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ABSTRACT

KEYWORDS: Combustion; Premixed Flames; Turbulence; Statistics; Dynamics;

Harmonic Flame Response; Intermittency; Fractals; Multifractals;

Thermoacoustic Instability; Passive Control; Critical Region

In the present thesis, we discuss the statistics and dynamics of premixed flames in

turbulent flows. We begin by experimentally studying the dynamics of a premixed

CH4-air flame evolving in a turbulent background. We discern nonlinear interference

effects from convecting disturbances on the flame surface and quantify their impact

on the large-scale harmonic flame response. We also determine the local and global

heat release rate response and explain its dependence on the local structure of the

flame response. We measure the scale-dependent statistics of the fluctuating flame

surface. We show that the large-scale statistics are significantly different from the

small-scale statistics. In particular, we estimate the effect of small-scale turbulence on

the statistics of flame fluctuations. We observe that power-spectrum and the moments

of the increments of flame fluctuations depict well-defined power-laws, implying self-

similarity in the fluctuations over an intermediate range of scales not affected by

viscosity and the restorative effect of the flame propagating normal to itself, termed

as kinematic restoration. Further, we observe that scaling exponents of the structure-

function are anomalous as they do not grow linearly with the order of the structure-

functions, indicating the presence of small-scale intermittency in the power-law range.

The presence of such small-scale intermittency has important implications in the
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modeling of turbulent premixed flames.

We then analytically determine the effect of turbulence on the flame surface. For

turbulent premixed flames, the fractal dimension is argued to be D = 7/3 for flamelet

combustion and D = 8/3 for thickened flames (Da ∼ O(1)) based on heuristic

scaling arguments. However, such scaling arguments do not consider the effect of

the intermittent nature of turbulent kinetic energy dissipation on the flame surface.

We account for the effects of intermittent dissipation on the fractal dimension of

thickened flames. Intermittent dissipation leads to variability in the inner cut-off,

which then affects the scalar flux and total interface area. We account for these

variabilities through two approaches: Coarse-grained approach based on the moments

of the dissipation and fine-scale analysis by adopting the multifractal formalism. We

derive two corrections to the upper-limit of fractal dimension – D = 8/3+3/4(1−D1/4)

and D = 8/3 + 2/3(3−D1/3). We further show that the second correction leads to an

explicit dependence of the fractal dimension (D) on the scaling exponent (ζp) of the

velocity structure function through the relation: D = 7/3 + ζp. Thus, we explicitly

quantify the effect of the intermittent nature of turbulence upon low Da premixed

combustion.

In the final part of this thesis, we develop a novel strategy based on the statistics

of turbulent flows in practical combustors for the passive control of thermoacoustic

instability. When the equivalence ratio is varied, there is a transition from combustion

noise to thermoacoustic instability via intermittency in the combustor. We determine the

spatial distribution of the Hurst exponent measured from the turbulent velocity field. We

vii



show that the Hurst exponent is able to determine the so-called “critical region” of the

flow field, perturbing which leads to optimal control of thermoacoustic oscillations.
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ūy = 4.87 m/s and u′/ūy = 8.9%. . . . . . . . . . . . . . . . . . . . 92

3.6 (a) The bluff-body stabilized turbulent combustor used for studying
passive control of thermoacoustic instability in Chapter 7. (b)
Schematic of the combustor cross-section indicating the PIV and CH∗

field of view. Secondary air injection ports (P1-P5) are present on either
side of the centerline for the passive control study. PT indicates the
location of the pressure transducer. All dimensions are in mm. . . . . 95

xvii



4.1 Ensemble-averaged flame fluctuations 〈ξ′〉 of the left flame edge plotted
at different phases of the forcing cycle indicated by the legend. The
experimental condition are: (a) f0 = 200 Hz, ūy = 4.83 m/s, u′/ūy =
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Hz; 〈u′/ūy〉 ∼ 8.5%; (b, e) ff = 750 Hz; 〈u′/ūy〉 ∼ 9.1%; and (c, f)
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ff = 200 Hz. The markers are consistent with those used in Fig. 4.3. . 116

4.10 Spatially integrated heat release response measured from the harmonic
flame response as a function of the (a) turbulence level, u′/ūy, for
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GLOSSARY

The following are some of the commonly used terms in the thesis:

Fractal
dimension

Typically used to characterize geometrically complex objects. It is
defined as the ratio of change of statistical measure such as length,
area, volume, etc., of the complex object with a change in the scale of
measurement.

Harmonic flame
response

Refers to the response of flame when subjected to harmonic
fluctuations. The response is typically measured by determining the
amplitude and phase of the flame fluctuations measured at the forcing
frequency using Fourier transform.

Intermittency Refers to the property of processes and variables to depict extreme
value fluctuations with a higher probability than observed for random
Gaussian processes. The probability density function of these
fluctuations typically posses wide and significant tails.

Kinematic
restoration

The kinematic process through which fluctuations on flame surface are
smoothed on account of the flame propagation along its local normal.

Lean
combustion

Combustion of fuel in the presence of air/oxidizer in excess of the
amount or air/oxidizer required for a stoichiometric reaction to take
place.

Premixed
combustion

Combustion of a mixture of fuel and air/oxidizer after they have been
thoroughly mixed.

Thermoacoustic
instability

A phenomenon arising in confined combustion environment where
a feedback between pressure fluctuations and heat release rate
fluctuations arising from laminar or turbulent flames, causing a growth
in acoustic energy and leading to a state of large amplitude pressure
oscillations. Thermoacoustic instability leads to catastrophic damage
in gas turbines.
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BVK Bénard-von Kármán

CN Combustion Noise

DNS Direct Numerical Simulation

HRR Heat Release Rate

INT Thermoacoustic Intermittency

K41 Statistical theory of turbulence by Kolmogorov (1941b,a)

KOC Kolmogorov-Oboukhov-Corrsin phenomenology for scalar turbulence

LCO Limit Cycle Oscillations

LES Large Eddy Simulation

LPG Liquefied Petroleum Gas

LPP Lean Premixed Prevaporized

NOx Oxides of NO and NO2

ORZ Outer Reaction Zone

PDF Probability Density Function

PIV Particle Image Velocimetry

PM Particulate Matter

SL Shear Layer
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NOTATION

Upper-case Latin alphabets

A, A0, AT Flame area
B Amplitude of oscillations of the flame holder
C Scalar field
Cs Universal constant for scalar spectrum
Ck Kolmogorov’s constant
Da Damköhler number
Dq Generalized dimension of order q
E Power spectral density
F Arbitrary function, Flatness factor
G Scalar level-set function
H Hurst exponent
Ka Karlovitz number
L Mean flow length scale, m
Le Lewis number
L̄f Mean flame length, m
Pe Peclet number
Qij Second-order velocity correlation tensor, m2s−2

R Two-point correlation
Re Reynolds number based on the indicated scale
RI Rayleigh index
Sc Schmidt number
Sij Strain-rate tensor, s−1

Sp Structure-function of order p
St Strouhal number
T Time duration for statistical averaging, s; Time period, T = 1/f
Ū Nominal flow velocity, ms−1

V Control volume
W̄f Half-width of mean flame, m
X, Y Constants

Lower-case Latin alphabets

c0 Speed of sound, ms−1

cp, cv Heat capacity
d Diameter of flame holder, m
di Inlet diameter, m
f, fa, fh, fs Frequency, Hz
ff Forcing frequency, Hz
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f, g Longitudinal and lateral velocity correlation
k Wavenumber, m−1

kc Phase speed parameter
` Integral length scale, m
`g Gibson length scale, m
ṁ Mass flow rate, mass burning rate of fuel, kg s−1

n Local flame normal
p Fluid or acoustic pressure, Pa
q̇ Heat release rate
r Scale separation, m
sc Flame consumption speed, ms−1

sL Laminar flame speed, ms−1

u′ Turbulent root mean square velocity, m−1

uη Characteristic velocity of Kolmogorov size eddy, ms−1

ūy Mean flow velocity, ms−1

u Velocity vector, ms−1

x, y, z Rectangular Coordinate system, m

Greek

α Power spectrum scaling exponent, Multifractal singularity exponent
βp, β′p Empirical constant for pth order structure-function
γ Ration of specific heat capacity
Γ Spectrum function of flame fluctuations
δF Laminar flame thickness, m
ε Rate of turbulent kinetic energy dissipation per unit mass, m2 s−3

ζp Scaling exponent of pth order structure-function
η Kolmogorov length scale, m
ηb Batchelor length scale, m
ηc Corrsin length scale, m
ηM Markstein length, m
θ V-Flame half-angle, deg
κ Flame curvature
λ Thermal conductivity
λc Wavelength of coherent disturbances, m
λint Wavelength of interference of disturbances, m
µ Dynamic viscosity, Kg(ms)−1

ν Kinematic viscosity, m2s−1

ξ Instantaneous flame fluctuations
ρ Density, kg m−3

σξ Standard deviation of flame fluctuations
τc Turn-over time scale of Oboukhov-Corrsin scale eddy, s
τg Turn-over time scale of Gibson scale eddy, s
τη Turn-over time scale of Kolmogorov sized eddy, s
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τij Shear stress tensor, Kg m−1s−2

φ Equivalence ratio
χ Rate of scalar dissipation
ω Vorticity, Angular frequency, s−1

Script

D Scalar diffusion coefficient
D Fractal dimension of turbulent flames
D Fractal dimension of intersection of set S1 and S2
H Heaviside function
= Imaginary part of a complex quantity
Jα Set containing scaling exponents α
N Gaussian process
O() Of the order
< Real part of a complex quantity, set of real numbers
R, Rd Real number space, Euclidean space of d−dimensions
S1,2 Sets containing fractal objects

Subscripts

a Associated with acoustics
F Associated with laminar flame
η Associated with Kolmogororov scale
ij Index notation for tensors
ξ Related to flame fluctuations
L,R Related to left or right edge of the flame
r Related to separation r
R Associated with reaction zone of a flame
t Tangential component
τ Related to time delay τ
u Related to velocity field u
x, y, z Along rectangular coordinates

Other symbols

(·)rms Root mean square
(·)′ Fluctuating above mean

xxvi



(̄·) Mean
(̂·) Fourier transformed quantity
〈·〉 Ensemble or time average

Operators

δ Differential increment in a quantity
∇ Differential operator
|| · || Norm
∠(·) Phase of the quantity
⊂ Subset
∼ Relates quantities to their leading order
∀ For all
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CHAPTER 1

INTRODUCTION

1.1 HISTORICAL OVERVIEW

1.1.1 Mankind and fire

Humans have always been fascinated by fire and flames. One of mankind’s biggest

achievements has been the ability to harness the power of fire and flames. Indeed, it is

this ability to control fire for a better part of the last 300, 000 years that have fulfilled our

energy requirements, kept us safe from natural elements, and have led to unremitting

evolutionary and technological progress (Harari, 2014). The power of combustion led us

through the bronze and metal ages where metallurgy became the driver (Tylecote, 1977;

Choi, 2012). Metallurgy ushered in the study and development of metals and alloys and

served as one of the foundations of modern society (Brinley, 1993). It was, however,

only since the beginning of the industrial revolution in the late sixteenth century did

we truly realise the potential of energetic fuels and developed means of converting their

latent energy into efficient work.

The advent of the industrial revolution started with the widespread use of coal

combustion in smelters and thermal power plants. The development of steam engines

by James Watts in 1776 revolutionized transportation. Typically, coal combustion was

used to convert water into steam, which then was used as the prime mover for generating

power in transport ships, trains, and power plants. By the late 1800s, steam engines

were complemented by the development of internal combustion devices operating on



a variety of thermodynamic principles such as Rankine, Brayton, Otto, Diesel, etc.

While these reciprocating engines have since then remained widespread in commercial

transport vehicles, it was soon realized that they provided a very low power-to-weight

ratio. This was especially problematic for operations that required a high power-to-

weight ratio, such as naval propulsion and aviation. These drawbacks motivated the

development of gas turbine engines operating on an open Brayton cycle (Turns, 1996).

The first patent of the gas turbine was granted to John Barber, a British inventor, in

1791 (Cook, 2003). Although the gas turbine was technically and conceptually sound,

it was not physically viable because of the limitations in the metallurgical quality and

fabrication techniques of the time. It was only a century later that the first practically

viable gas turbine was independently developed by Frank Whittle in England and Hans

von Ohain in Germany around 1930s. In 1939, the first gas turbine power plant with a

capacity of 4 MW was established in Neuchâtel, Switzerland, and remarkably remained

operational for 63 years till 2002 (ASME, 2007). Since then, gas turbines have become

integral to the naval and aviation propulsion and power generation industry.

Today, the aviation industry is a crucial cog of the global transportation network and

has a global market share of US$170 billion1. Further, global aviation is one of the

fastest-growing economic sectors, boasting a compound annual growth rate of greater

than 7.6% and is tipped to grow to US$303 billion by 2026, despite recent setbacks due

to COVID-19 pandemic1. The multi-billion industry relies solely on high-performing

gas turbine engines. In the energy sector, gas turbine power plants are responsible for

23% of all electrical energy produced throughout the world and generating revenue of

1Source: https://www.mordorintelligence.com/industry-reports/aviation-market
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around US$20 billion (IEA, 2021). Gas turbines have become a key technology on

which the entire world depends directly or indirectly.

