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ABSTRACT

KEYWORDS: Thermoacoustic Instability; Intermittency; Phenomenological

model; Bursts; Amplitude-modulated bursting; Complex networks;

Cycle networks; Phase space topology; Phase transition; Bose-

Einstein condensation; Chaos to order.

Combustion engines in rockets or gas turbine engines exhibit complex dynamics and

are susceptible to a catastrophic phenomenon, namely thermoacoustic instability. The

transition from stable (combustion noise) to unstable state (thermoacoustic instability)

of operation in combustors was conventionally viewed as a transition from a stable

fixed point to stable limit cycle oscillations. However, recent studies have shown that

combustion noise is essentially high-dimensional chaos. With increase in the Reynolds

number, order emerges amidst chaos. First, the dynamics exhibits intermittent bursts

of periodicity and then subsequently transitions to high amplitude periodic oscillations.

These high amplitude periodic oscillations are self-sustained due to the positive feed-

back established between the heat release and acoustic fluctuations in the combustor,

and are referred to as thermoacoustic instability. Such high-amplitude periodic oscilla-

tions can be ruinous and may disrupt the functioning of a combustor, can cause struc-

tural damage to the internal mechanism of the combustor, or even cause the guidance

system of rockets to malfunction leading to mission failures. It is therefore essential to

identify the onset of such oscillatory dynamics, and characterize the emergence of order

from chaos in thermoacoustic systems.

In this study, we endeavour to develop a fundamental understanding of the phenom-

ena that lead to the occurrence of intermittency prior to the onset of orderly dynamics

in combustors. The state of intermittency is characterized by the occurrence of bursts

of high-amplitude periodic oscillations (active state) amidst epochs of low-amplitude

aperiodic fluctuations (rest state). Recent studies have shown that the transition from
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combustion noise to thermoacoustic instability via the route of intermittency occurs in

several disparate thermoacoustic systems such as laminar multiple flame combustor,

low-turbulence spray combustor, turbulent bluff body as well as swirl stabilized com-

bustors. While the underlying physical mechanisms of these systems is distinct, the

transition from chaos to order via the route of intermittency is a common feature. In

this thesis, we study the complex dynamics observed in both laminar as well as turbulent

combustors.

Several model-based studies conjectured that bursting arises due to the underlying

turbulence in the system. However, such intermittent bursts occur even in laminar and

low-turbulence combustors, which cannot be explained by models based on turbulence.

We assert that bursting in such combustors may arise due to the existence of subsystems

with varying timescales of oscillations; thus, forming slow-fast systems. Experiments

were performed on a horizontal Rijke tube and the effect of slow-fast oscillations was

studied by externally introducing low-frequency sinusoidal modulations in the control

parameter. Further, we develop a phenomenological model for the interaction between

different subsystems of a thermoacoustic system by either coupling the slow and fast

subsystems, or by introducing noise in the absence of slow oscillations of the control pa-

rameter. We show that bursting in laminar and low-turbulence systems occurs predom-

inantly due to the interdependence between slow and fast oscillations; while bursting in

high-turbulence systems is predominantly influenced by the underlying turbulence.

The occurrence of intermittency during the transition from chaos to order delineates

the spontaneous emergence of order amidst chaos. It is, thus, very essential to charac-

terize the intermittency route of chaos to order transitions in distinct feedback-driven

systems. While tools from dynamical systems and complex networks have been uti-

lized to study such transitions, the understanding of emergence of order from chaos

in turbulent systems is far from complete. We attempt to fill the gap by studying the

transformations in the topology of the phase space using complex networks derived

from the phase space cycles. To that end, we study the transition of dynamics in two

distinct turbulent thermoacoustic systems, namely bluff-body and swirl stabilized tur-

bulent combustors. Using unweighted complex networks built from phase space cycles
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of the acoustic pressure oscillations, we characterize the topology of the phase space

during various dynamical states in these combustors. We propose the use of network

centrality measures derived from cycle networks as a novel means to characterize the

number and stability of periodic orbits in the phase space. We also study the topologi-

cal transformations in the phase space during the emergence of order from chaos in the

combustors using these network measures.

Finally, we propose that the onset of oscillatory instabilities in turbulent systems is

analogous to Bose-Einstein condensation transition observed for Bosons. By defining

the phase space cycles as particles and the periodic orbits as energy levels, we show that

the onset of oscillatory instabilities is essentially the onset of a condensation transition.
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(and corresponding Re) for (a) bluff-body and (b) swirl stabilized com-
bustors, where ε0 = 0.003 in both cases. The regions (I), (II) and (III)
correspond to the different dynamical states observed in these combus-
tors namely combustion noise, intermittency and thermoacoustic insta-
bility respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 (a) The variation of acoustic pressure oscillations (p′) and (b) log of the
amplitude envelope of these pressure oscillations (p′e) as a function of
the time-varying control parameter (c1) during the growth of amplitude
of the burst. The values of parameters are: A = 0.8, B = 0.4, f = 0.17
Hz and σa = 0.0001 while σm = 0. . . . . . . . . . . . . . . . . . . 86

B.1 The variation in the average (a) closeness centrality (〈Cclose〉), (b) be-
tweenness centrality (〈CBC) and (c) clustering coefficient (〈CC〉) with
the variation in the control parameter (ū) of a bluff-body stabilized tur-
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CHAPTER 1

Introduction

1.1 Thermoacoustic systems and thermoacoustic insta-

bility

Continuous combustion is required in several applications for power generation, such

as aero-engines, rocket propulsion and gas turbine engines. The operation and lifetime

of combustors developed for such power generation are plagued by the phenomenon

of thermoacoustic instability, also called combustion instability (Culick (2006); Sujith

et al. (2016)). The unsteady combustion that occurs in the confined length of combus-

tors drives the acoustic perturbation modes of the confinement. Moreover, the unsteady

acoustic perturbations may disturb the surface of the flame stabilized in the combustor,

by either bluff-body or swirler configurations, and lead to perturbations in the rate of

heat release. In other systems, such as that involving fuel injection via spray, the heat

release rate fluctuates due to the influence of acoustic pressure oscillations on the fuel

injection rate. As a result, a positive feedback loop is established between the acous-

tic field perturbations and the rate of heat released due to combustion. The acoustic

pressure waves are amplified due to the positive feedback of energy from heat released

due to combustion. It is due to such coupling between the acoustic perturbations and

the heat released from combustion that we obtain large amplitude self-sustained tonal

sound waves during the occurrence of thermoacoustic instability (Strutt and Rayleigh

(1945)).

Figure 1.1 shows a schematic diagram showing the different subsystems of a ther-

moacoustic system and their possible interactions with each other. The acoustic sub-

system comprises perturbations in the acoustic pressure (p′) and acoustic velocity (u′).

The dynamics of the hydrodynamic subsystem includes vortex formation and impinge-

ment, and turbulent fluctuations for high Reynolds number flows. Also, the rate of



heat released by combustion is influenced by several factors such as oscillations in the

flame surface, and variations in the fuel injection rate, burning rate and equivalence

ratio. Further, the dynamics of each subsystem influences and is influenced by the dy-

namics of other subsystems. For example, acoustic pressure oscillations will vary the

pressure difference between injection pressure and combustor pressure, as a result of

which the fuel injection rate varies. Also, the size of fuel droplets, equivalence ratio

and burning rate of fuel may vary. Further, vortex shedding occurs in the dump plane of

a combustor or at the tip of flame-stabilizing bluff-body (Seshadri et al. (2016)). These

vortices carry fuel which burns either when a certain vortex strength is reached or on

impingement with combustor walls. Thus, the hydrodynamic flow field influences the

rate of heat release due to combustion. Turbulent flow field may interact and influence

the flame surface fluctuations which in turn control the rate of heat released. Acoustic

perturbations also influence the flame surface fluctuations. As a result of such inter-

actions between various subsystems, thermoacoustic systems are characterized by rich

spatio-temporal dynamics and pattern formation (George et al. (2018)).

Fig. 1.1: Schematic diagram showing the interaction of various subsystems of a ther-
moacoustic system.

For low Reynolds number, thermoacoustic systems operate in a stable state in which
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the acoustic pressure field is characterized by low-amplitude chaotic fluctuations in tur-

bulent systems or noisy aperiodic fluctuations in laminar systems. The spatial dynam-

ics exhibits incoherent heat release rate patterns and vortex shedding in the flow field

(George et al. (2018); Unni et al. (2018); Krishnan et al. (2019)). In order to operate

at a point of optimum combustion, we increase the inlet mass flow rate of air. As a re-

sult the Reynolds number increases and equivalence ratio decreases. On increasing the

inlet mass flow rate, we observe intermittent dynamics in the acoustic pressure signal

characterized by bursts of periodic oscillations interspersed by aperiodic (or chaotic)

fluctuations (Pawar et al. (2016); Nair et al. (2014)). Also, in the flow field we observe

periodic vortex shedding and spatial coherence in the heat release rate during epochs of

periodicity, while incoherent dynamics persists during aperiodic pressure fluctuations

(George et al. (2018)). On further increasing the inlet mass flow rate, we observe high-

amplitude periodic oscillations in the acoustic pressure field characterizing thermoa-

coustic instability. Moreover, vortex shedding occurs periodically at acoustic frequency

(Pawar et al. (2017)) and the heat release rate exhibits periodic spatial coherence (Unni

et al. (2018); Krishnan et al. (2019)). Such periodic dynamics observed during the oc-

currence of thermoacoustic instability is as intriguing as detrimental it is to the system.

Identification of dynamical routes that lead to thermoacoustic instability and developing

measures for predicting or mitigating such a state has been a field of intense research

recently (George et al. (2018); Juniper and Sujith (2018); Sujith and Unni (2020a)).

1.2 Distinct perspectives to study the transition from

stable to unstable operation in thermoacoustic sys-

tems

Traditionally, the onset of thermoacoustic instability has been viewed as a sudden tran-

sition from stable operation to unstable operation of the system. In the purview of

dynamical systems theory, this transition is referred to as Hopf bifurcation (Lieuwen

(2002); Ananthkrishnan et al. (2005)) and the state of thermoacoustic instability is con-
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sidered to be a stable limit cycle (Culick (1994)). However, this approach regards the

stable state of operation as a fixed point rather than chaotic dynamics. Recently, the fo-

cus of the scientific community has shifted to characterizing the transition from chaos

to order using bifurcation analysis motivated through the perspective of dynamical sys-

tems and complex systems theory (Sujith and Unni (2020b,c)). Nair et al. (2013) using

Kaplan-Glass test and Tony et al. (2015) using a host of measures such as the Hurst

exponent and surrogate analysis have shown that the state of combustion noise in a tur-

bulent combustor is essentially high-dimensional deterministic chaos. Also, Nair and

Sujith (2014) have discussed how the multifractal characteristics of the acoustic pres-

sure fluctuations obtained during the stable state of operation differ significantly from

signals that are obtained via stochastic random processes. Thus, as noted by Nair and

Sujith (2014), the term ‘combustion noise’ used to describe chaotic dynamics during the

stable state of operation in a thermoacoustic system is a misnomer and requires careful

consideration.

Moreover, Nair et al. (2014) showed that the transition from stable operation (com-

bustion noise) to unstable operation (thermoacoustic instability) in turbulent combus-

tors is interspersed by a dynamical state called intermittency. Intermittency prior to

thermoacoustic instability is a state consisting of bursts of high amplitude periodic os-

cillations interspersed amongst epochs of low amplitude aperiodic oscillations. In the

intermittency signals, the epochs of periodicity increase as the system dynamics ap-

proaches the point of onset of thermoacoustic instability. Subsequently, several studies

have reported the presence of intermittency prior to thermoacoustic instability in dif-

ferent combustors (Gotoda et al. (2014); Unni and Sujith (2017); Domen et al. (2015);

Delage et al. (2017); Kheirkhah et al. (2017); Ebi et al. (2018)).

The transition of the system dynamics from chaos to order in turbulent combustors

has also been characterized using the synchronization framework. Pawar et al. (2017,

2019) explain the various dynamical states observed in turbulent combustors by treating

the acoustic pressure fluctuations p′ and the heat release rate fluctuations q̇′ as oscilla-

tors. They model the chaotic dynamics observed during the state of combustion noise

by assuming that p′ and q̇′ are chaotic oscillators which are not synchronized. Further,
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during the state of intermittency, Pawar et al. (2017) showed that p′ and q̇′ are synchro-

nized during the intermittent epochs of periodic oscillations but remain asynchronous

during the chaotic fluctuations in p′. Finally, Pawar et al. (2017) identified two dis-

tinct states during the occurrence of thermoacoustic instability, (a) phase synchronized

limit cycle oscillations (PS state) during which p′ and q̇′ are periodic oscillators that

are phase synchronized, and (b) generalized synchronized limit cycle oscillations (GS

state) during which p′ and q̇′ are periodic oscillators that are in a functional relationship.

Another interesting and recent perspective views thermoacoustic phenomena as a

complex system with interacting subsystems. Thermoacoustic systems exhibit various

dynamical states that are manifestations of interaction between different subsystems

such as oscillating flame and heat release due to combustion, hydrodynamic fluctua-

tions and acoustic perturbations (Fig. 1.1). Complex networks provide a natural frame-

work to study such interactions between components of a system and have been used

effectively to characterize the complex dynamics in thermoacoustic systems.

Complex networks can be derived from the time series of system variables, such

as acoustic pressure, obtained from experiments in several different ways (Gao et al.

(2017)). Using visibility algorithm on the time series of acoustic pressure oscillations in

a combustor, Murugesan and Sujith (2015) revealed that the chaotic dynamics observed

during stable operation corresponds to a scale-free complex network. However, as the

system transitions to the state of limit cycle oscillations, the structure of these complex

networks becomes more ordered and its scale-free nature is lost. Further, Gotoda et al.

(2017) have used constrained visibility graphs to characterize the different dynamical

states and to predict the onset of blowout states in thermoacoustic systems. In a recent

work, Godavarthi et al. (2017) studied the transition of dynamics in a thermoacous-

tic system as the variation in topology of ε-recurrence networks constructed from the

acoustic pressure fluctuations in a turbulent combustor. Also, Kasthuri et al. (2019a)

have identified the various dynamical states in a self-excited model liquid rocket-engine

combustor using time series analysis on experimental data. They have proposed robust

measures based on recurrence quantification analysis and multifractal theory to diag-

nose the onset of thermoacoustic instability in the system.
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Further, Okuno et al. (2015) have used weighted complex networks constructed

from phase space cycles to characterize the pseudo-periodicity observed during the oc-

currence of thermoacoustic instability. We note that a pseudo-periodic signal is defined

as a combination of a periodic function along with a set of parameters that define the

deviations of the process from true periodicity (Sethares (2001); Wong and Sethares

(2004)), such as variations in the amplitude of periodic signal. Moreover, Kobayashi

et al. (2019) have used complex networks approach to predict the occurrence of ther-

moacoustic instability in combustors by studying the transition patterns in ordinal par-

tition transition networks using machine learning. Also, Hachijo et al. (2020) have

used weighted cycle-networks to study the occurrence of oscillatory instabilities and

identify the formation of noisy limit cycle oscillations during cascade flutter in a model

low-pressure turbine for aircraft engines.

1.3 The occurrence of intermittency state en route to

thermoacoustic instability in various combustors

Different type of combustors involve different types of underlying physical phenom-

ena. However, all of these systems exhibit similar dynamical states and the transition

between these states. We observe that, thermoacoustic systems operate in a stable state

characterized by very low amplitude fluctuations in the acoustic pressure signal. As the

control parameter (such as the Reynolds number) of the system is altered, we see that

the system dynamics transitions to a state of unstable operation characterized by very

high amplitude periodic oscillations in the acoustic field. This transition from stable op-

eration, called combustion noise to a state of unstable operation, called thermoacoustic

instability, occurs through the route of intermittency. The occurrence of intermittency

has been reported in several types of combustors and is of great interest to the thermoa-

coustic community (Nair et al. (2014); Domen et al. (2015); Noiray and Schuermans

(2013); Pawar et al. (2016)). Studying the state of intermittency prior to the onset of

thermoacoustic instability allows us to identify and predict, and possibly mitigate, the

occurrence of thermoacoustic instability. The objective of this study is to develop an
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understanding of the occurrence of intermittency state and the transition route from

combustion noise (chaos) to thermoacoustic instability (order) in laminar and turbulent

combustors.

In a laminar thermoacoustic system consisting of a matrix burner, Kasthuri et al.

(2019b) showed the presence of bursting oscillations (switching of oscillations between

bursts of periodic oscillations and a nearly quiescent state) and mixed-mode oscilla-

tions (characterized by periodic oscillations switching between two different ampli-

tudes) prior to the onset of limit cycle oscillations. In addition, Weng et al. (2016)

showed the existence of self-sustained beating dynamics arising due to fluctuations in

the flame location in a Rijke-type burner with a laminar premixed flame. Therefore,

while intermittent bursts are observed in both laminar and turbulent combustors, the

characteristic features of such bursts are different in these combustors due to the dif-

ference in the preceding stable state. In laminar combustors the intermittent bursts

consist of periodic oscillations amidst epochs of quiescence, and hence referred to as

‘bursting oscillations’ (Kasthuri et al. (2019b)). However, in turbulent combustors, the

intermittent oscillations consist of bursts of periodic oscillations interspersed by epochs

of low-amplitude chaotic fluctuations; thus, referred to as ‘intermittency’ (Nair et al.

(2014)) and not bursting oscillations.

While intermittency is observed in a wide range of combustors, the features of the

intermittency state vary remarkably across the various systems. In laminar (Kasthuri

et al. (2019b)) and low-turbulence combustors (Pawar et al. (2016)), we obtain distinct

high amplitude periodic oscillations interspersed by almost quiescent state or aperiodic

fluctuations of negligible amplitude. The bursts of periodic oscillations delineate am-

plitude modulation (Boudy et al. (2013); Pawar et al. (2016)) known as amplitude mod-

ulated bursting. On the other hand, in turbulent combustors, the bursts occurrence of

intermittency prior to the onset of thermoacoustic instability is characterized by epochs

of periodic oscillations interspersed by epochs of chaotic fluctuations. These bursts of

periodicity are not necessarily amplitude modulated.

Several attempts have been made to characterize the state of intermittency in these

combustors (Pawar et al. (2016); Seshadri et al. (2016); Noiray (2017); Lieuwen and
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Banaszuk (2005)). However, previous studies have regarded turbulence and background

noise as the cause of such bursting behavior observed during intermittency state. As a

result, these models cannot explain the occurrence of the state of intermittency in lami-

nar and low-turbulence combustors. In Chapter 3, we propose that intermittency occurs

due to interplay between slow and fast timescales associated with various subsystems.

We discuss synthetic experiments conducted to understand the dynamics resulting from

control parameter modulations in a Rijke tube set up. Further, we develop a phenomeno-

logical model to explain the occurrence of bursting during the intermittency state ob-

served en route to thermoacoustic instability in laminar and low-turbulence combustors.

We use physical insight and base our model on the premise that the dynamics of a ther-

moacoustic system is influenced by the interaction of various subsystems, as discussed

in Sec. 1.1 (Fig. 1.1). Our model introduces interactions between various subsystems

and successfully replicates amplitude modulated bursting as observed in the experi-

ments in practical low-turbulence combustors.

Also, as discussed earlier, complex systems approach has been used to identify the

onset of thermoacoustic instability in various combustors. Using recurrence networks

(Godavarthi et al. (2018, 2017)), visibility networks (Murugesan and Sujith (2015))

various information has been extracted about the onset of thermoacoustic instability.

