

of the techniques used for nonlinear analysis requires introduction of terminologies

from the dynamical systems theory, which is presented next.Center of our discussion

will the evolution of systemtrajectories in the phase space. In particular, We will

be focusing on the long term, asymptotic dynamics whose phase space representation

is termed as anattractor. The discussion here is limited to the requirements of the

thesis. Readers interested in the topics of dynamical systems and nonlinear time series

analysis may refer to specialized texts((Abarbanelet al., 1993; Kantz, 1994; Strogatz,

1994; Hilborn, 2000; Nayfeh and Balachandran, 2004)).

4.2 Dynamical Systems

Ẋ = Φ(X) (4.1)

Equation 4.1 represents the evolution of a general dynamical system, defined by a set

of time-varyingstate variables, X. Ẋ is the first order time-derivative of the state

variables. The evolution follows a well-defined rule contained inΦ. Given an initial

condition that assigns specific values to the state variables at a reference time, the evo-

lution of a deterministicdynamical system, represented by Eqn. (4.1) can be used to



Figure 4.1: Illustration of the phase space trajectory (b) created from sinusoidally vary-
ing state variables (a) of a hypothetical dynamical system.Plotting the state
variables (X = [x, ẋ]) against each other gives the phase space. Accord-
ingly, the values of the state variables at a particular time(x(t), ẋ(t)) gives
the coordinates of a single point in the phase space.

determine a future state. The evolution rule,Φ can assume a linear or a nonlinear form.

In the paragraphs that follow, a geometric approach thephase spaceanalysis, which is

particularly effective in the analysis of nonlinear dynamical systems is discussed.

4.2.1 The Phase Space Representation

Going back to the general equation for dynamical systems, Eqn. (4.1), the state vector

X consists of individual state variables that define the considered system.

X ≡ [x1, x2, x3, . . . , xn] (4.2)
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represents a dynamical system which requiresn state variables to define its state at any

given time. Thephase spaceof the system is then ann-dimensional geometrical space

where every dimension corresponds to a single variable. Accordingly, values that the

state variables assume at a particular time correspond to a single point in the phase

space; i.e., at a particular instant of time,t, the system state corresponds to a point

Xt = (x1t , x2t , x3t , . . . , xnt
).

4.2.2 Trajectories in Phase Space

Based on the above discussion, an initial condition at reference timet = 0, assigned to

the dynamical system, is given by a point in the phase space given by

X0 = (x10 , x20 , x30 , . . . , xn0
). (4.3)

The system then evolves in time according to the governing rule in Eqn. (4.1). In

the phase space, this evolution is represented as a line thattraverses then-dimensional

space, passing through points as they are being created by the dynamical system. This

line is thetrajectorythat represents the system’s time evolution graphically.

The concept of a phase space trajectory is illustrated in Fig. 4.1. The sinusoidal time

evolution of the state variablesx andẋ, shown in Fig. 4.1 (a) is represented in a phase

space by a trajectory constructed by plotting (x, ẋ) at different time instants.

4.2.3 Attractors in Phase Space

Different initial conditions assigned to a dynamical system will lead to different trajec-

tories in the phase space, that never intersect each other. In the phase space, there exist

regions that attract phase space trajectories (attractors), regions that repel phase space

trajectories (repellers) and regions that attract phase space trajectories approaching from

certain directions but repels in other directions (saddle). After a certain transient, every

phase space trajectories are attracted towards a definite structure in the phase space.

This structure is theattractor of system dynamics. The attractor defines asymptotic
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Figure 4.2: A period-2 attractor. x = asin(2πf1t) + bsin(2πf2t); f1/f2 = 2. The
double-looped closed structure is due to the presence of a subharmonic.

system dynamics and its topological features correspond toa point or a loop or a fractal

object in the phase space depending on the dynamical system.For a single parameter set

(dependence of a dynamical system on system parameters is discussed in Sec. 4.4), the

phase space can contain more than just a single attractor. Each attractor has its region

of influence called thebasin of attraction(Hilborn, 2000).

In the case of multiple attractors, trajectories starting within the basin of attraction

of a particular attractor have their fate tied to that specific attractor. This gives rise to an

interesting situation, that different initial conditions, could lead to different asymptotic

states. The asymptotic dynamics of a dynamical system is related to the topological

characteristics of the phase space attractor. Dynamics observed in most physical sys-

tems correspond to attractors that can be classified into three types.

4.3 Attractor Classification

4.3.1 Fixed-point

A point is the most fundamental geometrical construction inthe phase space. The sta-

ble/unstablefixed-point attractoris a point in the phase space that attracts/repels tra-

jectories. At a fixed-point attractor, the system dynamics corresponds state variables

that do not change in time. In multi-dimensional systems, where dynamics is not con-

strained to a one-dimensional phase space, more geometrical structures in addition to
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Figure 4.3: Attractor for a frequency-locked state. Such anattractor is formed when
system dynamics is a result of two contributing frequency components re-
lated rationally to each otherx = asin(2πf1t)+ bsin(2πf2t); for this illus-
tration, the frequency ratio is chosen asf1/f2 = 7/5.

fixed points for the phase space attractor are possible.

4.3.2 Periodic Attractor

Often in physical systems including thermoacoustic systems, one finds periodic solu-

tions/dynamics where the state variables or an observed physical quantity varies period-

ically in time. Such system dynamics forms closed loops in the phase space. Depending

on the number of rotations made in the phase space before closing on itself, periodic

attractors are termed as period-n attractors, wheren is 1, 2, 3, . . . . The period-1 attrac-

tor is more often recognized by the name,limit cycle. Figure 4.2 illustrates a period-2

attractor with the distinct double loop structure formed due to the subharmonic. A limit

cycle is a single loop, a period-4 has 4 loops and so on. Such period-n attractors are

formed due to the presence of subharmonics in a system.

There exists another category of periodic attractors corresponding to the frequency-

locked state. For frequency-locking, the system has frequencies which are related by a

rational ratio. Such an attractor is shown in Fig. 4.3. In a frequency-locked state, phase

space trajectories form form several loops before closing on itself.
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Figure 4.4: Irrationally related frequency components in adynamical system lead to
quasi-periodic motion of the trajectories where they evolve on a torus never
closing on itself.x = asin(2πf1t) + bsin(2πf2t). For this illustration, the

frequency ratio,f1/f2 is chosen as the golden ratio,
1 +
√
5

2
.

4.3.3 Quasi-periodic Attractor

Quasi- or almost periodic attractors are formed in systems where two or more than two

frequencies that contribute to the dynamics in a system are incommensurate or irra-

tionally related. As a result, the phase space trajectory can never close itself. Presence

of quasi-periodic dynamics results in a toroidal structure: a two-torus for two incom-

mensurate frequencies, a three-torus for three and likewise. Quasi-periodicity is also

commonly observed in physical systems. An illustration of aquasi-periodic trajectory

is presented in Fig. 4.4. Trajectories following a torus canbe clearly identified. Only
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a finite evolution of the trajectories is plotted resulting an apparently weaved structure

of the torus. The trajectories will further evolve and form adense closed torus, never

exactly going back the initial point.
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ẏ = x(28 − z)− y
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Figure 4.5: The Lorenz attractor (gray) obtained by solvingthe Lorenz system of equa-
tions. The solid black lines and the dashed line are two trajectories starting
as neighboring trajectories. Due to the chaotic nature of the Lorenz attrac-
tor, the separation between the trajectories increases as it evolves on the
attractor.

4.3.4 Aperiodic Attractor

Aperiodic attractors in the phase space are identified by an strange structure and a highly

sensitive dependence of trajectories on the initial conditions. In dissipative systems, the

irregular structure associated with the chaotic attractoris a fractal, possessing a non-

integer inherent dimension. In discussions on transition scenarios to chaos, we will find

that chaotic attractors appear as a result of the breakdown of regular periodic/quasi-

periodic attractors. The sensitive dependence of trajectories to errors in the initial con-

dition means that two trajectories originating from initial conditions differing by a small

measure deviate as they evolve on the chaotic attractor. This implies that a small error in

the prediction of the initial condition results in growing prediction errors subsequently.
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The well-known ‘butterfly effect’ is a hypothetical illustration of the sensitivity of a

chaotic system to initial conditions. The chaotic Lorenz attractor associated with the

inception of the ‘butterfly effect’ is given in Fig. 4.5. The dark solid line and dashed

lines in the phase space Fig. 4.5 illustrate how two neighboring trajectories diverge from

each other as it evolves on the phase space.

4.4 Bifurcations

Physical mechanisms and interactions observed in a dynamical system often depend

on certain critical parameters of the system. Dependence onsystem parameters is a

feature inseparable from nonlinear dynamical systems. Changing critical parameters

would cause changes in the dynamical behavior of the system.Including this parametric

dependence in Eqn. (4.1), a more general formulation is obtained as:

Ẋ = Φ(X, µ) (4.4)

Ẋ = 0 gives the fixed points of the dynamical system. Variation of system param-

eter,µ can switch the stability of fixed points. The presence of an unstable fixed point

gives rise to the possibility of the several possible attractors that govern the asymptotic

system dynamics: limit cycles, quasi-periodic oscillations and even chaotic states. De-

pending onΦ, the spectrum of possible equilibrium states for a particular dynamical

system is defined. Among these, the asymptotic state that thesystem will correspond

to depends onµ. In addition to changes in the fixed point stability, as a parameterµ is

varied, the phase space undergoes transformations. Existing attractors can morph or dis-

appear and new attractors can be be created. Therefore, system dynamics for different

system parameters can be drastically different. By changing a system parameter sys-

tematically, transitions orbifurcationsof a nonlinear dynamical system to different non-

linear asymptotic states can be observed. According to the dynamical systems theory,

bifurcations have been categorized depending on the equilibrium states participating in

the transition. It is well-understood that physical systems follow standard bifurcations

such as pitch-fork, transcritical, saddle-node and the Hopf bifurcations (Strogatz, 1994).
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Figure 4.6: Movement of conjugate pair towards the right half plane is an indication for
the occurrence of Hopf bifurcation in the system.λ is the eigenvalue.

For the discussion of results in the present investigation the saddle-node, Hopf and the

Neimark-Sacker bifurcations are of particular importance. A saddle-node bifurcation,

also referred to as the fold bifurcation, is when stable and unstable solutions merge to-

gether. The point at which the merging occurs is the fold point. The Hopf bifurcation

results in the birth of a limit cycle solution while a Neimark-Sacker bifurcation is the

name given to secondary (Hopf) bifurcation of a limit cycle.

While on one hand, such bifurcations lend nonlinear systemstheir intrinsic com-

plexity, identical bifurcation scenarios in completely unrelated physical systems bring

together different systems giving rise to a certain universality.

4.4.1 Hopf Bifurcation, a Case Study

In the context of thermoacoustic instability, the Hopf bifurcation associated with the

formation of limit cycles and the subsequent bifurcations are of particular importance.

A Hopf bifurcation is characterized by a conjugate pair of eigenvalues of the system

crossing the imaginary axis indicating loss of stability ofthe fixed point. Figure 4.6

shows the crossing of eigenvalues in the imaginary plane, a characteristic feature of

Hopf bifurcation. Hopf bifurcation is further classified assubcritical Hopf bifurcation

and supercritical Hopf bifurcation. A limit cycle corresponds to periodic oscillations of

the state variables appears when the system parameterµ crosses the critical point i.e.,

the Hopf point. The onset of thermoacoustic oscillations occurs through Hopf bifurca-
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Figure 4.7: An illustration of a supercritical Hopf bifurcation. Solid lines indicate stable
states and the dashed line indicates unstable states. The Hopf point is the
point (Ch) where transition to a limit cycle state (SL) from fixed point(F)
occurs. The fixed point solution (F) loses stability beyond the Hopf point.

tion (Knoopet al., 1997; Zinn and Lieuwen, 2005). In nonlinear systems, two categories

of Hopf bifurcations exist, supercritical and subcriticalHopf bifurcation. Both these are

schematically explained in Fig. 4.7 & Fig. 4.8 respectively. The horizontal axis is the

parameter (C) axis and the vertical axis is the measured amplitude (V) of a state vari-

able from the system (for instance acoustic pressure). The dashed line denotes unstable

state. The solid curve in the bifurcation diagrams denote stable state/attractors. In a

supercritical bifurcation (Fig. 4.7), a stable limit cycleattractor is created at the Hopf

point. Beyond the Hopf point, the fixed point solution is always attracted towards the

available stable attractor (SL) and hence, the asymptotic state of the dynamical system

is a limit cycle oscillation (SL).

In contrast, in a subcritical bifurcation (Fig. 4.8), the fixed point solution loses sta-

bility at the Hopf point (Ch) and simultaneously, an unstable limit cycle solution is

created (UL). In addition, the unstable limit cycle oscillation exists before the Hopf

point along with the stable fixed point state (F). As a result,theoretically, beyond the

Hopf point, any infinitesimal deviation from the fixed point will cause the oscillation

to grow infinitely. However, this is not physical and the system is attracted to a distant

stable attractor (SL) and eventually settles onto that attractor. It is important to note

that it is often reported that the distant attractor is also alimit cycle. This is not a re-

quirement for a subcritical Hopf bifurcation and the distant attractor can be a period-2

or a quasi-periodic or any other variant of stable attractors (Strogatz, 1994; Nayfeh and
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Figure 4.8: A schematic representation of subcritical Hopfbifurcation. The unstable
limit cycle (UL) is represented by dashed lines and solid lines represent a
stable limit cycle (SL). F denotes the fixed point state. The grey inner region
from the basin of attraction for the fixed point and the outer shaded region
forms the basin of attraction for SL. UL is a curve on the basinboundary.
For a two dimensional system, it is the separatix (Strogatz,1994).

Balachandran, 2004; Moon, 2004).

The subcritical Hopf bifurcation scenario is explained in Fig. 4.8. A stable fixed

point attractor (F) losses its stability and a new branch - anunstable limit cycle (UL)

is born at the Hopf point (Ch). Beyond the Hopf point, the only solution is the unsta-

ble fixed point and trajectories will be repelled until a distant stable attractor is found

(shown as a limit cycle (SL) here for illustration). We see that in the region Cs-Ch is a

region of bistability where two stable attractors, F and SL co-exist along with the un-

stable attractor/repeller UL, which acts as a separator between thebasins of attraction

of the two stable attractors.

The concept of basins of attraction within the bistable region in the case of subcrit-

ical bifurcation for a two dimensional system is illustrated in Fig. 4.9. The basin of

attraction of an attractor is the set of all the initial conditions in the phase space (Stro-

gatz, 1994) such that the asymptotic state of the system is given by the attractor. The

fixed point solution F, unstable limit cycle UL and stable limit cycle SL are graphically

represented in the phase space representation as a point, a dashed loop and a solid loop.

Any initial condition of the system that lies within the darkshaded regions will spiral

away from UL towards F. This set of points denoted by the dark shaded region forms

the basin of attraction of F. Initial conditions outside theUL loop will spiral away to-
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Figure 4.9: Phase space illustration of the subcritical zone for a two dimensional system
that exhibits subcritical Hopf bifurcation. The unstable limit cycle (UL) is
represented by dashed lines and solid lines represent a stable limit cycle
(SL). F denotes the fixed point state. The grey inner region forms the basin
of attraction for the fixed point and the outer shaded region forms the basin
of attraction for SL. UL then acts as a basin boundary shared by F and SL.

wards SL. Such points in the phase space form the basin of attraction of SL. As such,

UL forms the basin boundary between the two attractors. Any initial condition on the

basin boundary continues to stay on the boundary. This, however, is an ideal situation

and as soon as perturbations or noise is present in the system, the system will always

posses either of the two stable states asymptotically. In general, the basin boundary is a

multi-dimensional hyper-surface with a complicated shape. The attributes of the basin

boundary govern transient system dynamics of thermoacoustic systems as we have ob-

served in experiments (See Appendix A for more discussions on the dynamics involved

in bistable region of a thermoacoustic system).

It can be seen that in the bistable region, if the dynamical system is forced away

from the stable fixed point towards the stable limit cycle through some mechanism, it

is possible to trigger a transition. According to the diagram, one would have to intro-

duce a finite perturbation such that the initial condition falls in the basin of attraction

of the stable limit cycle. The explosions and pulses that were introduced in liquid and

solid propellant rocket motors mentioned in Chapter 2, provided a mechanism for the

mentioned transition and pulse-triggered instability or triggering was observed. Addi-

tionally to triggering, a system undergoing a subcritical bifurcation would also display

hysteresis behavior. With reference to Fig. 4.8, without externally introduced pertur-

bations, transition to limit cycle oscillations will occurat Ch. However, variation of
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the system parameter backwards will cause transition from limit cycle oscillations to a

steady state at Cs instead of Ch. Therefore, the entire bistable region or the subcritical

zone is also a region of hysteresis. Both triggering instability and hysteresis were sub-

jects of early investigations on thermoacoustic systems and continue to be so due to the

lack of a complete understanding of the phenomenon.

4.5 Transition to Chaos

The transition from regular behavior to chaotic states in the variety of nonlinear phys-

ical systems occurs via a small number of well-defined bifurcation scenarios. As a re-

sult, these few classes of transition scenarios are often referred to by the dramatic term

‘ routes to chaos’. The most commonly observed routes to chaos in nonlinear systems,

which are of importance also to this investigation are discussed next.

4.5.1 Period-doubling Route to Chaos

The period-doubling scenario consists of a cascade of period-doubling bifurcations. A

period-1 attractor undergoes transition to a period-2 which undergoes bifurcation to

a period-4 attractor and so on, until chaos. Between different systemsthat undergo

period-doubling bifurcations to chaos, the similarity is not only in the scenario but also

in the parameter values at which individual bifurcations take place. It was pointed out

by Feigenbaum analytically (Feigenbaum, 1978) and has alsobeen found in experi-

ments (Libchaberet al., 1982) that a constant governs the parameter spacings at which

successive period-doubling bifurcations occur. IfCn,Cn+1 andCn+2 are the parameters

at which thenth, (n+ 1)th, (n+ 2)th period-doubling bifurcations respectively, then

lim
n→∞

Cn − Cn+1

Cn+1 − Cn+2

= 4.669 . . . (4.5)

The number4.669 . . . is a constant (also called the Feigenbaum number) regardless of

the system undergoing period-doubling bifurcations to chaos.
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4.5.2 Quasi-periodic Route to Chaos

In the quasi-periodic scenario, a limit cycle is first generated via a Hopf bifurcation.

With the introduction of a second frequency, incommensurate to the oscillation fre-

quency corresponding to the limit cycle, quasi-periodicity appears in the system. This

causes phase space trajectories to evolve on a quasi-periodic torus. The quasi-periodic

torus exists for a certain range of parameter values and theneventually ruptures leading

to chaos. Unlike the period-doubling route, the quasi-periodic route to chaos involves

incommensurate frequencies. This route was identified by Ruelle and Takens (1971) in

hydrodynamics systems and hence is also referred to as the Ruelle-Takens scenario.

It is important in the context of results presented in this thesis, to mention about the

phenomenon offrequency-locking. The bifurcation parameter is often associated with

the natural frequencies of the system. Changing the bifurcation parameter might lead

to a change in the frequency excited in the system. If one of the frequencies leading

to quasi-periodicity varies, the ratio between the two frequency might at some param-

eters become rationally related. Strong interaction between the two rationally related

frequencies could resist further changes in system dynamics in response to variations

in the bifurcation parameter. This would lead to frequency-locking in the system which

exists for a range of parameters before switching to quasi-periodicity or chaos.

4.5.3 Intermittency Route to Chaos

This third route is associated with an apparently irregularswitching of a system between

chaotic and regular behavior. This phenomenon is known asintermittency. The inter-

mittency route to chaos was described by Pomeau and Manneville (1980). On the basis

of theoretical analysis, they categorized intermittency into three types: type-I, type-II

and type-III. Each type is associated with a particular bifurcation prior to the intermit-

tent state. Type-I intermittency is associated with a saddle-node bifurcation. Type-II oc-

curs due to a Hopf bifurcation and is associated with the appearance of a quasi-periodic

state. Finally, type-III intermittency is associated witha reverse-period doubling bifur-

cation (Okamotoet al., 1998). Intermittency was first studied in the Rayleigh-Bénard

convection experiments and has been identified as a route to turbulence in hydrody-
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namic flows (Gollub and Benson, 1980; Swinney, 1983; Bérgeet al., 1980). In most

observations of intermittency, the intermittent state is followed by a chaotic regime. The

evolution of the intermittent state with changes in the bifurcation parameter corresponds

to statistical features specific to the type of intermittency present (Pomeauet al., 1981;

Pomeau and Manneville, 1980).

All the above stated routes to chaos have been predicted in theoretical models and

subsequently observed in experiments. The chaotic state isa dynamical behavior of the

system and not an irregularity due to errors and noise. Basedon the theory of chaotic

dynamics, it is possible to quantitatively analyze the characteristics of the chaotic at-

tractor. The divergence between neighboring trajectoriesdue to chaos, associated with

the loss of determinism and predictability and the dimension occupied by the fractal

structure of the chaotic attractor in dissipative systems can be used to quantify chaotic

behavior and have been discussed next.