1.1.2 Environmental concerns and global warming

The drive towards modernization has come at a price to humanity. The rush towards

ever-increasing mechanization, particularly since the industrial revolution, has led to a

gradual increase in pollution levels across the globe. High levels of particulates, oxides

of sulphur, nitrogen, and carbon have led to several health emergencies. The great

smog of London remains one such instance when unchecked pollution from industries

exacerbated by cold weather and anticyclonic conditions led to around 10, 000−12, 000

deaths by modern estimates (Stone, 2002). Estimates show that around 8−10.2 million

excess deaths every year are caused by air pollution, with around 62% of them in China

and India (Vohra et al., 2021; Burnett et al., 2018). The picture is all too familiar given

that Indian cities regularly feature top of the list of cities with the worst air quality index

(WHO, 2018).

The world has seen a persistent and gradual increase in the concentration of CO2 levels

in the atmosphere since the industrial revolution (inset in figure 1.1). Today, the global

CO2 concentration levels stand at 416 ppm (NASA, 2021), and have grown by 48%

above the pre-industrial levels. The increase over the last 300 years is much larger than

what happened naturally over 20, 000 years since the last glacial maximum (figure 1.1).

CO2 is a potent greenhouse gas, and the persistent increase in its concentration has led to

an increase in global temperatures. The positive or negative departure from the average
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Figure 1.1: (a) Historic trend of CO2 levels (NASA, 2021) and the (b) global
temperature anomaly measured by EPICA from Antarctica Vostok ice core
(Augustin et al., 2004). Reproduced with permission from (a) NASA and
(b) Springer Nature.

temperature over a period of time is referred to as temperature anomaly. The global

temperature anomaly measured from the Antarctica Vostok ice core (figure 1.1b) shows

a correlated behavior with the historical variation in CO2 levels. There has been a sharp

increase in global temperatures, driven by anthropogenic emission of greenhouse gases,

similar to levels observed during the last glacial maximum. The correlation is indicative

of the feedback loop between the global temperature and the atmospheric levels of

CO2 and other greenhouse gases (Al-Ghussain, 2019; Hansen et al., 2006). Other

measures such as the global sea surface temperature and the land-ocean temperature also

corroborate the striking picture of significantly larger temperature anomalies (Hansen

et al., 2006). The increase is clearly evident when we compare the global temperature
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Figure 1.2: Pronounced global temperature anomaly observed in 2020 in comparison to
that during industrial age in 1884 (Courtesy: NASA, 2021).

anomaly during the industrial age in 1884 with the contemporary levels (figure 1.2).

Anthropogenic emission-driven global warming and climate change are perhaps the

biggest challenges that mankind has faced till now. Extreme weathers, loss of polar

ice caps, irreparable loss of flora and fauna in what is coming to be known as the sixth

mass extinction (McKinney and Lockwood, 1999; Wake and Vredenburg, 2008), and

inundation of several island nations due to rising sea levels have become our reality.

There is an alarming urgency with which mankind needs to fight the biggest existential

threat it has ever faced. The recent Paris Agreement was a step in that direction which

196 countries ratified in 2016 in order to keep the rise in global average temperature to

well below 2°C by reducing the emission of greenhouse gases (UNCC, 2016).

1.1.3 The way forward: Alternative and low-emission technologies

While there is a requirement for global cooperation and informed policy-making by

governments of countries the world over, a key solution in this existential fight for

survival is the development of low emission technologies. Global energy review of 2021

suggests that global energy demands are set to increase above pre-COVID pandemic
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Figure 1.3: Sector based share of power output from various sources of electricity
generation over the last four decades. Adapted from (IEA, 2021).

levels (IEA, 2021). The increase in electricity, oil, coal, and gas would be driven by

the contributions from emerging markets such as south-east Asian countries. Along

with the demand for power, the global energy-related CO2, CO and NOx emissions are

expected to be heading towards their second-largest annual increase ever. Similarly, the

market forecasts growth of over 7.6%1 in global aviation. The net CO2 emission from

aviation is around 2.5% of all CO2 emissions (Ritchie, 2020). However, a recent review

suggests that aviation emission such as NOx, CO and aerosols are exacerbating global

warming three times as fast as those associated with CO2 emission from aviation alone

(Lee et al., 2021). Thus, by all estimates, global emissions of greenhouse gases are

bound to increase in the coming decades.

Burgeoning new technologies capable of harnessing renewable energy resources have

been revitalized by the Paris agreement. The dependence on coal as the primary fuel for

power generation has increasingly been disincentivized and disinvested over the years.

1Source: https://www.mordorintelligence.com/industry-reports/aviation-market
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In fact, the share of power generated through coal power plants has fallen below the

combined output of low-carbon and renewable technologies for the first time in history

(figure 1.3). A significant contributor to the fall in demand for power generated from

coal power plants has been the rise of low-carbon gas turbine power plants, which are

responsible for the production of 23% of all electrical energy produced (IEA, 2021).

The share of alternate energy resources such as solar, wind, and nuclear have bucked

the trend and emerged as the sectors with the largest growth (IEA, 2021). In the future,

with greater investment through further policy changes, the share of electricity produced

by these renewable technologies will no doubt increase. At present, however, low-

emission gas turbine power plants remain a crucial cog in our fight towards lowering

global greenhouse gases.

1.2 GAS TURBINES: TURBULENT, LEAN PREMIXED COMBUSTION
TECHNOLOGY

1.2.1 Pollutant Emissions

Gas turbines primarily rely on the combustion of fuels such as methane or natural gas,

ethane, ethylene, propane, and butane (Lieuwen and Yang, 2005). The combustion

of these fuels lead to the emission of carbon monoxide (CO), carbon dioxide (CO2),

oxides of nitrogen (NOx), unburned hydrocarbons (UHC) and particulate matter (PM).

As discussed in the previous sections, CO2 and NOx emissions are direct contributors

to global warming. The level of gas turbine emission of these pollutants is a direct

consequence of their applications. For instance, aircraft gas turbines are constrained

7



by the necessity to maintain combustion at different power levels throughout different

stages of flight. They should also be capable of mid-air re-ignition in the case of a flame

blow-out. Similarly, ground-based gas turbines used in power plants must be capable

of ramping up power based on the demand for energy. These demands constrain the

choice of operating parameters such as air-fuel ratio, pressure, temperature, etc., and

result in increased emission of various pollutants at various stages of operation.

The emission of NOx and PM increases at high-power conditions during aircraft take-off

or power ramp-up in power plants. On the other hand, low power operation leads to an

increased emission of UHC and CO (Gokulakrishnan and Klassen, 2013). Thus, there

is always a trade-off in the operability requirements based on the allowable emission

levels. While, the control and mitigation of emission of CO, CO2, UHCs, PMs and

NOx are important, the present thesis is directly motivated from efforts of reducing

NOx emission levels in gas turbine engines.

Generally, NO and NO2 are referred to as NOx. These NOx compounds are both

primary pollutants in that they directly affect human health and the environment and

also act as secondary pollutants by reacting with other gases to produce other pollutants

(Skalska et al., 2010). NOx emissions are highly toxic, and prolonged exposure is

known to increase the risk of respiratory and cardiovascular diseases (Chaloulakou

et al., 2008) and cause acute lung injury through pneumonitis and fulminant pulmonary

edema (Woodrow, 1997). Further, NOx emissions also promote tropospheric ozone

(O3) production, which is very toxic to human health.

Apart from severe health concerns, NOx emissions also contribute to environmental
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problems such as acid rains, photochemical smog, greenhouse effect, and ozone layer

depletion. Nitrous oxide N2O, produced from NOx emissions, is a potent greenhouse

gas and is capable of absorbing infra-red radiation with 300-times higher intensity than

CO2 and has an atmospheric lifetime of around 120 years (Tian et al., 2020). Further,

N2O leads to the depletion of stratospheric ozone depletion (Prather et al., 2015). NOx

emissions are severely concerning and have led to increasingly stringent regulations on

their emission over the years throughout the world.

1.2.2 NOx generation pathways

There are a number of different pathways through which NOx emissions are produced,

as reviewed in Skalska et al. (2010) and Gokulakrishnan and Klassen (2013). For the

present purposes, we briefly discuss the mechanisms responsible for the generation of

NOx in gas turbine relevant conditions. The formation of NOx is most affected by the

temperature of combustion. NOx emission is enhanced if the temperature of combustion

exceeds 1800 K. The production of NOx at elevated temperatures is known as the

thermal pathway. However, for flames with peak temperatures less than 1800 K and low

residence times, as in gas turbines, this is not the leading pathway for NOx production.

The second is known as the N2O pathway in which reaction is initiated between atomic

oxygen and molecular nitrogen leading to the formation of N2O. The N2O then reacts

with atomic oxygen or hydrogen to produce NOx. The third pathway is known as the

prompt NO pathway, where there is a reaction between hydrocarbon radicals such as

CH and N2 leading to the formation of NCN radicals. The NCN radicals then react

with atomic O and H to form NOx. Finally, the fourth pathway is known as the NNH
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Figure 1.4: (a) NOx and CO emission as a function of the air-to-fuel ratio and
combustion temperature for different levels of premixedness indicated by
PB. (b) Computational result showing the relative contribution of different
NOx producing pathways at different equivalence ratios. (a) Reproduced
with permission from (Maghon et al., 1988) and (b) from (Gokulakrishnan
and Klassen, 2013).

pathway where the radical NNH is formed through the reaction of N2 and H , which

then reacts with atomic O to form NOx.

Figure 1.4(a) shows the NOx and CO emission as a function of the air-to-fuel ratio along

with the temperature of combustion for various degrees of fuel premixedness indicated

by PB. Fuel premixedness indicates the degree of fuel and air mixing before combustion

takes place. We can clearly observe the exponential increase in NOx emission as the

temperature of combustion is increased, and the air-to-fuel ratio is decreased. In figure

1.4(b), we observe the relative contribution of different pathways of NOx production, as

discussed previously, for different equivalence ratios. The equivalence ratio indicates

the air-to-fuel ratio of the combustion relative to the stoichiometric air-to-fuel ratio.

The stoichiometric air-to-fuel ratio implies a balanced chemical reaction between air
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and fuel such that there is no excess air or fuel left after the reaction. We note that NOx

is produced predominantly through the prompt NO route and N2O routes for gas turbine

engine relevant equivalence ratios (Gokulakrishnan and Klassen, 2013).

1.2.3 Emission mitigation strategies

Strategies for limiting and mitigating emissions can broadly be classified into two

classes. The first includes methods which are employed for removing NOx from the

combustion by-products, and the second includes methods capable of reducing the

production of NOx during combustion.

The first of these methods involve the removal of NOx through the use of fuel reburning,

where additional fuel is used to burn the by-products of primary combustion in order

to convert NOx into N2 (Myerson, 1975). Other methods involve the catalytic and non-

catalytic reduction of NOx into N2 using catalytic agent (Pt/Al2O3, V, etc.) or reacting

reagents such as urea or ammonia (Skalska et al., 2010). Yet another method is the

use of ozone in oxidizing NOx into N2O5, which can then be removed as dry deposition

(Skalska et al., 2010). Alternatively, combustion in the presence of pure oxygen or other

nitrogen-free oxidizers can be used for reducing NOx emission. However, combustion

in pure oxygen leads to very high temperatures, which requires additional cooling

mechanisms. If air is used as a coolant, NOx may still be formed. Finally, NOx can also

be sequestered from the combustion products through the use of chemical adsorbents

such as activated carbon or scrubbing in absorbents such as H2O2 and other alkaline

solutions (Skalska et al., 2010).
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The second strategy is to limit the formation of NOx during the process of combustion.

The formation of NOx strongly depends on the temperature of combustion, as shown

in figure 1.4. Thus, a simple strategy is to reduce the temperature through various

means. These include the injection of energy diluting agents such as water, steam,

or exhaust gas recirculation (EGR). However, injecting water and EGR often leads to

reduced efficiency, enhanced CO emission, and local quenching (Mcdonell and Klein,

2013; Amato et al., 2013). Combustion staging is another commonly used method

for reducing the temperature of combustion and NOx emissions. Combustion staging

involves manipulating the amount of air and fuel injected at various locations to prevent

peak temperature in the combustion zone (Davis and Black, 1995; Winkler et al., 2017;

Bothien et al., 2019).

The above-mentioned methods are effective in reducing NOx emissions. However, they

suffer from many drawbacks. Treating combustion by-products rely on catalytic and

adsorption agents, which are often very expensive and have low durability (Skalska

et al., 2010). Other relatively inexpensive methods such as non-catalytic reduction

and scrubbing often require heavy installments, making them unsuitable for aircraft

applications and are only used in land-based gas turbine power plants. Similarly, the

concept of combustion staging requires a sequence of combustion chambers, leading to

an increase in length and weight of the combustor, making them unsuitable for aircraft

applications. One of the most widely used approaches which do not have the above

drawbacks is the use of lean, premixed, and sometimes pre-vaporized combustion.

12



1.2.4 Lean, premixed combustion

In lean, premixed combustion, the fuel is thoroughly mixed with excess air before

combustion (Lefebvre, 1977; Lieuwen and McManus, 2003). Since air is used in excess

during combustion, the equivalence ratio (φ) is less than unity and is referred to as lean

combustion. If the fuel is gaseous, then it is directly mixed with air, and if the fuel is

liquid such as ethanol, Jet-A, heptane, kerosene, etc., then the liquid fuel is first pre-

vaporized before mixing it with air (Gokulakrishnan et al., 2008; Temme et al., 2014).