However, the understanding of the transition from chaos to order in turbulent com-

bustors is far from complete. We analyse such a transition using complex networks

constructed from phase space cycles, called cycle networks. Using network centrality

measures derived from cycle networks we show how the topology of the phase space

changes as the dynamics of the combustor transitions from chaos to order. We not only

identify the onset of thermoacoustic instability but also identify the occurrence of the

state of intermittency prior to the occurrence of thermoacoustic instability. In Chapter 5

we thus provide novel insight to the physical topology of the phase space during various

dynamical states and also propose new early warning indicators for these states. Finally,

we compare the transition from chaos to order in turbulent systems with the occurrence

of Bose-Einstein condensation and show that these two are similar processes.

In Chapter 3 we discuss the Rijke-tube experiments and our phenomenological
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model to explain the occurrence of intermittency en route to thermoacoustic instabil-

ity. Further, we provide a brief overview of complex networks and basic definitions

of measures derived from networks in Chapter 4. In 5, we discuss the transition from

chaos to order in turbulent thermoacoustic systems. We conclude and summarize the

future scope of our study in Chapter 6.
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CHAPTER 2

Experiments in various thermoacoustic systems

2.1 Experiments in laminar Rijke tube set-up

The experimental setup of a horizontal Rijke tube [Fig. 2.1] consists of an aluminium

duct that is 100 cm long with a square cross-section of 9.3× 9.3 cm2. A decoupler

is attached to the inlet of the duct. The decoupler eliminates the fluctuations of the

incoming flow and maintains ambient pressure conditions at the attached side of the

duct. The Rijke tube houses a stainless-steel wire gauge (henceforth, referred to as the

heater), which is used as a concentrated heat source in the system. The heater is con-

nected to a DC power supply (TDK-Lambda, GEN 8-400, 0-8 V, 0-400A) through two

copper rods. The DC power supply is used to control the supplied voltage to the heater,

which thus controls the amount of power supplied to the system. The heater voltage

(i.e., the control parameter) is varied in a quasi-static manner such that the system dy-

namics transitions from the steady state to thermoacoustic instability (i.e., limit cycle

oscillations) via a subcritical Hopf bifurcation. The airflow rate is maintained constant

at 100± 0.52 SLPM (standard litres per minute), using an electronic mass flow con-

troller (Alicat Scientific). The corresponding Reynolds number of the air flow in the

Rijke tube is 1154±6.

The unsteady acoustic pressure oscillations generated in the Rijke tube are recorded

using a pressure transducer (PCB103B02) which has an uncertainty of ±0.2 Pa. The

transducer is located at a distance of 31.5 cm from the inlet of the Rijke tube. The

sampling frequency was fixed at 10 kHz. The acoustic pressure data were collected

using a 16-bit data acquisition system DAQ (NI-USB 6343). To ensure repeatability

of the experimental results, environmental factors such as temperature and relative hu-

midity were maintained at 23±3◦C and 60±5%, respectively. The acoustic decay rate

of the setup under cold flow conditions was always recorded to be between 12± 0.5



Fig. 2.1: The schematic of the experimental setup of the horizontal Rijke tube and a
cross-section of the Rijke tube duct showing the position of the heater in the
system.

s−1. The acoustic damping is maintained within bounds to ensure repeatability of the

experiments.

2.2 Various dynamical states observed during experi-

ments in turbulent combustors

To study the emergence of order from chaos we consider the experiments performed

in swirl-stabilized and bluff-body stabilized turbulent combustors. Figure 2.2 shows a

schematic of a turbulent combustor and the two types of flame stabilizing mechanisms

used, namely a bluff-body and a swirler. The dynamics of these combustors is studied

as the control parameter, i.e. the mean velocity of the flow (ū) is varied. The Reynolds

number is obtained around the location of the burner as Re= ūD/ν , where ν is the kine-

matic viscosity of the fuel-air mixture at experimental conditions and D is the burner

diameter. The fuel flow rate in the combustor is maintained at 25 SLPM (standard liter

per minute), while the air flow rate is varied from a value of 400 SLPM to 940 SLPM.

In turn, the mean flow velocity varies from 9.2 m/s to 18.1 m/s. Correspondingly, Re

varies from 1.09× 105 to 2.12× 105 with uncertainties ranging from ±1.97× 103 to

±2.71×103. Also, the equivalence ratio of the air-fuel mixture varies from 0.95±0.02
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Fig. 2.2: Schematic diagram of (a) the experimental set-up of a turbulent combustor,
and two types of flame stabilizing mechanisms: (b) a circular bluff-body and
(c) a swirler. The figure has been reproduced from the doctoral thesis of Dr.
Pawar (Pawar (Indian Institute of Technology Madras, 2018)), with the kind
permission of the author.

to 0.46± 0.01. The acoustic pressure oscillations are recorded using a piezoelectric

transducer (PCB Piezotronics PCB103B02) with an uncertainty of ±0.15 Pa. The sig-

nals from the transducer are recorded at a sampling rate of 10 kHz for 3 s. Further

details of the experimental setup can be referred in Nair et al. (2014) and Pawar et al.

(2017).

Similarly, we consider the dynamics for a swirl-stabilized turbulent combustor where

the fuel flow rate is maintained at 21 SLPM, while the air flow rate is varied from a value

of 330 SLPM to 700 SLPM. Correspondingly the mean flow velocity varies from 7.6

m/s to 15 m/s, while Re varies in the range of 9.04× 104 to 1.75× 105 with an uncer-

tainty in the range of 1.81× 103 to 2.42× 103. Further, this leads to the variation in

the equivalence ratio of the air-fuel mixture from 1±0.02 to 0.47±0.01. The acoustic

pressure fluctuations are recorded at a sampling rate of 10 kHz for 3 s, using a piezo-

electric transducer (PCB Piezotronics PCB103B02) having an uncertainty of±0.15 Pa.

A detailed description of the experimental set-up can be found in Nair et al. (2014) and

Pawar et al. (2019).
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The resulting dynamics for the bluff-body and swirl stabilized combustors have been

reported earlier by Nair et al. (2014) and recently investigated through the framework

of synchronization by Pawar et al. (2017, 2019). Nair et al. (2014) have discussed

the transition of the dynamics from a state of stable operation to thermoacoustic insta-

bility via the route of intermittency in both the turbulent combustors. Firstly, at low

values of the mean flow velocity (ū), the acoustic pressure dynamics of the turbulent

combustors exhibit low-amplitude chaotic fluctuations, referred to as combustion noise.

With increase in the control parameter of the system (ū), the acoustic pressure delin-

eates intermittent bursts of periodic oscillations interspersed by aperiodic fluctuations.

On further increase in ū, the combustor dynamics exhibit self-sustained high-amplitude

periodic oscillations, which is the state of thermoacoustic instability.

Using the synchronization framework, Pawar et al. (2017, 2019) have further iden-

tified two distinct states during the occurrence of thermoacoustic instability, namely the

PS and the GS states (discussed in Sec. 5.1), in the bluff-body (Pawar et al. (2017)) and

the swirl (Pawar et al. (2019)) stabilized turbulent combustors. We note that during the

occurrence of the PS state in the bluff-body stabilized combustor, the p′ signal exhibits

high-amplitude periodic oscillations with distinct amplitude modulations that may be

a signature of pseudo-periodicity. Whereas, the high-amplitude periodic oscillations

in p′ obtained during the occurrence of the GS state in the bluff-body stabilized com-

bustor delineates almost constant amplitude. On the other hand, the acoustic pressure

signal during the PS state obtained from experiments in the swirl-stabilized combustor

delineates small amplitude modulations for only a short range of values of the control

parameter. Pawar et al. (2017) have referred to such amplitude-modulated dynamics

during the PS state in the acoustic pressure signal as weakly correlated limit cycle os-

cillations, while the acoustic pressure dynamics obtained during the GS state is referred

to as strongly correlated limit cycle oscillations. Further, Godavarthi et al. (2018) have

also identified the onset of the state of intermittency, and the PS and GS states ob-

served in the bluff-body stabilized turbulent combustor using recurrence networks, for

the same data set as reported by Pawar et al. (2017).
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CHAPTER 3

Phenomenological model for the occurrence of

intermittency in laminar and turbulent systems

3.1 Introduction

Thermoacoustic instability has detrimental effects on the lifetime of a combustor and

is a plaguing problem in the gas-turbine and rocket industries. Large amplitude self-

sustained oscillations in the acoustic field may arise due to positive feedback between

the heat release rate and the pressure oscillations in a combustor, leading to thermoa-

coustic instability. Recently, studies in many systems have shown that such thermoa-

coustic oscillations are preceded by a state of intermittency (Chapter 1). In order to

predict or mitigate these oscillations, it is essential to characterize the route to thermoa-

coustic instability and recognize its cause. During intermittency, bursts of high ampli-

tude periodic oscillations occur amidst epochs of low amplitude aperiodic fluctuations.

Such dynamical state has been observed across various combustors, but the features of

these bursts are different in different combustors. The cause of intermittent bursting is

usually attributed to turbulent fluctuations in the underlying flow. However, intermit-

tent bursts are also observed in laminar and low-turbulence combustors, indicating a

different physical cause.

There are several subsystems in a thermoacoustic systems such as the acoustics,

flame dynamics and hydrodynamics (Fig. 1.1). In this chapter, we conjecture that

the existence of the multiple timescales associated with the oscillations in these dif-

ferent subsystems in a thermoacoustic system is responsible for the occurrence of the

bursts during intermittency, and the interaction between these oscillations determines

the features of the bursts. To that end, we study the effect of multiple timescales on the

occurrence of bursts in a prototypical thermoacoustic system, a horizontal Rijke tube.



Furthermore, we present a phenomenological model to explain the cause of bursting in

laminar and low-turbulence combustors through the framework of slow-fast systems.

We also investigate the effect of the interaction between various subsystems on the

characteristics of bursts observed during intermittency.

In Chapter 1, we discussed various experimental studies that have highlighted the

occurrence of intermittency en route to thermoacoustic instability in laminar and tur-

bulent combustors. Recently, several attempts have been made to explain the transition

from a state of stable operation to thermoacoustic instability via intermittency in vari-

ous combustors. Using the framework of synchronization theory, Pawar et al. (2017)

studied the coupling between the acoustic pressure and the heat release rate fields and

showed that these fields undergo intermittent phase synchronization during the state of

intermittency in thermoacoustic systems. Further, most studies attribute the occurrence

of bursting during intermittency to the effects of the underlying turbulent fluctuations,

which are modelled either as stochastic forcing terms in the heat release rate (Noiray

(2017)) or stochasticity in velocities of the vortices that convect in a turbulent combus-

tion chamber (Nair and Sujith (2015)). On the other hand, a deterministic approach was

presented by Seshadri et al. (2016) to explain the cause of intermittency, which was

based on the feedback between the acoustic waves generated due to the localized heat

release and the vortex shedding in the system. Although some understanding has been

developed on the occurrence of intermittency in turbulent combustors, the aforemen-

tioned studies could not explain the causes and characteristics of bursts in laminar and

low-turbulence combustors.

The kind of bursting behaviour observed during intermittency prior to thermoacous-

tic instability in various combustors is remarkably different. Figure 3.1 shows the time

series of such intermittent oscillations reported in some of the recent studies involving

different type of combustors with varying levels of turbulence. For combustors having

a high turbulence intensity [Figs. 3.1(a-c)] in the underlying flow field, the intermit-

tent bursts are almost continuous in time with no distinct transition between epochs of

periodic and aperiodic fluctuations. On the other hand, the intermittent oscillations ob-

served in low-turbulence (Pawar et al. (2016)) [Fig. 3.1(d)] and laminar (Kasthuri et al.
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Fig. 3.1: The time series of the acoustic pressure oscillations during the state of in-
termittency observed prior to thermoacoustic instability obtained from stud-
ies involving different classes of thermoacoustic systems, such as (a, b) a
turbulent gas-fired combustor with a bluff-body and a swirl stabilizer (Nair
et al. (2014)), respectively, (c) a turbulent gas-fired swirl combustor (Ebi et al.
(2018)), (d) a low turbulence laboratory spray combustor (Pawar et al. (2016)),
(e) a laminar multiple flame matrix burner (Kasthuri et al. (2019b)), and (f) a
Rijke-type laminar flame burner (Weng et al. (2016)).
These plots are reproduced with permission from (a, b) J. Fluid Mech. 756,
470-487 (2014), Cambridge University Press, (c) J. Eng. Gas Turb. Power
140, 061504 (2018), ASME, (d) J. Eng. Gas Turb. Power 138, 041505 (2016),
ASME, (e) Chaos 29, 043117 (2019), AIP, (f) Combust. Flame 166, 181-191
(2016), Elsevier.
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(2019b)) [Fig. 3.1(e)] combustors shows the occurrence of pronounced bursts of large

amplitude as well as small amplitude periodic oscillations amidst very low amplitude

(nearly quiescent) aperiodic fluctuations. The intermittent oscillations in these systems

are characterized by relatively smooth and regular variation in the amplitude envelope

with distinct occurrence of growth and decay pattern for the bursts. Further, [Fig. 3.1(f)]

shows self-sustained beating dynamics in a Rijke-type laminar burner (Weng et al.

(2016)), where the pressure oscillations show a regular transition between bursts of

periodic oscillations and epochs of steady state. Clearly, the occurrence of intermittent

bursts in the system shown in Fig. 3.1(d-f) is not turbulence-induced and, hence, can-

not be explained by earlier models based on turbulence (Seshadri et al. (2016); Noiray

(2017)). We endeavor to possibly fill this gap and provide a model to explain bursting

behaviour observed in low-turbulence combustors through a different approach.

Intermittent bursts may arise as a result of turbulent fluctuations in the flow that

affect the heat release rate fluctuations as well as the acoustic fluctuations just prior

to the onset of thermoacoustic instability. However, in the absence of high-intensity

turbulence in the combustor, such bursting behaviour is prone to arise due to interac-

tions between the oscillations in the flow field, heat release rate, acoustics, etc. which

have very distinct timescales. Recent experimental studies have provided insight into

the interaction between the hydrodynamic and acoustic subsystems leading to burst-

ing dynamics in thermoacoustic systems. Hong et al. (2008) have shown that control

parameters such as the equivalence ratio oscillate at a timescale much slower than the

acoustic timescale when the system is close to the onset of thermoacoustic instabil-

ity. In addition, Nair et al. (2014) have conjectured that intermittent bursts in turbulent

combustors can arise if the acoustic subsystem is modulated by the hydrodynamics over

slow timescales. Premchand et al. (2019) have shown the presence of two dominant fre-

quencies during the state of intermittency in a bluff body stabilized turbulent combustor.

They showed that the low-frequency peak in the amplitude spectrum of velocity fluctu-

ations corresponds to the slow hydrodynamic timescale, while the high-frequency peak

in the amplitude spectrum of the pressure fluctuations corresponds to the fast acoustic

timescale.
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Kasthuri et al. (2019b) showed that the temperature close to the burner in a multiple

flame combustor fluctuates at a slow timescale. They conjectured that the nonlinear

interaction of the slow temperature oscillations and fast acoustic fluctuations gives birth

to mixed-mode and bursting oscillations in their system. Further, Weng et al. (2016)

conjectured that beating occurs in their system due to slow and fast timescales of the

flame oscillations, where the slow timescale is around 100 to 1000 times the timescale of

acoustic fluctuations induced in the system. Thus, all these studies provide an incentive

to study the interaction of slow-fast dynamics in thermoacoustic systems, where the

acoustic fluctuations are the fast subsystem while the slow subsystem is formed by the

hydrodynamic oscillations or flame fluctuations. The hydrodynamic oscillations may

further introduce slow oscillations in several other subsystems such as the heat release

rate or the temperature, or in the control parameters such as the local equivalence ratio

or the flow Reynolds number.

The occurrence of ‘bursts’ is a widely studied phenomenon across numerous fields

such as neuroscience (Izhikevich (2000)), chemical systems (Bi (2010)) and fluid me-

chanics (Yalin (1992)). Across these numerous fields, bursting phenomena has been

studied under the purview of coupling of slow and fast subsystems or multiple timescales

associated with the system. Thus, bursting dynamics in thermoacoustic systems may

also be studied in the purview of multiple timescales associated with the oscillations of

various subsystems and control parameters. With the insight from experiments in ther-

moacoustic systems and studies from other fields as our motivation, we try to explain

the cause of intermittency in low-turbulence systems using the slow-fast approach.

We conduct an experimental and theoretical investigation on a prototypical ther-

moacoustic system, known as the horizontal Rijke tube (Matveev (2003)). The hori-

zontal Rijke tube inherently does not show intermittency or bursting behaviour prior to

the onset of thermoacoustic instability (Matveev (2003); Mariappan and Sujith (2011);

Gopalakrishnan and Sujith (2014)). We design the experiments so as to create bursting

behaviour, and hence, to test the hypothesis of the occurrence of bursts due to multiple

timescales in the Rijke tube. In pursuit of the same, we purposefully introduce sinu-

soidal oscillations in the control parameter (i.e., heater voltage) at a frequency which is
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orders of magnitude lesser than the acoustic frequency. The mean value of this oscilla-

tory control parameter is varied such that the system dynamics transitions from steady

state to limit cycle oscillations.

We also develop a low order phenomenological model with a canonical form for

subcritical Hopf bifurcation for heat release rate fluctuations, where low turbulence in-

tensity is modelled using additive noise and interactions between various subsystems is

modelled using multiplicative noise. Slow-fast dynamics is introduced in the model by

the slow sinusoidal oscillation of the control parameter, in a similar manner as described

for the experiments. Prior to thermoacoustic instability, we observe the occurrence of

bursts of high amplitude periodic oscillations amidst low amplitude aperiodic oscilla-

tions in the acoustic pressure due to the slow modulations of the control parameter in

the experiments on the Rijke tube as well as through our model. Finally, we study

the interdependence of the various subsystems of a thermoacoustic system by two ap-

proaches in the model. In the first approach, we use the slow-fast systems approach

and couple the oscillations of the slow and the fast subsystems. While in the second

approach, we introduce multiplicative noise in the heat release rate term in the absence

of slow oscillations in the control parameter. We show that a coupling between the slow

and the fast subsystems induces regular amplitude modulations in the bursts of periodic

oscillations, while the multiplicative noise introduces small and irregular modulations

in the amplitude envelope of bursts.

3.2 Rijke tube experiments designed to study the slow-

fast hypothesis

To test our hypothesis on the occurrence of bursts due to slow-fast oscillations in a

thermoacoustic system, we use the Rijke tube setup described in section 2.1 in Chapter

2. We externally introduce slow timescale oscillations in the heater voltage. Such

control parameter oscillations are introduced by generating a sinusoidal voltage signal

using the SignalExpress™ software, which in turn, introduces sinusoidal oscillations
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in the heater power. Throughout all the experiments in the Rijke tube, the sinusoidal

oscillations of the voltage supplied to the heater are maintained at an amplitude of 0.5 V

and a frequency of 50 mHz. The mean value of the heater voltage is varied in the range

1.5 to 2.75 V, corresponding to which the mean value of the heater power varies in the

range 200 to 600 W. In order to obtain bursting behaviour in the system, we ensure

that the frequency of the oscillations in the heater voltage is of the order of 1/1000th

of the natural frequency of the acoustic oscillations developed during thermoacoustic

instability in the Rijke tube, which is around 162 Hz. We use such a low ratio in order to

allow enough decay and growth time between consecutive bursts of periodic oscillations

in the acoustic pressure dynamics. Thus, the heater power oscillations reflect the slow

subsystem, while the unsteady acoustic pressure fluctuations developed inherently in

the system comprise the fast subsystem.