4.6 Measures of a Chaotic Attractor

The fundamental feature of the trajectories of a chaotic attractor is that neighboring

trajectories diverge in time as they evolve. The attractor and its trajectories are always

bounded. Hence, due to the divergence, after a certain time interval two trajectories

starting from nearby points might lie in different parts of the attractor. To quantify these

diverging trajectories in an attractor, the concept of Lyapunov exponent was established.

A second feature of chaos in dissipative systems is that the phase space attractor is a

fractal object occupying a non-integer dimension in the phase space. The correlation

dimension is the most commonly employed technique to calculate the dimension of the

phase space attractor formed by a chaotic oscillations. Complexity of chaotic attractors

also lies in the fractal nature of the phase space attractors.

4.6.1 Lyapunov Exponent

Figure 4.10 illustrates the concept of diverging trajectories of a chaotic attractor within

a bounded region in a two dimensional phase space. Due to system dynamics, it is seen
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Figure 4.10: Divergence of neighboring trajectories of a chaotic system. The initial sep-
aration between the trajectories,∆X0, increases as the trajectories evolve.
The Lyapunov exponent characterizing the chaotic system isbased on this
divergence (further discussion presented in text).

that the initial distance between closely spaced trajectories grows with time. Consider-

ing an exponential divergence of trajectories, the local Lyapunov exponent is the rate

of exponential divergence of the trajectories. An attractor will have aspectrumof Lya-

punov exponents, each corresponding to a single phase spacecoordinate. An average

of the local Lyapunov exponents over the trajectory represents the divergence charac-

teristics of the attractor. A positive average Lyapunov exponent confirms the presence

of chaotic dynamics. Accordingly, for the identification ofchaos in a system, it is suffi-

cient to calculate the average maximal Lyapunov exponent which is defined as (Kantz,

1994),

λm = lim
t→∞

lim
d→0

1

t
ln

( |∆Xt|
d

)
(4.6)

whered = |∆X0|, the initial distance between the neighboring trajectories.

A positive maximal Lyapunov exponent indicates that on an average, there is di-

vergence between neighboring in the phase space attractor and therefore, the system is

chaotic.

4.6.2 Correlation Dimension

In the discussion on chaotic attractors, the interesting property of the attractor being a

fractal was mentioned. To establish the inherent dimensionof a phase space attractor,
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the organization of phase space trajectories making up the attractor needs to be quanti-

fied by an appropriate measure. The correlation dimension isone such measure. Taking

the analogy of a time-varying function, where correlation indicates how the dependence

between values of the function occurring with a time difference varies with the time dif-

ference, correlation for points on the phase space attractor can be defined. In the phase

space, correlation between two points varies with the spatial separation between them.

In strange attractors (fractal attractors associated withchaos), this correlation decays

with separation. The magnitude of decay is related to the inherent fractal dimension.

To calculate the correlation dimension, the correlation sum C(r), given by Eqn. (4.7),

is calculated for the attractor.

C(r) = lim
r→0

1

N2

(
number of pairs of points withEuc.dist. < r

)
, (4.7)

where,N is the number of points in the phase space andEuc.dist. is the Euclidean

distance between two points on the attractor. The correlation sum has a power law

dependence on r as r→ 0 and the power on r gives the correlation dimension of the

attractor (Moon, 2004). A non-integer correlation dimension is a direct indication that

the attractor is a fractal.

4.7 Nonlinear Time Series Analysis

It is clear from the introduction chapter of the thesis that thermoacoustic instability is a

phenomenon appears in the thermoacoustic system in the formof high amplitude pres-

sure oscillation. The limit cycle nature and the chaotic nature of the system is also well

known. Therefore, it is clear that like other physical system in nature, thermoacoustic

system should also follow a definite path towards aperiodic or periodic behavior. This

can be obtained even by solving the governing equations of the system. The presence of

limitation in modeling and measurements in experiments makes difficult to explain the

natural phenomena. In reality it is possible only to measurea few system state variables

such as pressure, temperature, velocity. However, the hostile nature of the thermoa-

coustic system makes it even difficult for measuring these variables. The embedding
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theory given by Takens (1981) becomes very useful for such complicated systems, as

from measurements of a single quantity it is possible to extract the information about

the system dynamics without any ambiguity.

As linear stability theory can only give the decay, growth inoscillations and the

corresponding frequency, in order to understand dynamicalbehavior of a system from

system variables, nonlinear time series analysis is essential. Explaining the dynamical

nature of self-excited thermoacoustic oscillations through experimentally acquired data

is the basis of the thesis.

The most important step in the time series analysis techniques used here is the repre-

sentation of the asymptotic state of nonlinear oscillations in an appropriate phase space

and investigation of the structure of the resulting attractor of system dynamics. This

attractor is a mapping of the actual process in a finite dimensional space created from

scalar observations. Topological measures of the so formedattractor, such as the cor-

relation dimension and the Lyapunov exponents of the attractor can then be calculated.

These quantities are direct measures of the complexity in the system. Several nonlinear

systems have been successfully investigated in the light ofthese techniques and from

this study, it can be seen that the nonlinear nature of thermoacoustic oscillations can

also be studied through the application of these methods. The fundamental idea behind

the time series analysis techniques employed in this work isgiven below.

4.7.1 Reconstructed Phase Space

The asymptotic dynamics of any physical system as discussedcan be viewed in terms

of its evolution in a space formed by a set of independent variables that unambiguously

define the system. The phase space attractor so formed is an invariant, which means that

the asymptotic state of the system always corresponds to theparticular attractor. Ad-

ditionally, once the system reaches the attractor, it continues to evolve on the attractor.

This would mean that identifying the topology of the phase space attractor is identify-

ing the system dynamics. Scalar measurements of the system obtained in an experiment

can be viewed at best as a mapping from the system state variables.

Clearly, the aim is to obtain system dynamics from the available scalar measure-
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Figure 4.11: A Sinusoidal time series generated in order to show the significance of
optimum time delay; the significance is shown in Figs. 4.12.

ments. The embedding theorem was first proposed by Takens (1981) for reconstruction

of a phase space from scalar measurements within which a representative attractor of

system dynamics can be obtained. He proved that it is possible to reconstruct phase

space information from time series of a single measurement using time-delayed vec-

tors. The resulting phase space attractor would preserve topological information that

quantifies system dynamics and system complexity. The ‘method of delays’ is the most

practical and widely applied method of reconstructing the attractor of system dynamics

from experimental measurements as opposed to other techniques such as the method of

obtaining derivatives from time series data suggested by Packardet al. (1980).

4.7.2 Optimum Time Delay

Time delay embedding involves obtainingn time-delayed vectors (with a time-delay

between vectors corresponding toτ ) from a single time series data. For a proper re-

construction, one is left with the task of obtaining an optimum time-delayτ and an

optimum embedding dimension. Several methods exist for obtaining optimum values

for each of the quantities. The general prescription for an optimum time-delay comes

from the fact that the vectors representing the system dynamics should be independent.

Subsequently, the optimum embedding dimension is the lowest dimension at which tra-

jectory crossings occur due to the system dynamics and not due to their projection onto

a lower than required dimension. This is of course to ensure that while evaluating the

reconstructed phase space structure, the topological characteristics obtained should be

due to system dynamics and not because the dimension chosen for reconstruction is too

small to unambiguously represent the phase space structure. A detailed discussion on
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Figure 4.12: Importance of choosing an optimum time delay for reconstruction. In this
figure, a sinusoidal time series is used for reconstruction.The correct
phase space trajectory is a circle which can be seen as in the reconstructed
phase space (a). The time delay chosen corresponds to one-fourth of the
time period. When a non-optimal time delay is chosen, the phase space
trajectories are distorted (b). As a result, the geometrical characteristics
of the phase space trajectories does not represent dynamicsof the system
correctly.

the various algorithms for choosing the optimum time delay and embedding dimension

can be found in Kantz and Schreiber (2003) and Abarbanel (1996).

Accordingly, the time-delayed coordinates from a time series data (Abarbanelet al.,

1993),s(n) = s(t0 + nτs), whereτs is the sampling time interval would be

y(n) = [s(n), s(n+ τ), s(n + 2τ), s(n+ 3τ), . . . ]

Consider a sinusoidal signal as shown in Fig. 4.11. For a puresine wave, at a time-

lag corresponding to1/4th of the time period i.e. a phase shift ofπ/2, correlation goes

to 0 (a cosine, which is equivalent to a sine being shifted by a phase ofπ/2, and a sine

are an orthogonal pair of functions). By choosing a time delay τ for reconstruction of

the phase space equal to a quarter of the signal time period, we get the familiar limit

cycle loop in Fig. 4.12 a. However, choosing a time delay differently leads to a distorted

limit cycle as seen in Fig. 4.12 b. By choosing vectors for phase space reconstruction

which are by some measure (here correlation), the least correlated, the optimum phase

space representation is reconstructed. The concept of signal correlation works in the

case of a single frequency limit cycle, but being essentially a linear approach, it is not

effective for more complex oscillations such as quasi-periodic and chaotic oscillations.
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Figure 4.13: This figure shows a closed orbit in reconstructed phase spaces of different
dimensions. In the two dimensional reconstruction (a), trajectories appear
to intersect each other. All the points at this intersectionwould be falsely
considered neighbors in the phase space (as seen in the zoomed-in view,
b). This false intersection is resolved in a three dimensional reconstruction
(c) where a distinct limit cycle loop is observed. It is important not to
choose a lower than optimal embedding dimension for reconstruction.

4.7.3 Optimum Embedding Dimension

Once the delayed vectors are obtained, it is essential to calculate the embedding dimen-

sion that produces a proper reconstruction. Phase space reconstruction is essentially a

mapping of the original multivariate phase space, of dimensionality dA to a subspace

created from the time-delayed vector obtained from experiments, in a manner such that

the invariants of the system remain constant. The dimensionof the subspace, referred

to as the embedding dimension,dE, is one of the two important entities to be derived

for a proper mapping or embedding. A dimension equal to or larger than the embedding

dimension can be used for phase space reconstruction but choosing a dimension lower

than the embedding dimension will lead to false embedding. Appropriate embedding

dimension can be calculated from the measured times series using one of the several

techniques available. A review of commonly used techniquessuch as singular-value

decomposition of the sample covariance matrix, saturationwith dimension of some

system invariant, the method of false nearest neighbors andthe method of true vector

fields is given by Abarbanelet al. (1993).

In Fig. 4.13, the situation of a false embedding caused due tolower than optimum
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embedding dimension is shown. The phase space trajectory when seen on a two dimen-

sional space (Fig. 4.13 a) contains false crossings (Fig. 4.13 b, zoomed view). Only by

choosing a higher dimension (Fig.4.13 c), this false embedding is remedied. As will be

seen later, the false nearest neighbor algorithm is based ondetecting the percentage of

false crossings for an embedding dimension. Unless this percentage goes to zero, the

dimension is not appropriate for reconstruction and a higher dimension will be required.

Once the phase space trajectories are reconstructed in an appropriate phase space,

quantitative information about the phase space attractors, namely the maximal Lya-

punov exponent and the correlation dimension can be obtained. Also, other phase space

analysis techniques such as recurrence plots that have beenimplemented in the analysis

here require a correct phase space reconstruction. The implementation of algorithms

for the calculation of the Lyapunov exponent and correlation dimension as well as other

techniques have been discussed together with results in subsequent chapters.
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CHAPTER 5

FLAME ACOUSTIC INTERACTION LEADING TO

INTERMITTENCY AND LEAN FLAME BLOWOUT

5.1 Introduction

In the present study, we investigate the bifurcation behavior of a confined, burner sta-

bilized, single conical premixed flame system. Such a configuration is the most basic

combustion-driven thermoacoustic system. In this simple configuration, we will attempt

to study the fundamental dynamics associated with thermoacoustic instability. As we

will see later in the results of the bifurcation analysis, a transition occurs from steady to

oscillatory dynamics through a Hopf bifurcation. This bifurcation is then followed by

further bifurcations resulting in complex dynamical states. Eventually, thermoacous-

tic oscillations lead to flame blowout. The oscillation dynamics prior to flame blowout

resemble the phenomenon of intermittency which we will discuss in detail in the follow-

ing section. The present study provides a more detailed investigation of the occurrence

of intermittency in thermoacoustic oscillations.

5.2 Bifurcation Analysis

The experimental bifurcation analysis of the system under study suggests that the non-

linear interaction between the laminar conical flame and theacoustic field of the duct

results in different oscillation states. As seen in the bifurcation plot in Fig. 5.1, a clear

transition exists between oscillations with different characteristics. This bifurcation

plot, has been obtained using flame location as the control parameter, maintaining a con-

stant equivalence ratio (φ = 0.51). Starting with a steady state (absence of oscillations),

the flame location was gradually varied in steps of5mm and the acoustic pressure data



Figure 5.1: Experimental bifurcation plot for equivalenceratio,φ = 0.51. The plot is
divided into regions according to the nonlinear characteristics of the self-
excited oscillations. Transition to instability occurs via a subcritical Hopf
bifurcation at the flame location,xf = 56.5 cm, marked asxh. Region I,
II and III correspond to limit cycle oscillations, quasi-periodic oscillations
and intermittent behavior respectively.

was acquired corresponding to each location. The oscillation state for each flame loca-

tion is then represented by plotting the amplitude of all thelocal maxima in the pressure

time series present in a time interval of0.5 s. In the plot, the ordinate corresponds to the

values of the amplitude of local maxima in the acquired acoustic pressure time series,

corresponding to each flame location that was investigated,given by the abscissa. It is

clear that all the local maxima amplitudes in limit cycle oscillations, characterized by

periodic oscillations of a single dominant frequency, willcoincide, resulting in a single

point on the bifurcation plot. Oscillations characteristically different from limit cycle

oscillation will result in a set of points (corresponding tothe flame location at which the

oscillations occur) whose distribution will depend on the variations in the local maxima

amplitude values. In the light of this discussion, it is observed from the bifurcation

plot, Fig. 5.1, that atxf = xh, a bifurcation occurs in the system and results in the

occurrence of thermoacoustic instability in the form of limit cycle oscillation. This bi-

furcation is a subcritical Hopf bifurcation whose subcritical nature is evident from the

sudden jump (xf = 56.5 cm) in the pressure amplitude, clearly seen in the bifurcation

plot. Interestingly, atxf = 62 cm, a second bifurcation is observed to occur which is

clearly indicated by the appearance of a spread in the amplitudes of the local maxima.
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Figure 5.2: Time series data of pressure fluctuations for limit cycle oscillation (a) at
xf = 56.5 cm, quasi-periodic atxf = 62 cm (b) and intermittent oscil-
lations (c) at xf = 63.5 cm. In the case of intermittent oscillation, the
pressure time series is shown for10 sec to show the two types of burst and
the fixed point in between.

This spread increases gradually as the flame location is varied further and is followed

by a sudden change atxf = 63.5 cm, indicating the presence of another bifurcation

of the system. The points on the bifurcation plot after this bifurcation are highly ir-

regular. No further bifurcation is observed to appear in thesystem and eventually at

xf = 69.5 cm, flame blowout occurs due to violent oscillations in acoustic pressure as

well as the flame, as we shall see later. From the observed behavior, the entire bifur-

cation plot can be divided into three parts, marked as regionI, II and III in Fig. 5.1.

The acquired pressure time series atxf = 56.5 cm (region I),62 cm (region II) and

63.5 cm (region III) are shown in Fig. 5.2. Limit cycle oscillation (with noticeable ef-

fects of the presence of superharmonics) in region I are seenin Fig. 5.2a. Oscillations

in Fig. 5.2b & c posses dynamics that are quite different and need further treatment.

These oscillations are a direct consequence of the respective bifurcations and identifi-

cation of the characteristics of the oscillations will directly indicate the nature of the

bifurcations. Towards this purpose, we will utilize the techniques for reconstruction of

the system dynamics in the phase space (representative attractor of system dynamics)

from the time series data of the pressure fluctuations.

5.2.1 Implementation of Nonlinear Time Series Analysis

For the investigations presented here, we have obtained optimum time-delays for phase

space reconstruction based on the calculation of average mutual information (Fraser
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and Swinney, 1986). The average mutual information betweenthe original vector and

a time-delayed vector indicates the extent of information,I, shared between the two.

Clearly, for reconstruction, the optimum time-delay will correspond to a small value of

the corresponding average mutual information. As pointed out by Fraser and Swinney

(1986), the time-delay at which the average mutual information attains its first local

minima will result in a good reconstruction.

Considering a scalar time series data acquired at a samplingtime intervalτs, p(n) =

p(t0 + nτs), the average mutual information at a time-delayτ is given as

AMI(τ) =
∑

i,j

P (pi(n), pj(n+ τ)) log2
P (pi(n), pj(n + τ))

P (pi(n)) P (pj(n + τ))
.

The probability that the time series,p(n), assumes a valuepi(n) is given byP (pi(n)).

The joint probability of the event that the original time series,p(n), and the delayed time

series,p(n + τ), simultaneously assume a valuepi(n) andpj(n + τ)) respectively, is

denoted byP (pi(n), pj(n + τ)).

The reconstruction matrix constructed using the optimum time-delay,τ can be rep-

resented as

y = [p(n), p(n+ τ), p(n+ 2τ), p(n + 3τ), . . . ] .

Average mutual information calculated for pressure oscillations during thermoa-

coustic instability acquired in our experiments is plottedin Fig. 5.3a, corresponding to

the three cases given in Fig. 5.2. The first minima of the plot of average mutual infor-

mation is the time delay recommended for phase space reconstruction. We have recon-

structed a three-dimensional projection (Fig. 5.4a to c) of the actual multi-dimensional

attractor that governs the system dynamics during the occurrence of instability.

5.2.2 Reconstructed Phase Space

After obtaining the delayed vectors, we can represent system dynamics in a recon-

structed phase space with an appropriate dimension. In order to avoid false crossings

of the trajectories in the phase space due to a lower than required reconstruction dimen-

65



Figure 5.3: Average mutual information (a) and percentage of false nearest neighbor (b)
calculations for the determination of optimum time delay and embedding
dimension respectively. The first minimum in the plot of average mutual
information gives the time-lag to be used for optimum time delay. At an
optimum embedding dimension, the percentage of false nearest neighbors
vanishes. Curves have been plotted corresponding to the time series data
presented in Fig. 5.2.

sion, it is important to calculate the optimum embedding dimension. For the analysis

presented here, we have used the false nearest neighbor method proposed by Kennel

et al. (1992). According to the false nearest neighbor algorithm,for every dimension,

the false crossings of the reconstructed trajectories is calculated in terms of the per-

centage of points that falsely appear in the vicinity of other points. Percentage of false

neighbors is calculated for increasing the reconstructiondimension and the dimension

for which this percentage goes very close to zero is an optimum embedding dimension.

Figure 5.3b presents the plot between the percentage of false neighborsas a function of

the dimension for pressure time series acquired in our investigation. This plot shows that

the dynamics of oscillations in all the three regions is restricted to a four dimensional

phase space. The dominant features of the attractor can alsobe visualized in a three

dimensional projection with minimum loss of information about the system dynamics.

For recurrence analysis, we have used a four dimensional phase space.

The frequency spectrum of each of the three oscillation states are shown in Fig. 5.4 (d−
f ). Figure 5.4a is the reconstructed phase portrait for limit cycle oscillations. Limit

cycle oscillations exists for flame locations ranging from56.5 cm to 61.5 cm (Fig. 5.1).

The single closed loop and the presence of a single dominating frequency with its

higher harmonics confirms periodic behavior. The limit cycle oscillations undergo a

bifurcation leading to oscillations whose phase space attractor resembles a torus. Such
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Figure 5.4: Reconstructed phase space attractors (a, b, c) from time series data of pres-
sure fluctuations (see Fig. 5.1) and corresponding frequency spectrum
(d, e, f ) for limit cycle, quasi-periodic and intermittent oscillations ob-
served in the system in region I, II and III respectively. Thefrequencies
aref = 186 Hz, f1=139 Hz.

a structure indicates the presence of quasi-periodic behavior, where unlike limit cy-

cle oscillation, the trajectory forming the phase space attractor does not come back

to the same point after every oscillation. The trajectory evolves on a toroidal struc-

ture instead, never coming back to the initial point. This isalso reflected in the fre-

quency spectrum which shows the presence ofincommensuratefrequency components

(f = 186 Hz andf1 = 139 Hz). Essentially due to the presence of incommensu-

rate frequencies (f − f1 = 47 Hz, 2f1 − f = 92 Hz), the oscillations are technically

aperiodic. The unique feature of quasi-periodic oscillation is the presence of linear

combination of dominating frequency (f1) in the system which helps to form the dense

toroidal structure in the phase space. Emergence of a quasi-periodic state from limit

cycle oscillations is a result of a secondary Hopf bifurcation, also referred to as the

Neimark-Sacker bifurcation (Nayfeh and Balachandran, 2004). This particular bifurca-

tion is quite common in nonlinear systems (Nayfeh and Balachandran, 2004).

The next interesting behavior appears in the system as it crossesxf = 61.5 cm. In the

time series plot, Fig. 5.2, we find that the oscillation is characterized by sudden, irregular

and intermittentbursts. In the frequency spectrum, Fig. 5.4f , we see a broadband

frequency content as opposed to clear dominant peaks. The reconstructed phase space,
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Figure 5.5: (a) Pressure time trace acquired at flame location xf = 63.5 cm (Fig. 5.1,
region IV). Two types of bursts are present,B1 andB2. b, c andd - Fre-
quency spectrum of the laminar stateL, B1 andB2 respectively.