There are multiple advantages of lean, premixed combustion. First, as the fuel is burned

in excess air (i.e., φ < 1), the temperature of combustion is much lower in comparison

to combustion at stoichiometric (φ = 1) or rich conditions (φ > 1). The lowered

temperature of combustion automatically limits the amount of NOx produced during

the reaction (figure 1.4). Consequently, combustion by-products no longer need to be

treated to reduce emission levels. Second, since excess air is used, fuel is completely

burned, leading to a significant reduction in the emission of UHCs and PMs. Third,

as the fuel is fully premixed, the chances of near stoichiometric conditions inside the

combustion zone are completely eliminated. Finally, fully premixed combustion leads

to a more homogeneous temperature distribution at the combustor outlet, leading to

higher efficiency in turbine operation.

Despite manifest advantages of lean, premixed combustion, no aircraft to date has

utilized fully premixed combustion. Gas turbine combustors used in aviation generally

operate at fuel-rich (φ > 1) conditions and continue to be a major source of NOx

emissions (Freeman et al., 2018). Fully and partially premixed combustion is used
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almost exclusively in land-based gas turbines. The lack of implementation of fully-

premixed combustion in aircraft stems from a number of issues. The first difference is

the use of liquid fuels in aero engines as opposed to the use of gaseous fuels in industrial

gas turbines. The fuel and control system for premixing and pre-vaporizing liquid fuels

scale non-trivially with engine size, leading to difficulty in implementation in aircrafts.

Second, the efficiency of premixed combustion under take-off, cruise, and landing have

been found to be lacking (Ralph et al., 2009; Hassa, 2013).

However, the biggest hurdle in the use of lean, premixed combustion is the issue

of stability of the combustor. Fully premixed flames are difficult to stabilize and

quite often are prone to lift-off at the flame holder and flashbacks upstream of

the combustion chamber along the air-fuel lines. This is only exacerbated by the

greater risk of autoignition of the air-fuel mixture before they reach the combustion

zone (Lieuwen et al., 2008). Further, premixed flames are prone to extinction and

blow-out, threatening complete power outage in the combustor (Shanbhogue et al.,

2009b). Finally, fully-premixed combustors are prone to the problem of combustion or

thermoacoustic instability. Thermoacoustic instability (TAI) refers to the phenomenon

of large amplitude pressure oscillations arising from the non-trivial coupling between

heat release rate fluctuations from the flame and the acoustic pressure fluctuations inside

the combustor. These oscillations severely limit the operability limits of gas turbines,

increase maintenance expenses, enhance the thermal loading on combustor walls and

turbine blades, and in some cases lead to a complete failure of the combustion system

(Lieuwen and McManus, 2003).
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1.2.5 The challenge of lean, premixed turbulent combustion

Thus, lean, premixed turbulent combustion is a topic of immense practical interest and

has led to a large volume of analytical, experimental, and computational studies (see

Peters, 2001; Poinsot and Veynante, 2005; Law, 2010, for review). Despite being a

field of active research interest, the study of lean, premixed turbulent combustion is

replete with many fundamental complications. The problem essentially arises from the

interaction of a large range of scales of turbulent motion with heat and mass transport

processes that underlie the process of combustion. This is compounded by the lack of

isotropy on account of flow dilation due to non-isothermal effects, which promote flame

instabilities (Law, 2010; Chaudhuri et al., 2011). Further, there are significant scatter

in experimental measurements of quantities of practical interest in turbulent premixed

combustions such as turbulent flame speed, flame stretch, etc. These quantities have

been known to depend crucially on the burner configuration (Driscoll, 2008). These

problems have refuted efforts towards the development of a self-consistent and universal

theory of turbulent combustion.

More specifically, the loss of stability of lean, premixed turbulent flames discussed

earlier arise from statistics of quantities that depend on the gradient of turbulent

quantities. For instance, high local strain-rate and curvature are well-known to lead to

local flame extinctions in premixed flames (Chaudhuri et al., 2010; Morales et al., 2019;

Shanbhogue et al., 2009b). Flame strain-rate and curvature depend on the gradient

of flame surface fluctuations and turbulent velocity fluctuations. Thus, the practical

concerns of flame extinction and blow-out are necessarily coupled with the small-scale
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phenomenology of turbulent flows. Thus, the study of small-scale phenomenology of

turbulent premixed flames is of immense practical relevance.

1.2.6 The problem of thermoacoustic instability

The other aspect of stability in turbulent premixed combustion concerns the coupling

between heat release rate fluctuations from the turbulent flame and the acoustic pressure

fluctuations arising inside a combustion chamber. The feedback coupling leads to a

growth in the acoustic energy of the combustion chamber and leads to the state of

limit cycle oscillations known as combustion or thermoacoustic instability (Lieuwen

and Yang, 2005; Juniper and Sujith, 2018). The large-amplitude pressure and heat

release rate oscillations are detrimental to combustor operation and cause the failure of

gas turbine engines through extreme thermal loading and pressure-induced structural

vibrations. Thermoacoustic instability continues to severely affect the operational

capabilities of liquid-fuelled rocket engines (Oefelein and Yang, 1993; Culick and

Kuentzmann, 2006) and gas turbines (Lieuwen and Yang, 2005).

The mechanism of thermoacoustic instability was first proposed in the seminal

exposition by Rayleigh (1878) and continues to be used to the present day. The essential

idea is that the acoustic waves inside a combustion chamber perturb the flame surface,

as well as compress and expand the gas around the flame. If the heat released by the

perturbed flame is higher on average during the local pressure maxima, more work is

done by the gas during the acoustic expansion phase than the work done on it during

the acoustic compression phase. If the excess work is not dissipated, acoustic energy
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inside the combustor grows, leading to a growth in the amplitude of pressure oscillations

(Rayleigh, 1878; Chu, 1965).

The mechanism of coupling between the heat release rate and acoustic pressure

fluctuations strongly depends on a number of different factors such as combustion

mechanisms, acoustic modes of the combustor, presence of hydrodynamic instabilities,

and turbulence levels (see Lieuwen, 2003; Poinsot, 2017; Juniper and Sujith, 2018;

Sujith and Unni, 2020, for a review). Thus, delineating the nonlinear contributions

from these mechanisms is essential for devising control strategies capable of breaking

the coupling between heat release rate and acoustic pressure fluctuations.

1.3 MOTIVATION

All current estimates indicate that gas turbines will continue to operate in power

generation, naval, and aviation industries, despite the growing emission concerns. The

key to reducing emission then is through the development of reliable lean, premixed

combustion technology.

Developing a comprehensive understanding of the dynamics of premixed flames

is challenging because of the complex interactions taking place inside combustion

chambers. As discussed above, the stability of lean, premixed turbulent flame remains

an elusive and unsolved problem. These stability issues arise from kinematic balances

at play at small-scales in turbulent flows, as well as from nonlinear coupling of

the overall heat release rate with broadband turbulence fluctuations and narrowband
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acoustic pressure fluctuations arising at large scales. Thus, one needs to carefully

consider the problem as a multiscale phenomena and analyse the large-scale harmonic

flame response when dealing with coupling with acoustic fluctuations, and quantify

the small-scale statistics of flame fluctuations, where the effect of turbulence on the

dynamics of turbulent flames are concerned.

The present thesis is, therefore, motivated directly by the requirement of developing a

scale-dependent understanding of the dynamics of turbulent premixed flames.

1.4 OBJECTIVES

The objectives of the present thesis are to recognize the multiscale nature of the problem

of turbulent premixed combustion and perform a scale-dependent quantification of large

and small-scale dynamics. More precisely, large-scale characteristics of the flame

response such as flow instabilities, global heat release response and flame-acoustic

coupling lead to thermoacoustic instability Lieuwen (2012). In contrast, small-scale

dynamics of turbulent flows fundamentally affect the physical balances on which the

flame relies upon for stability (Peters, 2001; Law, 2010). Consequently, the dynamics

of small-scale flame fluctuations are expected to be drastically different from their

large-scale counterpart and would play a dominant role in effects such as local flame

quenching and flame blow-out.

In cognizance of the above, the objectives of the thesis are:

1. To explain the large-scale response of flame surface fluctuations when
simultaneously subjected to narrowband and broadband turbulent fluctuations.
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2. To understand the various mechanisms which affect the local flame behavior and
explain its role in determining the global flame behavior.

3. To characterize and quantify the scale-dependent statistics of turbulent flame
fluctuations.

4. To establish the range of scales over which turbulent flame fluctuations display
self-similarity and are neither affected by large scale flow anisotropies nor by
small scale dissipation effects, along with the development of supporting theory.

5. To establish the phenomenon of small-scale intermittency in turbulent flames and
quantify its anomalous scaling behavior.

6. To quantify the effect of small-scale intermittency of turbulent flows on the
phenomenology of premixed flames. In particular, obtain the correction to the
estimate of fractal dimension of premixed flames as a result of the intermittent
nature of turbulent dissipation.

7. To utilize the statistics of turbulent velocity fluctuations and develop a smart
method of passive control in practical turbulent combustion systems prone to
thermoacoustic instability.

1.5 OVERVIEW OF THE THESIS

The thesis is organized as follows. In Chapter 2, we provide an overview of turbulent

flows and the statistical theory due to Kolmogorov (1941b,a) which was a step towards

developing a universal theory of turbulence. We then introduce the phenomenon

of small-scale intermittency arising due to coupling between large and small scales

of the flow and due to the multiplicative nature of cascade processes in turbulence.

We also discuss the phenomenology of scalar fields in turbulent flows, which has

historically followed the developments in classical turbulence. Following this, we

introduce the modes of turbulent combustion and develop the statistical theory of

premixed turbulent flames due to Peters (1992). We explain some of the limitations of

the theory of turbulent premixed flames and explain the requirement for understanding
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the small-scale intermittency in turbulent premixed flames, a subject that has received

scant attention till now. We also expound on the large-scale flame response and its

dependencies. Understanding the large-scale flame response is crucial in developing

a better understanding of thermoacoustic instability. We conclude the chapter with a

brief discussion of the genesis and mechanisms of thermoacoustic instability in reacting

flows. We then discuss some of the control strategies commonly used in combating

thermoacoustic instability. We conclude the chapter by arguing the requirement of

developing spatio-temporal statistical measures for enhancing the capabilities of control

strategies currently used in practical gas turbine combustors.

In Chapter 3, we provide details of the turbulent V-flame facility and the bluff-

body stabilized combustor, which have been used for experiments. We explain the

experimental procedure and the various diagnostic techniques used for measuring

system variables such as velocity field, flame surface, heat release rate, and acoustic

pressure. We also discuss the processing techniques used to obtain flame fluctuations.

In Chapter 4, we consider the large-scale response of the turbulent V-flame. We depict

the nonlinear harmonic flame response arising due to effects of interference among

dissimilar convecting disturbances imposed on the V-flame. We further depict how these

local effects of interfering disturbances, flame asymmetry, and kinematic restoration

affect local and global flame behavior. In particular, we depict the contribution of local

effects on the global heat release rate response.

In Chapter 5, we discuss the small-scale phenomenology of the V-flame in response

to high turbulence levels. We show that the flame fluctuations depict statistical self-

20



similarity with well-defined power-law behavior. We develop heuristic arguments

based on Kolmogorov’s theory for explaining the exponent of the power-law over an

intermediate-range of scales. Most importantly, we clearly demarcate small-scale and

large-scale intermittency in premixed turbulent flames, something which has not been

done till now. We show that the scaling exponents in the power-law range do not

grow linearly with the order of the structure-function, and hence, cannot be predicted

by dimensional analysis. We then invoke multifractal formalism to quantify the

singularities of the multiplicative process underlying the small-scale phenomenology

of turbulent flames.

In Chapter 6, we analytically derive closed-form expressions for the effect of the

intermittent nature of turbulent kinetic energy dissipation on the fractal dimension (D)

of premixed flames with finite thickness.

In Chapter 7, we analyze the statistics of turbulent velocity fluctuations. We show

that the scaling of moments of turbulent velocity fluctuations obtained from a practical

combustor can be used to develop a smart passive control strategy. With the help of

these scaling exponents, we identify the so-called critical regions of the velocity field,

which can be detected in the flow field much before thermoacoustic instability sets in

the combustor. When the critical region is selectively targeted, large amplitude pressure

oscillations are suppressed.

We conclude our discussion in Chapter 8, where we highlight the key findings, discuss

the context of these findings and their practical implications. We close our discussion

by summarizing many exciting research directions arising out of the present thesis.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce various concepts which would be useful when discussing

the results related to the statistics and dynamics of turbulent premixed combustion in

the chapters to follow. Turbulent combustion is a multi-scale problem wherein many

different interactions take place over a large range of scales. These interactions underlie

the observed dynamics of turbulent combustion.

We begin by introducing the statistical theory of turbulence introduced by Kolmogorov

(1941a) in §2.1 and build our understanding of the nature of small-scale and large-scale

interactions in turbulent flows. We further propound the concept of intermittent fields

depicting extreme-value fluctuations. We then provide the theoretical background of

the tools required for studying such intermittent fields. We then introduce the theory

of turbulent combustion in §2.2 and discuss the modes of turbulent combustion. We

also emphasize the statistical theory of premixed turbulent combustion as introduced

by Peters (1992). We further discuss the typical large-scale response of flames

in the presence of turbulence and acoustic disturbances. In §2.3, we review the

problem of thermoacoustic instability arising due to complex interaction between

combustion, turbulence, and acoustics in practical gas turbine engines. Finally, we

close our discussion with an account of various mitigation strategies used for combating

thermoacoustic instability.