3.3 Model based on the normal form of subcritical Hopf

bifurcation

In general, any thermoacoustic system consists primarily of a source of unsteady heat

release subjected to an acoustic field established in a confinement. If the premixed/d-

iffusion flame inside the duct is restricted to a smaller length compared to the size of

the duct, it can essentially be considered as a concentrated source of heat, just like the

electrically heated wire mesh in the case of a horizontal Rijke tube. We, therefore, use

a model similar to that discussed by Gopalakrishnan et al. (2016), which is a mod-

ified form of the nonlinear model developed by Balasubramanian and Sujith (2008),

to obtain subcritical Hopf bifurcation through a generalized heat release rate function

(Juniper (2012)).

3.3.1 Governing Equations

The linearized non-dimensional equations for momentum and energy in one-dimension,

neglecting the effect of mean flow and temperature gradient, are as follows (Balasubra-
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manian and Sujith (2008); Nicoud and Wieczorek (2009)),

γM
∂u′

∂ t
+

∂ p′

∂x
= 0, (3.1)

∂ p′

∂ t
+ γM

∂u′

∂x
= (γ−1)Q̇′δ (x− x f ), (3.2)

where γ is the ratio of specific heat capacities, M is the mean flow Mach number, Q̇′

is the fluctuating heat release rate at the location of the heat source (x f ) in the system,

while p′ and u′ are the fluctuations in the acoustic pressure and the acoustic velocity,

respectively. Here, t denotes time and x denotes the distance along the axial direction of

the duct. The set of partial differential Eqs. (5.1) and (3.2) are converted to a set of or-

dinary differential equations by using the method of modal expansion, also often called

the Galerkin projection (Zinn and Lores (1971)). Accordingly, we expand the acoustic

pressure and velocity fluctuations as a linear combination of basis functions that satisfy

the boundary conditions associated with the Rijke tube duct, which is open at both ends.

Since, at open ends, the acoustic pressure fluctuations are zero and the acoustic veloc-

ity fluctuations are maximum, sine and cosine functions are a natural choice as basis

functions for the modal expansion of p′ and u′, respectively. The pressure and velocity

fluctuations are expressed in terms of time-varying modes η and η̇ as follows,

u′(x, t) =
∞

∑
j=1

η j(t)cos( jπx)

and p′(x, t) =−
∞

∑
j=1

γM
jπ

η̇ j(t)sin( jπx).
(3.3)

Substituting the expressions from Eq. (3.3) into Eqs. (5.1), and (3.2) and projecting the

resulting equation on the jth mode of the basis function, we obtain the set of ordinary

differential equations (ODEs) as given in Eqs. (3.4) and (3.5). Finally, we include the

effect of damping in Eq. (3.2) by adding a damping term which is dependent on the

frequency of the system (Matveev (2003)).

dη j

dt
= η̇ j, (3.4)
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dη̇ j

dt
+2ε jωη̇ j +ω

2
η j = q̇′, (3.5)

where ω is the non-dimensional angular frequency, q̇′ is the non-dimensional heat

release rate term. Here, ε j is the damping coefficient which is calculated according to

the following equation, with k1 = 0.1 and k2 = 0.06.

ε j =
1

2π

(
k1

ω j

ω1
+ k2

√
ω1

ω j

)
(3.6)

where ω j = jπ for the jth duct mode (Matveev (2003); Sterling (1993)).

For a horizontal Rijke tube, the model developed by Balasubramanian and Sujith

(2008) uses a modified form of the King’s law (King (1914); Heckl (1988)) to model

the heat release rate term (Q̇′). The King’s law governs the heat release rate from

the thin hot wire to the surrounding fluid, which is appropriate to describe the heat

transfer from the electrically heated wire mesh to the air in the Rijke tube. However,

for thermoacoustic systems in general, the King’s law may not be the most general

description of the heat source as it is for a Rijke tube with electric heater.

For the current study, the non-dimensional heat release rate fluctuations are decom-

posed into coherent and non-coherent components in Eq. (3.7), as suggested by Noiray

(Noiray (2017)). The coherent fluctuations in the heat release rate (q̇′c) are due to the

interaction of the acoustic field fluctuations with the flame, while the non-coherent heat

release rate fluctuations (q̇′nc) occur due to the turbulence in the underlying flow field.

q̇′ = q̇′c + q̇′nc. (3.7)

The non-coherent component of the heat release rate, q̇′nc, is modelled using the noise

term ξ (t) in Eq. (3.8). The coherent heat release rate q̇′c is considered to be a nonlinear

function of the non-dimensional acoustic modes η and η̇ . For the current study, we use

the canonical form of the subcritical Hopf bifurcation for q̇′c with a time delay coupling

between η and η̇ , as motivated by Gopalakrishnan et al. (2016), which is given by Eq.
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(3.8).

q̇′c =−c1(η− τη̇)− c3(η− τη̇)3 + c5(η− τη̇)5 and q̇′nc = ξ (t), (3.8)

where c1, c3 and c5 are constants, and τ is the time delay term. As discussed by

Gopalakrishnan et al. (2016), the time delay term ensures that the heat release rate

responds to the velocity fluctuations at the location of the heating source with a certain

time delay. Furthermore, the heat release rate introduces nonlinear feedback between

the evolution of acoustic pressure and acoustic velocity fluctuations. The specific ex-

pression of q̇′c in Eq. (3.8) also ensures that a subcritical Hopf bifurcation [Fig. 3.2(b)]

is obtained for the set of ODEs (3.4) and (3.5).

The term ξ (t) is a combination of multiplicative and additive noise. A random term

[ξa in Eq. (3.9)] is added at each iterative step to the acoustic pressure fluctuations, to ef-

fectuate additive noise (strength σa) in the system. Similarly, we generate multiplicative

noise of strength σm by adding a random term [ξm in Eq. (3.9)] to the acoustic pressure

oscillations at each step, where the strength of the random term is directly proportional

to η̇ as noted in Eq. (3.9). Both the random terms ξa and ξm are generated by the Weiner

process and are white Gaussian noise terms. The non-dimensional strengths σa and σm

are a fraction comparable to the maximum amplitude of the non-dimensional pressure

variable η̇ , which is of the order of 1 (η̇ ∼ 1). These non-dimensional strengths are

varied to simulate the absence of turbulent fluctuations (σa = 0.0001) and also low or

high levels of turbulence or perturbations from other subsystems (where σa and σm are

of the order of 0.1). We choose such order of magnitude for the noise intensities, so that

the ratio of amplitudes of periodic and aperiodic oscillations in the acoustic pressure

signal obtained from the model is similar to that obtained from experiments.

ξ (t) = σaξa +σmη̇(t)ξm. (3.9)

A slow-fast system is formed by the two-way interaction of both the slow and the

fast subsystems. The evolution of each subsystem is, in general, dependent on the other.

To study slow-fast oscillations in a thermoacoustic system where the pressure fluctua-
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tions have a fast timescale, we introduce slow sinusoidal oscillations in the control

parameter c1 [Eq. (3.8)] centred at a mean value A, amplitude B, and frequency f . As

stated earlier for the experiments, we maintain the value of the frequency of the control

parameter in the model at an order of magnitude of 1/1000th of the natural frequency

of the acoustic fluctuations (fast timescale). The oscillations in the non-dimensional

control parameter c1 are governed by the following equation, Eq. (3.10).

c1 = A+Bsin(2π f t). (3.10)

The set of ordinary differential equations, Eqs. (3.4) and (3.5), are solved by the

stochastic Runge-Kutta method (Burrage (1999)) for the heat release rate function given

by Eqs. (3.7) and (3.8), subject to noise [as given in Eq. (3.9)] and control parameter

oscillations of the form shown in Eq. (3.10). In the rest of the paper, we refer to the

above model as the ‘standard model’. We also assume that the evolution of the control

parameter (slow subsystem) stays independent of the dynamics of the acoustic field

variables (fast subsystem), say p′ in the system in Sec. 3.4. Further, we investigate

the effect of the evolution of fast subsystem on the evolution of the slow subsystem

by introducing an interdependence between the two subsystems, which is discussed in

detail in Sec. 3.6.

3.4 Results and discussion

3.4.1 Bifurcation diagram

We plot the bifurcation diagram of the acoustic pressure oscillations obtained during

the transition to thermoacoustic instability through experiments in the horizontal Rijke

tube and the model. The bifurcation diagrams [Figs. 3.2(a,b)] show the variation of

root mean square value (rms) of the acoustic pressure (p′rms) with a quasi-static change

in the heater power (or heater voltage) for the experiments and the non-dimensional

parameter c1 for the model, respectively. The non-dimensional acoustic pressure from
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Fig. 3.2: The bifurcation diagram of the acoustic pressure fluctuations (p′) with respect
to (a) Kh, the heater power (W) or heater voltage (V) from experiments in the
Rijke tube and (b) non-dimensional parameter c1 from the standard model,
when σa = 0.0001, σm = 0 in Eq. (3.9), c3 = c5 = 1 in equation (7). Points F
and H represent the fold and the Hopf point, respectively, while a, b, c and d
are reference points.

the model is converted to a dimensional form by multiplying it with the atmospheric

mean pressure for the ease of comparison with the experimental results. Since this is

a phenomenological model, we aim only for a qualitative match with the experiments.

The bifurcation diagrams shown in Figs. 3.2(a,b) are for laminar flow (Re = 1154±6)

conditions in the experiment and very low noise intensity in the model (σa = 0.0001 to

account for inherent noise in real systems), respectively.

When the control parameter value is varied in a quasi-static manner in the forward

direction (i.e., the value of control parameter is increased), we notice a sudden transition

of the system behaviour from steady state to limit cycle oscillations at the Hopf bifur-

cation point H in Figs. 3.2(a,b). A further increase of the control parameter beyond the

point H leads to a continuous increase in the amplitude of the limit cycle oscillations

in the system. In the reverse direction, as the value of the control parameter is reduced,

we notice a continuous decrease in the amplitude of limit cycle oscillations, along the

same path as in the forward direction. However, the transition from limit cycle to stable

equilibrium state in the reverse direction occurs at point F (i.e., fold point), which is

well past the point H. Thus, the bifurcation diagram exhibits a hysteresis region, indica-

tive of a subcritical Hopf bifurcation in the system dynamics. In experiments, the Hopf
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bifurcation point is found to be at 2.45 V (483.6 W) and the fold point at 1.95 V (352.6

W). From the model, the Hopf and the fold point values for the non-dimensional pa-

rameter c1 are 0.77 and 0.57, respectively, when we choose τ = 0.2, c3 = c5 = 1. Also,

the bifurcation diagram in Fig. 3.2 is marked with points a, b, c and d representing

different dynamical states for reference in Fig. 3.3.

3.4.2 Effect of slow oscillations in the control parameter on the

transition to thermoacoustic instability

In this section, we present the results of experiments on the horizontal Rijke tube, which

were designed to investigate the occurrence of bursting oscillations induced due to the

slow oscillations of the control parameter during the transition from steady state to limit

cycle oscillations in the system. Figures 3.3-I and 3.3-II show the time series of acoustic

pressure fluctuations from the experiments performed on the Rijke tube and from the

model, respectively, for the reference points of the subcritical Hopf bifurcation shown

in Fig. 3.2.

Column I in Fig. 3.3 shows results from the experiments in the Rijke tube when

slow oscillations, with fixed amplitude (0.5 V) and frequency (0.05 Hz), are induced

in the heater voltage (Kh). The mean value of the heater voltage is increased from

point a to d [with reference to the bifurcation diagram in Fig. 3.2(a)] in Figs. 3.3(a-d),

respectively. For oscillations about the mean value of Kh corresponding to a point in the

steady state region, we observe only very low amplitude aperiodic fluctuations, which

can be considered as a quiescent state. As the mean value of the control parameter is

increased to a value around the fold point [point b in Fig. 3.2], we observe bursts of high

amplitude periodic oscillations amidst nearly quiescent state, as seen in Fig. 3.3(b). We

also obtain such bursting dynamics [Fig. 3.3(c)] when the mean value of the control

parameter is in the bistable zone [point c in Fig. 3.2]. Comparing Fig. 3.3(b) and

Fig. 3.3(c), we note that as the mean value of Kh is increased, the average epoch of the

rest state reduces and the maximum amplitude achieved by periodic oscillations in the

pressure signal increases. Finally, corresponding to control parameter oscillations about
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Fig. 3.3: Comparison of the time series of acoustic pressure (p′) obtained from exper-
iments (I) and from the model (II) for slow-scale oscillations in the control
parameter about a mean value. For experiments, the mean value of Kh is var-
ied from (a) to (d) as 1.8 V (306 W), 2.1 V (365 W), 2.2 V (428 W), and 2.56
V (568 W), respectively, where the amplitude and frequency of oscillations of
Kh are fixed at 0.5 V and 0.05 Hz throughout. In the model, the parameter c1
oscillates with amplitude B = 0.4 and frequency f = 0.17 Hz when its mean
value is increased from (e) to (h) as A = 0.2, 0.6, 0.75 and 0.95, respectively.
The noise intensity in the model is σa = 0.0001.

a point far ahead of the Hopf bifurcation point in the limit cycle regime [point d in Fig.

3.2], we observe the occurrence of limit cycle oscillations with modulated amplitude

envelope, as shown in Fig. 3.3(d). Such modulations in the amplitude envelope arise

when the minimum value of the control parameter oscillations is more than or close

to (if less than) the value of the control parameter at the fold point. That is, even

though the control parameter oscillations may cross the fold point by a small margin,

and transit to the steady state region, the acoustic pressure oscillations never achieve a

quiescent state. This is because the acoustic pressure oscillations in the active state have

insufficient time to decay to the rest state, when a lesser fraction of the oscillation cycle

of the control parameter occurs in the steady state region of the bifurcation diagram.

In column II of Fig. 3.3, we show the time series of acoustic pressure fluctua-

tions obtained from the standard model (discussed in Sec. 3.3) in the presence of slow

timescale oscillations of the control parameter c1, as indicated by Eq. 3.10. The mean

value (A) of the oscillating control parameter is increased in a quasi-static manner from

point a to d [with reference to Fig. 3.2(b)] to obtain the dynamics shown in Fig. 3.3(e-
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h). The model qualitatively captures all the features of bursting oscillations observed

from experiments in the Rijke tube [Fig. 3.3-I]. The acoustic frequency of limit cycle

oscillations obtained from the standard model is fa = 170 Hz. In the absence of random

perturbations, (i.e., for σa = σm = 0) in the model, when the control parameter oscilla-

tions are introduced , we observe bursting behaviour only when the mean value of the

oscillating control parameter is greater than that at the Hopf bifurcation point. However,

from the experiments in the Rijke tube, we observe bursting behaviour even when the

control parameter oscillations are centred much before the Hopf bifurcation point (i.e.,

in the bistable zone), for example see Fig. 3.3(b). This is because noisy fluctuations

are inherent to any real system; hence, we use very low noise intensity (σa = 0.0001)

to mimic such a noise in real systems. As a result, we obtain bursting behaviour even

when the control parameter is centred around the fold point, given that the amplitude

of its oscillations is sufficient to cross the Hopf bifurcation point, for example see Fig.

3.3(f).

Similar to the experiments, the model produces bursts of high amplitude periodic

oscillations amidst nearly quiescent state [Figs. 3.3(f-g)] and modulated limit cycle

oscillations [Fig. 3.3(h)]. We also notice that, such bursting behaviour occurs only when

the control parameter value crosses both the Hopf and the fold points in every cycle of

the oscillation. Further, for the bursts induced by slow parameter oscillations (as shown

in Fig. 3.3), we note that the transition from the rest to the active state (growth) and from

the active to the rest state (decay) is asymmetric. A similar asymmetry in the growth

and decay of the bursts of acoustic pressure signal has been recently reported in a Rijke-

type burner by Weng et al. (2016). They observed that the asymmetry associated with

bursting oscillations changes with the change in the equivalence ratio in the system;

however, the cause of such asymmetry in a burst is not clear. In the next Sec. 3.4.3, we

try to explain this asymmetry of growth and decay of bursts with the help of the model

discussed in Sec. 3.3.
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Fig. 3.4: (a) Transformed phase portrait of acoustic pressure oscillations (p′) obtained
from the standard model superposed on the bifurcation diagram of acoustic
pressure (p′max) obtained from quasi-static variation of c1. (b) The overlapped
time series of the control parameter oscillations (c1) and the acoustic pressure
oscillations (p′) during a state of bursting in the system, obtained from the
model. Here, p′maxR and p′maxF refer to the reverse and the forward paths of
quasi-static variation of c1. The point demarcated as A represents the mean
value of c1.

3.4.3 Delayed bifurcation due to slow oscillations across a subcriti-

cal Hopf bifurcation

In this section, we discuss the reason for asymmetry in the growth and the decay pat-

tern in the bursts induced by slow-fast dynamics in the experiments and the model [Fig.

3.3]. We believe that such asymmetry occurs due to the disproportionate time dura-

tion for which the system dynamics is restricted to the stable limit cycle branch during

the forward and the reverse oscillation paths of the control parameter. Such unequal

durations arise due to two reasons: (I) delayed bifurcation caused by the slow scale

oscillations of the control parameter and (II) the existence of a hysteresis zone in the

bifurcation diagram of the system. The effect of delayed bifurcation is explained with

the help of the model in Fig. 3.4.

Delayed bifurcation effect or memory effect associated with the slow passage of

control parameter through Hopf bifurcation point is widely studied in the literature

(Baer and Gaekel (2008); Han et al. (2014, 2016); Premraj et al. (2016)). When the

control parameter is varied across the Hopf bifurcation point in a rate-dependent man-

ner, the transition of the system dynamics from steady state to limit cycle oscillations

gets delayed and occurs at a control parameter value greater than that at the Hopf bi-

29



furcation point. Such a delay in the transition of the system behaviour is referred to as

delayed bifurcation.

For our model involving a slow-fast system, the delayed bifurcation due to slow

parameter oscillations can be depicted using a ‘transformed phase portrait’ (Han et al.

(2016)). The transformed phase portrait is a plot of the time evolution of the acoustic

pressure oscillations (the fast subsystem variable) with respect to the time-varying con-

trol parameter c1 (the slow subsystem variable), as shown in Fig. 3.4(a). For clarity,

we plot the acoustic pressure oscillations on the transformed phase diagram starting

from the point A [Fig. 3.4(a)] where the pressure fluctuations are in the rest state [Fig.

3.4(a)] to the point where the pressure fluctuations achieve the maximum amplitude

of periodic oscillations (at point D), observed during the onset of burst in a signal [Fig.

3.4(b)]. We then superimpose this transformed phase portrait on the bifurcation diagram

which is obtained by plotting the variation of the maximum amplitude of the acoustic

pressure oscillations with respect to the quasi-static variation of the control parameter

[Fig. 3.4(a)].

We note that the delay associated with the occurrence of the first burst depends on

the initial conditions (i.e., η(0)) of the acoustic pressure fluctuations. However, the

delay associated with the subsequent bursts in the same signal is independent of initial

conditions for fixed values of A, B and f [in Eq. (3.9)] for the oscillating parameter

c1 (Han et al. (2014)). Hence, the transformed phase portrait is obtained from any

subsequent burst after disregarding the first burst as a transient. In Fig. 3.4(a), we show

the transformed phase portrait for the case when the control parameter oscillates with

an amplitude of B = 0.55 with a frequency f = 0.102 Hz about a mean value A = 0.55.

Furthermore, we show the overlapped time series of slow control parameter oscillations

and fast acoustic pressure oscillations during the state of bursting in the system, in Fig.

3.4(b). Points A, F, H, X , and D are the reference points of c1 on the bifurcation

diagram in Fig. 3.4(a) corresponding to the demarcations on the time series in Fig.

3.4(b). Consider the oscillation of the control parameter starting from the mean value,

indicated by the point A in Figs. 3.4(a,b). We define the forward oscillation from point

A to point D and the reverse oscillation from point D to point A in half a cycle of the
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control parameter oscillation [Fig. 3.4(b)].