Fig. 5.4c, has two dense, concentric disks - an outer and an inner disk.Most of the

dynamics occurs in these two disks. During the bursts, the trajectories are pushed to the

outer disk and then are re-injected back to the inner region.This oscillation is similar

to the intermittent oscillations observed in many other nonlinear systems as a result

of the phenomenon referred to asintermittency. This particular dynamics occurs as a

result of the breakdown of the quasi-periodic attractor, suggesting that the intermittency

observed in our system is a type-II intermittency.

Bifurcation of quasi-periodic oscillations leads to burstoscillations in region IV of

the bifurcation plot. In the pressure time series, irregular bursts are observed where

the amplitude attains about 10 times the amplitude observedin limit cycle and quasi-

periodic states. Pressure time trace, frequency spectrum and phase space representation

for this state are shown in Fig. 5.2 and Fig. 5.1 respectively. Pressure time series corre-

sponding to30 s of burst oscillations is given in Fig. 5.5a.

Intermittency in dynamical systems is the repeated transition between quiescent or

regular and burst or irregular states of the system. Such phenomenon has been captured

in a number of experiments on fluid systems (Bérgeet al., 1980), solar activity (Platt

et al., 1993) and chemical kinetics (Pomeauet al., 1981). Several models explaining

intermittency have also been constructed. However, the occurrence of intermittency

in different systems are characteristically different. Hence, categories of intermittency

(Type I, II and III, crisis-induced and on-off intermittency being the major categories)

have been proposed by theoreticians, primarily based on statistical characteristics of
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the apparently random transitions and associated bifurcations. Intermittency also is one

of the routes from periodic to chaotic oscillations. In the following, we discuss the

dynamics of thermoacoustic oscillations observed in the system under investigation,

with emphasis on comparison with intermittency.

As marked in Fig. 5.5a, two types of bursts were observed -B1 & B2, along with

sections of laminar (L) state. Laminar state refers to regular periodic sections in be-

tween burst oscillations. Power spectrum corresponding tothe three states are given in

Figs. 5.5b, c & d. Frequency spectra for the smaller burstB1 (Fig. 5.5c) and the lami-

nar state (Fig. 5.5b) consist of dominant peaks at identical frequencies. However, in the

frequency spectrum forB1, we find additional peaks due to its deviation from the lami-

nar state. During the smaller burst,B1, the system attempts to escape the laminar state

but is unable to escape and the burst eventually ends with a steady state. ForB2, the

power spectrum shows a broadband frequency centered atf1. In this state, the system

leaves the laminar state (periodic orbit) and temporarily settles to another non-periodic

(B1 & B2) dynamical state. After spending some time in the non-periodic state, oscil-

lations decay to a steady state. A sudden decay in oscillations marks the end of a burst.

A laminar state follows where there is a growth of oscillations of a single dominant

frequency. Beyond a certain oscillation amplitude, the system leaves the laminar state

leading to eitherB1 orB2 (Fig. 5.5a).

5.3 Characterization of Intermittent Oscillations

5.3.1 Return Map

We use a mapping technique for dynamical systems, thereturn map(Nayfeh and Bal-

achandran, 2004; Strogatz, 1994) to further analyze the different dynamical states ob-

served in the thermoacoustic system under investigation. This technique can be used to

investigate the evolution of extreme events such as local maxima and minima or evolu-

tion of the periodicity, drift with time and so on. For instance, in the first return map,

all the maxima,pn are collected and each maxima is plotted against the next maxima

that occurs and a two-dimensional plot,pn vs. pn+1 is obtained. This would be equiv-
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Figure 5.6: Comparison of first return map for (a) limit cycleoscillation (xf =
56.5 cm), (b) Quasi-periodic oscillation (xf = 62 cm) and (c) intermittent
burst oscillation (xf = 63.5 cm).

alent to simply plotting successive values of a system variable, at points where the first

derivative goes to zero, against each other. If successive maxima/minima are equal,

mapping lies on thex = y main diagonal; else it moves away from the main diagonal.

Hence, through this approach, significant information about a dynamical system can be

obtained even in two dimensions. It is an important technique that can be utilized to

study the underlying dynamics of the system. Return maps also makes it possible to

directly compare continuous systems with standard discrete maps such as the logistic

map, circle map and tent map for instance.

In Fig. 5.6, we have plotted the first return map for limit cycle (a), quasi-periodic

(b) and intermittent (c) oscillations. We used values of local maxima extracted from

the acoustic pressure time series for creating the plots. For limit cycle oscillations, the

return map is a single point on the main diagonal. This is because as discussed for the

bifurcation plot, all the local maxima are of the same amplitude. For quasi-periodic
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oscillations, the return map gives a circular loop around the main diagonal. Bifurcation

of the quasi-periodic state results in breaking down of the quasi-periodic return map

pattern. The burst oscillations that emerge, when projected on a first return map gives

scattered points. On careful inspection, we find that along thex = y diagonal, the points

follow a trend of gradually drifting away from it. This resembles the return map of the

simple logistic map which displays similar distribution ofpoints on the return map dur-

ing its intermittent state. Several other systems such as intermittent states in hydrody-

namic systems (Batisteet al., 2001) where one finds turbulent bursts distributed among

laminar states also show such resemblance. Looking at this resemblance, we can say

that the nonlinear phenomenon of intermittency and the burst oscillations observed in

our system may be related. If so, intermittency (Pomeau and Manneville, 1980), which

has been investigated in rigorous detail by specialists in the field of nonlinear dynamics,

could to certain extent describe features of thermoacoustic instability and its behavior

just before flame blowout phenomena. Additionally, the factthat a subcritical Hopf bi-

furcation gives rise to oscillations indicates that the type of intermittency involved with

burst oscillations could be type-II intermittency.

We analyse the dynamics of the observed thermoacoustic oscillations in a recon-

structed phase space derived from the time series measurements of acoustic pressure.

In particular, we investigate the intermittent behavior occurring prior to flame blowout

as a result of nonlinear bifurcations in the system by studying the recurrence behav-

ior of the system dynamics (Klimaszewska and Zebrowski, 2009). A more elaborate

discussion is presented below.

5.3.2 Recurrence Plots

Recurrence plots (RPs) were introduced by Eckmannet al.(1987) as a tool for studying

the recurrences of phase space trajectories. An RP is created from a recurrence matrix

which contains information about whether or not pairs of points in the phase space occur

close to each other (indicating the recurrence of phase space trajectories). Starting from

the phase space attractor (the reconstructed attractor using time-delay embedding for

experimentally acquired data), every region in the phase space occupied by the phase
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space attractor is checked for recurrences by the phase space trajectory. The binary

recurrence matrixRij|N×N is then defined for a phase space attractor withN points as:

Rij = Θ(ǫ− ||~xi − ~xj ||), i, j = 1, . . . , N

whereΘ is the Heaviside function,ǫ is a predefined threshold,||.|| is the norm between

two points that is evaluated for recurrence,~xi is a point on the attractor in the phase

space. The threshold for recurrence,ǫ determines the upper limit of the separation

between pairs of points in the phase space that can qualify asa recurrence pair. It is im-

portant to choose a suitableǫ for the recurrence plots. If the threshold is high, too many

recurrence pairs in the recurrence plot will mask the fine features of the recurrence plot.

If chosen too low, recurrences due to system dynamics will beunderestimated. There

are several approaches to choosing an optimum threshold (see Marwanet al., 2007).

One method for choosingǫ is to fix the recurrence density such that for each point

considered, the number of points qualifying recurrence is fixed (Marwan, 2003). This

method however is computationally more expensive than using a fixed the recurrence

threshold. Our implementation uses a fixedǫ for all points, with a value equal to10%

of the attractor diameter (Marwan, 2003). For evaluating recurrence, commonly theL2

norm is used. However, theL1 andL∞ norm can also be used (a more detailed dis-

cussion is presented in Marwan, 2003). For results presented here, theL2 norm was

applied for recurrence analysis.

The recurrence plot then consists of black and white points,black denoting that two

points are sufficiently close-by in the phase space indicating a recurrence of the phase

space trajectory. Points on the main diagonal are always black (due to the trivial fact

that every point is definitely close to itself). Several salient features of the dynamical

system can be studied on a recurrence plot. For periodic oscillation such as limit cycle,

the 45◦ lines parallel to the main diagonal line are always equally spaced, indicating

the single time period with which the system is oscillating.The recurrence plot of a

periodic signal is dominated by long dark lines parallel to the main diagonal. Random

uncorrelated noise will result in a uniform but random distribution of black and white

points. The salient features of RP has been discussed very clearly by Marwan (2003)

for periodic, aperiodic and noisy system. The features of anRP can be changed depend-
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Figure 5.7: Recurrence plots for limit cycle oscillations (a(ii)) and quasi-periodic os-
cillations (b(ii)). Equally spaced diagonal lines indicate the presence of a
single dominant frequency in the limit cycle oscillations.For quasi-periodic
oscillations it is seen that diagonal line segments are separated by unequal
vertical spacings; a manifestation of irrationally related frequencies com-
prising the quasi-periodic state. A four dimensional spacewas used to con-
struct the recurrence plot, with a specified recurrence threshold (ǫ) of 0.03V
and 0.07V for limit cycle and quasi-periodic oscillations respectively.

ing on the system dynamics. To quantify the dynamical behavior further, treatment of

the RP is needed depending on the amount of quantitative information ones is seeking

about the system dynamics. A significant advantage is the ability to infer critical in-

formation about the dynamical system even from short time series data. As mentioned

by Eckmannet al. (1987), an RP is essentially a time plot and through the RP it is pos-

sible to identify dynamics on large and small time scales simultaneously. Owing to its

potential, the method of recurrence plots has been applied to physical and physiologi-

cal data in several investigations, more recently by Marwan(2003). In the presence of

intermittency, the structure of diagonal segments in an RP is modified depending on the

type of intermittency present (Klimaszewska and Zebrowski, 2009).

The recurrence plots for the pressure time series forxf = 56.5 cm andxf = 63 cm,

are shown in Fig. 5.7. From our previous discussion, we know that atxf = 56.5 cm

the pressure oscillations exhibits limit cycle behavior whereas forxf = 63 cm the os-

cillations are quasi-periodic in nature. The dynamics is clearly represented in the RPs.
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Figure 5.8: Intermittent oscillation for flame locationxf = 63.5 cm is shown in plot a
and recurrence plot corresponding to intermittent oscillations (a) is shown
in (b). Embedding dimension =4, ǫ = 0.4V . In c, a closer look into the
patterns comprising the recurrence plot is presented. The end of laminar
phases correspond to elongated structures, whose kite-like appearance indi-
cates type-II intermittency. Acoustic pressure amplitudein the time series
corresponding to recurrence plots is in Volts.

Equally spaced diagonal lines parallel to the main diagonaldenote periodic behavior

as is seen in Fig. 5.7 a(ii) which corresponds to limit cycle oscillation. As already dis-

cussed, a RP is essentially a time plot and hence temporal features such as the time

period (vertical spacing between diagonal lines) can be directly obtained. Presence of

a second incommensurate frequency in quasi-periodic oscillations translates to diago-

nal lines parallel to the main diagonal but separated by unequal vertical spacings (Zou,

2007). This is also what is observed in the RP corresponding to quasi-periodic oscilla-

tion, as seen in Fig. 5.7 b(ii).

The obtained RP from the time series data of acoustic pressure corresponding to

intermittent oscillations is showed in Fig. 5.8 b. The denseblack patches on the RP

plot correspond to laminar states (dynamics prior to bursts) in the system. The laminar

states are interrupted by bursts, which are still oscillatory in nature, as seen in the time

series. During these bursts, the system dynamics is such that the recurrence of phase
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space trajectories is significantly reduced. In effect, thedensity of the black region is

thinned by white regions. This can be seen clearly by comparing the pressure oscilla-

tion time series, Fig. 5.8 a with the corresponding RP shown in Fig. 5.8 b. Bursts are

associated with the absence of recurrence in the RP. A zoomed-in view of the RP is

given in Fig. 5.8 c. The kite like elongation (Fig. 5.8 c) seenon the top right is a char-

acteristic of type-II intermittency (Klimaszewska and Zebrowski, 2009). Klimaszewska

and Zebrowski (2009) presented an analysis to identify the intermittency types based

on the recurrence plot analysis. Type-II and type-III were found to have similar large

scale patterns, black squares. However, a closer look indicated that the kite-like struc-

ture differentiates type-II from type-III. Accordingly, the recurrence plot obtained for

the intermittent oscillations in our system indicates type-II intermittency.

Figure 5.9: Recurrence behavior of the system prior to a burst (top-left frame). The
evolution of the system entering a burst state is analyzed byfollowing the
main diagonal. Windows a-c as marked indicate the transition of the system
from limit cycle to quasi-periodic oscillations before theoccurrence of a
burst.
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Further magnification of the recurrence plot reveals that within the kite-like struc-

ture, more detail about the system transition to bursts is embedded. An RP indicating

system dynamics prior to entering the burst phase is given inFig. 5.9. Figures marked

a, b and c are windows taken from the RP on the top left. Following the main diagonal

in RPs is essentially following the temporal evolution of the system. Before entering

a burst, the system dynamics is characterized by limit cycleoscillations (window a).

Gradually, the limit cycle undergoes transformation towards quasi-periodic behavior

(window b). Just before a burst, the RP is strongly indicative of quasi-periodic dynam-

ics.

An additional feature associated with intermittency is thechange in the intermittent

behavior itself as the control parameter is changed. Pomeauand Manneville (1980)

reported that for intermittent oscillations, the average length of laminar phases decreases

as the control parameter is gradually varied. A similar trend is seen in the present case

for the flame locationsxf between63.5 cm and 69.5 cm (see Fig. 5.1), region IV.

Initially, just after the transition from quasi-periodic state to intermittent state, bursts

are temporally spaced quite distant from each other. As the flame location is varied, the

occurrence of bursts become more frequent. At a flame location of 69.5 cm, the flame

is unable to form a stable attachment point to the burner rim and therefore oscillates

violently while in a lifted position and then blows off. Any further change in flame

location leads to flame blowout.

Figure 5.11 shows the evolution of bursts as the flame location is varied further

from the bifurcation point. As the flame location is gradually varied, a higher number

of bursts are seen for the total data acquisition time. This is in agreement with the trends

reported in the literature on intermittency. Prior to flame blowout, in Fig. 5.10l, the in-

termittent bursts occur quite frequently. Comparing the recurrence plots for oscillations

states at a flame location close to bifurcation, Fig. 5.8 and at a flame location close to

lean blowout, Fig. 5.11b, shows that close to lean blowout, laminar states states become

smaller and bursts occur more frequently (Fig. 5.11a). This is seen as smaller but a con-

siderably greater number of closely spaced dark patches in the recurrence plot, Fig. 5.8.

A magnified view of the recurrence plot is presented in Fig. 5.11 d. The high amplitude

pressure oscillations occurring rapidly during the intermittent state disturbs the flame
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Figure 5.10: Pressure time series,p (t) for flame locations,xf = 64.5 cm till xf =
69.5 cm, arranged (a to l) in the increasing order of flame locations. Flame
blowout limit for the system at the given operating conditions occurs after
xf = 69.5 cm (i.e., afterl).

Figure 5.11: System dynamics analyzed through a recurrenceplot at a flame loca-
tion (xf = 69 cm) close to blowout. Embedding dimension = 4 andǫ
= 0.4V . Near flame blowout, bursts occur more rapidly (a). Acousticpres-
sure amplitude in a and c are represented in volts.
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stabilization point as we will discuss through flame imaginglater and eventually leads

to flame blowout.

The large scale patterns and the finer textures formed in the recurrence plot are

associated directly with the topological characteristicsof the phase space attractor. As

such, a quantitative study of the recurrence plot will provide information about the

system dynamics. Recurrence quantification techniques were suggested by Eckmann

et al.(1987), who mentions about the patterns and textures of the recurrence plot in her

investigation. A detailed study on recurrence quantification analysis has been put forth

by Zbilut and Webber (1992) and Marwan (2003). According to these reports, one can

obtain the degree of determinism involved with a dynamical system by examining the

ratio of points contributing to linear structures and individual points distributed in the

recurrence plot.

As an illustration, by definition, positive Lyapunov exponents in system dynamics

indicate divergence between nearby trajectories. Divergence between two trajectories

would lead to an end of recurrence between the trajectories after a certain time which is

determined by the magnitude of divergence between them. Hence the Lyapunov expo-

nent is then related to the longest linear structures in the recurrence plot. Accordingly,

the degree of determinism of a system goes down as linear structures become shorter

and less pronounced in the recurrence plot. Here, we examinethe recurrence plot for

the intermittent states graphically. From the kite-like structure present in the recurrence

plot, we arrive at the inference that the system has a type-IIintermittency as pointed out

by Klimaszewska and Zebrowski (2009). However, further investigation of intermit-

tency in thermoacoustic systems with the help of recurrenceanalysis techniques should

provide more details on the phenomenon.

5.4 Flame Dynamics

A qualitative analysis of flame oscillations at the observednonlinear states gives further

insight into the process. By analysing high speed flame images, it was found that non-

linear dynamics of thermoacoustic oscillations identifiedthrough nonlinear time series
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Figure 5.12: Sequence of instantaneous flame images (framing rate,5 kHz) for limit
cycle oscillation, a =0ms, b =0.8ms, c =1.4ms, d =2.8ms, e =4.2ms
and f =5.4ms. A uniform periodic flame wrinkling about the mean flame
shape is observed during limit cycle oscillations

analysis of pressure oscillations is reflected in the flame dynamics. Results show that

uniform flame surface modulation (Fig. 5.12) is restricted only for periodic limit cycle

oscillations. Figure 5.12 a to f are the instantaneous flame images corresponding to one

time period of oscillation (5.4 ms). During a single time period, wrinkles appear to

originate at the base of the flame and propagate downstream along the flame surface.

The flame surface area modulations occur about the mean flame shape.

Flame oscillations corresponding to quasi-periodic oscillations feature flame elon-

gation, neck-formation, pinch-off and cusping, in addition to fluctuations about the

mean flame shape. The various events associated with a quasi-periodic flame oscillation

behavior are highlighted in Fig. 5.13. The arrows indicate flame surface elongation and

the circles mark neck-formation, pinch-off and cusping of the flame that follows elon-

gation. Flames images presented are not equally spaced in time but have been chosen to

illustrate the differences with flame oscillations observed during limit cycle oscillations.

The dynamics are largely influenced by the oscillations in the acoustic variables around

the burner exit. The amplitude of acoustic pressure oscillations for limit cycle and

quasi-periodic oscillations at a given duct location are comparable (refer to Fig. 5.2).

The flame and the burner exit however experience different acoustic fields for the two

oscillation states in terms of pressure amplitude, which isthe reason for differences in

the flame-acoustic interaction.

Nonlinear features in flame dynamics such as pinch-off have been reported previ-

ously in experiments based on forcing of unconfined flames (cfBondar, 2007). The

introduction of acoustic forcing results in the creation ofdisturbances at the flame base.

These disturbances travel along the flame surface convectively and lead to a global flame
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Figure 5.13: Sequence of instantaneous flame images (framing rate,5 kHz) at quasi-
periodic oscillations. a =0 ms, b = 2.6 ms, c = 4 ms, d = 4.2 ms, e
= 4.4 ms, f = 4.6 ms and g =8 ms. Characteristic flame surface area
modulations during quasi-periodic oscillations involve flame elongation
(b), neck-formation (c), pinch-off (d, e) and subsequent cusp formation
(f). The arrows and circles mark the evolution of flame elongation and
subsequent pinch-off during the quasi-periodic state. Theheight of the
flame tip is marked with the alphabet h to show that the flame tipgets
elongated as it moves towards cusping.

response. As the amplitude of acoustic forcing introduced on the flame is increased, the

strength of disturbances generated at the flame base increases and eventually flame re-

sponse characteristics such as pinch-off appear. In the context of this discussion and the

observation of complex nonlinear self-excited state in ourexperiments, the experimen-

tal investigation presented by Bourehla and Baillot (1998)is of particular relevance.

Through an exhaustive analysis they reported that the flame response can be quite var-

ied, ranging from uniform wrinkling to subharmonic and chaotic response, depending

on the amplitudes and the frequency of acoustic forcing. Themechanism of flame sur-

face area fluctuations in our experiments is also similar to forcing experiments, as ob-

served from the flame images. Variation in the flame location changes the characteristics

of acoustic field affecting the flame and correspondingly theflame response. However,

unlike forced flame behavior, in a self-excited case, the interaction between flame and

acoustics is a feedback interaction. This means that changes in flame response to chang-

ing acoustic field interacts with the system acoustics. Thisinteractions in turn governs

the asymptotic system dynamics; bifurcation of a limit cycle state to quasi-periodic os-

cillations and subsequent bifurcations are identified in this present study. Bifurcation

of the quasi-periodic state leads to intermittency and the characteristic flame dynamics

during intermittency are discussed next.