2.1 TURBULENT FLOWS

Turbulence has been and continues to be one of the most important problems in physics.

Despite the many long-standing difficulties, the study of turbulence has fostered the

development of important concepts such as anomalous diffusion, power-law scaling,

universality, chaos, correlated structures, etc., all of which were posed concretely in the

context of turbulence. These ideas have not only led to great insights into the nature of

turbulence but also influenced neighboring areas of physics and mathematics. In this

section, we review some of the key statistical ideas and discuss their implications for

reacting turbulent flows.

2.1.1 Governing equations of turbulent flows

The starting point is the Navier-Stokes equations which arise from the mass and

momentum conservation. Thus, for a freely evolving velocity field u(x, t), the

governing equations in the absence of effects such as compressibility and reaction, are

given by:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

∂u

∂t
+ (u ·∇)u = −1

ρ
∇p+ ν∇2u (2.2)

Here, p is the normal pressure,∇2u arises from viscous effects on the fluid element, ρ is

the density (kg/m3) and ν is the kinematic viscosity (m2/s). Much of the flow dynamics

arises through a balance between the inertial and the viscous effects. The inertial force
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per unit mass u · ∇u = uj∂ui/∂xj can be estimated as ∼ U2/L, where U and L

are some characteristic velocity and length, while the viscous force per unit mass is

ν∇2u ∼ ν∂2ui/∂xj∂xj and can be estimated as ∼ νU/L2. The ratio of these terms

is referred to as Reynolds number ReL ≡ UL/ν, which characterizes the flow. For

small ReL, viscous effects arrest any fluctuations and result in a laminar flow. For large

values of ReL, viscous effects are negligible and inertial effects dominate the dynamics

leading to turbulence, and is the focus of the present discussion.

The central quantity of interest in turbulent flows is the kinetic energy (u2/2) and its

distribution through the turbulent flow field. The evolution equation of kinetic energy is

derived from Eqn. (2.2) by taking its dot product with u(x, t), which, in index notation

(i, j = 1, 2, 3), is written as,

∂(u2/2)

∂t
= − ∂

∂xj

(
(u2/2)uj

)
− 1

ρ

∂

∂xj
(puj) +

1

ρ

∂

∂xj
(uiτij)− 2νSijSij. (2.3)

Here, Sij = ∂ui/∂xj is the strain-rate tensor and the shear stress τij = 2ρνSij follows

from Newton’s law of viscosity. Equation (2.3) describes the conservation of kinetic

energy in a turbulent flow. The first three terms on the right-hand side of the equation

imply the convection of kinetic energy across a control volume, the rate at which work

is done by pressure forces on the boundary, and the rate at which work is done by

the viscous forces on the boundary, respectively. The final term indicates the rate at

which kinetic energy per unit mass is lost to heat and is referred to as kinetic energy

dissipation:

ε ≡ 2νSijSij. (2.4)
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The rate of kinetic energy dissipation is a conserved scalar in turbulent flows.

Before moving forward, it is instructive to introduce some statistical tools useful in the

analysis of turbulent flows. It is helpful to split statistical quantities in terms of their

mean and fluctuating components, a concept referred to as Reynolds decomposition in

turbulence. The time-average is determined as:

〈u(x)〉 =
1

T

∫ T

0

u(x, t)dt, (2.5)

where, T is time duration over which the average converges statistically. The

fluctuations in the velocity field are then obtained as: u′(x, t) = u(x, t)− 〈u(x)〉.

The other important statistical quantity is the second-order velocity correlation tensor,

defined as:

Qij(r,x, t) ≡ 〈ui(x)uj(x+ r)〉. (2.6)

The velocity correlation tensor allows one to probe the properties of the turbulent

flow in a scale dependent manner defined by r = ||r||. Quantities are termed

as homogeneous and isotropic if their statistical properties remain invariant under

translation and rotation, respectively. Thus, for homogeneous turbulence, the velocity

correlation tensor is only a function of r such thatQij(r,x, t) = Qij(r). The tensorQij

is related to the kinetic energy of the velocity through the relation Qij(0) = 1/2〈u2〉.

The longitudinal (f ) and lateral (g) velocity correlations are expressed as:

u′
2
f(r) = Qii(r), u′

2
g(r) = Qjj(r), (2.7)
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where the non-dimensionalization is done using the root mean square velocity

fluctuations, which defined as,

u′ = 〈u′x
2〉1/2 = 〈u′y

2〉1/2 = 〈u′z
2〉1/2 = (1/3〈u · u〉)1/2 , (2.8)

and represents the characteristic velocity of large-scale flow. Thus, the integral length

scale of turbulent flows is defined as:

` =

∫ ∞
0

f(r)dr. (2.9)

The integral scale is the characteristic length scale of large-scale turbulent flows and

implies the length over which the velocity field is correlated.

2.1.2 Scales of turbulent motion

Turbulent flows are characterized by a wide range of scales. Large scales eddies are

of the order of the domain (L) of observation. These large-scale eddies can be easily

demarcated as the large-scale structures observed in turbulent flows. For example, the

boundary of turbulent rain clouds or the vortices shed past an obstruction in a flow

are representative of the large scales of turbulent motion. These large-scale eddies are

responsible for most of the transport of heat, momentum, and contaminants. These

large-scale motions are generated as a result of non-homogeneous effects such as

through the presence of mean shear or density gradients.

In contrast, the small scales are the scales at which the turbulent kinetic energy is
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dissipated through viscous and heat loss due to molecular diffusion. At these small

scales, fluid viscosity becomes effective in smoothing out velocity fluctuations. These

small scales are generated by the nonlinear term in Eqn. (2.2). For large Re values, the

large scales are unaffected by the effects of viscosity. The nonlinear term counteracts

the inertial forces by generating scales small enough to be affected by viscosity.

The small scales evolve at shorter time and length scales with lower velocities as

compared to large scales, which evolve at a much larger time, and length scales with

large velocities. Hence, one can approximate that at small scales, the statistics are

independent of the large-scale turbulence of the mean flow (Fig. 2.1). Thus, the

dynamics of small scales should depend entirely on the rate of kinetic energy supplied

to these scales, an assumption which forms the basis of Kolmogorov’s universal

equilibrium theory. Thus, the small-scale motion is controlled by the average rate

of turbulence kinetic energy dissipation 〈ε〉 (m2/s3) and kinematic viscosity ν (m2/s).

Here, 〈ε〉 implies a volume-averaged value of turbulent kinetic energy dissipation ε.

Thus, using 〈ε〉 and ν we can define the characteristic scales of small-scale motion as

follows (Tennekes and Lumley, 2018):

η ≡ (ν3/〈ε〉)1/4, τη ≡ (ν/〈ε〉)1/2, u′η ≡ (νε)1/4. (2.10)

These scales are referred to as Kolmogorov’s microscales. The Reynolds number at

these scales is Reη = u′ηη/ν = 1, implying the dominant role viscosity plays at these

small-scales.

As kinetic energy is transferred from large-scales to small-scales, we can relate the
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Figure 2.1: (Left) Transition to fully-developed turbulence in a jet flow. Turbulent
large-scale motion arises from mean flow instabilities and breaks down
into finer scales. (Right) Schematic depicting the cascade through which
finer scales are generated. It is evident that after a few generations of
the cascade process, effects of mean flow inhomogeneity and anisotropy
become negligible. Adapted from (a) Bradshaw et al. (1964) and (b) Frisch
(1995) with permission from Cambridge University Press.

large-scales with the small-scales of turbulent motion. The characteristic length ` and

velocity u′ of large-scales were introduced above. Large eddies lose a fraction of their

kinetic energy 1/2u′2 over one eddy turnover time t`. Thus, the average rate of kinetic

energy per unit mass is estimated, to the leading order, as

〈ε〉 ∼ u′2

t`
∼ u′3

`
. (2.11)

Note that only a very small-fraction of the total kinetic energy is lost through viscous

effects. The energy lost to viscous effects can be estimated as u′2/(`2/ν), where the

time scale of energy loss is `2/ν. The energy dissipation is thus νu′2/`2, which is much

smaller as compared to u′3/` for large Reynolds number (Re = u′`/ν). Thus, using

Eqn. (2.11) in Eqn. (2.10), we obtain:

η

`
∼ Re−3/4,

τη
t`
∼ Re−1/2,

u′η
u′
∼ Re−1/4. (2.12)
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The above relations imply that the range of scales in a turbulent flow depends on the

Reynolds number (Re). The largeRe is, the larger is the separation of scales of turbulent

motion between η and `.

2.1.3 Universal equilibrium theory of turbulence

We now introduce the statistical theory of Kolmogorov (1941a,b), which is designated

as K41. We begin by considering the longitudinal velocity-structure function,

〈
[δu′(r)]2

〉
≡
〈

[u′x(x+ r)− u′x(x)]
2
〉
. (2.13)

The structure function relates to the longitudinal velocity correlation f through the

relation 〈(δu′(r))2〉 = 2u′2(1 − f) for homogenous isotropic turbulence (Batchelor,

1953). The exact form of Eqn. (2.13) is not obvious. However, it should depend on a

variety of flow properties, such that

〈
[δu′(r)]2

〉
= F (u′, `, r, t`, ν). (2.14)

The variables u′, ` and t` are dependent on the average rate through which kinetic energy

is transferred across smaller scales, to be eventually dissipated, as given according to

the relation u′3/` ∼ 〈ε〉 ∼ νu′η
2/η2. Thus, the dependence on u′, ` and τ` can replaced

by 〈ε〉.

Kolmogorov’s First Similarity Hypothesis suggests that for large enough Re and r <<

`, the statistical properties of δu′(r) depend only on 〈ε〉, r and ν. In other words, at small
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scales, the statistics remain unaffected by large-scale anisotropies, and only depend

on the average rate of kinetic energy injection onto smaller scales and the kinematic

viscosity. Thus, the first hypothesis implies a return to local isotropy in the state of the

turbulent flow at smaller scales. Thus, we can re-write Eqn. (2.14) as:

〈
[δu′(r)]2

〉
= F (〈ε〉, r, ν), ∀ r << `. (2.15)

Kolmogorov’s Second Similarity Hypothesis suggests that for large Re and in the range

η << r << `, the statistical properties of δu′(r) are uniquely determined by r and

〈ε〉, alone. Thus, the second hypothesis introduces a lower cut-off above which viscous

effects are negligible. Thus, for this inertial sub-range, Eqn. (2.15) can be re-written

as: 〈
[δu′(r)]2

〉
= F (〈ε〉, r), ∀η << r << `. (2.16)

A quick perusal based on dimensional consistency implies that the function F should

follow, 〈
[δu′(r)]2

〉
= β2〈ε〉2/3r2/3, ∀ η << r << `, (2.17)

where, β2 is a universal constant, which have been empirically estimated to be β2 ∼ 2

(Davidson, 2015). This is known as Kolmogorov’s two-third law. A reformulation in

spectral space leads to

Eu(k) = Ck〈ε〉2/3k−5/3. (2.18)

Ck is referred to as Kolmogorov’s constant and is found to be universal with a value of

Ck = 0.52± 0.04 (Sreenivasan, 1995). Equation (2.18) is referred to as Kolmogorov’s
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five-third law and has been shown in Fig. 2.2(a). Alternatively, the five-third law

can be obtained from the two-third law by noting that the following relation holds:

〈[δu′(r)]2〉 ∼
∫∞
π/r

E(k)dk.

Another important universal law for turbulent flows is known. In globally isotropic

turbulent flows, the third-order velocity structure function 〈[δu′(r)]3〉 has been shown

to exactly follow (Kolmogorov, 1941a),

〈
[δu′(r)]3

〉
= −4

5
〈ε〉r, (2.19)

where, β3 takes the value of −4/5 in the equation above. This is known as

Kolmogorov’s four-fifths law. Note that the four-fifths law is an exact law derived

from the Karman-Howarth equation (Karman and Howarth, 1938), unlike the five-third

law which is obtained based on dimensional grounds. Either of these two laws are

very well substantiated in experiments and direct numerical simulations (Saddoughi

and Veeravalli, 1994).

2.1.4 Higher-order statistics of turbulent flows

In the discussion above, we noted that the second-order structure function scales as

r2/3 while that of the third-order scales as r. This suggests that we can generalize

the universality hypothesis. For large Re and for η << r << `, the probability

density function (PDF) of the velocity increments δu′/(r〈ε〉)1/3 should have a universal

form and be independent of ν. Further, as one considers only velocity differences, the
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Figure 2.2: (a) Kolmogorov’s 5/3rd law observed empirically in a variety of turbulent
flow datasets compiled by Saddoughi and Veeravalli (1994). The range
over which k−5/3 scaling is observed increases with an increase in Re.
(b) Scaling of structure-function compensated with ‘guessed’ power-law
exponents ζp for different values of p for wind tunnel data reported in
Anselmet et al. (1984). Figures have been adapted with permission from
Cambridge University Press.

statistics is expected to be applicable for any general turbulent flow. This implies that

the statistics for any general order p follows:

〈
[δu′(r)]

p〉
= βpε

p/3rp/3, ∀ η << r << `, (2.20)

where, βp are universal constants.