Even as the control parameter oscillations cross the Hopf bifurcation point H, we

observe steady state dynamics in acoustic pressure (p′), i.e., the transition of p′ from

the rest to the active state does not occur immediately at H [Fig. 3.4(a)]. Such tran-

sition occurs only at a value of c1 that is greater than that at H, i.e., at point X . The

identification of the exact point of the onset of the growth of oscillations (i.e., point X)

is non-trivial and is described in detail in Appendix A.1. We qualitatively indicate the

delayed bifurcation in the system by what we define as the ‘delay-value’ (in terms of

c1), henceforth referred to as δ . The delay-value (δ ) represents the difference in the

values of c1 at point H (the Hopf point) and at point X (where the onset of a burst of

periodic oscillations occurs in the acoustic pressure signal).

In the forward direction, when the value of c1 grows from point A to D [Fig. 3.4(b)],

we obtain periodic oscillations in the p′ signal only when the value of c1 traverses from

point X to D on the bifurcation plot [Fig. 3.4(a)]. In the reverse path of c1 (i.e., from

point D to A), the value of p′max continuously decreases from point D to F [Fig. 3.4(a)]

corresponding to which the amplitude of the p′ oscillations in the burst also decreases.

Once the control parameter crosses the fold point F , the periodic oscillations of p′ in the

burst decay rapidly to the rest state. Hence, the dynamics of p′ is sustained on a longer

stretch of the stable limit cycle branch in the reverse direction of the control parameter

oscillation as compared to the forward direction. As a result, the growth and the decay

pattern of the bursts are asymmetric.

In addition, we investigate the effect of slow parameter oscillations across a super-

critical Hopf bifurcation, which does not have a hysteresis zone, using a similar model.

The corresponding equations and results are discussed in Sec. 3.5. In a supercritical

Hopf bifurcation, the amplitude of limit cycle oscillations increases gradually from the

rest state and there is no sudden jump in the value of p′max. We find that the slow pa-

rameter oscillations across the supercritical Hopf bifurcation induce bursts of periodic

oscillations amidst nearly quiescent state with distinct growth and decay pattern. Since

there is a delay associated with the transition of dynamics from steady state to periodic

oscillations, there is a steep rise in the amplitude of the acoustic pressure signal, that
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is, a sudden growth of high amplitude periodic oscillations (refer Fig. 3.6). During the

reverse oscillation, the amplitude of periodic oscillations decreases gradually to the rest

state.

3.4.4 Factors effecting the delayed bifurcation

In this section, we present the effect of the change in the mean value, amplitude, and

frequency of the control parameter oscillations on the delay value (represented as δ

in Fig. 3.4) and also on the characteristics of bursting oscillations, using the model,

through Fig. 3.5.

In the transformed phase diagrams in Fig. 3.5, points F and H indicate the fold and

the Hopf points, respectively. We consider two cases in Figs. 3.5(a,b) where for case

I, AI = 0.55, and for case II, AII = 0.85, while B = 0.55, f = 0.102 Hz in both cases.

From the transformed phase diagram in Fig. 3.5(a), we observe that an increase in A

leads to a corresponding increase in the delay value (δ ), i.e., if AI < AII then δI < δII .

The time series of the acoustic pressure for both the cases are overlapped and plotted in

Fig. 3.5(b) for the ease of comparison. From Fig. 3.5(b), we infer that as A increases,

the epochs of high amplitude periodic oscillations (i.e., burst) increase and the epochs

of low amplitude aperiodic fluctuations correspondingly decrease in the p′ signal. The

maximum amplitude of the periodic oscillations in the p′ signal also increases with

an increase of A. This is expected from the bifurcation diagram, where we see an

increase in the amplitude of limit cycle oscillation with the increase in the value of the

control parameter. Since the value of AI is lesser than AII , for the same amplitude B, the

maximum amplitude achieved along the limit cycle branch is greater for case II.

Next, we inspect the effect of variation in the frequency ( f ) of the control pa-

rameter oscillations whilst its amplitude (B) and mean value (A) are kept constant in

Figs. 3.5(c,d). Two cases are considered as before, case I: fI = 0.102 Hz and case II:

fII = 0.238 Hz, while the amplitude and mean value of c1 for both cases are fixed at

B = 0.55 and A = 0.85, respectively. We note that as f increases, the number of bursts

occurring in the signal in a fixed duration also increases [Fig. 3.5(d)]. Furthermore,
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Fig. 3.5: (I) Transformed phase diagrams and (II) the corresponding overlapped time
series of the control parameter oscillations and the acoustic pressure oscilla-
tions obtained from the model, for the cases shown in (a), (b) with different
mean values AI and AII while B and f are fixed, (c), (d) with different frequen-
cies fI and fII , while A and B are fixed, and (e), (f) with different amplitudes
BI and BII while A and f are fixed. The point demarcated as A represents the
mean value of c1.
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from the transformed phase portrait in Fig. 3.5(c), it is clear that the delay value (δ )

associated with the onset of bursts increases corresponding to the increase in f . This

means, if fI < fII then δI < δII . We also note that the maximum amplitude of the burst

remains nearly the same with an increase in f at fixed values of A and B.

Finally in Figs. 3.5(e,f), we study the effect of variation of the amplitude (B) of the

control parameter oscillations while keeping A and f constant. Again, we consider two

cases, case I: BI = 0.35 and case II: BII = 0.85 for fixed values of A= 0.85 and f = 0.17

Hz. We find that the maximum amplitude of acoustic pressure oscillations in the burst

is directly proportional to the amplitude of the control parameter oscillations. We also

note that an increase in B does not affect the epoch of a burst observed in the signal,

i.e., the duration of bursts remains the same [Fig. 3.5(f)]. Further, from the transformed

phase portrait in Fig. 3.5(e), we note that the delay value (δ ) is higher for case II, i.e.,

if BI < BII then δI < δII .

3.5 Delayed bifurcation due to slow oscillations across a

supercritical Hopf bifurcation

In Fig. 3.6, we show the effect of slow oscillations in the control parameter across a

supercritical Hopf bifurcation. The bifurcation diagram is obtained from quasi-static

variation of the control parameter c1, when the coherent heat release term is modelled

by the canonical form of supercritical Hopf bifurcation, as given in Eq. (3.11) in the

standard model, [instead of Eq. (3.8)].

q̇′c =−c1(η− τη̇)+ c3(η− τη̇)3. (3.11)

Figure 3.6(a) shows the transformed phase portrait for the case when the control

parameter oscillates with an amplitude of B = 0.65, and frequency f = 0.17 Hz about a

mean value A = 0.7. Figure 3.6(b) shows the overlapped time series of oscillations of c1

and p′ during the bursting state in the system. Reference point A demarcates the starting
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Fig. 3.6: (a) Transformed phase portrait of acoustic pressure oscillations obtained from
the standard model for supercritical bifurcation superposed on the bifurcation
diagram of acoustic pressure (p′max) obtained from quasi-static variation of c1.
(b) The overlapped time series of the control parameter oscillations (c1) and
the acoustic pressure oscillations (p′) during a state of bursting in the system.

point of oscillation of c1, H demarcates the Hopf bifurcation point of the supercritical

bifurcation which occurs at c1 = 0.79, X demarcates the onset point of the burst and

D demarcates the point at which c1 achieves a maximum value in an oscillation cycle.

Clearly, slow oscillations of the control parameter across the supercritical Hopf bifurca-

tion point introduce a delayed bifurcation as observed for subcritical Hopf bifurcation

earlier in Fig. 3.4.

As compared to subcritical Hopf bifurcation, a supercritical bifurcation does not

have a hysteresis zone and the amplitude of the limit cycle oscillations increases gradu-

ally from the steady state [Fig. 3.6(a)]. The dynamics of the system transitions from the

steady state to limit cycle oscillations after a delayed bifurcation, and therefore there is

a sudden jump in the amplitude of the pressure oscillations during the onset of a burst.

In the reverse path, the amplitude of periodic oscillations decreases gradually along the

limit cycle branch and the pressure oscillations eventually attain a rest state. The growth

and decay patterns are thus different, even when the system undergoes a supercritical

bifurcation. The effect of varying the amplitude, the frequency and the mean value

of the oscillating parameter across a supercritical Hopf bifurcation is similar to that is

discussed for the case of subcritical Hopf bifurcation in Sec. 3.4.4.

We note a subtle difference between the decay pattern of the bursts that occur in

the case of a subcritical and a supercritical bifurcation. The decay of the oscillations

in a burst caused in a system having subcritical bifurcation is initially gradual, as the
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control parameter oscillations move along the limit cycle branch. However as the con-

trol parameter crosses the fold point, there is a sharp decay in the pressure oscillations

in the burst. For a system exhibiting supercritical bifurcation, the decay in pressure

oscillations in a burst is always gradual as the control parameter oscillations trace the

continuous limit cycle branch into the steady state regime.

3.6 Investigating the interdependence of slow and fast

subsystems using model

In the previous section, Sec. 3.4, we discussed the case where the externally introduced

slow scale oscillations in the control parameter are independent of the dynamics of the

fast scale oscillations observed in the acoustic pressure. However, in practical thermoa-

coustic systems, the acoustic, hydrodynamic, and flame fluctuations, which ensue at

distinct timescales, are non-linearly coupled (Lieuwen (2012)) and the quantification of

the effect of each subsystem on the other is difficult. For instance, there is an inevitable

dependence between the evolution of the acoustic pressure fluctuations and various con-

trol parameters viz., equivalence ratio, mixing and burning rates, temperature, etc., in-

herent to the governing system. In addition, there is a possible interdependence between

the underlying turbulence intensity and the dynamics of acoustic variables (as discussed

in Fig. 1.1 in Sec. 1.1). The dynamics arising in the system due to the interaction be-

tween the subsystems with multiple timescales is highly complex. Therefore, in this

section, we intend to probe the occurrence of bursting dynamics in the acoustic field

due to such interdependence of the slow and fast subsystems through the model. To

model the interaction between the various subsystems of a thermoacoustic system, we

present two approaches: (I) by coupling the slow and fast subsystems in the presence

of low-intensity noise and (II) by introducing noise (additive and multiplicative) in the

absence of slow oscillations in the control parameter.
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3.6.1 Effect of coupling the slow and fast subsystems

From our experiments in the Rijke tube, we understand that bursts of periodic oscil-

lations arise in the acoustic pressure fluctuations (fast subsystem) as a result of slow

oscillations of a control parameter (slow subsystem). Further, we notice that when the

slow and the fast oscillations are uncoupled, the bursts occur at equal intervals in the

acoustic pressure signal. However, in practical combustors, such bursts occur at random

intervals in the signal. Sometimes, such bursts also possess a peculiar feature of peri-

odic modulation in the amplitude envelope of the active state in the acoustic pressure

signal (Boudy et al. (2013); Pawar et al. (2016)) (as shown in Fig. 3.8(a)), known as

amplitude modulated bursting.

‘Amplitude modulated bursting’ is a known phenomenon in the studies pertaining

to slow-fast systems Vo et al. (2016); Han et al. (2018). As discussed by Han et al.

(2018), amplitude modulated bursting is characterized by modulations in the envelope

of the active phase of bursting. They show that amplitude modulated bursting can occur

in the system dynamics due to ‘multi-frequency slow parametric modulation’, that is,

if there exist multiple slow frequencies in the parameter modulations when the system

undergoes a Hopf bifurcation or any other type of bifurcation. In our approach using

the modified model, the system has only one frequency that is a function of time, which

introduces amplitude modulated bursting.

We speculate that amplitude modulated bursting in the acoustic pressure signal may

arise as a result of interactions between the slow and the fast subsystems in a combustor.

Therefore, to study the interdependence of these two subsystems, we modify the stan-

dard model by making the frequency of the control parameter oscillations dependent on

the amplitude of the fast oscillations in the acoustic pressure. Due to such interdepen-

dence, we assume that the frequency of the control parameter oscillations increases to a

higher value during the active state of the burst as compared to that during the rest state.

We subsequently show that such an assumption models the amplitude modulated burst-

ing observed in laboratory-scaled combustors. In order to realise this altering frequency

in the model, we numerically capture the amplitude envelope of the acoustic pressure

fluctuations as and when the system evolves [see Fig. 3.7]. Then, we choose a thresh-
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Fig. 3.7: Schematic representation of the simultaneous evolution of the acoustic pres-
sure (p′, in blue) and the control parameter (c1, in red) oscillations obtained
through the modified model. The dotted line represents the chosen threshold
of p′th = 25 Pa (which is around 15% of the maximum amplitude); if p′env< p′th,
frequency of the control parameter (c1) oscillation is f = 0.17 Hz; if p′env> p′th,
then f = 15×0.17 Hz. The frequency of the acoustic pressure oscillations is
170 Hz. The noise intensities are σa = 0.0001, σm = 0.

old of acoustic pressure amplitude, p′th, which is a suitable fraction of the amplitude of

the limit cycle oscillations. The choice of p′th is based on examining several threshold

values in the model and is restricted to be around 10-30% of the maximum amplitude

of acoustic pressure oscillations (depending on the level of noise used in the system).

If the value of the threshold is higher than 30%, we observe bursting dynamics only for

a very small range of the control parameter. If the amplitude envelope of the acoustic

pressure oscillations is below p′th, the frequency of c1 is chosen to be f ; whereas, if the

amplitude envelope of acoustic pressure oscillations is above p′th, the frequency of c1

is chosen to be a multiple of f . Figure 3.7 represents the simultaneous evolution of c1

and p′ when the frequency of c1 is allowed to vary according to the amplitude of p′ as

described. We, henceforth, refer to the model with such interdependence between the

slow and the fast subsystems as the ‘modified model’.

In a thermoacoustic system, the evolution of dynamics of each subsystem is de-

pendent on that of the other subsystems. As a result, the interaction of some slow

subsystems with the fast subsystem may give rise to perturbations in various other slow

subsystems. Thus, there may be frequency variations in parameters associated with
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different subsystems other than the control parameter originally oscillating at a slow

timescale. However, the cumulative effect of the interaction of all these slow subsys-

tems will be reflected in the heat release rate fluctuations. Hence, in the modified model,

we account for the interactions between the various slow and fast subsystems through

the frequency variation of a single parameter c1, which eventually affects the heat re-

lease rate oscillations according to Eq. (3.8).

3.6.2 Effect of additive and multiplicative noise

To model the interactions between the various subsystems (hydrodynamics, acoustics

and flame dynamics), a completely different approach may be identified, in which we

disregard the approach using slow timescale oscillations of the control parameter. In

this second approach, we model such interactions using a combination of additive and

multiplicative noise. According to Eq. (3.9), the multiplicative noise introduces depen-

dence between the non-coherent heat release rate (q̇nc) and the instantaneous value of

the acoustic pressure oscillations in the system. Thus, the multiplicative noise aids in

capturing the nonlinear interaction between the acoustic subsystem (pressure oscilla-

tions) and the heat release rate oscillations in the combustor. Further, the additive noise

term in Eq. (3.9) helps to model the effect of turbulence (hydrodynamic subsystem) on

the heat release rate fluctuations (Lieuwen and Banaszuk (2005)). Thus, a combination

of additive and multiplicative noise is used to model the interaction between the various

subsystems of a combustor. When such a combination of additive and multiplicative

noise is introduced in the model, we observe bursting behaviour when the control pa-

rameter is in the vicinity of the Hopf bifurcation point.

First, we show the intermittency signals and the corresponding amplitude spectra

observed prior to thermoacoustic instability in two laboratory-scaled combustors which

have been discussed earlier by Pawar et al. (2016) [Fig. 3.8(a)] and Nair et al. (2014)

[Fig. 3.8(b)]. Next, we compare the time series and the amplitude spectra of the inter-

mittent oscillations in the acoustic pressure signals obtained from the model using the

two approaches, namely (i) the modified model [Fig. 3.9(a)] and (ii) the introduction

of additive and multiplicative noise in the model [Fig. 3.9(b)]. Finally, we compare
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Fig. 3.8: Time series of the acoustic pressure oscillations and corresponding amplitude
spectrum observed during the state of intermittency prior to thermoacoustic
instability in (a) spray combustor (Pawar et al. (2016)) (Re ≈ 2.6× 103) and
(b) turbulent combustor (Nair et al. (2014)) (Re≈ 1.4×104). The insets show
small epochs of periodic oscillations during bursts where the inset of (a) shows
regular amplitude modulations in the envelope and the inset of (b) highlights
irregularly modulated envelope of the acoustic pressure oscillations

the features of intermittent bursts obtained from model [Fig. 3.9] with that observed

through experiments [Fig. 3.8].

Figure 3.8(a) delineates the intermittency signal from a low-turbulence spray com-

bustor where we observe distinct amplitude modulated bursting in the signal and also

the occurrence of a sideband frequency in the amplitude spectrum of the acoustic pres-

sure oscillations (Pawar et al. (2016)). The corresponding amplitude spectrum has a

dominant frequency peak at 268.2 Hz and a sideband frequency at 300 Hz. These fea-

tures, in turn, indicate the presence of multiple frequencies in the slow subsystems of

the combustor.

Similarly, Fig. 3.8(b) illustrates the intermittent oscillations in the acoustic pres-

sure signal obtained prior to thermoacoustic instability in a laboratory-scale bluff-body

stabilized turbulent combustor (Nair et al. (2014)). The amplitude envelope of the pres-

sure signal has very small and irregular modulations during the high amplitude bursts

of periodic oscillations. The amplitude spectrum of this signal shows a single dominant

peak around a frequency of 246.9 Hz. This could happen if the nonlinear interaction of

the slow and the fast subsystems is incapable of introducing multiple slow frequencies
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in the system in the presence of dominant turbulent flow fluctuations.

In order to replicate the feature of amplitude modulated bursting as observed in a

laboratory-scale spray combustor [Fig. 3.8(a)], we use the modified model described

in Sec. V-A. Figure 3.9(a) shows the intermittent oscillations obtained from the mod-

ified model when the value of p′th is approximately 15% of the maximum amplitude

of the acoustic pressure oscillations. It is assumed that the control parameter oscillates

at a base frequency of 0.17 Hz when the pressure amplitude is below the threshold,

while the frequency of the control parameter increases to 8.5 Hz otherwise. Here, we

use additive noise alone, i.e., σm = 0 and σa = 0.1. With this approach, we obtain

an intermittency signal where the acoustic pressure oscillations switch between high

amplitude periodic oscillations and low amplitude aperiodic fluctuations [Fig. 3.9(a)].

Moreover, the occurrence of bursts is not periodic, owing to the fact that the frequency

of the slowly oscillating control parameter varies as per the acoustic pressure oscilla-

tions which is influenced by the presence of noise in the acoustic field. This is different

from the periodically occurring bursts we observed in Fig. 3.3, when the slow and the

fast subsystems were not coupled.

The inset of Fig. 3.9(a) shows regular modulations in the amplitude envelope of the

acoustic pressure oscillations, which is known as amplitude modulated bursting. The

corresponding amplitude spectrum has one dominant peak at the natural frequency of

the acoustic field (176.7 Hz) and two sideband frequency peaks at 168.2 Hz and 185.2

Hz. Here, the frequency difference of 8.5 Hz between the dominant frequency and the

sideband frequencies is equal to the value of the frequency of the slow oscillations (i.e.,

8.5 Hz) introduced in the control parameter, when the amplitude envelope of pressure

oscillations is above the designated threshold. This is also the frequency of the modu-

lations in the amplitude envelope of the pressure oscillations during bursts of periodic

oscillations. This behaviour reasserts that the presence of multiple slow frequencies of

control parameter oscillations is responsible for amplitude modulated bursting, and the

higher of these multiple slow frequencies is reflected in the modulations of the ampli-

tude envelope of acoustic pressure during bursts. Such a signal closely replicates the

features of the amplitude-modulated limit cycle oscillations observed by Boudy et al.
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Fig. 3.9: (a) The intermittency signal obtained from the modified model when the pres-
sure threshold is set at p′th = 25 Pa. If p′env < p′th, frequency of oscillating
control parameter c1 is f = 0.17 Hz, while if p′env > p′th, then f = 8.5 Hz with
noise strengths σa = 0.1 and σm = 0. (b) The intermittency signal obtained
from introducing additive and multiplicative noise of strengths σa = 0.05 and
σm = 0.2, respectively, in the model. The amplitude spectrums corresponding
to periodic oscillations of each time series shown in the insets are plotted in
the right column.