A sequence of flame images acquired during intermittency by avideo camera and
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Figure 5.14: Flame dynamics during intermittent oscillations - long exposure images
acquired at 25 Hz (top row) indicate the variation in mean flame shape and
location during intermittent oscillations. Images are arranged in the order
of their occurrence (left to right). Frames acquired at: a = 0s, b = 0.76 s, c
= 1.36 s, d = 1.4 s, e = 1.44 s, f = 1.52 s, g = 1.56 s, h = 1.6 s, i = 1.68s, j
= 1.84 s, k = 1.88 s, l = 1.92 s, m = 2.0 s, n = 2.12 s, o = 2.16 s, p = 2.32 s,
q = 2.52 s, r = 2.6 s. Exposure time corresponds to approximately 5 cycles
of the oscillation. Instantaneous images (bottom row) marked with circles
highlight the characteristic stretching, folding (i) and local extinction (j) in
the flame. The lifted flame oscillates in the jet transition region, at about
5 burner tube diameters from the burner exit plane indicating a non-trivial
impact of jet flow dynamics. The chaotic flame oscillations during the
lifted state is clearly discernible.

instantaneous high speed images acquired by a high speed camera are presented in

Fig. 5.14. Sudden bursts in acoustic oscillations (Fig. 5.10) are accompanied by re-

peated flame lift-off and reattachment behavior. Lifting-off of the flame occurs due to

the inability of the flame to sustain a stable attachment withthe burner during high am-

plitude oscillations. The images correspond to flame oscillations prior to lift-off, during

lift-off and during reattachment. The low sampling rate video images give an idea of

the amplitude of flame oscillations and the mean flame shape during the different stages

of the flame during intermittency and the instantaneous images illustrate the stretching

and folding undergone by the flame. Oscillations in the flame surface prior to the burst

phase, while it is still attached to the burner rim (image frame a, b in Fig. 5.14) are sim-

ilar to the flame surface area modulation as seen in limit cycle oscillations (Fig. 5.7).

Even following the detachment of the flame from the burner rim(beginning of the burst

phase), flame oscillations continue to exist (image frame d-o) as in the acoustic pres-

sure (see Fig. 5.2). It is seen that during this phase, flame oscillations are composed of

high frequency oscillations (seen as blurred flame images inthe top row of Fig. 5.14)

superimposed over a slower trend of changing flame position and mean shape.
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The intermittent state is characterized by a chaotic flame dynamics marked by highly

irregular oscillations in the lifted flame. Prior to flame lift-off, changes in system dy-

namics were discussed earlier in terms of the acoustic pressure fluctuation (see Fig. 5.9).

The lifting up of the flame marks the beginning of a burst stateand occurs simultane-

ously with the transition of the system dynamics from limit cycle to quasi-periodic.

During the lifted state, the flame is not stabilized on the burner rim and hence, flame

dynamics is not only affected by acoustics but significant flame oscillatory behavior

is governed by the hydrodynamics associated with the circular jet emanating from the

burner tube and entering the glass duct confinement. Hydrodynamics associated with a

circular jet flow at Reynolds numbers has been extensively studied before (Becker and

Massaro, 1968; Liepmann and Gharib, 1992). At Reynolds number∼ (103) (Reynolds

number associated with the circular jet for the configuration we have studied here),

the exit flow from the burner tube forms a shear layer resulting in the development

of Kelvin-Helmholtz instability in the flow upstream of the lifted flame. The lifted

flame oscillates at about5 burner diameters downstream of the burner exit plane (see

Fig. 5.15). This location corresponds to the transitional region of the circular jet where

instabilities originating in the shear flow develop into coherent structures (Paschereit

et al., 1992). Hence, during intermittency, it is suspected that coherent flow structures

affect dynamics of the flame which is lifted during the occurrence of bursts. The inter-

Figure 5.15: Comparison of attached flame to the burner rim (a) and lifted oscillating
flame (b) during an intermittent burst oscillation, the white thickline indi-
cate the lifted distance (5 cm). Flame images were acquired using a video
camera (Panasonic, AGDVC62) with framing rate of25 Hz
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mittent state, as explained with the bifurcation plot (region III in Fig. 5.1) eventually

leads to flame blowout.

5.5 Discussions

The appearance of thermoacoustic instability in combustion systems due to interaction

between the acoustic field and the combustion processes is anissue of significant con-

cern. Recent experiments have shown that the nonlinear nature of this interaction is

reflected in the complex dynamics of the self-excited oscillations.

In this investigation, we reported results of an experimental bifurcation analysis

of a ducted conical premixed flame, with flame location as the control parameter. At

the onset of instability, the interaction between the heat release rate oscillations due to

flame surface fluctuations and acoustic oscillations leads to limit cycle oscillations via

a subcritical Hopf bifurcation. The subcritical nature is clearly seen in the bifurcation

plot. On changing the flame location further a secondary Hopfbifurcation was observed

leading to quasi-periodic oscillations. The quasi-periodic oscillations undergo further

transition to an intermittent state which in accordance with the bifurcation scenario is

a type-II intermittency. The different oscillatory stateswere analyzed through phase

space reconstruction using nonlinear time series analysis. Flame dynamics associated

with limit cycle oscillations was characterized by uniform, periodic flame wrinkling

behavior. Whereas, for quasi-periodic oscillations, nonlinear features such as flame

pinch-off were observed in addition to flame surface wrinkling.

The intermittent state was characterized and discussed in detail through the applica-

tion of phase space based nonlinear time series analysis techniques. Features of type-II

intermittency were also observed in further analysis of theintermittent state via re-

currence plots. Simultaneously during intermittency, interesting flame dynamics were

observed as seen in high speed flame images. Bursts in acoustic oscillations were ob-

served to occur simultaneously with flame lift-off. Throughrecurrence plots, the re-

peated flame lift-off behavior was found to be associated with the temporal transition of

the system to quasi-periodic dynamics. Extreme stretching, folding and local extinction
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that characterize flame dynamics during intermittency suggests complex dynamics gov-

erning the flame behavior during the intermittent state. These intermittent oscillations

eventually lead to flame blowout indicating that the dynamical state of intermittency is

a precursor to flame blowout induced by thermoacoustic oscillations.

The high speed flame images provide some evidence that the observed dynamics

of the system in this bifurcation analysis is a result of variations in flame dynamics in

response to changes in the acoustic field affecting the flame,which occurs as the flame

location is varied. This hypothesis is supported by flame response studies (Bourehla

and Baillot, 1998; Bondar, 2007; Candel, 2002). However, asflame dynamics is sig-

nificantly affected also by hydrodynamics, the cause of complex nonlinear behavior

could be the effect of acoustic perturbations on a confined jet flow, particularly during

intermittency when the flame is detached from the burner. Further investigations on

combustion systems conducted from the point of view of dynamical systems theory are

necessary to extend the results presented here to industrial applications.

5.6 Interim Conclusions

The results reported here demonstrate that thermoacousticinteraction possesses rich

nonlinear behavior. Analysis of results from the point of view of dynamical systems

theory sheds new light into the nonlinear aspects of thermoacoustic instability. The

observation of intermittency indicates firstly that the nonlinear process of thermoa-

coustic instability can posses quite complex dynamics, similar in several attributes

to nonlinear interactions in other physical systems. A second issue associated with

lean combustion is the problem of lean flame blowout (Shanbhogueet al., 2009). Al-

though a vast amount of literature is available on lean flame blowout, the problem is

still far from solved. Studies on lean flame blowout involve developing techniques for

blowout detection (Nair and Lieuwen, 2005) and efforts to suppress the appearance

of blowout (Shashvat, 2007). Overcoming problems associated with flame blowout in

practical systems primarily involve strategies that increase the safe operating range. For

instance, in gas turbine combustors, a swirl stabilized flame configuration is commonly

used, where in the wake of recirculation zone mixing of the reactants takes place. Due
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to vortex breakdown, a region of reverse flow exists which stabilizes the flame. How-

ever, swirl flames too are prone to flame blowout. Chemiluminescence imaging and

laser scattering results on swirl dump combustor shown by Murganandam and Seitz-

man (Tuscon, Arizon, 10-13 July, 2005) shows that the presence of cold reactants in

the inner core of the recirculation zone is the sole reason for flame extinction. Stöhr

et al. (2011) investigated lean blowout using chemiluminescenceimaging, stereo-PIV

(Particle Image Velocimetry) and PLIF (Planar Laser Induced Fluorescence) to demon-

strate mechanisms involved with flame stabilization close to blowout. This is a step

towards a complete understanding, prediction and control of thermoacoustic instability

and thermoacoustically induced flame blowout.
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CHAPTER 6

ROUTES TO CHAOS IN THERMOACOUSTIC

OSCILLATIONS

In the previous chapter we saw that even in the most simple thermoacoustic config-

uration, complex oscillations in acoustic pressure and flame intensity were observed.

Furthermore, through the analysis, it was found that nonlinear aspects of thermoacous-

tic instability are related to the process of lean flame blowout. However, due to lean

flame blowout, a comprehensive bifurcation scenario leading to chaos could not be

covered. Towards this objective, a second configuration is adapted - a confined multiple

premixed flame system. The configuration has the advantage that the properties of com-

bustion instability can be studied without significant interference from hydrodynamic

instability. In addition, the dynamics of laminar flames exposed to acoustic perturba-

tions has been extensively studied through experiments (Candel, 2002) and numerical

investigations (Noirayet al., 2008). This makes the configuration ideal for fundamental

studies on self-excited combustion instability.

6.1 Transition to Chaos via the Ruelle-Takens Scenario

Similar to the single flame, an experimental bifurcation analysis of the system was

performed. Interestingly, the main features of the earlierbifurcations, namely subcrit-

ical Hopf bifurcation leading to limit cycle oscillations and a secondary bifurcation to

quasi-periodic oscillations was observed in this configuration as well. The application

of nonlinear time series analysis, particularly, techniques based on phase space recon-

struction from acquired pressure data, reveals rich dynamical behavior and the existence

of several complex states. Route to chaos for thermoacoustic instability is established

experimentally for the first time. We show that, as the flame location gradually varied,

self-excited periodic thermoacoustic oscillations undergo transition to chaos.
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Figure 6.1: Bifurcation plot summarizing the experiment performed for equivalence ra-
tio φ = 0.48: Hopf point atxf = 13.8 cm. The Roman numerals (I-VIII)
are used to indicate different regions in the bifurcation plot. Region I-steady
state and region VIII-steady state.

6.2 Bifurcation Analysis

As we gradually change the flame location, the system goes from a steady state to a self-

excited oscillatory state. From the point of the onset of thermoacoustic instability, if the

flame location is varied further, properties of the self-excited state change dramatically.

In order to track the changes in oscillations with respect tothe flame location, we plot

bifurcation diagram (Fig. 6.1). Corresponding to every flame location (xf ), we plot the

amplitudes of the local maxima (Strogatz, 1994) in the acquired pressure time series

for that particularxf . The number of local maxima, at a given parameter, gives the

period of oscillations: a single local maxima indicates a limit cycle oscillation, two

local maxima values suggest period two oscillations and so on. The Roman numerals

(I-VIII) are used to indicate different regions in the bifurcation plot. Time series and

frequency spectra for oscillations in these regions are presented in Fig. 6.2. A longer

time window is used for more complicated oscillations so that the essential features of

the oscillations are clearly depicted.

The onset of instability occurs atxf = 13.8 cm, one-eighth of the total duct length

from the open end. At this point, there is a qualitative change in the system from steady

state to finite amplitude oscillations. This is an indication of a subcritical Hopf bifur-
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cation (Strogatz, 1994). It is quite common to encounter subcritical Hopf bifurcation

in practical combustion-driven thermoacoustic systems such as gas-turbine combustors

and rocket combustors (Zinn and Lieuwen, 2005). The point atwhich the bifurcation

occurs is referred to as the Hopf point. The bifurcation results in a single frequency,

‘limit cycle’ oscillation with a frequencyf ∼ 570 Hz. This is close to the second har-

monic of the duct acoustic mode. The time series and frequency spectrum of this state

are shown in Fig. 6.2 IIa & IIb respectively.

The limit cycle oscillation state persists for a small rangeof xf values beyond which

it is followed by a bifurcation of the limit cycle to another type of oscillation with more

than one dominating frequency (f1 ∼ 570 Hz, f2 ∼ 364.1 Hz), as shown in Fig. 6.2

IIIa. As we change the flame location, the frequencies compete with each other and

eventually towards the end of this state, the time series (Fig. 6.2 IIIa) and the frequency

spectrum (Fig. 6.2 IIIb) changes to the one depicted in Fig. 6.2 IIIc & IIId respectively.

The dominant frequency also changes fromf1 to f2, which is close to the first harmonic

duct acoustic mode.

The next bifurcation occurs atxf = 19.2 cm, the amplitude of local maxima in-

creases to about1.5 times (150 Pa). The irregularity in the oscillations can be clearly

seen in Fig. 6.2 IVa. The corresponding frequency spectrum,Fig. 6.2 IVb shows the

presence of a broad band of frequencies (along with the appearance of a new indepen-

dent frequency,f3 ∼ 524 Hz) suggesting the presence of low dimensional chaos. On

changing the flame location, we observe that the signature ofthe time series has changes

at xf = 21 cm, within region IV. We observe regularity in the time series and distinct

peaks in the frequency spectrum plots (Figs. 6.2 IVc & IVd). The frequencies in the

spectrum are rationally related as opposed to the broadbandfrequencies. Following this

state, the oscillations become regular again in region V .

Figure 6.2 Va & Vb gives the time series and frequency spectrum plots of a repre-

sentative state in region V (Fig. 6.1). The peaks in the frequency spectrum correspond

to f2, f2/2 andf2/4. This is an indication of the oscillations being period fourin na-

ture, but since the contribution from the sub-harmonics is very less compared to the

dominant frequency, it is not clearly visible in the time series or in the bifurcation plot

(Fig. 6.1). The system exists in this state for a large range of xf values (xf = 25.8 cm
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Figure 6.2: Time series and power spectrum for various oscillating states observed in
the system, labeled according to the bifurcation plot, Fig.6.1. The flame
location corresponding to each dynamical state is marked above the time se-
ries and power spectrum density. The dominating frequency first appeared
in the system along with higher harmonics isf ∼ 570 Hz. This is close
to the second harmonic of the duct acoustic mode.f2 ∼ 364.1 Hz seen
for flame locationxf = 19.2 cm. The third frequency which appears in the
system and causes the bifurcation of torus isf3 ∼ 524 Hz suggesting the
presence of low dimensional chaos. To confirm on the torus andpresence of
low dimensional chaos nonlinear time series analysis is implemented sys-
tematically on the time series presents above.

to xf = 33.9 cm) and is followed by another state similar to the state corresponding

to Fig. 6.2 IVa, as depicted in Fig. 6.2 VIa & b. The frequency spectrum shows three

broadband regions centered around553 Hz, 370.2Hz and185.1Hz, where185.1 Hz
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is the sub-harmonic of370.2 Hz. We increase the flame location further and this state

changes to a period two oscillation in region VII (Fig. 6.1) via an intermittent state. The

time series and frequency spectrum of the intermittent and the period two oscillatory

state are given in Figs. 6.2 VIc & d and VIIa & b respectively. The intermittent state

has intervals of period two and the irregular state coexisting together. A transition from

period two to irregular oscillations can be observed in Fig.6.2 VIc. Beyond this region,

changing the flame location brings the system back to a steadystate atxf = 43.9 cm,

which is close to half the duct length.

6.3 Nonlinear Time Series Analysis

For further analysis, techniques that specifically deal with nonlinear systems are called

for. It is crucial to implement nonlinear time series analysis techniques for understand-

ing the dynamics of the thermoacoustic system. Nonlinear time series analysis tech-

niques provide tools for systematic analysis and identification of characteristics and

structures in time series data generated by nonlinear processes with emphasis on the

determination of properties of a special class of nonlinearoscillations, the chaotic oscil-

lations. Chaotic oscillations are quite commonly observedin nonlinear systems and in

the absence of appropriate analysis, the broadband frequency spectrum resulting from

chaotic dynamics could be misinterpreted to be a result of noise. Therefore, imple-

mentation of phase-space based nonlinear time series analysis techniques is essential to

extract detailed information about the complex nonlinear processes.

6.3.1 Average Mutual Information

The variation ofAMI(τ) with time delay for all the time series discussed above is

shown in Fig. 6.3. The top three curves in Fig. 6.3 are for periodic oscillations with

rationally related frequencies, regions II, V and VII (Fig.6.1). The other curves belong

to oscillations with either irrationally related frequencies or broadband frequencies, re-

gions III, IV and VI (Fig. 6.1). The optimal time delay for phase space reconstruction

varies from0.4− 0.9 ms, in the various regions, as seen in Fig. 6.3.

90



0 1 2 3 4
0

1

2

3

4

Time delay (ms)

M
u
tu

a
l

in
f
o
r
m

a
ti

o
n

(b
it

s
)

 

 

IIa IIIa IIIc IVa IVc Va VIa VII

Figure 6.3: Results for the calculation of optimum time-delay for phase space recon-
struction using the average mutual information between time-delayed vec-
tors from acquired time series. The Roman numerals marked with markers
are in accordance to the different regions in the bifurcation plot (Fig. 6.1).

1 2 3 4 5 6
0

20

40

60

80

100

Embedding dimension

%
o
f

f
a
ls

e
n
ea

r
es

t
n
e
ig

h
bo

r
s

 

 

IIa IIIa IIIc IVa IVc Va VIa VII

Figure 6.4: The plot presents calculated false nearest neighbor percentage for different
embedding dimensions. The dimension at which the percentage goes to
zero is taken as the optimum embedding dimension. The Roman numer-
als marked with markers are in accordance to the different regions in the
bifurcation plot (Fig. 6.1).

91



6.3.2 False Nearest Neighbors

A typical plot obtained for each of the cases discussed in thethesis has been reported in

Fig. 6.4. The trend of the variation of the percentage of false nearest neighbor estimates

for different oscillations with respect to the embedding dimension,dE , suggestsdE = 5

as an optimum embedding dimension since the percentage of false nearest neighbors

for all the states vanishes atdE = 5. Henceforth, quantitative information from phase

space reconstruction of strange attractors has been derived usingdE = 5.

6.3.3 Reconstructed Phase Portraits

The three-dimensional phase portrait representations of the various states obtained in

our system are arranged in the order of their occurrence in the bifurcation plot (Fig. 6.1)

in Fig. 6.5, starting with the limit cycle. We find that the characteristics of simultane-

ously measured flame intensity time series data are similar to the pressure time series

data in Sec. 6.6. Phase space structures seen in the reconstructed phase portraits from

chemiluminescence time series (Fig. 6.6) are observed to besimilar to those obtained

from the pressure time series (Fig. 6.5).

Limit cycle (Fig. 6.5 IIa), as expected, is represented by a single loop in the phase

space. But, the introduction of new frequencies due to the next bifurcation results in

aperiodic oscillations and the loop turns into a dense toroidal structure, as can be seen

in pressure oscillations (Figs. 6.5 IIIa & IIIb). A toroidalstructure in the phase space,

is an indication of quasi-periodic oscillations. Quasi-periodicity is also reflected in

the power spectrum (Figs. 6.2 IIIb & IIId) in the form of incommensurate frequency

components (365.3 & 571.3 Hz). Due to the presence of incommensurate frequen-

cies, the phase space trajectory evolves on the surface of a torus, never closing on

itself. As we change the control parameter, flame position within the quasi-periodic

region (region III) in Fig. 6.1, there is a competition between the two major frequen-

cies eventually leading to the introduction of a third incommensurate frequency (f3 in

Fig. 6.2 IVb) causes the toroidal structure to become unstable and break down resulting

in a strange attractor as seen in Fig. 6.5 IVa. This structurecorresponds to the time

series and the frequency spectrum that shows the presence ofbroadband frequency con-
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Figure 6.5: Reconstructed phase portraits from measured pressure time series for differ-
ent oscillation states, sequentially arranged in the orderof their occurrence
in the bifurcation diagram, Fig. 6.1. The labels are in accordance with the
bifurcation plot.
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Figure 6.6: Reconstructed phase portraits from measured intensity (CH*) time series
for different oscillation states, sequentially arranged in the order of their
occurrence in the bifurcation diagram, Fig. 6.1. The labelsare in accordance
with the bifurcation plot.
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tent in Fig. 6.2 IVb. Broadband frequency content and strange attractor hints towards

the presence of chaotic oscillations.

The similar sequence of phase evolution of the system is observed for the system

through intensity time series. The reconstructed phase space for limit cycle, quasi-

periodic oscillations, two period oscillations, period four oscillation and chaotic oscil-

lation in order of appearance of the oscillations in the system is arranged in Fig. 6.6.

6.4 Strange Attractors

To identify whether the obtained attractor (Fig. 6.5 IVa) isa strange attractor (possesses

an inherent dimension which is not an integer but rather a fraction), we evaluate the

correlation dimension of the attractor using the Grassberger and Procaccia (1983) algo-

rithm. Subsequently, to find out if the oscillations are chaotic in nature, we calculate

the maximal Lyapunov exponent using the algorithm suggested by Kantz (1994). These

are discussed in the following paragraphs (see appendix B for algorithm).

6.4.1 Correlation Dimension and Maximal Lyapunov Exponent

According to the Grassberger-Procaccia algorithm, the correlation dimension is ob-

tained from the calculation of the correlation sum of all thepoints in the phase space.