Nevertheless, numerous experimental and analytical studies have shown that the basis

and predictions of K41 are inexact. In particular, there is a significant departure from

the scaling exponent indicated by Eqn. (2.20) for p ≥ 3. This departure can be observed

in Fig. 2.2(b), where the structure-function compensated by the ‘guessed’ power-law

exponent is plotted for wind tunnel data reported in Anselmet et al. (1984). Notice that
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Figure 2.3: Typical time trace and properties of turbulent velocity fluctuations.
Subfigure (a) shows u′(t) for a turbulent jet and (b) shows the same signal
after high-pass filtering (denoted as u′(t)>) to highlight extreme fluctuations
associated with small-scales (Gagne, 1980). (c) Time series of turbulent
kinetic energy dissipation ε ∼ (du′/dt)2 obtained from atmospheric
surface layer (Meneveau and Sreenivasan, 1991). (d) The PDF of velocity
increments δu′ for different values of separation r/η (Anselmet et al.,
1984). Figures (c,d) have been adapted with permission from Cambridge
University Press.

for p = 1, 2, the structure-function scales reasonably well according to K41. However,

for p = 6, the structure-function does not scale with the exponent p/3 = 2, instead

scales with a value less than p/3. The departure from p/3 widens with increase in the

moment-order p (Fig. 2.4a). The PDF of velocity-increments also change continuously

with a change in r (Fig. 2.3d), in contrast to the invariant form of PDF enshrined in

K41. Similarly, the value of βn has been found to vary for different flows. Finally, the

skewness (third-moment) and flatness factor (fourth-moment) are found to be dependent

on the Re of the flow, in contrast to what is expected according to K41.

The issue that underlies the departure from K41 universality is the strong spatio-

temporal variability of energy dissipation. Indeed, we know from experimental

measurements that ε displays extreme-fluctuations several order of magnitudes greater

than variance (Fig. 2.3c). The strong variability arises due to two reasons. The
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first has to do with the large-scale anisotropy and inhomogeneity in turbulent flows,

such as the active region of turbulence amidst quiescence during the transition. The

large-scale clumpiness affects the local energy flux, which controls the local cascade

of small-scale eddies. Since the local energy flux (averaged over scale of the order

of `) depends on the nature of the flow, the universality alluded through Eqn. 2.20,

would no longer be universal. In other words, averaging over cascades resulting from

large-scale unsteadiness would produce non-universal inertial-range statistics. This was

first proposed by Landau and Lifshitz (1959). The second reason has to do with the

multiplicative manner in which energy flux is distributed across smaller and smaller

scales. This idea is discussed in more detail in the next section.

Consequently, the dynamics of small-scale eddies in a small region Vr of size r (<< `)

should depend only on the flux of turbulent kinetic energy which is equal to the average

dissipation rate in that local region Vr. Thus, based on the argument by Landau and

Lifshitz (1959), Oboukhov (1962) suggested replacing the volume-averaged 〈ε〉 in K41

with locally averaged dissipation 〈εr〉, defined as

〈εr〉 =
1

Vr

∫
Vr

εdV, (2.21)

where, Vr = O(r3) and r << `. Since ε has extreme fluctuations through space and in

time, 〈εr〉 itself varies. The variation in 〈εr〉 was presumed to be of the order of r/` by

Oboukhov (1962), accounting for the effect of large-scales on inertial-range statistics.

If the considerations of Oboukhov (1962) are correct, then the PDF of δu′/(r〈ε〉)1/3

would not be universal in the inertial range. However, we can still expect the moments
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of δu′/(r〈ε〉)1/3 to follow power-law scaling of the form:

〈
[δu′(r)]

p〉
= β′pε

p/3rζp , ∀ η << r << `, (2.22)

where, β′p are non-universal and depend on the type of flow. However, the scaling

exponent ζp, although disparate from p/3, can be assumed to be universal. Indeed,

Kolmogorov (1962) considered these suggestions and proposed a refined self-similarity

by considering the locally averaged dissipation, which results in

〈
[δu′(r)]

p〉
= β′p〈εp/3〉rp/3, ∀ η << r << `. (2.23)

In order to estimate the nature of the structure function, we make use of the empirically

observed relation:

〈ε2r〉/ε2 = B(r/`)−µ, ∀η ≤ r ≤ ` (2.24)

where µ is referred to as the intermittency exponent. Further, assuming that εr follows

log-normal statistics, and making use of the relation:

〈εmr 〉/εm =
[
〈ε2r〉/ε2

]m(m−1)/2
, (2.25)

Kolmogorov (1962) obtained the log-normal model for the statistics of velocity

increment as:

〈
[δu′(r)]

p〉
= Cp(εr)

p/3(`/r)µp(p−3)/18, ∀ η << r << `. (2.26)
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Figure 2.4: Anomalous scaling exponent ζp associated with structure-function based on
(a) velocity increments (δu′(r)) and (b) scalar increments (δc′(r)). Various
model predictions are shown in (a). Note the departure from ζp = p/3 as
predicted by K41 theory. Adapted from (a) Frisch (1995) with permission
from Cambridge University Press and (b) Sreenivasan and Antonia (1997)
with permission from Annual Reviews.

Here, Cp = βpB
p(p−3)/18. The relation (p − 3) was introduced so as to fulfil the four-

fifths law (Eqn. 2.19). Comparing with the generalized form in Eqn. (2.22), the power-

law exponent for the log-normal model has the form:

ζp =
p

3
+

µ

18
p(p− 3). (2.27)

The log-normal model, thus, accounts for the impact of large-scale inhomogeneities in

turbulence, on the inertial range statistics. The predictions of the log-normal model are

shown in Fig. 2.4(a), and fares better than the p/3 limit of K41.

36



2.1.5 Small-scale intermittency in turbulent flows

In Fig. 2.3a, we notice that the velocity fluctuations are quite irregular. Upon

filtering out the low-frequency components (depicted as u′> in Fig. 2.3a,b), we

observe that the high-frequency components show fluctuations that are much larger

than their mean value. These fluctuations are induced by the small-scale (or high

frequency/wavenumber) motion of the velocity field. These extreme fluctuations lead

to non-Gaussian and wide-tailed PDF of velocity increments δu′r (Fig. 2.3d). The PDF

becomes increasingly non-Gaussian and wide-tailed as r is decreased (an operation akin

to high-pass filtering) and approaches Kolmogorov microscale η, implying that extreme

fluctuations occur with significantly higher probability and do not decay exponentially

like in a Gaussian PDF.

Indeed, it is this behavior of extreme-value fluctuations and wide-tailed PDF that one

wishes to capture using higher-moments of δu′r. The universal theory of Kolmogorov

(1941a) is an attempt at capturing this behavior of the turbulent velocity field through a

rather simple and intuitive model. If the velocity field was not intermittent in the small

scales, ζp = p/3 would hold for any general turbulent flow. However, as the velocity

field is intermittent, the scaling exponent ζp departs from p/3 for higher values of p

(Fig. 2.4a). We also observed the refined self-similarity hypothesis (Eqn. 2.27), which

accounted for the large-scale spottiness of turbulent flows and gave a better prediction

for higher-order statistics.

Notwithstanding the large-scale spottiness of turbulent flows, there is a second
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more important contributor to the small-scale intermittency in turbulent flows. This

contribution arises from the intuitive picture of cascade due to Richardson (1926). The

central tenet of turbulence cascade is that large-scale turbulent eddies are progressively

broken down into smaller eddies through the nonlinear term in the Navier-Stokes

equation to small enough scales for viscosity to dissipate the energy of turbulent

flows. Thus, there is a unidirectional transfer of turbulent kinetic energy from large

scales (small wavenumber), which contain most of the energy, to small scales (large

wavenumber), where energy is dissipated. Physically, this process takes place through

the stretching of eddies which teases out vorticity into finer and finer elements. As

vortex ribbons and tubes are teased out into finer structures, the vortex field becomes

increasingly intermittent at smaller scales (Davidson, 2015). Consequently, dissipation

ε also becomes spotty and intermittent at smaller scales. Thus, the small scales are

inherently intermittent and arise through a multiplicative process where measures such

as kinetic energy, enstrophy, scalar dissipation are distributed unevenly across various

generations of the cascade process.

Thus, the non-trivial coupling between large-scales and small-scales and inherent

spottiness of the velocity and vorticity field result in the intermittent statistics and cause

the scaling exponent to deviate from p/3 of K41. The deviation from the p/3 limit

is formally referred to as anomalous scaling exponent. The ζp − p curve is a convex

and monotonic increasing function of p (Fig. 2.4). The convexity of the ζp − p curve

follows from Hölder’s inequality for central moments (Frisch, 1995). Let us consider

the even order moments of increments in velocity fluctuations, which is indicated as:

S2p ∼ 〈(δu′)2p〉 ∼ rζ2p , for 2p > 0. Hölder’s inequality for moments of random variable
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suggests that (Feller, 2008)

〈
(δu′)

2p2
〉2p3−2p1

≤
〈

(δu′)
2p1
〉2p3−2p2 〈

(δu′)
2p3
〉2p2−2p1

, (2.28)

for any positive integers p1 ≤ p2 ≤ p3. Substituting 〈(δu′)2p〉 ∼ rζ2p in the equation

above, we obtain:

(p3 − p1)ζ2p2 ≥ (p3 − p2)ζ2p1 + (p2 − p1)ζ2p3 . (2.29)

It is easy to observe that the inequality above expresses the condition that ζp is a convex

function of p.

2.1.6 Intermittent fields and multiplicative processes

Generally, intermittent fields are generated through the unequal distribution of measures

of conserved quantities (Sreenivasan, 1991a). These conserved quantities include

turbulent kinetic energy dissipation ε and enstrophy in fully-developed turbulent flows

(Davidson, 2015), and scalar dissipation χ in the case of reacting turbulent flows (Peters,

2001). The division of conserved measures follows from the turbulent cascade, which

entails the transfer of these quantities from large energy-containing scales to very small

scales where these quantities are dissipated viscous mechanisms.

For sufficiently large Re, there is considerable scale separation between large energy-

containing scales and dissipation scales. Thus, conserved quantities are unequally

divided into succeedingly smaller scales. The division can be achieved in two manners:
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equal measure distributed among unequal scales or unequal measures distributed among

equal scales. However, the two procedures yield identical results for deterministic

multifractals (Chhabra et al., 1989). As the number of divisions increases, the measure

in successive generations becomes more and more uneven. At any given generation,

the measure is determined by the multipliers of all the previous generations, implying a

multiplicative cascade process. The multipliers are fractions of measure transferred

from one generation to the next. If the rule through which the measure is divided

across generations is independent of the generation level, the statistical properties of the

measure are expected to be self-similar across generations. Consequently, the statistical

properties of the measure depict a power law with the scale of measurement. Thus,

intermittent fields in turbulent flows arise from such multiplicative cascade processes

(Mandelbrot, 1989). Such a description is quite well-substantiated in model predictions

of turbulent flows (Sreenivasan, 1991a; Frisch, 1995).

2.1.7 The multifractal formalism

While small-scale intermittency is captured relatively well by the log-normal model

(Eqn. 2.27), Mandelbrot (1972) showed that the use of log-normal model is

theoretically suspect. This is because the formulation of the log-normal model crucially

relies on the central-limit theorem, which cannot be used for describing extreme events

which contribute to the wide-tails of PDFs of intermittent fields. Frisch et al. (1978)

suggested the use of fractal or β-model for explaining small-scale intermittency. The

model builds upon the assumption that space-filling large eddies are divided into

successively smaller non-space filling eddies such that at any generation n of the
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cascade process, only a fraction βn of the space is active. However, Meneveau and

Sreenivasan (1991) showed that the β-model was inaccurate for higher-order moments.

A more rigorous treatment of intermittent fields in the form of multifractal formalism

was first introduced in the context of turbulence to explain anomalous scaling associated

with small-scale intermittency (Parisi and Frisch, 1985). Concurrently, Hentschel and

Procaccia (1983) introduced a hierarchy of generalized dimension (Dq). Halsey et al.

(1986) defined f(α) as the set of fractal dimension characterizing multifractals and

christening the term ‘multifractals’.

The starting point of the multifractal formalism is the behavior of Navier-Stokes

equations under scaling transformation. Under the scaling of t as λ1−αt, r as λr and u

as λαu for some constant λ, all the terms in the Navier-Stokes equation (Eqn. 2.2) are

multiplied by λ2α−1, except for the viscous term, which scales as λα−2. Thus, for finite

viscosity, only α = −1 is permitted, which corresponds to the similarity principle in

fluid dynamics. If on the other hand we the limit of ν → 0, the Navier-Stokes equations

remain invariant under infinitely many groups of scaling transformation for α ∈ <,

where < is the set of real number (Parisi and Frisch, 1985; Frisch, 1995). Thus, the key

idea of the multifractal model is to relax the idea of a single global scaling exponent for

the inertial range, where viscous effects are assumed to be negligible, as prescribed in

Eqn. (2.20). Rather a weakened local scale invariance is considered where turbulence is

presumed to posses a range of scaling exponents I = (αmin, αmax). Further, associated

with each of these exponents α is a set Jα ⊂ R3, whose Hausdorff dimension is given
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by f(α). Then, in the limit of r → 0, we have

δu′(r)

v̄
∼
(r
`

)α
, r ∈ Jα. (2.30)

As there are many sets with varying α, we need to cover the turbulent field with boxes

of size r and count the number of boxes for which the sets have the same value of α.