(2013) in a multiple-flame premixed burner and the amplitude-modulated intermittent

oscillations seen in a low-turbulence laboratory-scale spray combustor (Pawar et al.

(2016)), as shown in Fig. 3.8(a).

On the other hand, Fig. 3.9(b) shows the intermittency signal obtained from the

combination of additive and multiplicative noise alone (i.e. without the slow oscilla-

tions in the control parameter) in the model [refer to Eq. (3.9)]. Here, we choose the

noise intensities such that σa < σm, since we expect that in low-turbulence systems,

the acoustic pressure dynamics would be more strongly influenced by the interaction

of the heat release rate and the acoustic pressure oscillations as compared to the effect

of turbulent fluctuations. Switching of the acoustic pressure oscillations between pe-

riodic and aperiodic oscillations in the presence of noise is obtained when the control

parameter value is close to the Hopf bifurcation point. Similar to the previous approach

using the modified model, this approach also produces bursts of periodic oscillations at

irregular intervals. Furthermore, we observe that the amplitude envelope of the acous-

tic pressure oscillations has small and irregular amplitude modulations during bursts.

The amplitude spectrum corresponding to periodic oscillations in the burst shows only
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a single dominant peak at 176.4 Hz and no sideband frequencies. Moreover, if we use

σa > σm, this approach can also produce intermittent bursting similar to that observed

experimentally in the intermittency signals obtained from a highly turbulent combustor

(Nair et al. (2014)) such as that shown in Fig. 3.8(b). Thus, the introduction of additive

and multiplicative noise alone in the model aids in capturing the occurrence of bursts in

the acoustic field of the combustor. However, unlike the modified model, this approach

does not capture the feature of regular amplitude modulated bursting as shown in Fig.

3.9(a).

From comparing our results discussed in Fig. 3.9(a,b), we can postulate to some

extent the physical cause of the bursting behaviour observed during intermittency in

different combustors. Thermoacoustic systems which show amplitude modulated burst-

ing, i.e., regular modulations in the limit cycle oscillations or the existence of sideband

frequencies along with a dominant peak at the natural frequency in the amplitude spec-

trum are likely to have strongly interacting slow and fast subsystems. On the other hand,

if the bursting dynamics portrays irregular modulations in the amplitude of bursts or the

envelope of limit cycles or a single dominant frequency peak in the amplitude spectrum,

then the system dynamics might be predominantly controlled by the underlying flow

fluctuations (background turbulence) and its influence on other various subsystems.

3.7 Summary

In this work, we investigated experimentally and theoretically the role of multiple

timescales in the occurrence of bursting dynamics during intermittency in a thermoa-

coustic system. We conduct experiments on a horizontal Rijke tube and theoretical

investigations through a model, both exhibiting subcritical Hopf bifurcation. Bursting

dynamics is obtained when the control parameter oscillates at low frequencies about a

mean value in the bistable zone of subcritical Hopf bifurcation. In order for sustained

bursting dynamics to occur, the amplitude of the control parameter oscillations must be

such that these oscillations necessarily cross the Hopf bifurcation point to overcome de-

layed bifurcation. When the slow and fast subsystems are independent of each other, we
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obtain bursting at regular intervals and the bursts are asymmetric. Through model, we

explain that the growth and decay patterns are different due to the delayed bifurcation

associated with slow oscillations of the control parameter around the Hopf bifurcation

point. We showed that the delayed bifurcation of the acoustic pressure fluctuations with

respect to the oscillating control parameter is dependent on the frequency, the amplitude

and the mean value of the oscillating control parameter.

Further, we present two approaches to model the interaction between the various

subsystems. In the first approach, we introduce a coupling between the frequency of

the slowly oscillating control parameter and the amplitude envelope of the fast oscil-

lating acoustic pressure in the system. In the second approach, we model the interac-

tions of various subsystems using noise which produces bursts of periodic oscillations

with irregular amplitude modulations. The interactions between the subsystems of a

thermoacoustic system may be influenced more by either multiple timescales or the

underlying flow fluctuations, depending on the experimental conditions. We, thus, pro-

vide a possible explanation to various features of bursting oscillations observed during

intermittency in thermoacoustic systems.
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CHAPTER 4

Preliminary concepts: Complex networks

A brief discussion is presented in this chapter on the importance of using complex

networks to analyse complex systems. We also summarise some basic concepts and

definitions of measures derived from networks.

4.1 History: Complex networks as a tool to analyse real-

world systems

The concept of graphs or networks have been employed since the 1700s to analyse chal-

lenging problems. The foundations of graph theory were laid in 1735 by Leonhard Euler

who solved the famous Königsberg Bridge problem. The aim of this problem was to

find the number of single-pass paths possible through a network of seven bridges (Eu-

ler (1956); Gribkovskaia et al. (2007)). Graph theory has been developed thereafter

and applied to various fields to study interconnected systems. The concepts of path

optimization, flow control of computations in computer science, analysis of social in-

teractions in a country are heavily dependent on graph theory. One of the first network

models were developed by Paul Erdős and Alfred Réyni in 1959, referred to as random

or ER networks today (Erdös and Rényi (2011)). They introduced a model for the evo-

lution of connections in a graph where the connections between nodes are established

based on a probability p ∈ (0,1]. Graphs produced using this model spanned a wide

range of network-types starting from fully connected network (at p = 1) to random net-

works with low-density of connections. Their model was based on the assumption that

any two nodes are equally likely to be connected. However, nodes in real-world net-

works do not connect randomly. Rather, there are underlying physical phenomena (such

as in fluid systems) or human preferences (such as in social networks) that influence the



possibility of connection between any two nodes. Moreover, ER networks failed to pro-

duce high clustering together of a subset of nodes in the network, or the existence of

central nodes such as that observed in real networks. For example, in a social network

there may be one or two highly influential individuals that connect smaller clusters of

the network across each other.

Only in the 1990s, did the concept of complex networks catch the attention of

the physics community. Several real-world networks such as airport networks, brain-

networks, network of hyperlinks between web-pages were studied. Researchers from

disparate fields showed that real world networks exhibit heterogeneous distribution of

connections, and some nodes appear to be more important than others. This discovery

called for new models to understand real world networks. In the late 1990s, Watts and

Strogatz (1998) proposed a network model which now famous as the Watts-Strogatz

model. In their model, a network was produced by randomly perturbing and recon-

necting a certain number of links in a regular network. This model was able to capture

the occurrence of high local clustering and short average path length as observed in

real networks, which came to be known as the ‘small-world’ property. However, their

model produced non-growing networks that did not have realistic degree distribution

(distribution of number of nodes having certain number of connections).

Most real-world network delineate scale-free degree distribution, that is, there are

several nodes with low number of connections while a few nodes which have very high

connectivity (Barabási and Bonabeau (2003)). In other words, the probability distri-

bution of the degree of connectivity of nodes does not fall into any particular scale

and follows a power law. A new model for growing networks was proposed by Al-

bert Barabasi and Reka Albert. Their model, referred to as the BA model (Albert and

Barabási (2002)), allowed newly added nodes to build connections with a certain proba-

bility which was proportional to the degree of the old nodes. Thus, the nodes developed

links based on preferential attachment to high-degree nodes. This model was able to

successfully capture the scale-invariance in the degree distribution as observed in real

systems; however, it could not capture the high local clustering as achieved by the

Watts-Strogatz model. Therefore, there is no perfect network model but a variety of
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models to choose from depending the system at hand. Further, several new models are

being developed to explain the topology and evolution of connectivity in real networks

(Bianconi and Barabási (2001); Krapivsky et al. (2000)).

For complex systems such as fluid flows and thermoacoustic systems, the physical

interaction between different modes of oscillations cannot be easily identified. Rather,

such interactions need to be quantified by either using time series analysis or phase

space reconstruction. Several methods of network construction have been employed in

literature (Gao et al. (2017)). The choice of the method depends on and dictates the

information we extract from the dynamics of the system. For example, a network of

oscillators may be developed where connections are established based on the extent of

synchronization of these oscillators. Then the centrality measures derived from such

a network will reflect the local and global picture of synchronization amongst various

oscillators. Similarly, networks constructed from the phase space trajectory reflect the

topology of the phase space. In Chapter 5, we use cycle networks to analyse the dy-

namics observed in thermoacoustic systems.

4.2 Basic definitions

A complex network consists of nodes representing the components of a system. These

nodes are connected based on physical or abstract connections derived from the inter-

action between various components of the specific system. Let G represent the graph

(network), such that G ≡ {V,E} where V represents the set of vertices (nodes) and E

represents the set of edges (connections) in the network G. The number of nodes is

represented by N = |V | Here, we summarise definitions of some basic properties of

complex networks.

Degree Distribution

The number of connections a node has in a network is known as its degree, K. The

topology of a network is usually understood through its degree distribution. Let P(K)
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is the probability that a node has a degree K in the network. Assuming enough number

of nodes in the network, one can find P(K) as the percentage of nodes having degree K

in the network.

P(K) =
1
N

N(K) =
1
N

N

∑
i=1

δ (K,ki) (4.1)

where ki is the degree of node i, and δ (x,y) is the Kronecker delta function. The plot of

P(K) vs K represents the degree distribution of the network. A power law in the degree

distribution, as observed in most real networks, indicates the presence of central or hub

nodes that are few in number but have very high connectivity.

4.2.1 Centrality measures

Various centrality measures have been developed to quantify the importance of nodes in

a complex network (Boccaletti et al. (2002)). While these centrality measures are used

widely across all type of networks irrespective of how the network is connected, their

interpretation is closely tied to the method of construction of the network. Thus, here

we summarize the definition of three such measures which will be used to analyse the

topology of cycle networks in Chapter 5. Later, in section 5.3, we assign meaning to

these centrality measures derived from cycle networks in order to interpret the topology

of the phase space.

Closeness centrality

Closeness centrality is a measure that quantifies the distance between nodes. A node

having high closeness centrality is at a shorter distance from most nodes in the network.

The local closeness centrality of a node is calculated as:

Cclosei =
1

1
N−1 ∑ j di j

(4.2)

The averaged closeness centrality helps estimate how closely connected are nodes in a

network on an average. High average closeness centrality would indicate dense connec-

tions and an intricate structure of the network. It is essentially the mean of the closeness
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centrality of all nodes in the network, and is calculated as follows:

〈Cclose〉=
1
N

N

∑
i=1

Cclosei (4.3)

If the complex network is derived from the phase space cycles, we show in Chapter

5 that the average closeness centrality reflects the average correlation of phase space

cycles.

Betweenness centrality

Betweenness centrality attributes more significance to nodes that act as a bridge be-

tween two otherwise disconnected nodes. A high betweenness centrality indicates the

importance of the node in forming a pathway for flow of information or influence be-

tween disconnected or unrelated components of the network. Local betweenness cen-

trality is calculated according to Eq. 4.4, where ni
rs represents the number of only those

shortest paths between nodes r and s that pass via node i, and grs represents the total

number of shortest paths between the nodes r and s.

bi = ∑
r,s

ni
rs

grs
(4.4)

Averaged betweenness centrality (Eq. 4.5) quantifies the overall capacity of flow of

information/ influence in a network. For cycle networks, betweenness centrality helps

to quantify the stability of periodic orbits in the phase space as discussed in detail in

Chapter 5.

〈CBC〉=
1
N

N

∑
i=1

bi (4.5)

Clustering coefficient

Clustering coefficient quantifies how many neighbours of a node are also neighbors of

each other. Clustering coefficient thus characterizes the existence of clusters of a subset

of nodes in the network which are highly interconnected and provide an important struc-
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ture to the network. The local clustering coefficient Ci of node i refers to the density of

triangular closures of connections including that node. Local clustering coefficient is

zero if the degree of a node is ≤ 1, else it is calculated as described by Eq. 4.6.

Ci =
number of triangles passing via nodei

ki(ki−1)/2
(4.6)

To estimate the overall inter-connectedness of the network, we can find the global

clustering coefficient as the average of local clustering coefficient of all the nodes in the

network. For cycle networks, we show in Chapter 5 that, average clustering coefficient

quantifies the number of periodic orbits in the phase space.

〈CC〉= 1
N

N

∑
i=1

Ci (4.7)
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CHAPTER 5

The onset of thermoacoustic instability via the route of

intermittency as a phase transition similar to

Bose-Einstein Condensation

5.1 Introduction

5.1.1 Emergence of order from chaos in various turbulent systems

The transition from chaos to order through the route of intermittency is not unique to

thermoacoustic systems alone. Emergence of order from chaos has been widely re-

ported in several turbulent systems such as turbulent thermoacoustic (Nair et al. (2013);

Murugesan and Sujith (2015)), aero-acoustic (Nair and Sujith (2016)) and aeroelastic

systems (Venkatramani et al. (2017)). These systems initially exhibit low-amplitude

aperiodic fluctuations in flow quantities such as acoustic pressure in combustors and

aero-acoustic chambers, or in the oscillations of flexible structures. With change in

the control parameter of the turbulent system (such as the flow Reynolds number), the

dynamics exhibits intermittent oscillations comprising short epochs of periodic oscil-

lations interspersed with aperiodic fluctuations. Such a state of intermittency en route

to oscillatory instability in turbulent systems have been reported in thermoacoustic sys-

tems such as turbulent combustors (Nair et al. (2014)), in aero-acoustic systems (Nair

and Sujith (2016)), as well as in aeroelastic systems (Venkatramani et al. (2016)). With

further increase in the control parameter, order begins to emerge and the system dynam-

ics transitions to self-sustained high-amplitude periodic oscillations, called limit cycle

oscillations (LCO).

The occurrence of such high-amplitude periodic oscillations are referred to as oscil-

latory instabilities, and often adversely affects the health of the system in question. For



example, thermoacoustic instability, which comprises high-amplitude periodic oscilla-

tions of acoustic pressure inside a combustion chamber, can lead to structural failure,

or overwhelm the thermal protection system (Culick (2006); Sujith and Unni (2020b);

Lieuwen and Yang (2005)) and also affect the guidance system of rockets causing mis-

sion failures (Fisher and Rahman (2009)). In aero-acoustic systems, such oscillatory

instabilities are known to have detrimental effects in systems such as gas-transport pipe

networks (Kriesels et al. (1995)), and in turbulent cavity flows (Chatellier et al. (2004)).

Further, aeroelastic flutter observed in flexible structures such as an aircraft wing results

in fatigue in the material of the structure and can be disastrous (Garrick and Reed III

(1981)). Another classic example of failure due to aeroelastic instability is the catas-

trophic collapse of the Tacoma bridge (Larsen and Walther (1997)). It is, therefore,

essential to characterize the transition from chaos to order and predict the onset of os-

cillatory instabilities in such turbulent systems.

Several efforts have been made to identify the transitions between different dynam-

ical states of a system. Synchronization theory (Pawar et al. (2017)), fractal analysis

(Nair and Sujith (2014)), recurrence based techniques (Marwan et al. (2008)), complex

networks analysis (Murugesan and Sujith (2015); Godavarthi et al. (2017); Okuno et al.

(2015)) and phase space reconstruction methods (Bradley and Kantz (2015)) are some

of the many approaches employed to classify the different dynamical states observed

in a complex system. Using synchronization theory Pawar et al. (2017, 2019) have

discussed how the acoustic pressure and heat release rate signals begin to synchronize

with each other as order emerges in the dynamics of turbulent combustors. In another

study, Raaj et al. (2019) have shown that the transition of structural oscillations in an

aeroelastic system from a state of aperiodic fluctuations to aeroelastic flutter (high am-

plitude periodic oscillations) can be viewed as a mutual phase-synchronization between

the pitch (torsion) and plunge (bending) motions of the flexible structure.

Some recent efforts have used complex networks approach to characterize the vari-

ous dynamical states observed in turbulent systems (Iacobello et al. (2020)). The transi-

tion from chaos to order in turbulent thermoacoustic systems has been discussed using

visibility networks. Murugesan and Sujith (2015) showed that the topology of the net-
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works derived using visibility algorithm exhibits scale free degree distribution during

chaotic dynamics, while this scale free nature is lost as order emerges in the combus-

tor dynamics. Similarly using recurrence networks Godavarthi et al. (2017) showed

that the topology of the networks derived from the acoustic pressure dynamics of the

combustor becomes more orderly as the system transitions from chaos to order. Further,

using weighted complex networks derived from phase space cycles, Okuno et al. (2015)

have studied the pseudo-periodic dynamics obtained during the occurrence of thermoa-

coustic instability. They show that the distribution of node strengths of such a network

follows a power law, and hence the state of thermoacoustic instability corresponds to

scale-free weighted network.

5.1.2 A new perspective: Emergence of order from chaos in the

phase space as a condensation transition

While the above-mentioned perspectives have proven to be successful in identifying

various dynamical states in the system, the understanding of the transition from chaos

to order in turbulent systems is far from complete. Some approaches such as visibility

algorithm rely on using the information from fluctuations and location of peaks in a

time series obtained from experiments, and do not account for the governing structure

of the phase space. While recurrence networks do preserve the information about the

phase space dynamics, their rich geometric structure makes it hard to interpret and

visualize the topology of the phase space. Further, it is difficult to interpret the influence

of invariant dynamical attractors in the phase space on the evolution of the trajectory

during the transition between various dynamical states.

During the occurrence of chaos, the phase space is characterized by the presence of

an infinite number of UPOs, of which some dominant ones may be detected (Auerbach

et al. (1987); Lathrop and Kostelich (1989); Pawelzik and Schuster (1991)). The phase

space trajectory jumps between these UPOs often, as it gets ejected from one UPO and

is attracted by a neighboring UPO. As shown in Fig. 5.1, a trajectory may approach

a UPO along its stable manifold and get ejected after some time along the unstable
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Fig. 5.1: Schematic diagram showing a sample realization of the trajectory around two
unstable periodic orbits (UPOs) in the phase space.

manifold. Further, the trajectory gets trapped for a larger number of cycles around a

relatively more stable periodic orbit, such as UPO-2, as compared to a relatively less

stable periodic orbit, such as UPO-1 in Fig. 5.1, and hence spends a longer duration

around the more stable orbits.

Unstable periodic orbits (UPOs) are dynamical invariants (Gunaratne et al. (1989)).

For, multiple realizations of a chaotic system at the same operating condition, the phase

space trajectory can trace distinct paths in each realization. The order in which the

trajectory visits the various UPOs in the phase space may differ in each realization.

However, the set of UPOs which attract or repel this trajectory in every realization

remains the same. On the other hand, during the occurrence of limit cycle oscillations,

the phase space consists typically of several cycles located around a single stable orbit

in the phase space. It is essential to consider how these structures consisting of periodic

orbits in the phase space morph during the transition from chaos to order. Through this

study, we introduce a new perspective, that identifies the various dynamical states in

a turbulent system based on the structure of the corresponding phase space. Also, we

note that while the phase space cycles are associated with several UPOs during chaotic

dynamics, these cycles ‘condense’ to a single stable orbit during periodic dynamics.