This correlation sum is given by

C(r) = lim
N→∞

1

N2


 number of pairs of points

xi,xj with distancesEuc.dist. < r


 , (6.1)

whereN is the total number of points, Euc.dist is the Euclidean distance in the phase

space, between pointsxi andxj). As r→ 0, this function is found to have a power law

dependence,

lim
r→0

C(r)∝ rdc , (6.2)
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wheredc is an estimate of the correlation dimension of the attractor. In Figs. 6.7 and 6.9

the plot for C(r) vs. r for the attractors, corresponding to region IV and VI is given. It

is seen that a scaling region where the power law dependence can be seen is found for

r in the range∼ 20 − 100. Corresponding to these plots, the value of local slope with

respect to r, for dimensions6, 8, 10 and12 have been given in Figs. 6.8 and 6.10. In

the scaling region, the value of slopes gives an estimate of the correlation dimension of

the particular attractor. For region IV, the value of slope in the scaling region fluctuates

significantly. However, at high dimensions, it seems to havesaturated. For region VI,

slopes in the scaling region, calculated for different dimensions follow a more robust

trend. For the two attractors in region IV and region VI, the correlation dimension,

calculated from the curve at dimension12 is found to be5.5 ±0.4 and4.6 ±0.3 respec-

tively.

Figure 6.7: Variation of correlation sum as a function of r for the attractor in region IV,
Fig. 6.5 IVa. The variation with respect to r is plotted for dimensions 6, 8,
10 and 12. Arrow points towards increasing embedding dimension. A data
set with 16000 points was considered for obtaining the plot.

Chaotic dynamics in a dynamical system is indicated by the presence of positive

Lyapunov exponents. Lyapunov exponents, by definition are ameasure of the expo-

nential divergence in time, of two neighboring phase space trajectories. A positive

exponent implies that any uncertainty in estimation of the dynamical state of the system
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Figure 6.8: Slopes of the correlation sum in Fig. 6.7 as a function of r. The correlation
dimension is evaluated from the curve corresponding to a dimension 12
(in black). Arrow points towards increasing embedding dimension. The
correlation dimension is obtained from the scaling region where a constant
slope exists for a range of correlation radius, r.

will grow exponentially in time. To identify the presence ofchaotic dynamics in our

system, we calculate the maximal Lyapunov exponent using the method given by Kantz

(1994). According to the algorithm, one finds the average separation between neighbor-

ing trajectories in the reconstructed phase space as time evolves and the evolution in the

average separation is searched for an exponential trend. More specifically, the average

separationS(∆n) is calculated as a function of temporal separation∆n:

S(∆n) =
1

T

T∑

t=1

ln

(
1

|Ut|
∑

i∈Ut

dist (xt,xi;∆n)

)
, (6.3)

whereUt is the neighborhood of any point x
¯t

in the phase space anddist(xt,xi;∆n) is

defined as

dist(xt,xi;∆n) = |xt+∆n − xi+∆n| . (6.4)

The quantityS(∆n) scales linearly with∆n in an intermediate range with a slope cor-

97



Figure 6.9: Plot for the correlation sum for the attractor inregion IV, Fig. 6.5 VIa. The
variation with respect to r is plotted for dimensions 6, 8, 10and 12. Arrow
points towards increasing embedding dimension. A data set with 16000
points was considered for obtaining the plot.

responding to the maximal Lyapunov exponent. Further details about the algorithm and

its implementation on experimentally acquired time seriesdata can be found in Kantz

(1994), Kantz and Schreiber Kantz and Schreiber (2003).

According to the bifurcation analysis of our system, regions IV and VI in the bi-

furcation plot are the possible chaotic states. In accordance with the Kantz algorithm,

variation inS(∆n) with ∆n with an embedding dimension of4, 6, 8, 10 and12 for

region IV and VI is given in Fig. 6.11 and Fig. 6.12 respectively. The slope of a linear

fit to the curves for embedding dimension 12, shown by the dashed line gives values

0.00041 and 0.00051 per time step. As data has been acquired with a sampling rate of

10kHz, the maximal Lyapunov exponent corresponding to these slopes, comes out to

be 4.1± 1.4 and 5.1± 0.6 for region IV and region VI respectively. The range of∆n to

be searched for, to obtain the scaling region is quite large in both cases owing to the high

sampling rate. In both cases, exponential divergence between neighboring trajectories

occurs amidst a highly cyclic trend of the time series (number of cycles corresponding

to a∆n of 1000∼ O(10)). The maximal Lyapunov exponent for both the regions is a
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Figure 6.10: Local slopes of the correlation sum in Fig. 6.9.The correlation dimension
is evaluated from the curve corresponding to a dimension 12 (in black).
Arrow points towards increasing embedding dimension.

positive value, indicating the chaotic nature of the system. Now that all the states have

been characterized individually, we will discuss the entire bifurcation scenario.

In our experiments, the quasi-periodic state is followed bychaotic oscillations. The

system follows a torus breaking route to chaos starting froma limit cycle evolving into

a two-frequency quasi-periodic state and eventually the two torus structure of the quasi-

periodic attractor breaks down as a result of a third incommensurate frequency, thus

leading to the emergence of a chaotic state. This torus breaking route to chaos is also

called the Ruelle-Takens scenario (Ruelle and Takens, 1971). The strange attractor is

then followed by periodic mode-locked oscillations featuring several rationally related

frequencies (Fig. 6.2 IVd). The phase space representationis given by Fig. 6.5 IVb.

The structure is a closed loop which indicates a periodic nature of the oscillation, while

following several turns before closing on itself which is because of the presence of a

number of frequencies.

Following this state, the system once again enters a state with periodic oscillations

given in Fig. 6.2 Va. The frequency spectrum (Fig. 6.2 Vb) contains frequenciesf2

f2/2, f2/4 indicating this could be a period-4 state. The contributionfrom f2/2 and
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Figure 6.11: Estimation of the maximal Lyapunov exponent (4.1± 1.4) (region IV) for
dimensions4, 6, 8, 10 and12. A data set of 16000 points was considered
for calculations. Arrow points towards increasing embedding dimension.
The dashed line indicates a linear fit the arrow points towards increasing
embedding dimension

f2/4 being of very low order when compared tof2 result in an attractor which consists

of two very closely spaced loops in Fig. 6.5 Vb. This periodicstate exists for a long

range of control parameter before the next bifurcation which results in another aperiodic

state.

Region (VI) exhibits chaotic oscillations resulting from abifurcation of the peri-

odic state. From the frequency spectrum, Fig. 6.2 VIb and thereconstructed attractor,

Fig. 6.5 VIa, it is observed that this could be another strange chaotic attractor. Fig-

ure 6.5 VIa is a strange attractor, corresponding to the timeseries data obtained for

xf = 33.9 cm, and clearly shows the characteristics of the chaotic behavior observed

in region (VI). The correlation dimension for this strange attractor is calculated to be

4.6 and the positive maximal Lyapunov exponent is5.1±0.6. As discussed earlier, this

state goes through an intermittent transition to period-2 oscillations.

In the reconstructed phase space for pressure (Fig. 6.5 VIb), we have shown phase

space representation of the intermittent oscillations that alternate between period-two

and a two-period quasi-periodic attractor. The dark loop isthe period-two attractor
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Figure 6.12: Estimation of the maximal Lyapunov exponent (5.1± 0.6) (region VI) for
dimensions 4, 6, 8 , 10 and 12. Arrow points towards increasing embed-
ding dimension. A data set of 16000 points was considered forcalcula-
tions. The dashed line indicates a linear fit.

which is embedded within a quasi-periodic attractor represented using light dotted

markers in the reconstructed phase portrait. Once the flame location is changed, the sys-

tem evolves to a period-two attractor via a very narrow window of stable quasi-periodic

attractor. The window of this stable quasi-periodic oscillation is too insignificant to be

labeled separately as another region. The phase space representation of the period-2 os-

cillations for region VII (Fig. 6.1) is shown in Fig. 6.5 VII.The system seems to follow

a reverse quasi-periodic transition from chaotic to periodic oscillations. Region VIII

(Fig. 6.1) is again the steady state (fixed point) to which thesystem eventually returns.

6.5 Discussions

We have presented an experimental bifurcation analysis conducted on a prototypical

combustion driven thermoacoustic system. Changing the position of the combustion

zone with respect to the duct causes the appearance of oscillations in the flames and

in the acoustic pressure. This first bifurcation in the system is a subcritical Hopf bi-
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furcation leading to limit cycle oscillations. However, the dynamics of thermoacoustic

oscillations in combustion systems is not limited to limit cycle oscillations and although

the system we study is a highly simplified version of a practical combustion system,

variation of the flame location induces additional bifurcations. Bifurcation of limit cy-

cle oscillations gives rise to quasi-periodic oscillations and changing the flame location

further gives rise to chaotic oscillations. The sequence ofbifurcations we observed in

our experiments is summarized below:

Steady
Subcritical Hopf bifurcation−−−−−−−−−−−−−→ Periodic

Neimark-Sacker Bifurcation−−−−−−−−−−−−−→ Quasi-periodic

Ruelle-Takens Scenario−−−−−−−−−−−→ Chaotic−→ Mode-locked−→ Period-4−→ Chaotic−→

Two-period quasi-periodic−→ Period-2−→ Steady

The sequence of bifurcations to chaotic oscillations, exhibited by the system is similar to

the route to chaos in other physical systems, such as the Rayleigh-Bénard convection,

popularly known as the quasi-periodic route to chaos or the Ruelle-Takens scenario.

Transitions to complex oscillation states and the specific route to chaos observed in the

present investigation arise from complex interactions between several processes; flame

dynamics, acoustics, hydrodynamics and heat transfer being the most significant pro-

cesses. A strong coupling between these processes exists during the occurrence of com-

bustion instability. However, it is still possible to shed light on the most likely cause

of the presence of interesting system dynamics seen here, based on previous investi-

gations that hint towards the importance of flame-acoustic interaction in combustion

driven thermoacoustic systems.

The presence of combustion in an acoustic field, in particular the flame response to

acoustic fluctuations, is known to be responsible for nonlinear aspects of thermoacous-

tic instability. A simplified analytical treatment of combustion instability (for instance,

refer to the analysis by Dowling (1999)) indicates that a nonlinear response of the flame

to the incident acoustic fluctuations can explain nonlinearfeatures such as the pres-

ence of limit cycles, subcritical bifurcation and triggering. This is further supported by

the more recent describing function analysis (Noirayet al., 2008) of combustion insta-

bility, for a combustor similar to the present investigation. Complex nonlinear states
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in addition to limit cycle oscillations have also been reported, for instance by Jahnke

and Culick (1994), where quasi-periodic thermoacoustic oscillations were obtained in

a dynamical system analysis using numerical continuation approach of thermoacoustic

instability and by Sterling (1993) in a numerical bifurcation analysis where a period

doubling scenario was observed. Incorporation of nonlinear flame-acoustic interaction

to explain the observed results in the analytical/numerical/experimental treatment of

thermoacoustic instability is the common feature of the above mentioned studies.

Based on the results summarized above and other previous investigations, we can

surmise that a nonlinear flame response largely governs the behavior of thermoacoustic

oscillations, including the bifurcations leading to chaosthat have been observed in this

report. Specifically in our experiments, changes in the flamelocation directly change the

location of the combustion zone with respect to the acousticfield of the duct (standing

wave). This in turn leads to changes in flame response and hence the overall dynamics

of the self-excited heat release and pressure oscillations.

Flame surface area oscillation is the dominant mechanism generating unsteady heat

release rate (cf. Schulleret al., 2003) in our experiments. The unsteady heat release

rate gets coupled to pressure fluctuations during combustion instability. Changes in this

flame-acoustic interaction at different oscillation states is reflected in pressure oscilla-

tions as well as in flame surface oscillations, as can be seen in high speed flame images

in Sec. 6.6.

In addition, it should also be noted that along with flame-acoustic interactions, other

important processes, also contribute to the dynamics of oscillations. In practical com-

bustion systems, complex fluid flow interactions (Schadow and Gutmark, 1992) in the

periphery of the confined combustion zone play a non-trivialrole in determining the

resulting thermoacoustic oscillations. Also important isthe role of oscillatory heat

transfer at the burner (Merk, 1956). These processes are significant and need to be

considered in detailed modeling approaches. However, concerning our experiments,

these processes might not undergo changes at different flamelocations and therefore, do

not participate in the bifurcation behavior. Hence, we speculate that, nonlinear flame-

acoustic response turns out to be the most plausible mechanism responsible for the

observed dynamics.
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6.6 Frequency Locking Route to Chaos

A qualitative change in the behavior exhibited by any dynamical system on varying a

control parameter is termed as bifurcation. Bifurcation plot for the system under inves-

tigation is given in Fig. 6.14. The bifurcation plot (Fig. 6.14) has been shown till flame

locationxf = 50 cm as the system remains stable (fixed point) beyond this point.The

vertical axis is the pressure amplitude inPascalsobtained from pressure microphone P

(Fig. 3.1). For each flame location, local maxima from the corresponding pressure time

series, about 100 cycles long, have been plotted. For a limitcycle oscillation, this will

be a single point, corresponding to the peak amplitude of theoscillation. Figure 6.14 (a)

represents the bifurcation diagram for increasing flame location and Fig. 6.14 (b) for de-

creasing flame location. While increasing the flame location, the system jumps from a

stable to an unstable state atxf = 13.5 cm (xf1). The set of ordinates corresponding to

this particularxf i.e., the amplitudes of all the local maxima in the pressure time series

are of the same magnitude and hence, the oscillations present at the particular location

are limit cycle oscillations. As we go beyond this point, limit cycle oscillations exist

till xf = 14 cm. At this point, there is sudden change in the behavior of oscillations - a

second bifurcation occurs. The local maxima in the oscillations no longer have the con-

stant amplitude, which as we will see later, is also reflectedin the Fourier spectrum in

the form of the emergence of additional frequencies. Further changing the flame loca-

tion leads to a series of bifurcations in the system. The system returns to its steady state

at the flame locationxf = 48.5 cm. In the reverse direction, we find that the system

exhibits hysteresis for each region as shown in Fig. 6.14 (b). This hysteresis in system

behavior is evident from the fact that there is a jump from thelimit cycle oscillation

back to the steady state, atxf2 = 10 cm, instead ofxf1 (Fig. 6.14). The hysteresis

behavior suggests that the bifurcation at the onset of instability is a subcritical Hopf

bifurcation. The region of hysteresis,xf1 − xf2 , is formally known as the subcritical

zone or the bistable region.

From Fig. 6.14, it is seen that the oscillations observed in the system assume several

characteristically different periodic and aperiodic states. In the following sections, the

oscillating behavior obtained for each flame location (xf ) is characterized from the

time series data of pressure and intensity oscillations, with the application of concepts
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Figure 6.13: Stability map of the system indicating the stability regimes of the system
for a air flow rate (4000 ccm). Results have presented here forφ = 0.50

from dynamical systems theory - phase space representationof the system and Poincaré

sections. These concepts are briefly discussed below.

We will now continue with the results obtained by nonlinear time series analysis of

data acquired for the thermoacoustic system under study. For the results presented here,

the maximum embedding dimension was found to be four. A threedimensional space

was found adequate to represent the phase portrait and to identify qualitative differences

between various classes of oscillations obtained. The phase space representation will

be in a three dimensional space constructed from time-delayed vectors (p(t), p(t +

τ), p(t + 2τ)) and (I(t), I(t + τ), I(t + 2τ)) obtained from pressure time series and

intensity time series respectively with time delay calculated for each case. We will

discuss these different regimes with reference to Fig. 6.14a.

A Poincaré section depicts the intersection of an orbit in the phase space with a

plane called the Poincaré plane. Unlike the phase plots discussed above where we

continuously follow the evolution of a system, in a Poincarésection we look at the

state of the system only at discrete time intervals. Hence, we get a set of points in the

phase plane. Each classification of periodic and aperiodic motion has its own signature

in the Poincaré section. To illustrate with examples, the Poincaré section of a simple

limit cycle orbit will be a single point in a usual Poincaré section wherein the Poincaré
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Figure 6.14: Bifurcation diagram with respect to flame location (Va at 4000 ccm, Vf at
68 ccm). The block arrows indicate the direction of change in the flame
location. (a) Increasing flame location and (b) Decreasing flame location.
Local maxima in the pressure time series have been plotted for each flame
location. Inset shows a few cycles of a sample time series with local max-
ima marked with black dots.

plane is a semi-infinite plane, i.e., it extends only in one direction and two points in

case of a two-sided Poincaré sections with an infinite plane.For periodic solutions with

the presence of a1/n subharmonic in the signal along with the dominant frequency
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Figure 6.15: Phase portraits (i), Poincaré sections (ii) and frequency spectra (iii)
for pressure time series, for different types of oscillations, sequentially
arranged in the order of their occurrence in the bifurcationdiagram,
Fig. 6.14a. f1 = 570.2 Hz, f2 = 366.3 Hz. In Fig. iia(iii) and Fig.
iib(iii), markersa, b, c andd point to frequencies163.6 Hz, 202.7 Hz,
406.6Hz and529.9Hz respectively. Properties of acquired data in region
V are similar to the attractor in region III and hence, have not been shown
here.

(formally called a periodn limit cycle), the two sided section will have2n points.

For quasi-periodic solutions, the two sided Poincaré section consists of bunch of points

which fill up two closed curves. In contrast, for chaotic solutions, the points on the

Poincaré section fill up regions in the phase space which are more than a curve and these
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Figure 6.16: Phase portraits (i), Poincaré sections (ii) and frequency spectra (iii) for in-
tensity time series, for different types of oscillations, sequentially arranged
in the order of their occurrence in the bifurcation diagram,Fig. 6.14a.
f1 = 570.2 Hz, f2 = 366.3 Hz. In Fig. iia(iii) and Fig. iib(iii), markers
a, b, c andd point to frequencies163.6 Hz, 202.7 Hz, 406.6 Hz and
529.9 Hz respectively. Properties of acquired data in region V are similar
to the attractor in region III and hence, have not been shown here.

regions also form a fractal structure. Poincaré sections obtained from the reconstructed

phase portraits using pressure and heat release time seriesfrom the experiments will be

presented in the following sections.
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6.6.1 Limit Cycle Oscillations: Region II

The appearance of periodic oscillations from a steady stateis first observed in the sys-

tem atxf = 13.5 cm (see Fig. 6.14 a). The self-excited state is a limit cycle oscillation,

resulting from a Hopf bifurcation. Owing to the subcriticalnature of the bifurcation, the

change in the system dynamics is marked by an abrupt jump in the oscillation amplitude.

The characteristics of the resulting oscillations are given in Figs. 6.15-II a & -IIb for the

pressure time series and the intensity time series respectively. The frequency spectra

(Figs. 6.15-II a(iii) & -II b(iii)) shows the presence of a single frequencyf1 along with

the super-harmonics. Correspondingly, the structure representative of the system dy-

namics (referred to as the attractor henceforth) is a distinct single loop (Figs. 6.16-IIa(i)

& -II b(i)). To investigate the structure of the attractor, we use Poincaré sections. A

Poincaré section (Nayfeh and Balachandran, 2004) is a surface (a Poincaré plane here)

in the phase space, intersecting the trajectories of the phase space attractor. In the case

of a limit cycle, the intersection will give a single point, as observed in the Figs. 6.16-

IIa(ii) & II b(ii). The Poincaré plane for different cases represented here was chosen

differently for different cases for easier visualisation of the dynamics. The Poincaré

plane used for the phase portraits for limit cycle and other subsequent cases is given in

the phase space diagram as a dotted rectangle.

Simultaneously acquired instantaneous flame images have been presented as images

a− h in Fig. 6.17. During the limit cycle oscillations, flames undergo sinusoidal mod-

ulations as seen in the flame images. The first six framesa − f represent flame shape

during different phases of oscillation, arranged in a sequence. Framesg andh are given

to illustrate that for the case of limit cycle oscillations,the flame shapes occurring after

time intervals of integral multiples of the oscillation time period are identical - as seen

in image pairse & g andd & h. This regular behavior is as expected since, the time

traces also show regular behavior. As the flame location is varied further, we observe

interesting changes in the dynamics of the self-excited oscillations.
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Figure 6.17: Instantaneous flame images for limit cycle oscillations. The tagged dots in
the pressure time series have corresponding flame images marked by the
same lowercase alphabets as used for the tags.

Figure 6.18: Instantaneous flame images for quasi-periodicoscillations. The tagged
dots in the pressure time series have corresponding flame images marked
by the same lowercase alphabets as used for the tags.
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6.6.2 Quasi-periodic Oscillations: Region III

In region-III, oscillations qualitatively different fromlimit cycle oscillations are ob-

served as a result of subsequent bifurcation of limit cycle oscillations. A second period-

icity ensues in the system, which is revealed in the power spectrum (Figs. 6.15-IIIa(iii)

& -IIIb(iii)) as a second frequencyf2 along with other frequencies with smaller con-

tributions. When at least two frequencies of an oscillationare irrationally related, the

oscillation will be aperiodic and the trajectories cannot form a closed loop, but instead,

they evolve on the surface of a torus - a 2-torus if two such frequencies are present and

covers the torus densely as it evolves. This is seen in the phase portrait in Figs. 6.15-

III a(i) & -III b(i). Such oscillations are referred to as quasi-periodic oscillations. The

Poincaré section (Figs. 6.15-III a(ii) & -III b(ii)), further illustrates the inner structure of

the quasi-periodic attractor that we have obtained in our case. The intensity time series

and the pressure time series both exhibit similar behavior in the phase space and in the

power spectra. This secondary bifurcation of a limit cycle leading to the emergence of a

second frequency is known formally in the theory of nonlinear dynamics as Hopf-Hopf

or a Neimark-Sacker bifurcation (Nayfeh and Balachandran,2004).