The number of boxes thus, required is given by:

N(α) ∼
(r
`

)−f(α)
(2.31)

Since the flow is three-dimensional, the volume of the set for which scaling has the

value of α, is expressed as: r3N(α) ∼ `−3(r/`)3−f(α). Thus, the p order moment of δu′

can be expressed as an integral over the interval α and α + dα, such that

〈[δu′(r)]p〉
v̄p

∼ `−3
∫
α

(r
`

)3−f(α) (r
`

)pα
dα,

〈[δu′(r)]p〉
v̄p

∼ `−3
∫
α

(r
`

)pα+3−f(α)
dα. (2.32)

In the limit of r → 0, the power-law is dominated by the smallest exponent in the

integrand in Eqn. (2.32). Thus, Eqn. 2.32 can be solved through the method of steepest

descent, which leads to

ζp = inf
α

[pα + 3− f(α)] . (2.33)

In writing the above, we made use of the relation 〈[δu′(r)]p〉 ∼ rζp defined in Eqn.

(2.22). Thus, if f(α)− α spectrum is known, the ζp can be determined, and the higher-

order statistics can be characterized appropriately.
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The multifractal formalism has been quite successful in explaining the small-scale

intermittency. In a series of papers, Sreenivasan and co-workers then characterized the

intermittent nature of various fields (ε, χ, etc.) using the multifractal model in a self-

consistent manner (Meneveau and Sreenivasan, 1987b; Prasad et al., 1988; Chhabra

et al., 1989; Meneveau and Sreenivasan, 1991). Multifractal formalism remains one of

the few statistical models which satisfactorily describe the extreme events and higher-

order moments of intermittent fields adequately.

2.1.8 Scalar fields in turbulent flows

A related problem is the evolution of scalar fields in turbulent flows. The transport of

scalar fields such as contaminants and temperature in turbulent flows through advection

and diffusion are important for a wide range of phenomenon. Turbulent combustion also

depends on the advection and diffusion of activated radicals and temperature across the

reaction zone for sustaining the reaction. Thus, we briefly discuss the phenomenology

of scalar fields in turbulent flows.

2.1.8.1 Scalar advection-diffusion equation

Scalar fields (C) in turbulent flows obey the advection-diffusion equation (Davidson,

2015):

∂C

∂t
+ (u · ∇)C = D∇2C, (2.34)
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where, D is the diffusivity of the scalar C. The transport dynamics is controlled by the

non-dimensional Peclet number, Pe = u′`/D. If Pe is large, then the scalar is advected

by the velocity field and diffusion is negligible. In contrast, for Pe ∼ 1, the scalar

diffusion becomes singificant and competes with the advection due to the turbulent flow.

Since the scalar evolves in the turbulent flow, the balance between kinematic viscosity

(ν) and scalar diffusivity (D) becomes important. This balance is parametrized using

the Schmidt number, Sc = ν/D.

Depending upon the type of contaminant, contaminant microscale ηc can be defined.

For scalar fields with Sc > 1, ν > D implying that diffusion of C is less effective than

the transport facilitated by vortices. Thus, one would expect that the fine structure of C

will persist for ηc < η. In other words, the structure of contaminant will persists even

for scales smaller than η. Thus, for higher Sc, contaminant sheets are formed, which

encompass the entire flow field and sample vortical regions as small as η. The thickness

of such sheets are of the order of ηc ∼ D1/2(u′η/η)−1/2 (Batchelor, 1952). Since, at the

Kolmogorov scale, u′ηη/ν ∼ 1, we can define the Batchelor scale as:

ηc ∼
(
D
ν

)1/2

η, ν > D. (2.35)

As ηc < η, the range of scale between ηc and η is referred to as viscous-convective

subrange.

For scalar fields with Sc < 1 or ν < D, diffusion of scalar is more effective than that of

the vorticity, and we have ηc > η, and the intermediate range is referred to as inertial-

diffusive subrange. Turbulent velocity fluctuations steepen the scalar gradients at large

44



scales. However, diffusion of scalar can compete with turbulent fluctuations at Pe ∼ 1.

Thus, at these scales advection is balanced by diffusion, we have: u′cνc/D ∼ 1. In

the inertial subrange, the velocity of an eddy of scale r is given by u′r ∼ (εr)1/3. The

velocity at the scale ηc, provided that it lies in the inertial subrange, is u′c ∼ (εηc)
1/3.

Thus, we can define the Obukhov-Corrsin length scale as (Oboukhov, 1949; Corrsin,

1951):

ηc ∼
(
D
ν

)3/4

η, ν < D. (2.36)

The considerations of scalar advection and diffusion become evident in Chapter 6 where

we measure the flux of scalar across the flame interface in order to determine the fractal

dimension of highly turbulent premixed flames.

2.1.8.2 Scalar dissipation, higher-order statistics and intermittency

In general, one is concerned with the manner in which the variance of the scalar field

〈C2〉 evolves in a turbulent field where the scalar field C is assumed to be homogeneous

and isotropic with a zero mean 〈C〉. Multiplying Eqn. (2.34) with C and taking an

ensemble average leads to:

d〈1/2C2〉
dt

= −D
〈
(∇C)2

〉
. (2.37)

Thus, the fluctuations in the scalar field are destroyed at a rate proportional to:

χ = −D
〈
(∇C)2

〉
, (2.38)
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where, χ is referred to as scalar dissipation. The scalar dissipation essentially represents

the diffusion of scalar from positive to negative regions of C. While advection does

not play a direct role in reducing scalar variance, it disperses the scalar into finer and

finer filaments so that diffusion can act and destroy scalar variance through the term

χ. As discussed above, the characteristic scale of scalar diffusion is ηc. Thus, scalar

dissipation can be written as: χ = −D[(δC)/ηc]
2, where δC is the characteristic

fluctuation in C over scale ηc. Thus, one is again concerned with the statistics of

increment of scalar fluctuations C, which is written as:

〈[δC(r)]p〉 = 〈[C(x+ r)− C(x)]p〉 , (2.39)

where, the statistics are assumed to follow from isotropy so that it only depends on

r = |r| and not on x, and p is order of the moment.

The phenomenology of scalar fields in turbulence can be considered in analogy with

the phenomenology of the concomitant turbulent flow. Indeed, the statistical theory

of scalar turbulence follows closely from the statistical theory of Kolmogorov (1941b,

1962) for the statistics of velocity increments. In the intermediate inertial-convective

subrange (max[ηc, η] << r << `), one would expect small-scale isotropy such that the

statistics can be assumed to depend only on ε, χ and r, that is, 〈[δC(r)]p〉 = f(ε, χ, r).

Dimensional arguments for p = 2, leads to the scalar equivalent of Kolmogorov’s two-

thirds law -

〈
[δC(r)]2

〉
= χε−1/3r2/3, ∀ max[ηc, η] << r << `. (2.40)
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Generalizing to arbitrary order p, we have

〈[δC(r)]p〉 = χp/2ε−p/6rp/3, ∀ max[ηc, η] << r << `. (2.41)

The above was derived independently by Oboukhov (1949) and Corrsin (1951), and

is therefore referred to as Kolmogorov-Obukhov-Corrsin (KOC) theory (Davidson,

2015). The theory has been quite useful in developing an intuitive understanding of

the problem. However, experimental studies showed the limitation of the KOC theory.

In particular, it was emphasized that the conditions of local isotropy are almost never

achieved in laboratory relevant conditions (Sreenivasan, 1991b). The lack of local

isotropy arises due to the persistence of mean scalar gradient at small scales, giving

rise to ramp-cliff structures (Holzer and Siggia, 1994). Consequently, even in random

Gaussian and ‘structure-less’ turbulent fields, statistics of scalar fluctuations are non-

Gaussian and highly intermittent (Holzer and Siggia, 1994; Shraiman and Siggia, 2000).

The structure of scalar fields arises from two concomitant contributions. The first is

the kinematic contribution arising from Lagrangian chaos, while the other arises from

the dynamic nature of Eulerian velocity fields (Shraiman and Siggia, 2000; Falkovich

et al., 2001; Tsinober, 2009). In fact, scalar fluctuations display a much stronger

anomalous scaling exponent in comparison to the underlying velocity field (Frisch,

1995; Sreenivasan and Antonia, 1997), as can be seen from a comparison of the scaling

exponents for the velocity and scalar fluctuations in Fig. 2.4(a) and 2.4(b), respectively.

Small-scale intermittency have important implications in a variety of fluid dynamical

problems such as transition to turbulence (Goldenfeld, 2006), LES modeling of
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turbulent flows (Cerutti and Meneveau, 1998), atmospheric flows (Mahrt, 1989),

Lagrangian dynamics (Picardo et al., 2020), particle laden flows (Park et al., 2017),

wave turbulence (Newell et al., 2001; Falcon et al., 2007), solar winds (Bruno et al.,

2001), etc. Naturally, small-scale intermittency in turbulent flows have received

considerable attention over the past decades (see Sreenivasan and Antonia, 1997;

Shraiman and Siggia, 2000; Falkovich et al., 2001; Dubrulle, 2019, for a comprehensive

review on this topic).

2.2 TURBULENT COMBUSTION

In this section, we discuss the relevant concepts of premixed turbulent flames. We begin

by discussing the balance between reaction and turbulence time scales and introduce

the regime diagram for discerning various modes of combustion. We then discuss

the evolution equation of premixed flames and discuss the spectral closure obtained

by Peters (1992). We conclude our discussion on turbulent premixed flames with an

overview of the local and global flame response to narrowband and broadband turbulent

fluctuations.

2.2.1 Regimes of turbulent premixed flames

Premixed flames can either be laminar or turbulent. However, all turbulent flames

cannot be grouped together. This is because depending upon the flow Re and turbulent

intensity u′, the interactions between turbulent and flame time scales change. The

various modes of combustion can be delineated based on a comparison of turbulence
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Figure 2.5: Regimes of turbulent combustion. Adapted from Law (2010) with
permission from Cambridge University Press.

and flame time scales through the use of regime diagram referred to as Borghi diagram

(Borghi, 1985; Peters, 1988), as shown in Fig. 2.5. The laminar flame speed is indicated

as sL, laminar flame thickness as δF , reaction zone thickness as δR. The integral scale

and Kolmogorov scale are denoted as ` and η.

The laminar flame thickness is related to flame speed as δF = ν/sL. The time scale of

flame propagation is thus, τF = δF/sL = ν/s2L. The integral scale Reynolds number is

related to laminar flame quantities through the relation:

Re =
u′`

ν
=
u′

sL

`

δF
. (2.42)

Premixed flame can be sustained in a turbulent flow if the characteristic time of flame

propagation is shorter than characteristic flow time. This balance defines the so called

turbulent Karlovitz number KaF = τF/τη. The inverse of the Karlovitz number is

referred to as the Damköhler number Da = τη/τF . Using the relation τη = η2/ν =
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ν/u′η
2 (Eqn. 2.10), we obtain:

KaF =
τF
τη

=

(
δF
η

)2

=

(
u′η
sL

)2

. (2.43)

In the laminar flame regime (Re < 1), the flow is laminar, and turbulence intensity

is very weak, and the flame undergoes minimal wrinkling. In the wrinkles flamelets

regime (Re > 1, KaF < 1, u′ < sL), the flame thickness is much smaller than η

such that turbulence fluctuations can only weakly wrinkle the flame surface. In the

corrugated flamelets regime (Re > 1, KaF < 1, u′ > sL), the flame thickness is still

much smaller than η. However, the turbulent intensity is appreciable such that the flame

surface undergoes significant distortion while still maintaining its structure.

For the reaction sheet regime (Re > 1, KaF > 1), the Re and turbulent intensity is

sufficiently high such that η < δF . While the large-scale eddies only distort the flame

surface, a range of eddies of size smaller than δF can penetrate the preheat zone and

enhance the heat and mass transfer rates. Thus, the overall flame surface is broadened.

Since the reaction zone thickness δR < η, so the reaction zone is only wrinkled and

remains unaffected by the motion of eddies.

In the well-stirred reaction regime (Re > 1, KaR > 1), the Karlovitz number based

on the reaction thickness is greater than one, implying that δR > η. Turbulent

eddies penetrate the reactant zone and enhance diffusion from reactant to preheat zone,

resulting in a significant drop in the temperature of the flame and consequently lead to

flame extinction. The entire flow behaves like a well-stirred reactor devoid of any local
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structure.

While the regime diagram helps in delineating one combustion mode from another, it

is often not useful in clarifying the dynamic nature of combustion. For instance, the

role of kinematic restoration or the dynamic interaction between flame and turbulent

fluctuations cannot be discerned from the turbulent regime diagram. Thus, it is

necessary to analyse the evolution equation of scalar variables that approximates the

flame surface, which is what we discuss in the next section.