Thus, we intend to cast the emergence of order from chaos in turbulent systems as a

“condensation transition” using the phase space cycles and the dynamically invariant
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periodic orbits in the phase space.

Condensation transition was first discussed in quantum mechanical systems consist-

ing of indistinguishable particles called Bosons (Bose (1924)), which at room temper-

ature occupy several higher energy states. The temperature of the system is reduced

using advanced techniques such as laser cooling, and brought closer to 0 K (practically

to 10 µK). After a certain critical temperature is reached, a large fraction of Bosons

begin occupying the lowest energy state of the system (Reif (2009)). The sudden oc-

cupancy of the lowest energy state by almost all Bosons in the system below a critical

temperature is referred to as Bose-Einstein condensation (Einstein (1924)). In statisti-

cal physics, condensation transition means that a large fraction of the ‘particles’ in the

system occupy a single ‘energy level’, referred to as the ground state.

Condensation transition has also been discussed in the context of classical systems

such as random lasers (Conti et al. (2008)), light pulses in a laser cavity (Oren et al.

(2014)), vehicular traffic systems (Evans (1996); Chowdhury et al. (2000)), epidemic

spreading (Tang et al. (2009)), and many others. Such analogy with the condensation

observed in a system of Bosons is made possible by defining ‘particles’ and ‘energy

levels’ appropriately for the concerned system. For example, to study the spread of

epidemics in analogy to condensation transition, Tang et al. (2009) define public places

as energy levels, while the people occupying these places are referred to as particles.

Using mean-field approximations, they develop a model and prove that the condensation

of several people in one place enhances the infection rate and sustains the epidemic for

longer duration.

Further, such condensation transition has been discussed for complex networks

(Krapivsky et al. (2000); Bianconi and Barabási (2001); Su et al. (2012)) where de-

spite the non-equilibrium nature of the networks, the ‘particles’ follow Bose statistics

and can exhibit Bose-Einstein condensation. Bianconi and Barabási (2001) draw an

analogy between networks and a system of Bosons where the nodes of the network are

equivalent to energy levels and the links between nodes are considered to be particles.

They consider a growing network in which links are added according to a fitness model

which assigns a certain fitness parameter to each of the nodes. The energy of a node is
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defined through the fitness parameter associated with that node. Using such a model,

the authors show that a complex network, initially in the scale-free phase, evolves into

a network with a few dominant hubs due to higher fitness and connectivity. Finally,

further evolution of the network leads to Bose-Einstein like condensation, where the

node with the largest fitness emerges as the ‘ground state’, and a finite fraction of links

always connects to this hub-node.

5.1.3 Potential contributions of the new perspective

We ask some intriguing questions in this study that are summarized here. We noted

earlier that the number and the stability of phase space orbits differ during chaotic and

ordered dynamics. Here, we ask, what is the phase space topology during the interme-

diate states when the system dynamics transitions from chaos to order, such as the state

of intermittency? Moreover, can we characterize the transition of dynamics from chaos

to order using measures associated with the the topological transformations in the phase

space as order emerges in the system dynamics?

Also, as stated earlier, the occurrence of oscillatory instabilities in turbulent systems

can be catastrophic, and it is desirable to identify the onset of such dynamical states.

We, therefore, ask if it is feasible to identify the onset of oscillatory instabilities in tur-

bulent systems by studying the topological transformations in the phase space. Finally,

we understand that in the purview of statistical physics, condensation transition is asso-

ciated with the emergence of order in a system of disordered particles. We then ask, is

it possible to relate such condensation transition to the emergence of order from chaos

in complex systems?

To answer these questions, we analyze the transition from chaotic dynamics to

self-sustained periodic oscillations in two types of turbulent systems, namely, a swirl-

stabilized (Pawar et al. (2019)) and a bluff-body stabilized (Pawar et al. (2017)) turbu-

lent combustor. We choose to analyze such thermoacoustic systems since they exhibit

transition from chaotic to periodic dynamics, through the route of intermittency, with

variation in the control parameter of the system. Further, turbulent combustors are prac-
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tically relevant systems, since the onset of thermoacoustic instability in combustors is

a major concern in the aviation and the power industries. The various dynamical states

observed during experiments in turbulent combustors are discussed in Sec. 2.2.

For the analysis presented in this chapter, we consider the time series of acoustic

pressure (p′) obtained from turbulent combustors to study the various dynamical states

observed in the system. Note that we do not consider the time series of q̇′ in our anal-

ysis, and therefore do not comment on the occurrence of PS and GS states obtained in

these combustors. Instead, we refer to the two types of dynamics obtained in p′ during

thermoacoustic instability in bluff-body stabilized combustor as weakly and strongly

correlated limit cycle oscillations as proposed by Pawar et al. (2017). Further, we dis-

cuss the transition from chaotic dynamics to limit cycle oscillations via the route of

intermittency and identify the onset of thermoacoustic instability in these combustors.

For the current study, we use the same data set as reported by Pawar et al. (2017) and

Godavarthi et al. (2018) for the analysis of dynamics in a bluff-body stabilized turbulent

combustor, and the data set reported by Pawar et al. (2019) for the analysis of dynamics

in a swirl-stabilized turbulent combustor.

Here, we use unweighted cycle networks (Zhang and Small (2006)) constructed

from acoustic pressure oscillations obtained from these combustors, as discussed in

Sec. 5.2. Using the centrality measures and the degree distribution derived from cycle

networks, we interpret the phase space structure during various dynamical states and

identify the onset of the oscillatory instabilities in these combustors, as discussed in Sec.

5.3 and Sec. 5.4, respectively. Finally, in Sec. 5.5, we conjecture that the emergence of

order from chaos in turbulent systems can be viewed as a ‘condensation phenomenon’ in

the phase space. We draw an analogy with Bose-Einstein condensation by defining the

nodes in the network, i.e., the phase space cycles as particles and the periodic attractors

as energy levels whose energy is defined by the connectivity of nodes associated with it.

Such a definition is apt, since, higher the stability of a UPO, larger the number of cycles

associated with it (Auerbach et al. (1987); Lathrop and Kostelich (1989)), and larger

the connectivity of the corresponding nodes in the derived network. We also note that

such analogy between networks and system of Bosons is different from that defined by
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Bianconi and Barabási (2001), and is a novel perspective to condensation in complex

networks as well as for the emergence of order from chaos.

5.2 Converting time series of acoustic pressure to cycle

network

Zhang and Small (2006) suggested the use of phase space cycles derived from time

series obtained from experiments to characterize the dynamics of complex systems that

show pseudo-periodic behaviour. They proposed constructing complex networks where

the phase space cycles are the nodes in the network, and the correlation between the

phase space cycles is associated with the connectivity between nodes. We extend their

method, here, to study the transition of the dynamics from chaos to order in a turbulent

thermoacoustic system, considering the example of a bluff-body stabilized turbulent

combustor. Such phase space visualization of the dynamical states for a swirl-stabilized

turbulent combustor reveals similar results, but is not presented here in order to stay

concise. The method to build cycle networks from time series, as proposed by Zhang

and Small (2006), is described briefly here for the sake of completion.

First, the time series of acoustic pressure fluctuations (p′) obtained from experi-

ments in a bluff-body stabilized turbulent combustor (Pawar et al. (2017)) is divided

into cycles between consecutive local maxima. These cycles in the time series also cor-

respond to cycles in the phase space, which can be reconstructed from the time series

by using delay-embedding method (Takens (1981)). The average correlation between

any two cycles is calculated using Eq. (5.1) as proposed by Zhang and Small (2006);

Zhang et al. (2006).

ρi j = max
l=0,1,...l j−li

Cov(Ci(1 : li),C j(1+ l : li + l))√
var(Ci(1 : li))var(C j(1+ l : li + l))

(5.1)

Here, Ci and C j denote the time series of p′ corresponding to the ith and jth cycles

respectively, while li and l j (assuming li < l j) denote the peak-to-peak lengths of cycles
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Ci and C j, respectively. Also, Cov stands for covariance and var stands for variance.

The average correlation between two cycles in the time series is inversely proportional

to the average phase space distance between the two cycles in the reconstructed phase

space (Zhang et al. (2006)). So, the closer the two cycles are in the phase space, the

higher is their correlation.

To derive the adjacency matrix A = [ai j] of the unweighted cycle network, we set

a correlation threshold ρth. If the correlation between two cycles i and j is such that

ρi j > ρth, then these cycles are assumed to be connected and ai j = 1, else ai j = 0. The

choice of this correlation threshold ρth is non-trivial. We may vary this threshold ρth

to reveal several features of the phase space structure during each dynamical state of

the combustor, which we discuss in Sec. 5.4. Further, by fixing the threshold, we can

differentiate the topology of the derived complex networks for the various dynamical

states observed in a turbulent combustor, as discussed in this section and Sec. 5.3.

Fig. 5.2: The time series of acoustic pressure fluctuations (I), the corresponding nor-
malised phase space (II) and cycle network (III) during distinct dynamical
states namely, (a) combustion noise, (b) intermittency, and (c) weakly corre-
lated and (d) strongly correlated limit cycle oscillations during thermoacoustic
instability observed in a bluff-body stabilized turbulent combustor. The adja-
cent colorbar indicates the degree of nodes across the various dynamical states.
The network is derived by setting ρth = 0.92.
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Here, we illustrate the topology of the phase space and the cycle networks corre-

sponding to the dynamics of the combustor during the states of combustion noise, inter-

mittency, and thermoacoustic instability (Pawar et al. (2017)), through Fig. 5.2(a)-(d).

Though we obtain time series of p′ for 3 seconds at each value of the control parameter

in experiments, we show shorter interval of the time series in Fig. 5.2 for clarity. The

phase space is reconstructed from the time series of acoustic pressure fluctuations nor-

malised by their maximum (i.e., p′/max(p′)), by using the Takens’ delay-embedding

method (Takens (1981); Nair and Sujith (2013)). We find the optimum delay time to

be 2 ms and the least embedding dimension to be 7 for the state of combustion noise

observed in the experiments. For illustration purpose, we plot only three dimensions

of the 7-dimensional phase space in column-II of Fig. 5.2. Further, in order to derive

and differentiate the unweighted cycle networks during various dynamical states, we

set ρth = 0.92. This choice of the correlation threshold is made after examining the

connectivity of networks corresponding to the various dynamical states and comparing

with that during the state of thermoacoustic instability. In order to obtain maximum

variability between the network metrics (in Sec. 5.3) and the topology of the network

during various dynamical states, we choose the correlation threshold as the maximum

value of ρth such that the network obtained during the occurrence of strongly correlated

LCO (Fig. 5.2(d)) is fully connected. The network is visualized via the Force-Atlas

algorithm in Gephi software (Bastian et al. (2009)), where nodes having higher connec-

tivity are repelled from all directions and pushed to the center while those with lower

degree are repelled to the boundaries. Moreover, the networks are color-coded across

the various dynamical states to help differentiate the degree distribution during each

state.

The time series of acoustic pressure fluctuations (p′) obtained during the state of

combustion noise (Fig. 5.2(a) column-I) consists of low-amplitude chaotic fluctuations,

and the cycles obtained from such time series are weakly correlated with each other.

Hence, most of the nodes in the network in Fig. 5.2(a) column-III are concentrated on

the periphery and have very low degrees (≈ 10), while the nodes in the centre mostly

correspond to degrees between 100 and 200.
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During intermittency, the time series of p′ (Fig. 5.2(b) column-I) comprises epochs

of periodic oscillations interspersed with epochs of chaotic fluctuations. Further, the

phase space diagram (Fig. 5.2(b) column-II) shows that a few of the cycles are oriented

in concentric rings spread throughout the phase space indicating significant correlation

between these cycles. The trajectory also portrays chaotic motion in the central region

of the phase space, and the cycles in this region are very weakly correlated. As a result,

the corresponding network (Fig. 5.2(b) column-III) has a lesser fraction of low-degree

nodes (degree ≈ 10) protruding outwards as compared to the network in Fig. 5.2(a),

while most of the nodes appear to be arranged in a globular structure with their degree

around 250. We, therefore, infer that the complex network obtained during the state of

intermittency comprises nodes of both high and low degrees.

Further, during thermoacoustic instability, we initially observe amplitude-modulated

limit cycle oscillations (LCO), as shown in Fig. 5.2(c) column-I, which may be a sig-

nature of pseudo-periodicity. As a result, we obtain several closely spaced concentric

rings in the corresponding phase space diagram of this state (Fig. 5.2(c) column-II).

Note that, unlike the state of intermittency, there is an absence of chaotic behaviour in

the dynamics obtained during this state. In the network derived from the amplitude-

modulated LCO (Fig. 5.2(c) column-III), almost all nodes lump together due to their

high inter-connectivity (degree around 300), while very few nodes are pushed to the

periphery due to low connectivity (with a degree around 100). With further increase in

the mass flow rate, we observe high-amplitude periodic oscillations with irregular and

negligible amplitude modulation, as shown in Fig. 5.2(d), column-I. As a result, all

the cycles are highly correlated to each other, and the corresponding network is fully

connected (degree ≈ 350) and forms a globular structure with no outliers.
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5.3 Identifying the onset of thermoacoustic instability

via network centrality measures

In this section, we wish to investigate the topological transformation in the phase space

by studying the variation in the network properties during the transition from chaos to

order in turbulent systems. In order to do so, we obtain a complex network correspond-

ing to each time series of acoustic pressure oscillations obtained during the transition

from combustion noise to thermoacoustic instability in turbulent combustors. We fix

the correlation threshold (as justified earlier for Fig. 1) at ρth = 0.92 for the bluff-body

stabilized combustor, and similarly at ρth = 0.94 for a swirl-stabilized combustor to de-

rive these networks. We calculate average network centrality measures (Boccaletti et al.

(2006)), such as average closeness centrality 〈Cclose〉, betweenness centrality 〈CBC〉 and

clustering coefficient 〈CC〉 of each of the networks, as ū is varied in the combustor,

where 〈〉 denotes average over all the nodes in the network. Here, we introduce how

these centrality measures can help interpret the number and the stability of periodic

orbits in the phase space. We also identify the onset of thermoacoustic instability in

the combustors. In Appendix B.1, we show that the choice of the point of onset of os-

cillatory instabilities using network centrality measures is largely unaffected by small

variations in the choice of ρth.

Closeness centrality, Cclose, is the reciprocal of farness between nodes (Sabidussi

(1966); Boccaletti et al. (2006)), i.e., a network which is fully connected will have very

short average path lengths and will thus have a very high value of 〈Cclose〉. For cycle

networks, 〈Cclose〉 gives a direct measure for the average correlation between phase

space cycles. For example, high values of 〈Cclose〉 indicate that any two nodes in the

network are likely to be linked by a short path length, and thus the distance between

the corresponding cycles in the phase space is likely to be small. When cycles of the

trajectory are more closely spaced, one can infer that the trajectory jumps between

lesser number of UPOs thus delineating periodic dynamics.

Next, we consider the betweenness centrality of nodes, CBC, that characterizes the

importance of a node in forming a connection between other nodes of the network
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(Freeman (1977); Boccaletti et al. (2006)). For cycle networks, 〈CBC〉 helps quantify

the stability of periodic orbits in the phase space. If we assume a phase space consist-

ing of just two neighbouring UPOs, say UPO-1 and UPO-2, of comparable stability,

the trajectory would switch often between these two UPOs. Then, a few cycles of the

trajectory will be associated with UPO-1 and a few with UPO-2. However, a few cy-

cles which form the transition cycles between UPO-1 and UPO-2 will most probably

be correlated to some cycles around both of these UPOs. These transition cycles cor-

respond to nodes with high betweenness centrality in the cycle network. A high value

of 〈CBC〉 thus indicates that the phase space consists of neighboring periodic orbits, and

the trajectory often switches between these orbits indicating that these orbits must be

highly unstable. Further, a very low value of 〈CBC〉 indicates the absence of numerous

transition cycles, and hence, signifies the presence of highly stable periodic orbit in the

phase space.

Another useful measure is the clustering coefficient, CC, which helps quantify how

many neighbours of node i are also neighbours of each other in a network (Watts and

Strogatz (1998); Boccaletti et al. (2006)). For cycle networks, 〈CC〉 implies a measure

of the number of UPOs in the phase space and the connectedness between cycles around

these UPOs. In a phase space consisting of a single periodic orbit, all the cycles of the

trajectory associated with that orbit are highly correlated, and all the corresponding

nodes in the network form a single cluster; thus, 〈CC〉 is expected to be nearly one.

However, in a phase space consisting of numerous UPOs, cycles form small clusters

around distinct UPOs leading to multiple small clusters in the network. As a result, the

average clustering coefficient of the network is expected to be small.

Figure 5.3 shows the variation of the centrality measures with the increase in the

mean flow velocity (ū) for a bluff-body stabilized turbulent combustor. We observe

that 〈Cclose〉 and 〈CC〉 increase gradually for low values of ū, but show a sharp increase

in value at ū = 11.1 m/s, indicating a change in the dynamics. Similarly, 〈CBC〉 is

comparatively high and increases gradually for low values of ū, but shows a decrease

in value after ū = 11.1 m/s. We attribute such a sudden change at ū = 11.1 m/s to

the onset of the state of intermittency, while the dynamics observed for ū < 11.1 m/s
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is ascribed to the state of combustion noise. Since the value of 〈CC〉 is small during

the state of combustion noise (ū < 11.1 m/s), we infer that the phase space comprises

numerous UPOs and the phase space cycles form several small clusters around these

numerous UPOs. As a result, these cycles are less correlated on an average and the

value of 〈Cclose〉 is low during the state of combustion noise. Also, since 〈CBC〉 is

high for ū < 11.1 m/s, we infer that the numerous UPOs in the phase space are highly

unstable eventually leading to chaotic switching of the trajectory between various UPOs

during the state of combustion noise.

Fig. 5.3: The variation in the average (a) closeness centrality (〈Cclose〉), (b) between-
ness centrality (〈CBC〉) and (c) clustering coefficient (〈CC〉) with the variation
in the control parameter (ū and corresponding Re) of the bluff-body stabilized
turbulent combustor, for the derived cycle networks with ρth = 0.92. The re-
gions (I), (II) and (III) correspond to the different dynamical states observed
that are combustion noise, intermittency and thermoacoustic instability, re-
spectively (Pawar et al. (2017)).

Further, the sharp increase in the values of 〈Cclose〉 and 〈CC〉 at ū = 11.1 m/s in Fig.

5.3 indicates that the number of UPOs decreases and the average correlation of cycles in

the phase space increases remarkably at the onset of the state of intermittency. Also, the

sharp decrease in the value of 〈CBC〉 after ū = 11.1 m/s indicates the significant increase

in the stability of the UPOs in the phase space during the occurrence of intermittency.

We thus infer that, during this state, the phase space consists of some weakly unstable

(or moderately stable) periodic orbits along with highly unstable periodic orbits. These

weakly unstable periodic orbits attract the trajectory for comparatively longer epochs,

due to which more number of cycles of the trajectory become closely spaced and the

average correlation of cycles starts increasing. Thus, we obtain epochs of periodic oscil-
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lations amidst aperiodic fluctuations in the acoustic pressure dynamics of the combustor

during the state of intermittency (Fig. 5.2(b) column-I).

In Fig. 5.3(a), we observe that 〈Cclose〉 attains a maximum value and its growth is

negligible after ū = 14.45 m/s. Such saturation of the value of 〈Cclose〉 indicates the

onset of periodic dynamics. Further, the value of 〈CBC〉= 0 (Fig. 5.3(b)) and 〈CC〉= 1

(Fig. 5.3(c)) at ū = 15.4 m/s. We thus associate the point ū = 15.4 m/s as the onset of

thermoacoustic instability in the bluff-body stabilized turbulent combustor. Note that,

〈CBC〉 and 〈CC〉 do not change very rapidly after ū = 14.45 m/s, indicating the possibil-

ity of pseudo-periodic dynamics in the regime 14.45≤ ū≤ 15.4 m/s (as shown in Fig.