Since, reporting a large number of flame images will not be possible, we have lim-

ited the number of image frames to eight. The differences between the trends in flame

oscillation have been reported instead. The periodicity, which was present in the case

of limit cycle oscillations, is absent in this case. The lossof periodicity can also be

seen in the flame shape modulations (Fig. 6.18). Here, although imagesa, b, d, f and

g correspond to local maxima in the pressure time series, eachof them is significantly

different from the other. Imagesc andh are observed for two local pressure minima.

The imagee, showing an elongated flame shape, is acquired while pressure around the

flame location is building up towards a local maxima.

6.6.3 Frequency-locked Oscillations: Region IV

As the trajectories are moving on the surface of the torus, the frequencies become ra-

tionally related and lead to frequency-locked oscillations. In the power spectrum of the

pressure and intensity time series (Figs. 6.15-IV a(iii) & -IV b(iii)), we see frequencies
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Figure 6.19: Instantaneous flame images for frequency-locked oscillations. The tagged
dots in the pressure time series have corresponding flame images marked
by the same lowercase alphabets as used for the tags.

that are rationally related tof1, leading to a frequency-locked behavior (Hilborn, 2000).

In the phase portrait (Figs. 6.15-IV a(i) & -IV b(i)), we find the trajectory no longer

wanders on a torus, but instead, closes onto itself and hence, a periodic loop is formed.

The time period is very long so we see many loops in the phase portrait. This is further

seen in the Poincaré section (Figs. 6.15-IV a(ii) & -IV b(ii)) which has distinct points

where the loop intersects the dotted Poincaré plane. The time taken by the system to

complete one full cycle, seen in the time series, is equivalent to the time duration be-

tween pointa and the local maxima adjacent to, and following pointh (Fig. 6.19).

Imagesa− h correspond to different phases of the signal within this time duration.

Although oscillations are periodic in nature, since the total time period (time re-

quired for phase space trajectories to come back to the initial point) is much longer than

a limit cycle, it is difficult to come to the same conclusion bylooking at the instanta-

neous flame images. The flame oscillations are stronger when compared to limit cycle

and quasi-periodic oscillations although the pressure amplitude from the time traces is

the same. In imagef , for example, the flame leaves the tip of the burner whereas in

imagee, it is on the verge of extinction. Imagesa, b, c ande are all at local maxima

in the pressure time series, but each one has a completely different shape. The most
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Figure 6.20: Instantaneous flame images for period-2 oscillations. The tagged dots in
the pressure time series have corresponding flame images marked by the
same lowercase alphabets as used for the tags.

interesting of the images shown is imagec, where different flames in the multiple injec-

tion burner assume different lengths. As the flame location is varied, the flame location

with respect to acoustic modes of the duct gets changed. The effect can be seen in flame

images and also in the pressure and intensity time traces since the interaction is coupled.

6.6.4 Quasi-periodic Oscillations with Subharmonic Frequency Con-

tent: Region V

Following this state, the next bifurcation atxf = 25.5 cm, results in a quasi-periodic

state where the strength of the frequencyf1 decreases andf2 emerges as the dominating

frequency along with a frequency
f2
2

. This is region V in Fig. 6.14. The attractor for this

case is similar to the one discussed for the quasi-periodic oscillations in region III, the

difference being in the presence of a subharmonic. The dynamics is dominated mostly

by quasi-periodicity, except for a small region (the bulge within region V, Fig. 6.14a),

where the subharmonic content grows but subsides before thesystem eventually goes

to a period-2 oscillation.
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6.6.5 Period-2 Oscillations: Region VI

The quasi-periodic region withf2 and its subharmonic now changes to a periodic os-

cillation, with frequency componentsf2 and
f2
2

(Figs. 6.15-VI a(iii) & -VI b(iii)).

The presence of a sub-harmonic leads to double-looped attractor in the phase space

(Figs. 6.15-VI a(i) & -VI b(i)); i.e. the trajectories need to loop twice before coming

back to the initial point. Since the orbit is periodic, we gettwo distinct dots in the

single-sided Poincaré section for the pressure time series(Figs. 6.15-VI a(ii)) and set

of four dots (scattered due to the noise in signal) in the double-sided Poincaré section

(Figs. 6.15-VI b(ii)), in the case of flame intensity time series measurement.

In the flame shape modulations (Fig. 6.20), it can be seen thatbecause of the period-

2 nature, image frames separated by the time period corresponding to2f2 are different.

The pairs of images,a & c, b & d, e& f andg & h are each acquired almost at the same

phase, separated by a time interval
1

2f2
and are different in their intensities due to the

period-2 nature of oscillations. One period of the oscillations corresponds
1

f2
.

As we vary the flame location gradually, the system moves fromperiod-2 oscil-

lation to a chaotic state via quasi-periodic states. The quasi-periodic route to chaotic

oscillations has been observed in several nonlinear systems such as Taylor-Couette

flow (Brandstäteret al., 1983) and Rayleigh-Bénard convection (Gollub and Benson,

1980).

6.6.6 Chaotic Oscillations: Region VII

At the onset of region VII, a strange attractor (Nayfeh and Balachandran, 2004; Stro-

gatz, 1994) emerges in the system. An attractor is termed as strange when its calcu-

lated dimension is not an integer i.e. when the structure is afractal. There are several

measures to estimate the dimension of a set of points (Moon, 2004; Grassberger and

Procaccia, 1983). The correlation dimension is one such measure.

The correlation dimension calculated for the attractor shown in Fig. 6.15-VII a(i)

observed in region (VII) is 2.63 - an indication that it is a strange attractor. To check

if the oscillations are chaotic, we need to calculate the maximal Lyapunov exponent.
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Figure 6.21: Instantaneous flame images for chaotic oscillations. The tagged dots in the
pressure time series have corresponding flame images markedby the same
lowercase alphabets as used for the tags.

The maximal Lyapunov exponent is a measure of the exponential divergence or conver-

gence of neighboring trajectories of an attractor. A chaotic attractor will have at least

one positive Lyapunov exponent. On application of Kantz algorithm (Kantz, 1994) for

calculation of Lyapunov exponent for the chaotic attractorobtained here, we obtain a

value of 0.16 which indicates that the attractor is chaotic.The route taken by our sys-

tem to chaotic oscillations is the frequency-locking quasi-periodic route to chaos similar

to that observed in the circle map (Hilborn, 2000). As the flame location is changed,

several incommensurate frequencies appear in the oscillations which eventually merge

to form spectrum with broadband frequency peaks, as seen in Figs. 6.15-VII a(iii) &

-VII b(iii). The intersection of this chaotic attractor with the Poincaré plane as shown

in Figs. 6.15-VII a(ii) & -VII b(ii) leads to a set of points scattered throughout the plane

due to the chaotic nature of oscillations.

Figure 6.21 gives the flame shapes at various phases as markedin the pressure time

series data. The chaotic nature of oscillations is reflectedin the flame images. We find

that the flame exhibits irregular modulations. Chaotic oscillations in the system are

accompanied by rolling of the flame surface (imaged), lifting-off (imagesc andg) and

elongation (imagesb ande).
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Following this chaotic state, the system jumps back to the stable state atxf =

48.5 cm. Going in the reverse direction (Fig. 6.14b) all the states discussed above ap-

pear again in exactly the reverse order but with a hysteresisin the flame location values

where the different bifurcations occur.

6.7 Discussions

In summary, it can be said that thermoacoustic oscillationsexhibit a variety of nonlinear

phenomena. A simple laboratory combustor running on lean premixed combustion is

used to illustrate this point. For a constant equivalence ratio, the system goes from a

steady state to limit cycle oscillations through a subcritical Hopf bifurcation, as flame

location is varied. This is followed by a second Hopf bifurcation (Neimark-Sacker

bifurcation) to a quasi-periodic state. On changing the flame location further, the quasi-

periodic state becomes a periodic, frequency-locked statemarked by several distinct

peaks in the frequency spectrum at rationally related frequencies. Further, the system

goes to another quasi-periodic state with sub-harmonic frequency content. This state

exists for a long range of control parameter values and is followed by period-2 oscil-

lations. The next bifurcation leads to a chaotic state and eventually the system comes

back to the steady state from the chaotic state directly. Thecomplex nonlinear behavior

of the system was reflected in the pressure time series, the flame intensity time series

and simultaneously in the flame surface modulations in the instantaneous flame images.

Nonlinear time series analysis made it possible to look at the oscillations through their

phase space representation. This was instrumental in identifying the characteristics of

oscillations and differentiating them from each other. A point to note further, is that due

to the subcritical nature of the Hopf bifurcation, it is possible that, for different operat-

ing conditions, limit cycle oscillation is an unstable state. The self-excited oscillations

at the Hopf point can be a period-2 oscillation generated viasecondary bifurcation.

In fact, when the experiments were performed for different equivalence ratios or flow

rates, the self-excited oscillations obtained at the Hopf point were either period-2 or

even quasi-periodic oscillations. A possible explanationfor the rich nonlinear behavior

is as follows. The phenomenon of combustion instability (inthe system under study)
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is a result of interaction between the flame and the duct acoustic modes. Depending on

the flame location, different acoustic modes are excited. Asa result, the acoustic fluctu-

ations at the flame location (combination of excited acoustic modes of the duct) varies

as the flame location is changed. The nonlinear response of the flames to this acoustic

field that is varying with the flame location could lead to the emergence of complex

nonlinear oscillations. This complex nonlinear behavior;i.e., bifurcations and different

oscillation states, can also be observed if other parameters such as the equivalence ratio

or the mean flow rate are chosen as the control parameter.

Thermoacoustic instability, in general, induces high amplitude pressure oscillations

within combustion systems. Looking at the results from a practical standpoint, the

presence of nonlinear oscillations such as quasi-periodic, frequency-locked and chaotic

oscillations, will cause further increase in thermal and mechanical loading to the com-

bustor walls. Thus, leading to premature failure, accelerated crack growth, amplified

wear and tear of structural components and higher fatigue loading. All these factors

contribute to the reduction in the life span of combustors (Suresh, 1998). Furthermore,

limit cycle oscillations consist of a single dominant frequency whereas, other classes

of oscillations consist of a range of frequencies, which might include frequencies close

to the natural frequency of some of the structural components of the system. As a re-

sult, thermoacoustic oscillations can cause resonance in structural components leading

to violent vibrations in the system or even structural failure. A controller designed to

handle a single frequency or a set of frequencies might fail in the presence of frequen-

cies that have not been considered in the design process. From the results on high speed

flame images, it is also seen that along with changes in the frequency content of pres-

sure signals, the flame dynamics drastically changes, giving rise to extreme behavior

such as lift-off and flame extinction. Such behavior is also unfavorable for real practical

systems.

6.8 Interim Conclusion

The above analysis presents that a simple thermoacoustic system can exhibit a rich

variety of dynamics. In addition to limit cycle oscillations, we see states such as, quasi-
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periodic, frequency-locked, period-2 and chaos as the bifurcation parameter is varied.

It is well known that the flame dynamics plays a crucial role inthe phenomenon of

thermoacoustic instability. The observed oscillations were investigated in the light of

nonlinear dynamics. Changing other parameters or changingthe same parameter for

different conditions will give a different trend, however,the characteristics of the ob-

served oscillations are expected to remain similar. Nonlinear time series analysis en-

ables us to obtain an understanding of the system dynamics purely through experimen-

tal data. The information acquired could be critical in constructing accurate models for

thermoacoustic systems and designing effective control strategies.
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CHAPTER 7

NONLINEAR COUPLED OSCILLATORS

7.1 Introduction

Investigations on scenarios of transition to chaotic dynamics has a special place in the

study of nonlinear systems. It brings together physical systems from a variety of scien-

tific disciplines. In the last few decades, several systems that exhibit common routes to

chaos have been identified and studied intensely, both numerically and experimentally,

providing evidence in support of the idea of universality intransition scenarios to chaos.

Period doubling cascades (Ott, 1993), transition via intermittency (Manneville, 1990)

and the Ruelle-Takens route to chaos (Ruelle and Takens, 1971; Davidet al., 1982) are

the most commonly observed routes to chaotic dynamics in nonlinear systems.

From a theoretical point of view, the nonlinear dynamical features of thermoacous-

tic systems have not been well explored yet. However, due to the significant relevance

in many practical applications, a deeper theoretical understanding of thermoacoustic

instability is required. In particular, low-dimensional models, that focus on the most

significant aspects of the process, are essential to gain insight into the process. In Chap-

ter 6, it was established that thermoacoustic instabilities in the prototypical premixed

laminar flame-based Rijke tube system undergoes transitionfrom limit cycle oscilla-

tions to chaotic oscillations via the Ruelle-Takens scenario. In an attempt to capture

the various nonlinear states of thermoacoustic oscillations and the bifurcation scenario

observed in experiments, a low dimensional model of a Rijke-tube system is investi-

gated in this chapter. The results of a numerical bifurcation analysis on the model are

in accordance with the experiments, where quasi-periodic transition was observed.



7.2 Low Dimensional Model

A four-dimensional model is derived that captures the complete bifurcation scenario

observed experimentally in a thermoacoustic system (Chapter 6). The Rijke tube model

has been studied to investigate thermoacoustic instability by several researchers (Bal-

asubramanian and Sujith, 2008; Juniper, 2010; Subramanianet al., 2010) and is con-

sidered here as a starting point. A reduction of the high-dimensional phase space to a

few relevant modes is made for this specific system to capturethe main physical inter-

actions and nonlinearities found in any thermoacoustic system. A Rijke tube is an ideal

representation of a thermoacoustic system that can be used for studying the features

of thermoacoustic instability. It is a simple straight ductwith heat source located at

some location such that the heat source is compact with respect to the acoustic length

scale. Its dynamics is governed by the linearized dimensionless momentum and energy

equations for the acoustic field (Balasubramanian and Sujith, 2008)

∂u

∂t
= − 1

γM

∂p

∂x
(7.1)

∂p

∂t
= −γM ∂u

∂x
− ζp+K

[√∣∣∣∣
1

3
+ u(t− τ)

∣∣∣∣−
1√
3

]
δ(x− x̃f) (7.2)

whereu, p, x andt are the dimensionless acoustic velocity, acoustic pressure, position

along the axial direction and time, respectively,x̃f is the dimensionless position of the

flame,γ the ratio of specific heats of the medium,M the Mach number of the mean flow,

K the dimensionless heater power andτ is a time delay1 that makes explicit the effect

of thermal inertia of the heat transfer on the acoustic velocity. ζ is the total amount

of damping in the system so that, when we expand the acoustic velocity in Fourier

series asu =
∑∞

q=−∞ αqe
iqx we have, from Eqn. (7.1),p =

∑∞
q=−∞

iγM

q
α̇qe

iqx and

ζp ≡ ∑∞
q=−∞ 2ζqωq

iγM

q
α̇qe

iqx, whereζq is the damping coefficient of the modeq and

the dot denotes time differentiation. By incorporating these expressions in Eqns. (7.1)

and (7.2), a single ordinary differential equation for eachmodeq is obtained as

α̈q + aqαq + bqα̇q = −K




√√√√
∣∣∣∣∣1 +

∑

q

(αq − τα̇q)fq

∣∣∣∣∣− 1


 (7.3)

1not to be mistaken as the time-delay for phase space reconstruction
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Figure 7.1: Bifurcation plot for the first oscillator.̃A is the amplitude of local maxima
in the time series of the variable for various flame locationx̃f . A config-
uration with both open ends is considered with parameter values,K = 3,
a1 = b1 = 1/4 a2 = 3/4 b2 = 0.1 and τ = 0.4 in Eqns. (7.4)-(7.7).
The Roman numerals (I-VIII) are used to indicate the different regions in
the bifurcation plot. Region I-steady state, II-limit cycle, III-quasi-periodic
behavior, IV-chaos, V-period-two oscillation, VI-quasi-periodic behavior,
VII-chaos, VIII-period-two oscillation.

where a small time delay approximationαq(t−τ) ≈ αq−τα̇q is introduced. Rescalings,

αq → −2iαqe
iqxf/3, K → 2K

γM
√
3

have been made and we have definedfq = ie2iqxf ,

aq = q2 andbq = 2ζqωq. After these transformations, it is observed that the R. H. S. of

Eqn. (7.3) is the same for all Fourier modes. Since all modes with short wavelengths are

strongly damped, only two dominant modes,q1, andq2 are considered. In the following

text, labels1 or 2 refer to either mode respectively. Further definingx ≡ α1, y ≡ α̇1,

s ≡ α2−α1 andz ≡ α̇2−α̇1, the following system of four coupled differential equations

is obtained

ẋ = y (7.4)

ẏ = −a1x− b1y −K
[√
|1 + (x− τy)f1 + (s− τz)f2| − 1

]
(7.5)

ṡ = z (7.6)

ż = −a2s− b2z + (a1 − a2)x+ (b1 − b2)y (7.7)

The parametersf1 andf2 will be real valued and will depend on the experimental
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boundary conditions (by incorporating bothfq andf−q within fq). Boundary condi-

tions allow the Fourier coefficients to have certain symmetry properties. For both open

ends they are antisymmetrical i.e.αq = −α−q while for open-close ends they are

symmetricalαq = α−q. On substituting these expressions in the Fourier expansion

the sum, previously going fromq = −∞ to q = +∞ can be reduced to run between

q = 1 and +∞ (q=0 is excluded). For a Rijke tube with both ends open , we have

f1 = − cos(2q1x̃f ) − cos(2q2x̃f) and f2 = − cos(2q2x̃f ). For a closed-open tube,

f1 = sin(2q1x̃f ) + sin(2q2x̃f ) andf2 = sin(2q2x̃f ). Since the nonlinear dynamical

features can be generally described in terms of the parameters f1 andf2 and the val-

ues of these parameters include all possible boundary conditions through their specific

functional relationships to the experimental control parameterx̃f , the model given by

Eqns. (7.4) to (7.7) is universal for the class of systems that share the same bulk dynam-

ics as the Rijke tube.

Figure 7.2: a-c: Time series for third oscillators for limit cycle oscillation, d-f: quasi-
periodic oscillation, g-i: chaotic oscillation, j-l:period two. Same parameter
values as in Fig. 7.1

(x∗, y∗, s∗, z∗) = (0, 0, 0, 0) is clearly a fixed-point of the system of Eqns. (7.4) to
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(7.7). A linear stability analysis shows that it is stable atlow x̃f until a Hopf bifurcation

occurs, atf1,H = 2b1/(Kτ). A two-timing method performed on the above model,

considering a small coupling of the oscillators and small velocities (the expansion is

done around the fixed-point), shows that the bifurcation is subcritical: for a small per-

turbation around the unstable fixed point (f1 > f1,H) the perturbation grows linearly as

≈ |(x−τy)f1+(s−τz)f2|. It tends to saturate only when|(x−τy)f1+(s−τz)f2| >> 1.

In such a situation, the system ends performing a limit cycleof high amplitude. After

the Hopf point, the system jumps discontinuously from a state of almost zero amplitude

to an oscillatory state with amplitude higher than unity. This limit cycle of high ampli-

tude disappears in a saddle node of periodic orbits when it encounters the unstable limit

cycle arising from the Hopf, whenf1 . f1,H .

7.3 Results and Discussions

Equations (7.4)-(7.7) were numerically integrated using MATLAB (R2009a) ode23s

function, to obtain asymptotic system dynamics. The bifurcation plot obtained from the

model Eqns. (7.4)-(7.7), with the non-dimensional flame location (̃xf ) as the control

parameter, is shown in the Fig. 7.1 wherẽA is the amplitude of local maxima in the

time series of the variable for various flame locationx̃f . A configuration with both

open ends is considered with parameter values,K = 3, a1 = b1 = 1/4 a2 = 3/4

b2 = 0.1 and τ = 0.4 in Eqns. (7.4)-(7.7). Instability appears in the system after a

subcritical-Hopf bifurcation of the steady state. Atx̃f = 0.02, the emergence of limit

cycle oscillations is observed. Time series and the frequency spectrum for this state is

shown in Figs. 7.2 a and b respectively. As the flame location is varied further, quasi-

periodic oscillations arise at̃xf = 0.06 as a result of a secondary Hopf-bifurcation. The

corresponding time series and frequency spectrum are seen in Figs. 7.2 d and e. Due

to the presence of incommensurate frequencies, the trajectory of the attractor makes a

dense toroidal structure in the phase space (Fig. 7.2 f). In the Ruelle-Takens route to

chaos, the quasi-periodic state is immediately followed bychaotic oscillations. This

is also what is observed in our case. The toroidal structure develops distortions and

the power spectrum shows the presence of broadband frequency components. This
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Figure 7.3: Maximum Lyapunov exponent for regions II, III, IV and V in the bifurcation
diagram in Fig. 7.1 as a function of the dimensionless flame locationx̃f . A
transition from quasi-periodic behavior in region III to chaotic behavior,
with a positive Lyapunov exponent, in region IV is observed.In region V,
stable period-two oscillations are found and the Lyapunov exponent decays
again to zero.

transition occurs at̃xf = 0.07. The phase space trajectories can be seen in Fig. 7.2 i.