2.2.2 Premixed flame formulation

We now discuss the dynamics of premixed flames in turbulent flows. Flame surfaces are

scalar surfaces in turbulent flows capable of propagating with laminar flame speed sL

along the direction of local normal (n). The flame surface can then be defined as an iso-

surface of a scalar functionG(x, t). The scalar function can be based on scalar variables

such as reactant mass fraction, temperature, etc. The local flame speed is augmented

by various effects of flame stretch and curvature induced by the local structure of the

turbulent flow. Under these effects, the evolution equation of the scalar functionG(x, t)

can be written as (Peters, 1992):

∂G(x, t)

∂t
+ u ·∇G(x, t) = [sL − sLηMκ+ ηMn ·∇u · n] |∇G|. (2.44)

Here, u(x, t) represents the velocity field. n is the local surface normal defined as

n̂ = ∇G/|∇G|. Further, the flame curvature is defined as κ = ∇ · n. The evolution

51



of flame surface is governed by a balance between heat and mass transport and needs

to be taken into account explicitly. The balance between conductive heat transfer from

the reaction zone to the reactants and diffusion of reactant species into the reaction

zone is given by the Lewis number. The Lewis number is defined as Le = λ/(ρcpsL),

where λ is the thermal conductivity, ρ is the density of the reactants, and cp is the heat

capacity. The Markstein length ηM is defined in such a manner so as to account for non-

unity Lewis number effects such as increased flame speed as a result of enhanced heat

transfer due to focusing around a concave flame surface, and so on (Pelce and Clavin,

1982; Clavin and Williams, 1982). Experimental measurement of ηM for various types

of flames have been shown that ηM varies in the range of 2δF−6δf (Searby and Quinard,

1990). We are concerned with the statistics of the scalar fieldG(x, t), and we will focus

on the evolution equation of various moments of the scalar field next.

2.2.2.1 Equation for the mean and the variance of the G-equation

Let us suppose that the flame propagates in homogeneous and isotropic turbulence in

the z-direction. The effects of large-scale variation due to propagation can be removed

through the variable transformation: G(x, t) = z(t) + ξ(x, t). We consider the case

of a conical V-flame in Chapters 3, 4 and 5, and a similar transformation allows us to

remove the effects of large scale orientation of the flame and focus on the fluctuations

on the flame surface. We define the gradient of scalar as σ(x, t) = ||∇ξ(x, t)||, where

|| · || implies the magnitude of the vector∇ξ(x, t).

We can perform Reynolds decomposition and split the field of ξ(x, t) and u(x, t) into
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mean and fluctuating components such that: ξ(x, t) = 〈ξ(x)〉 + ξ′(x, t), u(x, t) =

〈u(x)〉 + u′(x, t) and σ(x, t) = 〈σ̄(x)〉 + σ′(x, t). The time-average is defined

as: 〈ξ(x)〉 = 1/T
∫
T
ξ(x, t)dt, where T is sufficiently large to allow statistical

convergence.

Following the above decomposition, we can obtain the evolution equation for the mean

〈ξ(x)〉 from Eqn. (2.44) as:

(
∂〈ξ〉
∂t

+ 〈ui〉
∂〈ξ〉
∂xi

)
+
∂〈u′iξ′〉
∂xi

= sL〈σ〉+ sLηM
∂2〈ξ〉
∂x2i

− sLηM
〈
∂ lnσ

∂xj

∂ξ

∂xj

〉
+ ηM

〈
∂ui
∂xj

σiσj
σ

〉
.

(2.45)

We have used the index notation for expressing the summation of derivatives over i, j =

1, 2, 3. Similarly, the governing equation for fluctuations ξ′ is obtained by subtracting

Eqn. (2.45) from Eqn. (2.44):

∂ξ′

∂t
+ 〈ui〉

∂ξ′

∂xi
+

∂

∂xi
(u′i〈ξ〉+ u′iξ

′ − 〈u′iξ′〉)

= sLσ
′ + sLηM

∂2ξ′

∂x2i
− sLηM

(
∂ lnσ

∂xj

∂ξ

∂xj

)′
+ ηM

(
∂ui
∂xj

σiσj
σ

)
(2.46)

The equation for the variance of the scalar field 〈ξ′2〉 can be derived by multiplying Eqn.

(2.46) by 2ξ′ and then taking the mean, which leads to (Peters, 1992):

∂〈ξ′2〉
∂t

+ 〈ui〉
∂〈ξ′2〉
∂xi

= S1 + S2 − S3 − S4 − S5, (2.47)
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where,

S1 = − ∂

∂xi

〈
u′iξ
′2〉 ,

S2 = −2 〈u′iξ′〉
∂〈ξ〉
∂xi

,

S3 = −2sL〈ξ′σ′〉,

S4 = −2sLηM

〈
ξ′
(
∂2ξ

∂x2i
− ∂ lnσ

∂xj

∂ξ

∂xj

)′〉
,

S5 = −2sLηM

〈
ξ′
(
∂ui
∂xj

σiσj
σ

)′〉
.

The terms on the right-hand side of Eqn. (2.47) represent different balances that affect

the variance of fluctuations of ξ′(x, t) and capture various underlying physical processes

taking place in turbulent premixed combustion. These terms are:

S1. Turbulent transport of the scalar variance.

S2. Production of scalar variance by turbulent fluctuations.

S3. This term quantifies the effect of the kinematic restoration. This term is given
by the co-variance of the scalar fluctuations with its fluctuating gradient σ′ =
|∇ξ′|. The co-variance 〈ξ′σ′〉 is, in general, negative, meaning that this term has
a restorative effect on the variance of scalar (Peters, 1988). Thus, fluctuations
induced by turbulent fluctuations are smoothed out by this term.

The effect of kinematic restoration becomes dominant at the Gibson scale. The
Gibson scale `g can be derived through a kinematic balance between the laminar
flame speed and the velocity of an eddy of size r in the inertial range. The velocity
of an eddy in the inertial range is given by u′r

3 ∼ εr. The Gibson length scale is
the scale at which sL = u′r, and noting that ε ∼ u′3`, we get

`g =
s3L
ε

=
(sL
u′

)3
`. (2.48)

For eddies of size ` > r > `g, the flame surface is perturbed, similar to how
a passive surface would be perturbed in the inertial sub-range in non-reacting
turbulent flows. In contrast, for eddies r < `g, the velocity difference across
the flame is smaller than the flame velocity sL and cannot counterbalance flame
propagation effects, and kinematic restoration becomes the dominant mechanism
of dissipation of flame fluctuations.
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S4. This term represents the scalar dissipation. This term represents the co-variance
of ξ′ and the diffusive terms which appear in Eqn. (2.44). Among these terms,
the most dominant term is the first term and is referred to as scalar dissipation.
This term is dependent on the advection-diffusion balance of scalar variance.

This effect becomes dominant at the so-called Obhukov-Corrsin length scale
based on the Markstein diffusivity, and is defined as (Peters, 2001):

ηc =

(
D3
M

ε

)1/4

=

(
(sLηM)3

ε

)1/4

. (2.49)

where, DM = sLηM is the Markstein diffusivity. Recall, for a passive scalar
surface, the equivalent Obhukov-Corrsin length scale was defined in Eqn. (2.36),
where scalar diffusivity D was used instead of Markstein diffusivity DM .

Effects of scalar dissipation becomes dominant for scales below ηOC . In Chapter
6, we show that for Da ∼ O(1) thickened flames are in the passive scalar limit,
and ηc is utilized for determining the inner cut-off of fractal scaling for flames
with finite thickness.

S5. This term depicts the scalar-strain co-variance between ξ′ and flow divergence
induced flame stretch. This term is also restorative and smooths the flame surface
by preferentially stretching the flame surface. This term comes into effect at the
Markstein length ηM (Peters, 2001).

The terms S3, S4, and S5 in Eqn. (2.47) for the variance of ξ′ are unknown. Equation

(2.47) cannot be solved without obtaining the closure of these terms. In our discussion

of the unknown terms, we stressed the different range of scales at which these effects

come into effect. Thus, we introduce the two-point correlation of ξ′ as suggested

by Peters (1992). The two-point correlation allows us to understand the nature of

fluctuations in a scale-dependent manner and make considerations for the physical

effects taking place at these scales.
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2.2.2.2 Scalar two-point correlation and the spectrum function

The two-point auto-correlation of scalar fluctuations ξ′(x, t) is defined as:

Rξ(r, t) ≡ 〈ξ′(x+ r, t)ξ′(x, t)〉. (2.50)

We assume that the conditions of isotropy and homogeneity are satisfied such that

Rξ(r, t) is a function of r = ||r|| only. Peters (1992) derived the evolution equation

for the autocorrelationRξ(x, t) assuming standard methods of homogeneous turbulence

(see Batchelor, 1953):

∂Rξ

∂t
+ 2

∂〈u′i(x + r, t)ξ′(x, t)ξ′(x+ r, t)〉
∂ri

+ 2sLS3 + 2DMS4 + 2ηMS5 = 0, (2.51)

where,

S3(r, t) ≡ −〈ξ′(x+ r, t)σ′(x, t)〉,

S4(r, t) ≡ −
〈
ξ′(x+ r, t)

(
∂2ξ(x, t)

∂x2i
− ∂ lnσ(x, t)

∂xj

∂ξ(x, t)

∂xj

)′〉
,

S5(r, t) ≡ −
〈
ξ′(x+ r, t)

(
∂ui(x, t)

∂xj

σi(x, t)σj(x, t)

σ(x, t)

)′〉
.

Note that the terms S3, S4 and S5 appearing in Eqn. (2.47) appear in Eqn. (2.51) as well

in the form of two-point co-variance.

Introducing the Fourier transform of the auto-correlation R̂ξ(k, t), we obtain

R̂(k, t) =
1

(2π)3

∫
V (r)

R(r, t)e−ik·rdr,
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where the integration is taken over the correlation space. The scalar spectrum function

Γ(k, t) is then defined as:

Γ(k, t) = k2
∮
R̂(k, t)dΩ = 4πk2R̂(k, t), (2.52)

where, dΩ is the solid angle and k = ||k||. Finally, Fourier transform of Eqn. (2.51)

then leads to the evolution equation for the scalar spectrum function (Peters, 1992):

∂Γ(k, t)

∂t
−T (k, t) + 4πk2

[
2sLŜ3(k, t) + 2sLηM Ŝ2(k, t) + 2ηM Ŝ3(k, t)

]
= 0. (2.53)

Here, T (k, t) is the Fourier transform of the triple correlation 〈u′i(x+r, t)ξ′(x, t)ξ′(x+

r, t)〉 and indicates the transfer of scalar fluctuations from one wavenumber to another

in the spectral space.

In order to obtain closure for T (k, t), we use a gradient transport hypothesis introduced

by Pao (1965, 1968), which is written as:

T (k, t) = −∂W (k, t)

∂k
, (2.54)

where,

W (k, t) = C−1s ε1/3k5/3Γ(k, t). (2.55)

Here, Cs is a constant for the scalar spectrum presumed to be universal. We note that

above assumptions are dimensionally correct which can be verified by noting that the

dimensions of the scalar spectrum function Γ is [ξ2]/s, dimensions ofW is [ξ2]/ms2 and
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for T (k, t) is [ξ2]/s2. In Eqn. (2.51), S3(r, t) and S4(r, t) contain derivative of ξ2, their

Fourier transform should be proportional to k and k2 respectively. The term S5(r, t)

contains gradient of velocity with dimension s−1, which means its Fourier transform

should contain term proportional to ε1/3. Simple dimensional argument suggests that

the following relationship for the Fourier transform must hold:

8πk2Ŝ3 = c3C
−1
s kΓ(k, t)

8πk2Ŝ4 = c4C
−1
s k2Γ(k, t) (2.56)

8πk2Ŝ5 = c5C
−1
s ε1/3k5/3Γ(k, t)

where, c3, c4 and c5 are empirical constants. Thus, Eqn. (5.4) can be re-written as a

linear differential equation:

Cs
∂Γ

∂t
+ ε1/3

(
5

3
k2/3Γ + k5/3

∂Γ

∂k

)
+ c3sLkΓ + c4sLηMk

2Γ + c5ηMε
1/3k5/3Γ = 0.

(2.57)

Solving Eq. Eq15-SpectrumDiffEqn using the method of characteristics, we obtain

(Peters, 1992):

Γ(k, t) = H(k − k`)k−5/3 exp
[
−3c3(lGk)1/3

]
exp

[
−3

4
c4(lck)4/3

]
exp (−c5ηMk) ,

(2.58)

where,H = H(k − k`) is the Heaviside function such thatH = 0 if k < k` andH = 1

if k > k`. This is done to introduce a cut-off in the small-wavenumber range as there is

no universal form for the small-wavenumber or the large scales in turbulent flows.
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Figure 2.6: Schematic of the compensated spectrum function k5/3Γ(k) associated with
flame fluctuations ξ′ as a function of the non-dimensional wavenumber. We
note that the spectrum decays exponentially through the additional term in
Eqn. (5.5). The pertinent length scales are marked for clarity, where ` is
the integral scale, `g is the Gibson scale, ηc the Corrsin scale and ηM the
Markstein length.

The spectral closure of the terms S3, S4, and S5 involving simple dimensional

arguments, as discussed above, was first proposed by Peters (1992). The spectral closure

has since then been well-substantiated and remains very influential in the combustion

literature (Wirth and Peters, 1992; Collins, 1995; Chaudhuri et al., 2011).

The specific form of the spectrum Γ(k) has many interesting implications. First, the

scaling of fluctuations at large scales (r >> `) depends on anisotropic effects such as

mean shear in the flow, flame orientation, flame surface instabilities such as Darrieus-

Landau instability, and so on. The scaling of the spectrum at large scales would be

non-universal and depend on the specific configuration of the experiments.