5.2(c)). Moreover, since we find 〈CBC〉 = 0 during thermoacoustic instability, we infer

that no transition cycles exist in the phase space. Thus, a highly stable periodic orbit

governs the phase space dynamics during the occurrence of thermoacoustic instability.

As a result, we observe almost constant amplitude limit cycle oscillations in the time

series of p′ (refer column-I of Fig. 5.2(d)).

Fig. 5.4: The variation in the average (a) closeness centrality (Cclose), (b) betweenness
centrality (CBC) and (c) clustering coefficient (CC) with the variation in ū (and
corresponding Re) of a swirl-stabilized turbulent combustor for the derived
cycle networks with ρth = 0.94. The regions (I), (II) and (III) correspond to the
different dynamical states observed that are combustion noise, intermittency
and thermoacoustic instability, respectively (Pawar et al. (2019)).

Similarly, we plot the variation of average network centrality measures during the

transition of the dynamics from chaotic to periodic in a swirl-stabilized turbulent com-

bustor in Fig. 5.4. We observe that the values of 〈Cclose〉 and 〈CC〉 initially decrease for

ū < 9.2 m/s and then increase after ū = 9.2 m/s, indicating that the number of UPOs
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which influence the phase space trajectory first increases and then decreases. Moreover,

the value of 〈CBC〉 initially increases and then decreases, indicating that the stability of

these UPOs declines for ū < 9.2 m/s but increases after ū = 9.2 m/s. We identify the

point ū = 9.2 m/s, at which all the three centrality measures reverse their trends, as the

point of onset of the state of intermittency. Also, we infer that the phase space dynamics

becomes significantly more chaotic with ū during the occurrence of combustion noise,

while a notable transition occurs at the onset of the state of intermittency. Such reversal

in the variation of these centrality measures also implies that the flow dynamics changes

drastically at the onset of the state of intermittency in a swirl-stabilized combustor.

We understand that in a swirl combustor, the turbulent fluctuations are very signif-

icant as compared to the mean, and the intense turbulent fluctuations that exist down-

stream of the center-body disrupt the formation of organized coherent structures (Reddy

et al. (2006); Huang and Yang (2009)). Here, we conjecture that as the mean flow ve-

locity ū (and hence the Reynolds number) increases, the flow becomes more turbulent

and chaotic dynamics becomes more significant during the occurrence of combustion

noise. However, after a critical Reynolds number, the flow dynamics becomes more

orderly due to the occurrence of large periodic coherent structures. As a result, period-

icity emerges amidst chaos and we see a reversal in the trend of the network centrality

measures (Fig. 5.4). Furthermore, 〈Cclose〉 saturates to a maximum, 〈CBC〉 = 0 and

〈CC〉= 1 after ū = 10.6 m/s, which we identify as the point of onset of thermoacoustic

instability, in the swirl-stabilized combustor (Pawar et al. (2019)).

In summary, we propose a new method to visualize the topology of the phase space

and interpret the number and stability of periodic orbits in the phase space using net-

work centrality measures such as clustering coefficient, closeness centrality and be-

tweenness centrality. Also, we differentiate the various dynamical states and identify

the point of onset of oscillatory instability in two distinct turbulent combustors. Further,

we note that the variation of network centrality measures helps conjecture the transitions

in the flow dynamics of these combustors with variation of the control parameter ū.
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5.4 Deriving the phase space topology from the degree

distribution of cycle networks

In the previous sections, we examined the topology of the phase space and the corre-

sponding topology of cycle networks during the various dynamical states observed in

turbulent combustors. To do so, we had justifiably chosen and fixed the correlation

threshold at some ρth. However, there is no accurate choice for the value of ρth and dif-

ferent choices of this threshold reveal significant features of the structure of the phase

space. We can exploit this fact to our benefit and acquire qualitative information about

the number and the stability of the UPOs in the phase space by varying ρth. An easy way

to do so is using the two-dimensional (2D) degree distribution as proposed by Zhang

and Small (2006).

Towards this purpose, during each dynamical state observed in the turbulent com-

bustors, we obtain the degree distribution of the cycle networks derived from the acous-

tic pressure oscillations while the correlation threshold is varied in the range 0.5< ρth <

0.99. We then plot a series of degree distributions with variation in ρth referred to as the

two-dimensional (2D) degree distribution (Zhang and Small (2006)) in Sec. 5.4.1. We

then quantify the variation of these peaks in the 2D degree distribution using a quantity

called the variance of the normalized derivative (V ND) in Sec. 5.4.2

5.4.1 2D Degree Distribution

Peaks in the degree distribution of cycle networks indicate the existence of periodic

orbits in the phase space (Zhang and Small (2006)). A trajectory which approaches a

UPO along its stable manifold can last for several cycles around that UPO depending

on the stability properties of such an orbit (see Fig. 5.1). All the cycles associated with

a particular UPO will be spatially adjacent, and thus highly correlated. As a result, all

these cycles will be connected to each other in the corresponding network and will have

almost the same degree, thus leading to a peak in the degree distribution. Further, a

small value of the correlation threshold, ρth, corresponds to a large value of a phase
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space distance threshold, Dth, in the cycle networks since correlation and phase space

distance of cycles are inversely related (Zhang et al. (2006)). If the value of ρth is high,

i.e., the value of Dth is small, then only those nodes in the network are connected which

correspond to very closely spaced cycles in the phase space and have distance D < Dth.

However, if we decrease the correlation threshold (or correspondingly increase Dth),

then even those phase space cycles, which are probably on different but neighboring

UPOs may be close enough such that their phase space distance is lesser than the speci-

fied threshold Dth, and the corresponding nodes in the network will be connected. As a

result, cycles associated with distinct but neighboring UPOs will be represented by the

same peak, and the number of peaks in the degree distribution shall decrease with in-

crease in Dth. In other words, if we increase the correlation threshold, we expect that the

number of peaks in the degree distribution will increase, if the phase space comprises

several UPOs.

Also, depending on where these peaks occur in the degree distribution as the cor-

relation threshold is increased, we can infer the stability of the periodic orbits in the

phase space. A highly unstable periodic orbit will attract the trajectory rarely, and the

number of cycles of the trajectory around this orbit will also be lesser as compared to

a periodic orbit with higher stability. As a result, the cycles associated with a highly

unstable periodic orbit will correspond to low-degree nodes in the cycle network. Thus,

in the degree distribution of a cycle network, a peak around low-degrees indicates the

presence of highly unstable periodic orbits that lead to chaotic dynamics. However, a

peak around comparatively higher degrees in the degree distribution indicates the pres-

ence of weakly unstable periodic orbits that trap the trajectory for longer epochs, and

thus cause periodic dynamics. Further, if there exists a highly stable periodic orbit, then

for low as well as high values of the correlation threshold, the degree distribution would

comprise a single dominant peak.

The 2D degree distribution obtained by varying the correlation threshold reveals the

number and the relative stability of the periodic orbits in the phase space. With this in

mind, we examine the 2D degree distribution of the various dynamical states in a bluff-

body stabilized turbulent combustor, as the dynamics transitions from chaos to order in
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Fig. 5.5: 2D degree distribution showing the variation of the degree distribution of
cycle networks obtained from the time series of acoustic pressure oscillations
with the correlation threshold, during the states of (a) combustion noise, (b)
intermittency, (c) weakly correlated and (d) strongly correlated limit cycle
oscillations observed in a bluff-body stabilized turbulent combustor. Here, ρth
is varied from 0.55 to 0.99 in steps of 0.001. Bins refer to degrees and count
refers to the number of nodes having certain degree.

Fig. 5.5. A similar visualization may be done, and similar inferences may be drawn for

the dynamics observed in a swirl-stabilized combustor as well.

Figure 5.5(a) shows the 2D degree distribution during the state of combustion noise,

which is known to consist of chaotic fluctuations of moderately high dimensions (Nair

et al. (2013); Tony et al. (2015)). For low as well as high values of ρth, we obtain

several peaks in the degree distribution spread in the range of 100 to 200 degree, which

indicate the presence of multiple UPOs in the phase space. Chaotic dynamics is known

to have infinitely many UPOs, of which only a few dominant ones can be detected, and

we detect these dominant UPOs through the peaks in the degree distribution. As the

correlation threshold (ρth) increases, we find that the number of peaks in the degree

distribution increases and more peaks occur at lower degrees (≈ 40). As a result, we

infer that the phase space of chaotic dynamics obtained during the state of combustion

noise consists of several closely-spaced highly-unstable periodic orbits.

Figure 5.5(b) shows the 2D degree distribution for the state of intermittency ob-
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tained prior to thermoacoustic instability. For low values of ρth we obtain a few domi-

nant peaks at degrees around 250 which remain significant for a certain range of the cor-

relation threshold (0.55 < ρth < 0.75). We note that these peaks occur at slightly higher

degrees as compared to those in Fig. 5.5(a). Due to such peaks around high degree

values, we infer that the phase space consists of a few weakly unstable (or moderately

stable) periodic orbits, as compared to the highly unstable periodic orbits during the

state of combustion noise. When the trajectory approaches these weakly unstable peri-

odic orbits, it is trapped for a greater number of cycles which manifests as short epochs

of periodicity in the time series of acoustic pressure oscillations. However, with further

increase in the threshold value (ρth > 0.75), such dominant peaks decline and multiple

peaks appear near the low-degrees in the degree distribution (around ≈ 50). Such low-

degree peaks show that the phase space also consists of several closely-spaced highly

unstable periodic orbits which cause chaotic fluctuations for short epochs. In summary,

during the state of intermittency, isolated and moderately stable periodic orbits co-exists

with multiple closely-spaced highly unstable periodic orbits in the phase space.

The 2D degree distribution during weakly correlated LCO (see Fig. 5.5(c)) shows

a dominant peak at very high degree (around 300) which remains dominant despite the

increase of the correlation threshold. Such 2D degree distribution clearly delineates that

during this state, the phase space consists of a dominant periodic orbit with very high

stability. However, for very high values of ρth (when ρth > 0.8), the dominant peak

declines and a few high-degree peaks arise in the degree distribution. These multiple

high-degree peaks indicate that two or more closely spaced sub-period orbits may exist

in the phase space and these orbits are of comparable stability. As a result, the trajectory

delineates periodic motion even while switching between these orbits, and the acoustic

pressure dynamics delineates pseudo-periodic behaviour.

A similar distribution is obtained during the state of strongly correlated LCO as

well, as shown in Fig. 5.5(d). The peak at very high degree (≈ 350) in Fig. 5.5(d)

remains dominant for a larger range of ρth ( 0.55 < ρth < 0.92), as compared to Fig.

5.5(c). Clearly, the phase space consists of a periodic orbit of much higher stability

during the occurrence of thermoacoustic instability. Note that ρth = 0.92 is the max-
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imum ρth for which the network during the occurrence of strongly correlated LCO is

fully connected. However, we extend the analysis of degree distribution to ρth > 0.92

to check for the stability of the periodic orbit obtained during this state. We find that the

peak corresponding to the periodic orbit remains dominant even for higher correlation

threshold (for ρth > 0.92) indicating that the periodic orbit detected during thermoa-

coustic instability is indeed highly stable and no other periodic orbits are detected.

To summarize, we find that several low-degree peaks occur with varying correlation

threshold during combustion noise, indicating the presence of several highly unstable

periodic orbits in the phase space. During intermittency, we obtain high-degree peaks

for low values of ρth, as well as low-degree peaks for high values of ρth. Such 2D de-

gree distribution indicates the coexistence of weakly unstable periodic orbits and highly

unstable periodic orbits in the phase space. Finally, during thermoacoustic instability,

we obtain a single dominant peak for all values of ρth, indicating the presence of a stable

periodic orbit in the phase space.

5.4.2 Quantifying the peaks in the 2D degree distribution: V ND

A quantity that can differentiate the stability and the number of periodic orbits dur-

ing each dynamical state of the turbulent combustors is clearly desirable. We, use a

measure called the variance of the normalized derivative (V ND) obtained from the 2D

degree distribution (Zhang and Small (2006)) to characterize the number of peaks in

the distribution. Let DD denote the 2D degree distribution, which is essentially a two-

dimensional matrix, where a row (denoted by index i) consists of the degree distribution

corresponding to a particular ρth, and the column index j indicates the degrees. Now,

DD′ denotes the normalized derivative of the 2D degree distribution DD, and the vari-

ance of DD′ gives V ND, i.e., V ND = var(DD′). The normalized derivative DD′ is

calculated as given by Eq. (5.2). Note that the normalization of the derivative of the 2D

degree distribution we have introduced is different from what was originally proposed

by Zhang and Small (2006). To calculate V ND for each dynamical state, we vary the

correlation threshold in the range 0.55 < ρth < 0.99 in steps of 0.001. If we vary ρth

with steps smaller than 0.001 (say 0.0005), we obtain the same results, that is, V ND
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Fig. 5.6: Variation of V ND (variance of the normalized derivative) of the 2D degree
distribution with the control parameter (ū and corresponding Re) for (a) bluff-
body and (b) swirl stabilized turbulent combustors. The dynamical states of
the combustor are demarcated by I-combustion noise, II-intermittency and III-
thermoacoustic instability. Here, ρth is varied from 0.55 to 0.99 in steps of
0.001.

converges when ρth is varied in steps of 0.001. Further, we have justified the choice of

the range of ρth for the calculation of V ND in Appendix B.2.

DD′(i, j) =
DD(i, j+1)−DD(i, j)
DD(i, j+1)+DD(i, j)

(5.2)

The V ND measure characterizes the fluctuations in the 2D degree distribution. At

the location of a peak, the local derivative of the degree distribution will be high in

value. Larger the number of peaks and larger the variation in the heights of these peaks,

larger the variance in the local derivative values throughout the 2D degree distribution.

Further, we understand that for dynamics involving greater number of UPOs, the num-

ber of peaks in the 2D degree distribution will be higher (Zhang and Small (2006)).

As a result, high value of V ND implies the presence of greater number of UPOs in

the phase space, and hence implies more chaotic dynamics. In Fig. 5.6(a,b) we plot

V ND as a function of the control parameter ū, as the combustor dynamics transitions

from combustion noise (chaos) to thermoacoustic instability (order) via intermittency in

bluff-body and swirl stabilized combustors, respectively. We also demarcate the regions
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corresponding to the states of combustion noise (I), intermittency (II) and thermoacous-

tic instability (III) based on the classification that we introduced earlier in Sec. 5.3.

In Fig. 5.6(a), we observe that, during the state of combustion noise in a bluff-

body stabilized combustor, the value of V ND increases and attains a maximum value

of V ND ≈ 0.5. Such an increase in the value of V ND with ū during the state of com-

bustion noise indicates increase in the number and decrease in the stability of unstable

periodic orbits in the phase space. Also, the increase in 〈CBC〉 in Fig. 5.3(b) (in Sec.

5.3) indicates a decline in the stability of periodic orbits during the occurrence of com-

bustion noise. On the other hand, increase of 〈Cclose〉 and 〈CC〉 in Fig. 5.3 delineates

an increase in the correlation between phase space cycles, and thus increase in periodic

dynamics. We therefore infer that the occurrence of both chaotic and periodic dynam-

ics increases in a bluff-body stabilized turbulent combustor with increase in ū, where

chaotic dynamics dominates during the occurrence of combustion noise.

Moreover, the value of V ND declines significantly and monotonically during the

state of intermittency (region-II), and then saturates to a very low value (≈ 0.05) at the

onset of thermoacoustic instability. We then infer that the number of UPOs in the phase

space decreases, while their stability increases with ū. Further, the saturation of V ND to

a very low value indicates the onset of oscillatory dynamics in the bluff-body stabilized

turbulent combustor.

For a swirl-stabilized combustor (Fig. 5.6(b)), V ND≈ 0.6 during the state of com-

bustion noise. We infer that, with increase in ū, the number of UPOs in the phase space

increases, while their stability decreases slightly during the state of combustion noise,

as also inferred earlier from Fig. 5.4. With further increase in ū, V ND declines mono-

tonically during the state of intermittency and saturates to almost zero after the onset

of thermoacoustic instability in the combustor. Thus, again, we infer that the dynamics

becomes significantly more chaotic with increasing ū during the state of combustion

noise, while order begins to emerge at the onset of the state of intermittency. Also, the

saturation of V ND to zero helps identify the onset of thermoacoustic instability in a

swirl-stabilized turbulent combustor.

Therefore, the variation of V ND and centrality measures with the control param-
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eter (ū) of the combustors delineate the transformation of the phase space from (i) a

set of several closely-located highly unstable periodic orbits during the occurrence of

combustion noise, to (ii) a set of isolated moderately stable periodic orbits in coexis-

tence with highly unstable periodic orbits during the state of intermittency, and finally

to (iii) a highly stable periodic orbit during thermoacoustic instability. The saturation

of V ND at the onset of oscillatory dynamics indicates that the phase space has morphed

completely into a stable limit cycle oscillator.

5.5 Analogy with Bose-Einstein Condensation

Using network centrality measures in Sec. 5.3, and also by studying the variation of

network degree distribution with the correlation threshold in Sec. 5.4, we have eluci-

dated the topological transformation of the phase space during the emergence of order

from chaos in turbulent combustors. We observed that cycles are initially associated

with different UPOs of varying stability during the state of combustion noise. However,

with increasing control parameter, the cycles of the trajectory form clusters around more

stable UPOs during the state of intermittency and finally “condense” to the most stable

periodic orbit at the onset of thermoacoustic instability.

With this observation in mind, we now draw an analogy between the topological

transformation of the phase space structure during the transition from chaos to order in

a turbulent system and the well-known Bose-Einstein condensation observed for Bosons

(Bose (1924); Einstein (1924)). In order to do so, we define the phase space cycles as

particles and the periodic orbits as energy levels such that a more stable periodic orbit

will have lower energy. The immediate concern then is, with what measure do we define

the energy of these UPOs? As noted earlier, higher the stability of a UPO, higher is the

number of cycles associated with that UPO, and higher is the degree of the correspond-

ing nodes in the cycle network. Thus, a convenient measure to quantify the energy of

phase space orbits is the degree of the nodes corresponding to the cycles associated

with these orbits. Note that the total number of nodes (N) varies from one network

to another due to the varying time series structure obtained during different dynamical
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states. Thus, in order to compare across various dynamical states, we normalize the

degree of nodes in a network with the maximum possible degree in that network, i.e.

kmax = N− 1. We then treat nodes (cycles) as particles and define energy levels such

that energy ε = 1− k/kmax, where k is the degree of a node in the network.

Fig. 5.7: Distribution of nodes (particles) in energy levels whose energy is defined as
ε = 1− k/kmax (where kmax = N−1 and N is the number of nodes in the net-
work), during different dynamical states of operation in a bluff-body stabilized
turbulent combustor (ρth = 0.92). The dynamical states shown are combustion
noise (blue), intermittency (brown), weakly correlated (green) and strongly
correlated (red) limit cycle oscillations (LCO) during thermoacoustic instabil-
ity.

We derive the cycle networks for each state during the transition from chaos to or-

der in the bluff-body stabilized turbulent combustor, with ρth = 0.92 (as justified in Sec.

5.2). Figure 5.7 shows the typical distribution of particles in different energy levels dur-

ing the different dynamical states observed in a turbulent combustor. We observe that

during the occurrence of combustion noise, the particles are distributed across a large

number of high energy levels, which shows the presence of numerous highly unstable

periodic orbits in the phase space. Further, during the state of intermittency, the parti-

cles move to slightly lower energy levels and are distributed across a smaller range of

such energy levels. Since the range of energy levels across which particles are spread

reduces, we infer that with further increase in ū, the number of UPOs in the phase space

decreases. Moreover, since the particles occupy lower energy levels, we understand that
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the stability of the UPOs in the phase space increases during the state of intermittency.