The chaotic state is followed by periodic oscillations atx̃f = 0.1. This is a period-

two oscillation as seen in Figs. 7.2 j, k and l, the corresponding time series, frequency

spectrum and phase space trajectories. The period-2 regionis again followed by another

chaotic regime. The bifurcation diagram Fig. 7.1 summarizes the different transitions

displayed by the thermoacoustic model. In other parameter regimes (results not shown)

we found frequency-locked states, as also observed in the experiments (refer Chapter 6).

A sequence of periodic and aperiodic oscillations and the appearance of two bands

of chaotic oscillations has also been observed in a different physical context in the

triatomic molecule by Tranet al. (1990). It is to be noted that, while the model in Tran

et al. (1990) requires six equations, which are first order in time,our model requires

only four, since it involves only two nonlinearly coupled oscillators.

In Fig. 7.3, the maximum Lyapunov exponent, calculated using the algorithm pro-

posed by Sprott (2003), is shown for the first transition intochaos in the bifurcation

diagram in Fig. 7.1. On the oscillatory regime with stable limit cycles or quasi-periodic

behavior, the maximum Lyapunov exponent is zero indicatingmarginal stability. How-

ever, in region IV of the bifurcation diagram, a positive Lyapunov exponent proves

the existence of chaotic behavior in such regime, a state that is reached from quasi-

periodicity in Region III through the Ruelle-Takens route to chaos. This behavior is
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also found in the experiments (Chapter 6). The model reproduces qualitatively all dy-

namical behavior found in the experiments as well as the whole bifurcation scenario.

It is to be noted that, since the frequency of the oscillations is not an experimental

control parameter, the system cannot be externally tuned tohave tori with frequencies

arbitrarily close to the golden mean ratio on the quasi-periodic regime. The oscillations

are intrinsic to the system, and although their frequency can be quantitatively estimated

close to the fixed point at (0,0,0,0), the effective frequencies of the oscillators are signif-

icantly affected by the high amplitude of the limit cycles past the subcritical Hopf point.

These limit cycles are highly non-harmonic because of the specific form of the nonlin-

earity and the transitions into chaos cannot be generally modeled in these situations by

the circle map, since in the latter the coupling between the oscillators is harmonic.

This four-variable model can qualitatively describes the nonlinear dynamical be-

havior and routes to chaos found in experiments on the thermoacoustic instability. The

model consists of two nonlinearly coupled oscillators, thefirst of them containing a

square root nonlinearity that reflects the effect of the heattransfer on the acoustic field,

and the second one being simply a linearly forced and damped oscillator. Further refine-

ments of the model might include additional linearly forcedoscillators like the second

oscillator. It is remarkable that all effects of the nonlinearity can be accounted for in

only one oscillator, which forces linearly all the others. This oscillator, containing the

nonlinear term, is responsible for the main subcritical Hopf bifurcation structure found

theoretically and in the experiments (Chapter 6). Because of its simplistic nature, the

model also opens the possibility of devising systematic mechanisms for the control of

the thermoacoustic instability, a concerning problem in many engines.
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CHAPTER 8

CONCLUSIONS

The most important aspect of thermoacoustic instability that needs to be understood

is the nonlinear interaction of the acoustic field with combustion and other processes

active in the combustion zone. Previous studies have shown the existence of dynamics

such as quasi-periodicity and chaos. The root of such nonlinear behavior and therefore,

the inherent nonlinear nature of thermoacoustic instabilities however remains unclear.

The basis of this investigation is to conduct a deeper investigation of self-excited

instabilities from the point of view of dynamical systems theory. The self-excited oscil-

lations are studied through measurements of acoustic pressure within the duct, chemilu-

minescence and flame imaging. In particular, phase space based analysis is performed

on the time series data of acoustic pressure and chemiluminescence. The information

that can be derived from the results of this investigation indicates that nonlinearities

involved in the thermo-acoustic coupling tend to conform tothe universal behavior of

general nonlinear systems that has been established through extensive numerical, an-

alytical and experimental studies on different nonlinear systems. The most striking

similarity is in the bifurcation scenarios that characterize transition from steady state to

chaotic oscillations. These results are obtained on the most simple thermoacoustic sys-

tem involving combustion, the laminar premixed flame drivenRijke tube. This suggests

that the complex nonlinear states obtained in the bifurcation analysis are a result of in-

herent thermoacoustic interactions and not a manifestation of other complexities such

as turbulence (in the base flow or the flame). It is to be noted however that, large scale

hydrodynamic structure do play an important role as is inferred through modulations in

the flame during different oscillatory states.

The investigation was first performed on a single flame based Rijke tube type system

operating at a lean equivalence ratio. It was observed that limit cycle oscillations appear

in the system as a result of a subcritical Hopf bifurcation. As the flame location is fur-

ther varied, another bifurcation takes place leading to theemergence of quasi-periodic



oscillations through a secondary Hopf bifurcation. This isseen in the acoustic pres-

sure time trace as well as in the power spectrum. The phase space structure formed by

these oscillations resembles a toroidal structure. As the flame location is further varied,

the smooth structure of the toroidal attractor as seen in thereconstructed phase space

ruptures and eventually leads to burst oscillations. The dynamics is similar to what is

referred to as intermittency in the theory of dynamical systems, where the dynamical be-

havior of nonlinear systems exhibits random transitions between stable oscillations and

chaotic bursts. The chaotic bursts were found to be similar to the dynamical behavior

of intermittency using return maps. Further, through recurrence analysis, intermittency

was identified as a type-II intermittency. The intermittentstate is followed by flame

blowout. This observation suggests a connection between the phenomenon of thermoa-

coustic instability and the process of flame blowout. The bifurcation scenario clarifies

how this connection becomes apparent. According to the bifurcation theory, once limit

cycle undergoes transition to quasi-periodic oscillations, the system can undergo fur-

ther transitions to chaos. In such a transition, intermittency is one of the standard in-

termediate states. However, as intermittency develops, the stabilization of the flame is

repeatedly disturbed. At a certain point, prior to a transition to complete chaos, burst

oscillations cause flame blowout to occur.

The issue of flame blowout continues to exist as a unsolved problem. This study

provides a lead that could be further investigated to achieve a certain level of under-

standing of the phenomenon from the dynamical systems perspective. An inference is

made directly from the investigations that intermittency can be seen as a precursor to

flame blowout. In addition, results of flame imaging during the intermittent state, prior

to blowout, indicate that inclusion of hydrodynamics is essential to model system dy-

namics. The strength of the hydrodynamic coupling varies from one oscillation state to

another. For instance, hydrodynamic interactions play a dominating role during burst

oscillations and the effect can be observed even in instantaneous line of sight flame

images. This statement is a hypothesis based on flame imagingand needs further inves-

tigation. But it can clearly be stated that a complete exclusion of hydrodynamics will

not capture full system dynamics.

The case of multiple flame configuration has also been investigated, again in the

127



frame work of dynamical systems theory through analysis of the phase space represen-

tation of the system and the bifurcation behavior. A varietyof attractors - periodic,

quasi-periodic and chaotic states, were observed in the system as the control parameter

was changed. A route to chaos for thermoacoustic oscillations is established experimen-

tally for the first time in a thermoacoustic system. It has been shown experimentally that

as the location of the combustion source is gradually varied, self-excited periodic ther-

moacoustic oscillations undergo transition to chaos via the Ruelle-Takens scenario and

the frequency-locking route to chaos. Modulations of the flame surface area were found

to differ significantly from one oscillatory state to the other. During quasi-periodic and

chaotic states, interaction of individual flames with each other was observed. These

observations reveal new aspects of thermoacoustic oscillations.

In the last section of this investigation, a coupled oscillator model has been con-

structed to reproduce theoretically the nonlinear dynamical behavior and routes to chaos

found in experiments on the thermoacoustic instability. The model consisted of two

nonlinearly coupled oscillators. The first oscillator consisted of a square root nonlin-

earity used to model the effect of the heat release rate on theacoustic field. The second

one was simply a linearly forced and damped oscillator. All the effects of the nonlin-

earity can be accounted for in only one oscillator, which forces the other oscillators

linearly. This oscillator, containing the nonlinear term,is responsible for the subcritical

Hopf bifurcation structure found theoretically and in the experiments. The coupled os-

cillator model was also found to capture the Ruelle-Takens bifurcation scenario and the

associated nonlinear oscillatory states found experimentally.

Information on the nonlinear aspects of thermoacoustic instability reported in this

thesis are quite critical for obtaining accurate models forthermoacoustic instability and

designing effective control techniques. Nonlinear time series analysis enables us to ob-

tain an understanding of the system dynamics purely from experimental data. Findings

reported in this thesis has significant implications. Practical combustion systems are

highly susceptible to frequencies corresponding to the natural modes of structural com-

ponents, which can set the system to resonance and can lead tocatastrophic failure.

Such structural resonance is more likely to happen during quasi-periodic, mode-locked,

chaotic and intermittent oscillations because of broadband spectral content. Addition-
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ally, these aperiodic behavior are associated with variable amplitude, which will cause

a higher fatigue loading to the structures compared to limitcycle oscillations and hence

can reduce the performance and life span of the system.
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CHAPTER 9

DIRECTIONS FOR FUTURE WORK

The main aspect that needs further investigation is the flow field interacting with the

flame during thermoacoustic instability. Results have shown that hydrodynamics has

a dominant role to play during the various nonlinear self-excited states. More insight

into the phenomenon can be obtained by the identification of coherent structures in the

flow that directly affect flame dynamics. Simultaneously, changes in the flow field in re-

sponse to acoustic oscillations in the system during different nonlinear states needs char-

acterization. Instantaneous flow field determination, for instance through high-speed

Particle Image Velocimetry, will be required towards this end.

Secondly, to asses the universality of the results obtainedand to asses the applica-

bility of the inferences made to general thermoacoustic systems, similar investigations

need to be conducted on more thermoacoustic systems, including other simple configu-

rations such as the electrically heated Rijke tube, diffusion flame, V-flame and flat-flame

systems. Such investigations accompanied with numerical and analytical investigations

on nonlinear self-excited states, particularly with the incorporation of flame kinemat-

ics formulation in the presence of multiple frequencies andthe effect of coherent flow

structures.

Of equal importance is to investigate industrial systems with the application of dy-

namical systems theory and nonlinear time series analysis.Furthermore, the effect of

nonlinear oscillations such as quasi-periodic, frequencylocked and chaotic oscillations

on structural components of combustion systems will be quite different when compared

to limit cycle oscillations. Therefore, the effect of such highly nonlinear behavior in in-

dustrial systems should be evaluated. Such behavior of thermoacoustic instability could

enhance crack growth which would eventually decrease the life span of the system. This

may be unacceptable in gas turbines systems, where maximizing operating hours and

minimizing maintenance is important.



The scenario of flame blowout in the single flame system investigated here opens

up a new approach to looking at the phenomenon of flame blowout. Thermoacoustic

instability was found to be associated with flame blowout andintermittency was found

to be a precursor to flame blowout. Further investigation on these aspects of flame

blowout is expected to yield new results and understanding.It is certain that flame

stretch and strain effects become particularly important prior to flame blowout. The

pinch-off behavior of the flame during quasi-periodic oscillations causes nonlinearities

that are currently not accounted for in laminar flame response modeling. Investigations

are required to evaluate the effect of features such as flame pinch-off and subsequent

cusp formation. The strong participation of hydrodynamicsin the process of repeated

flame blowout has been hypothesized here. Analysis to ascertain the specific role of

hydrodynamics in the process of thermoacoustic oscillations is essential.

The simple model presented in Chapter 7 is powerful enough toreproduce results

obtained experimentally in Chapter 6. This model can be investigated and developed

further by incorporating the effects of critical factors such as the temperature distribu-

tion within the duct. Numerical continuation analysis can be performed on the system

of equations to understand the physics behind nonlinear phenomenon such as hysteresis.
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APPENDIX A

INVESTIGATION OF SUBCRITICAL INSTABILITY

IN DUCTED PREMIXED FLAMES

An experimental investigation of the bistable region of instability in a thermoacoustic

system comprising of ducted, premixed laminar flames has been performed. The sta-

bility diagram of the system is obtained and the bistable region for a range of flame

locations at different fuel-air mixture equivalence ratios is identified. Subsequently,

threshold amplitudes for triggering instability in the system using externally introduced

sinusoidal acoustic forcing, is obtained. It is observed that depending on how close the

system is to the Hopf point and the nature of oscillations at the Hopf point, the triggered

oscillations can exhibit different dynamical behavior.

The transition of a thermoacoustic system from steady equilibrium state (fixed

point) to an oscillatory state, on variation of operating conditions occurs in two ways

- through a supercritical Hopf bifurcation or a subcriticalHopf bifurcation (Lieuwen,

2002). In the first scenario, there exists a clear demarcation between steady and oscil-

latory states with respect to the bifurcation or control parameter. The transition from

the stable to oscillatory state and vice versa is gradual andoccurs exactly at the same

parameter value. On the other hand, in the case of a subcritical Hopf bifurcation, as we

vary the control parameter, at the critical (Hopf) point, the system jumps from steady

equilibrium state to a high amplitude oscillation. While going in the reverse direction,

transition back to the steady state does not take place at theHopf point; the control pa-

rameter value needs to be changed further, till the fold point (Strogatz, 1994) to restore

the steady non-oscillating state of the system. Thus, hysteresis in the system behavior is

a manifestation of subcritical Hopf bifurcation (Lieuwen,2002; Strogatz, 1994). This

region of hysteresis is called the subcritical zone or the bistable zone. This bistable zone

as we infer from the discussion alone, has two possible states - the steady state that ex-

ists when the zone is approached from a stable state and the oscillatory state that exists



when the zone is approached from an initially unstable state. At any operating condi-

tion, within the bistable zone, it is possible to ‘trigger’ the system from a stable state to

the corresponding oscillatory state, through the introduction of finite amplitude pertur-

bations. This phenomenon is known as triggering instability in the combustion instabil-

ity parlance (Wickeret al., 1996; Blomshieldet al., 1997; Lieuwen, 2002). Triggering

instability is a concern because the subcritical region, where it occurs, is linearly stable

but nonlinearly unstable; i.e. small amplitudes of perturbations will not cause transition

but finite amplitudes might trigger instability. Hence, theclassical stability analysis and

the linear flame transfer function cannot predict triggering instability. In recent inves-

tigations, Noirayet al. (2008); Boudyet al. (2011), have reported, both experimentally

and theoretically that using the nonlinear describing function, it is possible to predict

various nonlinear characteristics of thermoacoustic systems such as triggering instabil-

ity, mode switching and hysteresis. Previous studies reveal that thermoacoustic systems

often exhibit subcritical Hopf bifurcation (Lieuwen and Banaszuk, 2005; Wickeret al.,

1996; Moecket al., 2008). Blomshieldet al. (1997)reported observation of triggering

instability during full scale tactical motor stability tests.

In this study, we investigate the bistable region of a simplelaminar ducted premixed

flame. The flame location with respect to the duct is used as thebifurcation parameter.

We identify the bistable regions of the system for differentfuel-air mixture ratios. Self-

sustained oscillations are triggered in the system, withinthe bistable regions, through

resonant forcing of the system. The triggering of self-sustained oscillations at different

flame locations and fuel-air mixture ratios is then discussed. For a single equivalence

ratio, we find that the amplitude required for triggering is dependent on the value of

the control parameter - the flame location. The variation of triggering amplitude with

respect to flame location is discussed. Finally, we discuss the phenomena of triggering

instability within the framework of dynamical systems theory. We observe that attrac-

tors other than the limit cycle oscillations exist in the bistable zone. This has a bearing

on the overall dynamics of the system in this zone. Based on the results, we support the

conjecture that, an analogy could be drawn between triggering instability and bypass

transition in hydrodynamic flows.
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A.1 Experimental Setup

The bifurcation analysis is conducted on a premixed combustor, as depicted in Fig. A.1.

A multipoint injection burner, similar to the configurationused by Matsui (1981) for

flame transfer function measurements of premixed, laminar flames, is employed in this

study. A similar burner configuration has also been used recently by Noiray et al.

(2008) and Boudyet al. (2011) for nonlinear flame transfer measurements. The pre-

mixed burner has seven conical LPG (Liquefied Petroleum Gas)air premixed flames

(A) anchored on a18 mm thick copper block. The top view of the burner is given on

the top right of Fig. A.1. In preliminary experiments, it wasobserved that the onset of

instability causes flame blowout. In order to facilitate investigation, a fine wire mesh is

used to stabilize the flames. The burner tube (C) is800mm long with an inner diameter

of 14 mm and thickness of1.5 mm. The burner is connected to a decoupler (D) as

shown, which is in turn connected to a premixing chamber (E) for enhanced mixing of

the fuel and air. The burner is enclosed in a glass duct (B),800 mm long, closed at the

bottom. This glass duct acts as the combustion chamber. During the experiments, the

acoustic modes of the duct get coupled with the heat release rate fluctuations leading to

self-excited oscillations. The volumetric fuel flow rate (Vf ) is maintained at64 ccm and

72 ccm and the volumetric air flow rate (Va) at3.7 lpm, measured using rotameters with

an accuracy of2%. The corresponding uncertainty in the equivalence ratio isestimated

to be around2.8%. For the results on bifurcation analysis, reported in this thesis, two

cases, with the equivalence ratio,φ, at0.50 and0.57, have been studied.

Three pressure microphones (model:103B02, PCB piezotronics make), P1 , P2 and

P3, flush mounted on the walls of the glass duct, as shown in Fig. A.1, were installed to

monitor the unsteady pressure oscillations. The results reported here are based on pres-

sure time series (p(t)) obtained from the microphone P1, which is mounted at a distance

of 20 cm from the top. A 16-bit analog to digital conversion card (NI-6143) was used

for data acquisition which has a resolution of0.15 mV taking the input voltage range

as±5V . The uncertainty in pressure microphone measurement is 0.14 Pa. Two sub-

woofers, driven by an amplifier connected to a function generator, are installed outside

the duct, as shown in Fig. A.1, for generating acoustic signals. A microphone (P4) is

mounted close to the sub-woofers to monitor the generated acoustic signals. The inten-
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Figure A.1: Schematic of the setup, A-multiple flames, B-open-closed glass duct, C-
burner tube, D-decoupler, E-LPG-Air premixer, F-Traverse, P1, P2, P3
& P4-pressure microphones. Two subwoofers , oriented towards the duct
open end are mounted outside the duct for external excitation. Top view of
the burner is given at the top right corner of the figure. All dimensions in
mm.

sity fluctuations (I(t)), which are proportional to the heat release rate oscillations in the

flame, were detected simultaneously with pressure oscillations using a photomultiplier

tube (model no. H5784, Hamamatsu make) equipped with aCH* filter (bandwidth

10 nm, centered at431.4 nm). The flame location was measured using a ruler with

least count1mm.

A.2 Results and Discussions

We focus here primarily on triggering instability and how the threshold amplitude

changes with respect to the control parameter within the bistable region and the dy-

namics of triggered oscillations. It is possible to triggerinstabilities in a thermoacoustic

system by introducing a perturbation, in the bistable region, with a large enough pertur-

bation. The perturbation (or the initial condition) given to the system governs the system

evolution. However, unfortunately, in experiments, it is often quite difficult to introduce

well-determined and controlled initial conditions. In this present investigation, we force
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the system using sinusoidal acoustic forcing at the observed frequency of self-excited

limit cycle oscillations at Hopf point of our system (f = 563.4 Hz). This frequency is

close to the second harmonic of a quarter-wave tube with length corresponding to the

length of the glass duct used in the experiments.

In subcritical Hopf bifurcation, at the Hopf point, the stable equilibrium fixed point

attractor losses its stability and a new branch - an unstablelimit cycle is born. This

branch is turned backwards and exists before the Hopf point,hence, the term subcritical

bifurcation (Strogatz, 1994). A saddle-node bifurcation (Strogatz, 1994; Moon, 2004)

of the unstable limit cycle creates a stable limit cycle branch. This branch can undergo

further bifurcations on changing the control parameter gradually, as reported in Chap-

ter 6. Beyond the Hopf point, all trajectories originating near the fixed point attractor

spiral out and settle on the nearest attractor (Hilborn, 2000). Hence, we have three

attractors in the subcritical zone, a fixed point, a limit cycle and an unstable limit cycle.

In order to identify the bistable region of the system, a stability map of the system

is first constructed. The volumetric air flow rate (Va) is fixed at3.7 lpm. Stability

of the system is then assessed for all flame location values, and volumetric fuel flow

rates (Vf ) in the range56 ccm − 80 ccm. This corresponds to a lean fuel-air mixture.

The range is chosen to maintain well-stabilized conical-shaped flames. The stability

diagram of the system is given in Fig. A.2. At each fuel-air mixture ratio, the flame

location is gradually varied for both increasing and decreasing directions with respect to

the open end of the duct. The system is identified as stable if self-sustained oscillations

in pressure and intensity measurements are absent. On the other hand, the presence of

such oscillations indicates instability. The dark grey shaded region in Fig. A.2 marks the

linearly unstable regions, where the system is unconditionally unstable. As this region

is approached from an initially stable state, oscillationsarise spontaneously as the value

of the flame location crosses the boundary of this region. Thepoint at which this jump

in the behavior of the system is observed is the linear stability boundary for the system

corresponding to the particular operating condition (the Hopf point Strogatz, 1994). The

light-shaded region is linearly stable, but nonlinearly unstable, as the system is unstable

if approached from an unstable state and stable is approached from a stable state. This

region, is known as the bistable region as two possible equilibrium states exist - the
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Figure A.2: Stability diagram of the system for an air flow rate (Va = 3.7LPM). Flame
locationxf measured from the open end of the duct. Shaded region is un-
stable irrespective of the state it is approached from. Dotted region corre-
sponds to the bistable or subcritical zone. Other flame locations are stable.
System remains stable beyond the range of flame location values shown in
the plot.

stable state with no oscillations and an oscillating state which we call unstable. In

present study we conduct experimental analysis of this region and discuss the results

from a dynamical systems point of view.

It should be noted that the boundaries drawn are extremely sensitive to changes

in the operating parameters, the magnitude of noise in the system and any changes in

the system configuration. The aim of the present investigation is to study the system

behavior in the bistable region. Establishing the sensitivity of the stability boundaries

to noise and constructing a full stability diagram for all possible fuel-air combinations

will be a topic of future investigations.

Experiments are performed first atVf = 64 ccm. At a flame location in the

bistable region,5 mm from the Hopf point, we introduce acoustic forcing to the sys-

tem (f = 563.4 Hz), using sub-woofers mounted outside as shown in Fig. A.1. This

forcing excites a single acoustic duct mode and also the flamesurface area oscillations.

The system evolution is reported in terms of reconstructed phase portraits (Abarbanel

et al., 1993) from pressure (from microphone P1, Fig. A.1) and intensity measurements.

A phase portrait is extremely helpful in understanding the evolution of the dynamical

system and the embedding theorem (Takens, 1981) enables oneto reconstruct the phase

portrait from data acquired experimentally. We will discuss briefly about phase space
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reconstruction from time series data.

Since, the acoustic forcing is applied with frequency same one of the duct acoustic

modes (the second harmonic), due to resonance, the pressureamplitude of oscillations

within the duct are observed to grow. After a predetermined duration of time, the forc-

ing is stopped and the system evolves on its own. The dynamicsof the system then

depends on the control parameter value and the amplitude gained by the oscillations by

the end of the forcing. If a threshold amplitude is crossed inthis process, self-sustained

oscillations are set up in the system, otherwise, resonant growth is followed by a decay

in the amplitude of oscillations.

To understand subcritical Hopf bifurcation and transitionfrom stable equilibrium

state to oscillatory state within the subcritical zone, we will introduce concepts from

the dynamical systems theory. From the reconstructed phasespace, Fig. A.3a, it is

seen that the reconstructed trajectories of the system evolve from a steady equilibrium

state (fixed point), as marked in Fig. A.3, and spirals out towards the inner black loop

due to resonant amplification. The inner loop corresponds tothe obtained threshold

amplitude of oscillations that system needs to cross in order to get triggered. Forcing

is discontinued at the time corresponding to the time taken by the trajectories to reach

the inner loop. The system evolves on this threshold loop fora while before spiralling

out again towards the self-sustained limit cycle state - theouter black loop in Figs. A.3a

& b. If forcing is ceased earlier, or if it is continued for a longer time, oscillations will

decay to the steady state or immediately grow exponentiallyto the self-sustained state.

The same behavior is seen in the phase portrait reconstructed from flame intensity time

series (Fig. A.3b).

In the case just discussed, the bistable region was found to be limited to5 mm

(Fig. A.2). This restricts the number of flame locations thatcan be investigated for

triggering. To overcome this limitation, we perform experiments with a different set of

operating conditions (Va = 3.7 lpm, Vf = 72 ccm). The bistable region for this set of

operating conditions is wider with respect to the parameterspace, allowing us to ob-

serve the differences in triggering amplitudes at different flame locations. In addition,

self-sustained instabilities that emerge in the system at the Hopf point are period-2 os-

cillations instead of limit cycle oscillations. The time period of oscillation, for the case
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Figure A.3: Triggering to limit cycle oscillations. Figures a, a.i and a.ii correspond to
phase portrait, power spectra after forcing is stopped and power spectra for
self-sustained oscillations from pressure time series. Figures b, b.i and b.ii
similarly are obtained from flame intensity (CH*) time series.

Table A.1: Threshold amplitudes for triggering as given in Fig. A.5. The threshold
amplitude is stated as the percentage of self-sustained oscillation amplitude.

Image Flame Location (xf ) Threshold amplitude (%)
a 10.4cm 46.0
b 11.4cm 30.8
c 11.9cm 25.6
d 12.1cm 12.1

of a period-2 oscillation is doubled when compared to limit cycle oscillations (hence,

the name period-2). The Fourier spectrum, correspondingly, contains a subharmonic

frequency and in the phase space representation, the attractor will be a doubled looped

structure. This period-2 oscillation is a result of a period-doubling bifurcation that must

have occurred in the parameter space prior to the Hopf point.Further analysis of the

bistable region is required to illustrate the system dynamics within this region.

Similar experiments as discussed above are conducted in thebistable region for

Vf = 72 ccm at four different flame locations in the bistable region. Thethreshold

amplitudes are obtained for each flame location along with the amplitude of triggered
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Figure A.4: Bistable region forVa = 3.7 lpm andVf = 72 ccm. Filled circles indicate
the amplitude of self-sustained oscillations. Double dotsindicate period-2
oscillations. Empty circle represent threshold amplitudes required for trig-
gering. Filled rectangle marks the hopf point. Hand drawn curves connect
the experimentally obtained point. Arrows indicate jump inthe system be-
havior.

Figure A.5: Pressure time series for triggering instability via resonant forcing at differ-
ent flame locations (Refer Table A.1). Shaded regions correspond to the
duration of forcing.
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oscillations. This information when plotted gives us Fig. A.4. As the control parameter

(the flame location) is varied, self-sustained oscillations spontaneously arise at the point

marked by a filled rectangular marker,xfH = 13.6 cm, the Hopf point, from a set of 20

readings, the standard deviation in the Hopf point locationwas found to be0.46 mm.

In the reverse direction, system jumps to steady non-oscillatory state at flame location,

xf = xfSN
. This flame location is the point where the saddle-node bifurcation of the

unstable limit cycle branch must have occurred. These two points mark the extremities

of the bistable region. The arrows indicate a jump in the system behavior. Empty

circles in the figure denote the threshold amplitudes obtained at different flame locations

and filled circles represent the amplitude of triggered self-sustained oscillations, the

two filled circles for each flame location represents the local maxima of the measured

pressure time series.

Table A.1 gives the threshold amplitudes as a percentage of the triggered oscilla-

tions. In Fig. A.4, hand drawn curves have been drawn connecting the experimentally

obtained points to get an idea of the trend followed by triggering amplitude using reso-

nant forcing. Since, the triggering amplitude cannot be pinpointed exactly, a band has

been drawn instead of a sharp line. Furthermore, the triggering amplitude inherently

depends on the type of forcing or disturbance given to the system (Wickeret al., 1996).

Time traces from pressure microphone P1 ( see Fig. A.1) corresponding to trigger-

ing at the four flame locations is given in Fig. A.5a-d. The grey shaded region in the

figure corresponds to the time duration for which sinusoidalresonant forcing is pro-

vided. The amplitude of pressure oscillations remains constant for a few cycles and

grows exponentially towards period-2 oscillations. Reconstructed phase portraits and

power spectra corresponding to Fig. A.5c are given in Fig. A.7. The period-2 nature of

triggered oscillations is evident from the power spectra ofpressure and intensity time

series (Fig. A.7a.ii & b.ii) which contains the dominant frequencyf and its subharmonic

f/2. In the phase portraits (Fig. A.7a & b) three outer loops are seen. This is because

the system first goes to limit cycle oscillations (single loop) and immediately transi-

tions to period-2 oscillations (refer Fig. A.6). The frequency component of the signal in

Fig. A.7a.i & b.i again indicates that system dynamics fills more than two dimensions.

The dynamical properties of a nonlinear system and changes in the dynamics as a
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Figure A.6: Detailed analysis of time series showed in Fig. A.5c. Oscillations first get
triggered to a limit cycle state and then immediately goes toa period-2 state.
a, b represent the time series and phase portrait of the limitcycle state and
c, d are obtained from a period-2 state of the triggered oscillations. The
thin horizontal lines in figures a and c pass through the localmaxima and
minima of the signal. For a period-2 state three lines are given indicating
one local maxima lines and two local minima values are possible.

Figure A.7: Triggering to period-2 oscillations. Figures a, a.i and a.ii correspond to
phase portrait, power spectra after forcing is stopped and power spectra for
self-sustained oscillations from pressure time series. Figures b, b.i and b.ii
similarly are obtained from flame intensity time series.
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result of bifurcations can be studied in a vector space formed by the state variables of

the system (Moon, 2004) - the phase space. A system withn degrees of freedom can

be represented in ann-dimensional phase space constructed by the state variables . The

phase space is filled by trajectories that denote the evolution of the system starting from

a point in the phase space - the initial condition in terms of state variables. Every point

in the phase space is a possible initial condition. Embeddedin this phase space are

sets of points called attractors. Trajectories are attracted towards these attractors and

eventually evolve on them, once transients have died. Hence, there exists a set of points

in the phase space such that trajectories originating from those points settle on one of

the attractors present in the phase space. This set forms thebasin of attraction for that

particular attractor (Moon, 2004). Figure A.8 illustratesthe concept of attractors and

their basin of attraction in a 3-dimensional phase space. Itcan be seen that the evolution

depends on the direction in which disturbance has been givenand the amplitude. If the

given disturbance is such that the system has entered the vicinity of the dark region

of the Fig. A.8, then the system eventually will settle to theattractor A2 and if the

disturbance is such that instead of falling in the dark region it falls in the grey region

then it eventually settles to the attractor A1. In a real system, there could be other

attractors embedded in the phase space. The dark patch in theFig. A.8 is the basin of

attraction of the attractor A2 and the grey is the basin of attraction for A1. The boundary

which separates the basins of attraction is called basin boundary. The Fig. A.4 is the

obtained result of the present study which explains that there is existence of more than

two attractors in the subcritical zone.

Phase space representation of results as discussed in this section reveals the inter-

esting dynamics in the bistable region. The extent of the bistable region is highly depen-

dent on the system and the operating conditions. Additionally, the stability boundaries

are strongly affected by the presence of noise and other disturbances in the system.

Having said that, it is still possible to study the general properties of the bistable region

in thermoacoustic systems. For the model thermoacoustic setup discussed here, we ob-

serve that for two different operating equivalence ratios,the self-excited oscillations at

the Hopf point exhibit two different dynamics - limit cycle and period-2 oscillations.

The limit cycle is a result of a subcritical Hopf bifurcationand the period-2 oscillation

results from a standard period doubling bifurcation (Hilborn, 2000; Strogatz, 1994).
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Figure A.8: A sketch of basin of attraction in phase space, A1and A2 are differ-
ent attractors, they are surrounded by their own basin of attraction, the
line bounding the each basin of attraction is called separatrix. Adapted
from Hilborn (2000)

.

For the same system as discussed here, it is possible that thesystem undergoes further

bifurcations to chaotic oscillations as reported in Chapter 6. In practical systems with

a higher degrees of freedom and several control parameters,it is expected that such

behavior will be more significant and complex.

Another approach of looking at the results is through the idea of basins of attraction.

The phase space of the dynamical system as explained above has regions which attract

the system dynamics - the attractors, each having its own basin of attraction and a basin

boundary. For the results reported here, the system has basins of attraction belonging to

three stable attractors namely, the fixed point, limit cycleoscillation and period-2 oscil-

lation. Depending on the operating conditions and amplitude of oscillations present, the

system goes to one of the attractors. Again, larger and more complex systems can be ex-

pected to have a more complicated phase space structure. This has direct bearing to the

implementation of control approaches and the safe operating range of thermoacoustic

systems.

Although the structure of the phase space is responsible forthe asymptotic states

assumed by the system, the transition scenario from a fixed point to another attractor,

within the bistable region, is observed to be same for the twodifferent cases seen here.

On introduction of the acoustic forcing, the oscillation amplitude grows and depending

on the amplitude level at the time forcing is ceased, system goes to a self-excited state
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or back to the fixed point state. A special case occurs when theamplitude is just at the

threshold level. The oscillations then continue at the sameamplitude level for a certain

time, before growing towards one of the stable attractors (limit cycle or period-2, in the

cases presented here).

An analogy could be drawn between the observations in the obtained results and

the scenario of bypass transition to turbulence observed inhydrodynamic flows (Drazin,

1992). For hydrodynamic flows, the basins of attraction of the chaotic attractor, corre-

sponding to turbulence and the fixed point attractor, corresponding to the laminar state

are separated by a basin boundary. Similarly, the oscillatory limit cycle state and the

fixed point steady state are separated here by an unstable limit cycle. The unstable limit

cycle lies on the surface of the basin boundary and is like a separatrix which separates

the two basins of attraction (Duguetet al., 2008). If initial perturbations take the system

across the basin boundary, into the basin of attraction of the stable limit cycle oscilla-

tions, system evolves to the self-sustained oscillatory state. If the initial condition falls

within the basin of attraction of the stable fixed point state, oscillations decay to zero.

A similar explanation has been given by Juniper (2010) for the occurrence of triggering

instability in thermoacoustic systems. In the subcriticalregion, thermoacoustic systems

have two competing attractors - the fixed point and the self-sustained oscillatory state,

separated by anN − 1- dimensional basin boundary surface, whereN is the number of

degrees of freedom of the system.

The characteristics of the disturbance introduced to the system within the bistable

region determines the threshold amplitudes required for triggering in addition to decid-

ing the attractor that attracts the system dynamics. This isin accordance with the above

discussion on the basin of attraction. Wickeret al.(1996) had discussed their numerical

analysis on triggering instability in rocket motors with a similar conclusion. This inher-

ent property of dependence on the type of disturbance could be because of the complex

structure of the basin boundary. If the basin boundary is a hypersurface enclosing a

finite region in the phase space created out of state variables and containing the fixed

point attractor, the direction and magnitude of the initialcondition vector will determine

if the system is taken out of the basin boundary of the fixed point. Depending on the

structure of the basin boundary, certain directions might be more favourable (in terms
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of amplitude required for transition) and hence, a lower magnitude of perturbation will

be required when compared to initial conditions in other directions.

In this study, the system is forced using a single frequency acoustic excitation.

Equivalently, the phase space representation (Fig. A.3 andFig. A.7) shows the evolution

to be localised on a plane (a dimensionality of two). Throughseveral experiments we

have determined the amplitude which is just enough for the system to evolve to self-

sustained oscillations - either a limit cycle or a period-2 oscillation. The frequency

of forcing was chosen as the second harmonic of the duct sinceit was found to be

most effective in establishing interaction between flame oscillations and acoustics of

the duct. The point where forcing is ceased is the initial condition from where the

system evolves on its own. Before getting attracted towardsthe limit cycle or period-

2 oscillation, oscillations stay at a constant amplitude for a certain interval of time

(oscillations at the threshold or the inner loops in Fig. A.3a & b and Fig. A.7 a &

b). The superharmonics observed in the power spectrum whilethe oscillation is at

the threshold amplitude indicate that the dimensionality of the system during that time

interval is higher than two. This state corresponds to an unstable attractor towards which

the system is initially attracted before going towards a stable attractor. Additionally, the

fact that this unstable attractor has a dimension higher than two indicates that the basin

boundary is a structure more complicated than a simple loop.

A.3 Conclusions

In the present study, experimental investigation of the bistable region in a simple lam-

inar ducted premixed flames, with respect to the flame location has been conducted.

Resonant acoustic forcing is used to drive oscillations in the system. The evolution of

the system after the external forcing is discontinued is recorded in terms of pressure

and heat release rate through flame intensity time series data. In the bistable region

for our system, it was observed that instability could be triggered in the system, which

is linearly stable, if oscillations are forced beyond certain threshold amplitude. Two

cases with different equivalence ratios were chosen for experiments. In the first case,

we found that limit cycle oscillations emerged in the systemas the control parameter
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crossed the Hopf point. The triggered oscillations also were limit cycles oscillations.

Whereas, in the second case, the self-sustained oscillations at the Hopf point and the

triggered oscillations in the bistable region were period-2 oscillations. The threshold

amplitudes for triggering thermoacoustic oscillations via resonant acoustic forcing is

determined for the latter case for different flame locationsand a bifurcation plot for the

bistable region is constructed.

This study, if seen from a dynamical systems perspective, probes into the sub-

critical zone through a specific section in the phase plane which is determined by the

sinusoidal acoustic forcing provided. This forcing takes the system towards the unsta-

ble limit cycle which lies on the basin boundary between the fixed point attractor and

the stable limit cycle attractor. From the phase space and power spectrum, it is clear

that the phase space trajectories evolve on a surface which is closely, but not exactly

aligned with the unstable limit cycle loop. In the bistable region as the flame location

is changed, the extent of the unstable limit cycle loop changes. The shape and extent

of the corresponding basin boundary is also expected to change as the flame location is

varied. The basin boundary could be a complex structure, butthe unstable limit cycle

is a loop on that basin boundary. Investigation in the bistable region by using different

shapes of perturbations will help to explore the overall structure of the basin bound-

ary. These observations of the bistable zone could aid in improving currently available

techniques for prediction of thermoacoustic instabilities.
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APPENDIX B

Algorithms

Algorithm B.0.1: AVERAGE MUTUAL INFORMATION(τ )

comment:Calculating the average mutual information, for a given time-delay

Input time series (T1)

Specify time-lag,τ

Create time-lagged time series (T2), using T1 andτ

Divide the amplitude range of T1 (or T2) into N bins

L = length(T1) = length(T2)

Initialize: AMI = 0

for i← 1 to N

do






for j ← 1 to N

do





A = (Count#[All x in T1 such that x∈ (ith bin)])

B = (Count#[All y in T2 such that y∈ (jth bin)])

AB = (Count#[All x in T1, y in T2 such that x∈ (ith bin) AND

y ∈ (jth bin) simultaneously])

Pa = A/(L− τ)

Pb = B/(L− τ)

Pab = AB/(L− τ)

AMI = AMI + Pab× log2(Pab/(Pa× Pb))



Algorithm B.0.2: FALSE NEAREST NEIGHBORS(d, τ )

comment:Calculating percentage of false nearest neighbors

Input time series (T)

Specify time-delay,τ

Specify dimension to be evaluated,d

D = points ind-dimensional reconstructed phase space

D1 = points in (d+1)-dimensional reconstructed phase space

L = length(D)

Θ = threshold to identify false neighbors†

Initialize: FNN = 0

for i← 1 to L

do





XD(i) = Current point in D

YD(i) = Nearest neighbor toXD(i) in D

∆D(i) = ||XD(i)− YD(i)||
XD+1(i) = XD(i) in D1

YD+1(i) = YD(i) in D1

∆D+1(i) = ||XD+1(i)− YD+1(i)||
∆ = |∆D(i)−∆D+1(i)|
if ∆ > Θ

then





(XD(i), YD(i)) is a false nearest neighbor pair

FNN = FNN + 1

Calculate the percentage of false nearest neighbors

The dimension,d at which the percentage of false nearest neighbors goes to 0 is the

optimum dimension for phase space reconstruction.

† Recommendations for optimum thresholds can be found in Nayfeh and Balachandran

(2004); Moon (2004).
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Algorithm B.0.3: CORRELATION DIMENSION(d, τ )

comment:Calculating the correlation dimension of a reconstructed attractor

Input time series (T)

Specify time-delay,τ

D = points ind-dimensional reconstructed phase space

L = length(D)

Rmin, Rmax = minimum and maximum radius (r) to check for a scaling in the

correlation integral C†

Initialize: C(r) = 0

for n← 1 to L

do





for r ← Rmin to Rmax

do






X(n) = Current point in D

Xi(n) = Other points in D

N(n, r) = H(r − |X(n)−Xi(n)|), H here is the Heaviside function

C(r) = C(r) +N(n, r)

C(r) = C(r)/L2

Within the scaling region,C(r) ∝ rν , whereν gives the correlation dimension.

Scaling between the correlation integral andr will exist for a smallr, compared to the

attractor size.

† Rmin andRmax will depend on the size of the recontructed attractor.
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Algorithm B.0.4: MAXIMAL LYAPUNOV EXPONENT(d, τ )

comment:Calculating the maximal Lyapunov exponent in a reconstructed attractor

Input time series (T)

Specify time-delay,τ

Define a neighborhood size,ǫ†

∆nmin,∆nmax = range of time-steps to be considered for evaluating S

D = points ind-dimensional reconstructed phase space

L = length(D)

Initialize: S(∆n) = 0

for i← 1 to L

do





for ∆n← ∆nmin to ∆nmin

do





Xi+∆n = Current point in D shifted in time by∆n

Xj
i+∆n = Points withinǫ neighborhood ofXi, shifted by∆n

D(i,∆n) =
∑
j

|Xi+∆n −Xj
i+∆n|

D(i,∆n) = D(i,∆n)/ǫ

S(∆n) =
1

L

∑

i

lnD(i,∆n)

For a chaotic system,S(∆n) will vary linearly with ∆n in a certain intermidiate

range of∆n values. The slope of this linear curve gives the maximal Lyapunov expo-

nent.

† Size of the neighborhood,ǫ, should be chosen with consideration to several factors

such as the amount of noise in the data and the total number of points considered. For a

detailed discussion, see Kantz (1994)
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