Further, during the occurrence of weakly correlated LCO (as shown in Fig. 5.2(c)), we

find that a significant fraction of particles occupy very low energy levels over a very

small range, which characterizes the condensation process. Finally, during the occur-

rence of strongly correlated LCO (as shown in Fig. 5.2(d)), a large fraction of particles

condense to the lowest possible energy level.

Such comparison between the transformation of network topology and particle dis-

tribution in energy levels through Fig. 5.7 immediately establishes a visual understand-

ing about the change in the distribution of phase space cycles around the periodic orbits

in the phase space, as the system dynamics transitions to order from chaos. Due to the

definition of the energy of periodic orbits being ε = 1− k/kmax, we are able to simulta-

neously capture the variation in the number of periodic orbits in the phase space, as well

as compare their stability during various dynamical states observed in the combustor.

To further examine the distribution of particles in the energy levels during the various

dynamical states, we plot (in Fig. 5.8) the variation of the fraction of particles that oc-

cupy very low energy levels (i.e., ground state) with variation of the control parameter ū,

for both the bluff-body and the swirl stabilized turbulent combustors. The energy-band

of the ground state is assumed to be ε ≤ ε0, where the order of magnitude of ε0 ≈ 10−2

or lower. (Here, we choose the lowest possible value of ε0, such that condensation to

the lowest energy state is observed in the system.)

When either of the turbulent combustors operate in the state of combustion noise

or intermittency, we observe from Fig. 5.8 that the percentage of particles in the en-

ergy levels below ε0 is negligible (≈ 0). All the particles are distributed in energy

levels higher than ε0. Further, for our experiments in the bluff-body stabilized com-

bustor (Fig. 5.8(a)), we observe that the percentage of particles in energy levels having

ε ≤ ε0 becomes significant at the onset of thermoacoustic instability (at ū = 14.45 m/s)

demarcating the onset of ‘condensation’. We find that this percentage saturates at a

maximum value of 68% for ū ≥ 14.45 m/s indicating that not all phase space cycles

condense to the same phase space orbit and may be attracted by closely located but

less dominant periodic orbits (or sub-periods), which further implies the possibility of

76



Fig. 5.8: The variation in the percentage of particles (nodes) which occupy energy lev-
els less than (black) and more than (red) ε0 with variation in ū (and corre-
sponding Re) for (a) bluff-body and (b) swirl stabilized combustors, where
ε0 = 0.003 in both cases. The regions (I), (II) and (III) correspond to the
different dynamical states observed in these combustors namely combustion
noise, intermittency and thermoacoustic instability respectively.

occurrence of pseudo-periodic dynamics in the system. Further, in our experiments

in the swirl combustor (Fig. 5.8(b)), this percentage reaches a maximum of 100% at

the onset of thermoacoustic instability (at ū = 10.6 m/s) characterizing the occurrence

of constant-amplitude LCO in the dynamics. Thus, we identify the onset of thermoa-

coustic instability in a turbulent combustor as the point when a significant fraction of

particles occupy energy levels equal to or below ε0. Also, we differentiate the occur-

rence of pseudo-periodic limit cycle oscillations as a state of partial condensation, i.e.,

the percentage of particles occupying the ground state is significant but < 100%, while

constant-amplitude limit cycle oscillations as a state of complete condensation.

Thus, the transition of the combustor dynamics from chaos (combustion noise) to

order (thermoacoustic instability) can be viewed as a condensation phenomenon similar

to that observed in a system of Bosons. We claim that such analogy between the transi-

tion from chaos to order and condensation transition can be used to identify the onset of

oscillatory instabilities in turbulent systems as shown here for a thermoacoustic system.

Finally, such an analogy also provides a clear understanding about the topological trans-

formation in the structure of the phase space during the emergence of order from chaos.

It may be possible to infer the implications of such transition in the physical flow field

77



of the turbulent systems by investigating the spatio-temporal dynamics of these sys-

tems. Further, we believe that such analogy with the condensation phenomenon can

potentially provide quantitative measures to study the transition from chaos to order in

turbulent systems such as turbulent thermoacoustic, aeroelastic and aero-acoustic sys-

tems.

5.6 Summary

In this chapter, we consider the problem of transition from chaotic dynamics to ordered

oscillatory dynamics observed in turbulent thermoacoustic systems. We consider the

examples of bluff-body and swirl stabilized turbulent combustors, in which we observe

transition from combustion noise (chaos) to thermoacoustic instability (order) via the

route of intermittency. We construct unweighted cycle networks from the time series

of acoustic pressure oscillations during various dynamical states observed in these ther-

moacoustic systems. We show that transition from combustion noise to thermoacoustic

instability in a combustor can be viewed as the transformation of a random network to

a fully connected network. We also study the 2D degree distribution of cycle networks

during various dynamical states of the combustor, obtained by varying the correlation

threshold. The variation in the number of peaks in the degree distribution with the cor-

relation threshold helps reveal the underlying structure of the phase space. We identify

the onset of thermoacoustic instability by studying the variation of peaks using variance

of the normalized derivative (V ND) of the 2D degree distribution.

Further, we use network centrality measures to characterize the transformation in

network topology and relate it to the transformation in the phase space with variation

in the system control parameter (ū). Using average closeness centrality, we are able

to comment on the increasing correlation between cycles of the phase space with ū.

Using average betweenness centrality, we discuss the increasing stability of UPOs in

the phase space with ū and explain the occurrence of pseudo-periodicity in the acoustic

pressure dynamics during thermoacoustic instability. Finally using average clustering

coefficient, we illustrate that the number of dominant UPOs in the phase space decreases
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with ū. Also, these average centrality measures are used as a means to identify the onset

of thermoacoustic instability.

Finally, we draw a parallel between condensation of Bosons into the lowest energy

level and condensation of cycles into the most stable periodic orbit in the phase space.

Using this formulation, we provide a measure of stability of the UPOs in the phase

space, in terms of the degree of nodes corresponding to the cycles associated with that

UPO. Thus, an immediate helpfulness of the complex network framework and statistical

physics analogy is established.
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CHAPTER 6

Conclusions and Scope of the study

6.1 Conclusions

The aim of this thesis is to investigate and understand the occurrence of intermittency

state prior to the onset of thermoacoustic instability in laminar and turbulent combus-

tors. Intermittency observed prior to the onset of thermoacoustic instability is charac-

terized by the occurrence of bursts of high amplitude periodic oscillations amidst low

amplitude aperiodic fluctuations. It is desirable to analyse as well as understand the

phenomena leading to such intermittent dynamics. In Chapter 2, we describe the exper-

imental set-ups referred to in this thesis.

First, we develop a physical intuition of how intermittency occurs in the acoustic

pressure dynamics of laminar and turbulent thermoacoustic system. In Chapter 3, we

assert that the bursting behaviour obtained during the occurrence of intermittency is

predominantly caused by either turbulence or multiple timescales (slow-fast system) or

their combined presence, depending on the features of the system. To prove our conjec-

ture, we perform experiments in a horizontal Rijke tube and also construct a theoretical

model for the same. Slow-fast dynamics is investigated by externally introducing oscil-

lations in the control parameter (i.e. heater power) with a frequency which is orders of

magnitude lesser than the frequency of acoustic fluctuations.

We observe that turbulence-induced bursting has no clear demarcation of transition

from periodic to aperiodic oscillations and the amplitude envelope of the pressure oscil-

lations are very noisy. Bursting behaviour caused by slow-fast dynamics, on the other

hand, has distinct transitions from high amplitude periodic to low amplitude aperiodic

fluctuations. The induced bursts display an abrupt transition between the rest and the

active states. We show, using our model, that the growth and decay patterns of such



bursts exhibit asymmetry due to delayed-bifurcation caused by slow oscillations of the

control parameter about the Hopf bifurcation point. We also present a novel analysis

of the effect of amplitude, frequency and the mean position of the control parameter

oscillations on the growth and decay pattern of the bursting dynamics.

We observe modulations in the amplitude of the high amplitude periodic bursts dur-

ing intermittency obtained from practical low-turbulence combustors. We show that

this peculiar feature of bursts, referred to as amplitude-modulated bursting, arises as a

result of interaction and interdependence between the slow and fast timescales. To do

so we introduce a coupling between the frequency of the slow subsystem and amplitude

envelope of the fast subsystem. Finally, we apply the model to study the intermittency

route to thermoacoustic instability for lab-scale turbulent and spray combustors having

high and low levels of turbulence respectively. We show that for most thermoacoustic

systems, the cause of intermittent bursts can be explained by the two broad concepts,

turbulence-induced bursting and bursting induced by slow-fast dynamics; however, the

level of turbulence decides the dominance of either mechanism.

After having developed the intuition of the physical phenomena causing intermittent

dynamics in laminar and turbulent combustors, we move on to analysing the transition

from chaos to order via the route of intermittency in thermoacoustic systems. In Chap-

ter 5, employing unweighted cycle networks derived from the time series of acoustic

pressure oscillations, we differentiate between the various dynamical states observed in

these thermoacoustic systems. Using network centrality measures derived from these

cycle networks, we provide a novel method to characterize the number and the stability

of dynamically invariant periodic orbits in the phase space. We show that the average

closeness centrality (〈Cclose〉) is a direct measure of the average correlation between the

phase space cycles, and the average betweenness centrality (〈CBC〉) quantifies the sta-

bility, while the average clustering coefficient (〈CC〉) quantifies the number of periodic

orbits in the phase space. We thus propose the use of network centrality measures de-

rived from cycle networks as a novel means to study the topology of the phase space

for distinct dynamical states in diverse applications.

Further, using V ND measure we characterize the variation of the number of peaks
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in the 2D degree distribution derived from cycle networks. We then study the variation

of V ND and averaged network centrality measures with the system control parameter to

elucidate the topological transformation of the phase space with the transition of system

dynamics. We show that the phase space topology corresponding to the state of com-

bustion noise (chaos) consists of multiple highly unstable periodic orbits. While during

the state of intermittency (transitional state), the phase space consists of periodic orbits

of moderate stability in co-existence with other highly unstable periodic orbits. Further,

the pseudo-periodic (weakly correlated) oscillatory dynamics consists of a stable peri-

odic orbit with sub-periods that morph into a highly stable limit cycle oscillator at the

onset of the strongly correlated limit cycle oscillations (order).

Also, using network centrality measures, we identify the onset of thermoacoustic

instability in turbulent combustors as the point after which average closeness centrality

saturates to a maximum value, average betweenness centrality tends to zero and average

clustering coefficient tends to unity. We thus suggest that the saturation of these network

centrality measures can be potentially used to identify the onset of periodic dynamics

in turbulent systems. Moreover, centrality measures derived from cycle networks can

serve as reliable early warning indicators since they show significant variations much

prior to the onset of thermoacoustic instability in turbulent combustors.

Finally, we conjecture that the transition from chaos to order in turbulent systems

may be viewed as a condensation phenomenon in the phase space. Here, we define the

phase space cycles as particles and the periodic orbits in the phase space as analogous

to energy levels. Using such an analogy, we present the distribution of particles in the

energy levels, and are able to simultaneously visualize the decrease in the number of

periodic orbits as well as the increase in their stability with variation in the control

parameter of the system. We conjecture that such an analogy can promote the use of

tools from statistical physics to characterize the topological transformation in the phase

space during the emergence of order from chaos. Further, we identify the onset of

thermoacoustic instability as the onset of condensation transition where almost all the

phase space cycles condense to the most stable periodic orbit in the phase space.
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6.2 Scope for future work

We have opened many new avenues for research on the emergence of order from chaos

in laminar and turbulent thermoacoustic systems. We believe future work in this direc-

tion can lead to important applications in the understanding and mitigation of thermoa-

coustic instability in distinct combustors.

The phenomenological model developed in Chapter 3 can prove to be useful in de-

veloping system-specific models for laminar and low-turbulence systems. Using the

model, we also developed an understanding of the similarities and differences between

features of intermittency dynamics observed prior to the onset of thermoacoustic in-

stability in laminar and turbulent combustors. Thus, future work can exploit this un-

derstanding when analysing either laminar or turbulent systems and develop models

accordingly. For example, for low-turbulence systems, the new models must avoid us-

ing high-intensity white noise but may use coupling between different variables of the

system along with multiplicative or colored noise for modelling the dynamics in the

system. Another possible direction for future work is to investigate the variation in the

delay time (δ ) of the bifurcation with the maximum of root mean squared amplitude of

the system dynamics. Such variation could yield certain scaling measures or prediction

schemes to identify and differentiate the onset of thermoacoustic instability.

We introduced the idea that the interplay between slow and fast timescales leads to

the occurrence of intermittency prior to the onset of thermoacoustic instability in low-

turbulence combustors. This idea can be probed further and can have implications on

active control design for mitigating thermoacoustic system. Active control strategies

can be developed by identifying the slow and fast subsystems of any particular ther-

moacoustic system and disrupting their interaction at specific locations in the combus-

tor as soon as amplitude modulated bursting is evident in the acoustic pressure signal.

Moreover, since we understand that slow oscillations of a control parameter can delay

the bifurcation and occurrence of bursting behavior, one may introduce slow parameter

oscillations probably as a means of delaying the onset of combustion instability.

In Chapter 5, we have cast the emergence of order from chaos as a phase transition
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similar to Bose-Einstein condensation. While we have investigated the transition from

chaos to order using time series analysis, future work can study the transformations in

the spatio-temporal dynamics of a turbulent combustor in analogy with condensation

phenomenon. This approach may help infer the dynamics in the physical flow field

during the various dynamical states of the combustor. It may be desirable to develop

a phenomenological model to demonstrate that the emergence of order from chaos is

indeed a phase transition such as the condensation phenomenon. Further efforts in this

direction can probably help quantify the emergence of order from chaos and predict

the occurrence of oscillatory instabilities in various turbulent systems such as turbulent

aeroelastic, aero-acoustic and thermoacoustic systems.

Moreover, the analogy between cycle networks and a system of Bosons, as pro-

posed here, is a new perspective to study condensation in complex networks. We note

that, we obtain condensation of nodes in the network, while all previous works have

discussed condensation of edges in a network. Thus, our work proposes a new kind of

condensation in complex networks in analogy to emergence of order from chaos. Such

an analogy may be of interest in complex network theory as well, and may be worth

pursuing through a model.

Thus, we have opened up a new perspective to study the transition from chaos to

order, as well as developed an understanding of the physical phenomena involved during

such a transition. We believe that the scope of this study is vast and diverse.
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APPENDIX A

Appendix for Chapter 3

A.1 Detection of the onset of the active state of burst in

the parameter space

In Sec. 3.4.3, we discussed the delayed bifurcation effect caused by the slow passage of

control parameter via Hopf bifurcation. As noted earlier, the choice of the onset point

(X) corresponding to the onset of periodic oscillations from the steady state is non-

trivial. Here, we describe the manner in which we detect the point X with the help of

an example. Consider control parameter (c1) oscillations about a mean value of A = 0.8

with an amplitude B = 0.4 and frequency f = 0.17 Hz. Figure A.1(a) shows the pres-

sure oscillations while Fig. A.1(b) shows the amplitude envelope of the corresponding

pressure oscillations plotted on a log scale as a function of the control parameter os-

cillations. Despite minute oscillations, we see a sudden change in the slope of the log

of the envelope of pressure fluctuations in Fig. A.1(b). Such sudden change of the

pressure amplitude in the log-scale delineates the starting of exponential growth of am-

plitude, which thus demarcates the point of the onset of a burst of periodic oscillations

in the signal and we choose this point as X in our analysis. Thus, the plot of pressure

amplitude on a log-scale helps in identifying the onset of burst in the signal, which is

otherwise not evident from the plot of pressure oscillations in Fig. A.1(a).



Fig. A.1: (a) The variation of acoustic pressure oscillations (p′) and (b) log of the
amplitude envelope of these pressure oscillations (p′e) as a function of the
time-varying control parameter (c1) during the growth of amplitude of the
burst. The values of parameters are: A = 0.8, B = 0.4, f = 0.17 Hz and
σa = 0.0001 while σm = 0.
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APPENDIX B

Appendix for Chapter 5

B.1 Variation of centrality measures as a function of ū

for different correlation thresholds

Figures B.1 and B.2 show the variation of average network centrality measures with ū

for three different correlation thresholds (ρth = 0.9, 0.92, and 0.94) for the bluff-body

and the swirl stabilized turbulent combustors, respectively. We observe that for certain

ū in the dynamical regimes corresponding to combustion noise (I) and intermittency

(II), the values of 〈Cclose〉 and 〈CC〉 decrease while the value of 〈CBC〉 increases if we

increase ρth.

Fig. B.1: The variation in the average (a) closeness centrality (〈Cclose〉), (b) between-
ness centrality (〈CBC) and (c) clustering coefficient (〈CC〉) with the variation
in the control parameter (ū) of a bluff-body stabilized turbulent combustor for
the derived cycle networks with ρth = 0.9, 0.92, and 0.94. The regions (I),
(II) and (III) correspond to the different dynamical states observed that are
combustion noise, intermittency and thermoacoustic instability, respectively
(Pawar et al. (2017)).

However, for distinct values of ρth, these centrality measures saturate to the same

value simultaneously (at the same value of ū). Thus, the saturation point which we



identify as the point of onset of thermoacoustic instability in Sec. 5.3 remains largely

unaffected by the change in the value of ρth used to construct the cycle networks.

Fig. B.2: The variation in the average (a) closeness centrality (〈Cclose〉), (b) between-
ness centrality (〈CBC〉) and (c) clustering coefficient (〈CC〉) with the varia-
tion in the control parameter (ū) of a swirl-stabilized turbulent combustor for
the derived cycle networks with ρth = 0.9, 0.92, and 0.94. The regions (I),
(II) and (III) correspond to the different dynamical states observed that are
combustion noise, intermittency and thermoacoustic instability, respectively
(Pawar et al. (2017)).

B.2 Effect of the range of correlation threshold on the

2D degree distribution

In Sec. 5.4, we introduced the use V ND to quantify the variation in the number and

stability of periodic orbits in the phase space. We note that the range of correlation

threshold chosen for the calculation of V ND in Sec. 5.4 was [0.55,0.99]. Here, we

examine the effect of different choices of this range on the calculation of V ND in Fig.

B.3. Firstly, we note that the calculation of V ND measure is not very sensitive to the

upper bound, as evident from comparing the blue and crimson graph lines in Fig. B.3(a,

b). Further, the identification of the point of onset of thermoacoustic instability does not

change when we expand the range of ρth to [0.2,0.992].

If we choose a range of ρth where the lower bound being < 0.5, we will also obtain

peaks in the 2D degree distribution due to very weakly correlated cycles. As mentioned

earlier, correlation between the time series of cycles is inversely proportional to distance
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Fig. B.3: The variation of V ND with the control parameter for (a) bluff body stabilized
and (b) swirl stabilized turbulent combustor for different choices of the range
of ρth. Note that the crimson and the blue graphs overlap.

between these cycles in the phase space. Then, a very low ρth essentially allows even

those cycles to be linked in the cycle network which have a large phase space distance

and may be associated with distant UPOs, which must be clearly avoided. Note that

during combustion noise and intermittency such weakly correlated cycles exist in the

phase space and will alter the calculation of V ND. Thus we observe a remarkable

difference in the calculation of V ND in regions I and II of Fig. B.3(a,b). Therefore, the

lower bound of the range of correlation threshold must be > 0.5.
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