Second, we observe that for scales smaller than integral scale and larger than Gibson

scale (` > l > `g), the spectrum function scales as Γ(k) ∼ k−5/3. This is the
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classical Kolmogorov scaling for the velocity field. In other words, for this intermediate

range of scales, inertial range velocity fluctuations induce fluctuations on the flame

surface, which depict Kolmogorov’s scaling. The effect of turbulence is thus limited to

perturbing the flame surface without affecting any of the physical balances inherent to

the flame dynamics. The flame fluctuations are thus analogous to fluctuations induced

on passive scalar surfaces in non-reacting turbulent flows in the inertial sub-range.

Third, for scales below the Gibson scale (r < `g), the k−5/3 scaling is no longer valid.

This is a consequence of the restorative effect of flame propagation, which leads to

a much steeper exponential decay in the spectra. The exponential decay becomes

increasingly stronger as the effects of scalar dissipation and scalar-strain co-variance

come into effect as smaller scales are approached.

2.2.2.3 Higher-order statistics and intermittency in turbulent premixed flames

Sreenivasan (2004) noted the limited attention afforded to the role of small-scale

intermittency in the study of turbulent combustion. He further observed that in

the very few studies on this matter, appropriate considerations were not made for

differentiating between the effects of small-scale and large-scale intermittency. Large-

scale intermittency arises due to flow unsteadiness in the transitional flows. Despite

these gaps, dissipation-range intermittency has received some attention. For instance, it

is quite well-known that the scalar dissipation rate conditioned on some scalar variables

such as temperature, mass fraction show a considerable departure from a Gaussian

behavior (Karpetis and Barlow, 2002; Hamlington et al., 2012; Chaudhuri et al., 2017).
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Similarly, enstrophy and turbulent kinetic energy dissipation have also been shown

to be intermittent, with their PDFs possessing wide-tails (Hamlington et al., 2012).

The deviation from Gaussianity of dissipation quantities in much of these studies was

explained using the log-normal model (Hamlington et al., 2012).

Till now, studies on turbulent premixed combustion have focussed mostly on

intermittency in the dissipation range. So, very little is known regarding the small-scale

intermittency, whose effects are most pronounced in the inertial sub-range. Further, the

log-normal model is used quite often in explaining dissipation range intermittency and

models on turbulent combustion in general (Poinsot and Veynante, 2005). However, the

log-normal model is based on the central-limit theorem. Mandelbrot (1972) explained

that the central-limit theorem can not describe extreme events, which determine the tails

of the PDF of intermittent variables, and the associated higher-order moments.

Thus, there is a need for demarcation among large-scale, small-scale, and

dissipation-range intermittency along with improved modelling approaches for studying

intermittent statistics. Further, the exact nature of cross-over behavior from small-

scale to dissipation range intermittency in turbulent premixed flames is another open

question. Further, the effect of small-scale intermittency on flame-relevant quantities

is of practical interest. Extreme fluctuations over small scales would evidently lead to

extreme fluctuations in quantities that depend on the gradient of the fluctuations in the

flame position, such as flame stretch, strain-rate, turbulent speed closures, etc. If not

accounted for properly, these extreme fluctuations would dissuade any effort towards

the development of theories associated with higher-order quantities.
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Despite the lack of direct experimental confirmation, the effect of small-scale

intermittency on premixed flames has been considered in some theoretical modelling

studies. For instance, infinitely thin premixed flames (Da ≈ 102) have been shown to

possess fractal dimension of D = 7/3 (Gouldin, 1987; Kerstein, 1988; Gülder et al.,

2000). Kerstein (1991) considered the effect of small-scale intermittency of turbulent

kinetic energy dissipation on infinitely thin flames and derived correction to the limit of

D = 7/3. Gülder (2007) explicitly accounted for the effect of intermittency on scalar

transport in the preheat zone of thickened flames and derived turbulent flame speed

model. The flame speed model showed good experimental agreement. Similarly, the

role of small-scale intermittency have been thought to affect the flame extinction and

re-ignition probabilities (Meneveau and Poinsot, 1991; Kerstein, 2002) and contribute

to deflagration-to-detonation transition (Pan et al., 2008). However, the number of

investigations till now is very limited.

Finally, a common way of characterizing intermittent fields and quantities is through

the use of the multifractal model. Nevertheless, very few studies have adopted this

approach in the study of turbulent combustion. Saha et al. (2014) characterized

the intermittent nature of the flame-length ratio of an expanding flame through the

multifractal spectrum. They noted that multifractal spectrum remained self-similar at

different radii of propagation and concluded universality in the multiplicative process

control the dynamics of the expanding flame. Raghunathan et al. (2020) determined the

multifractal spectrum of partially premixed flame during the state of thermoacoustic

instability. They depicted that the multifractal spectra oscillated periodically with

the pressure oscillations, quantifying the effect of large-scale acoustic forcing on the
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multiplicative processes governing the flame evolution.

2.2.3 Large-scale flame response

The response of turbulent premixed flames is not always limited to the interaction

between turbulent eddies and flame time scales. A number of large-scale (larger

compared to turbulent time scales) processes can alter the flame response. Thus, the

large-scale dynamics of the reacting flow field is controlled by the balance between

various mean flow processes: the susceptibility of the background flow to flow

instability (Rogers, 1956; Poinsot et al., 1987; Schadow and Gutmark, 1992), alteration

in the flow stability due to combustion (Lieuwen, 2012; Michalke, 1971; Monkewitz and

Sohn, 1988; Yu and Monkewitz, 1990; Emerson and Lieuwen, 2015), manifestation of

kinematic restoration over acoustic length scales (Peters, 1992, 1999; Shanbhogue et al.,

2009a; Hemchandra et al., 2011), intrinsic flame instability such as Darrieus-Landau

or Rayleigh-Taylor instability (Clanet and Searby, 1998; Creta et al., 2011; Law and

Sung, 2000) and thermoacoustic instability (Lieuwen, 2012; Sujith and Unni, 2020). As

such, in the absence of flow instabilities, the balance between the characteristic scales

(time and length) of the flow and the flame leads to various types of flame structures

as indicated by the flame regimes in a Borghi diagram, discussed earlier (Borghi, 1985;

Peters, 2001).

In turbulent combustion systems, flow instabilities play a crucial role in flame

stabilization. So, flow instabilities are induced in practical combustors through flame

holding mechanisms such as bluff body or dump plane, such that an unstable shear
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layer is created. The stability of the shear layer breaks down and leads to pronounced

periodic vortex shedding through Bénard-von Kárman (BVK) instability. The periodic

vortices create recirculation zones where combustion takes place. This process is thus

responsible for fluctuations in the heat release rate response in such systems (Schadow

and Gutmark, 1992; Poinsot et al., 1987).

Many studies have shown that measuring the harmonic flame response can shed

light on the effect that different large-scale flame-flow processes have on the overall

flame response (Shanbhogue et al., 2009a; Preetham et al., 2007; Shin and Lieuwen,

2012, 2013; De Rosa et al., 2016; Humphrey et al., 2018). Similarly, the effect of

turbulence on the large-scale flame response is also important. For bluff-body stabilized

conical flames in the limit of corrugated flamelet and thin reaction regime, increase

in turbulence intensity have shown to (1) increase the thickness of the preheat zone,

(2) broaden the strain rate & curvature probability density functions, (3) increase the

flame area ratio, and (4) increase & saturate the flame brush thickness (Chowdhury

and Cetegen, 2017; Chowdhury et al., 2017). Further, the average corrugated flame

burning speed depends crucially on the turbulence intensity, with quadratic, 4/3 power

law, and linear dependence at low, intermediate, and high turbulence levels, respectively

(Aldredge and Williams, 1991; Aldredge, 2006, 2017). Kinematic restoration is

strengthened with increasing turbulence, as is evidenced by the decrease in the

ensemble-averaged flame fluctuations in numerical (Preetham et al., 2007; Shin and

Lieuwen, 2012, 2013) and experimental (Humphrey et al., 2018; Humphrey and

Lieuwen, 2017) studies. Figure 2.7(a) shows the increase in flame smoothing for

a turbulent simulation (solid red line) and Fig. 2.7(b) shows the decrease in flame
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wrinkle amplitude, |〈ξ̂(y, ff )〉|. The effect of kinematic restoration is indeed significant

as it can alter the gain and phase of the flame transfer function considerably through

leading order corrections in the asymptotic analysis of the heat release rate response

(Hemchandra et al., 2011).

The imposition of harmonic excitation, self-excited or external, on the flame-turbulence

interaction brings in a characteristic acoustic length and time scale in addition to

the range of length and time scales present due to the underlying flow turbulence.

Consequently, the flame response to acoustic (Jones et al., 2010; Bellows et al., 2007;

Durox et al., 2009; Fleifil et al., 1996) and vortical (Chaparro et al., 2006; Balachandran

et al., 2005; Kaufmann et al., 2002; Durox et al., 2005) disturbances have been

found to be highly nonlinear functions of the frequency and amplitude of the imposed

disturbances. Further, the harmonic flame response is of practical importance because

of the propensity of premixed flames to couple with acoustic fluctuations in confinement

and leading to the state of thermoacoustic instability.

The harmonic flame response, measured at the amplitude and phase of the frequency

of forcing or excitation ξ̂(ff ), also depends on the frequency (or wavelength) of the

imposed acoustic disturbances (Hemchandra et al., 2011). For instance, the kinematic

restoration will cause the random fluctuation in the flame position to tend to the baseline

imposed by the harmonic acoustic disturbances, as indicated by the dotted blue line in

Fig. 2.7(c). Further, the baseline curvature can locally increase/decrease the turbulent

flame consumption speed (Humphrey et al., 2018). For bluff-body stabilized flames,

Shanbhogue et al. (2009a) found that the harmonic flame response is a nonlinear
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Figure 2.7: Effect of harmonic forcing and turbulence on the large-scale flame
dynamics. (a) Flame sheet anchored on an oscillating bluff-body ensemble-
averaged at different time instances. (b) Increase in the mean flame position,
ξ̄(y, t), and decrease in the flame flame wrinkle amplitude |〈ξ̂(y, f0)〉|, with
downstream distance. (c) Cartoon depicting the effect of wavelength of
harmonic disturbances on the mean flame response. (d) Typical response
of a bluff-body stabilized flame. Adapted from (a, b) Shin and Lieuwen
(2012), (c) Hemchandra et al. (2011) and (d) Shanbhogue et al. (2009a)
with permission from Elsevier.

function of the downstream distance as illustrated in Fig. 2.7(d). The flame response

in the vicinity of the bluff-body linearly increases with the downstream distance as

flame holding mechanisms dominate the response. The flame response reaches its peak

due to constructive interference between convection of vortical flow disturbances and

propagation of coherent flame wrinkles along the flame front. Further downstream, in

the absence of any disturbance generating mechanism, the flame response decays as

66



the strength of vortical disturbances and coherent wrinkles diminish due to kinematic

restoration and flame stretch effects (§2.2.2.1).

Thus, in Chapter 4, we probe the harmonic flame response of the V-flame at various

experimental conditions and study the interaction of convecting disturbances on the

flame surface, measure the local flame behavior, and quantify their effect on the large-

scale harmonic heat release rate response.

2.3 THERMOACOUSTIC INSTABILITY

In this section, we briefly review the underlying mechanisms which lead to the

phenomena of thermoacoustic instability. We also discuss the manner in which the

transition takes place from a stable state of combustor operation to unstable limit

cycle oscillations and how acoustic fluctuations affect the heat release rate response.

Finally, we also discuss some control strategies for controlling limit cycle oscillations

in unstable, turbulent combustors.

2.3.1 Wave equation and acoustic energy balance in reacting flows

In order to understand the coupling mechanisms between heat release rate and acoustic

pressure oscillations, we need to understand the manner in which combustions alters

the acoustic variables in combustors. For the present purposes, we consider a one-

dimensional constant area, incompressible reacting flow system with very low mean

flow velocity and negligible viscous stresses. Further, we assume that the fluctuations in
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p′, u′ and q̇′ are negligible in comparison to their mean values, indicated with (̄). Under

these assumptions, the momentum and energy equation can be written as (Poinsot and

Veynante, 2005):

∂u′

∂t
= −1

ρ

∂p′

∂x
, (2.59)

1

γp̄

∂p′

∂t
+
∂u′

∂x
=
γ − 1

γp̄
q̇′. (2.60)

Here, ρ is the density of the medium and γ is the ratio of specific heat capacities. Partial

differentiation of Eqn. (2.59) with respect to x and Eqn. (2.60) with respect to t leads

to the nonlinear wave equation:

∂2p′

∂x2
− c20

∂2p′

∂x2
= (γ − 1)

∂q̇′

∂t
, (2.61)

where, c0 =
√
γp̄/ρ is the adiabatic speed of sound. Thus, it is evident from Eqn. 2.61

that the presence of flames in confinement alters its acoustic field. In order to understand

the manner in which acoustic disturbances grow, we consider the evolution of acoustic

energy. The acoustic energy density is defined as: e = ρu′2/2 + p′2/2ρc20. Multiplying

Eqn. (2.60) with p′ and Eqn. (2.59) with u′ and adding the resulting equations lead to

the evolution equation of the acoustic energy balance:

∂

∂t

(
1

2
ρu′

2
+

p′2

2ρc20

)
+

∂

∂x
(p′u′) =

γ − 1

γp̄
p′q̇′. (2.62)

This equation is known as the acoustic energy corollary as it is obtained as a

consequence of the momentum and energy equation. The first term in the equation
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above implies the time evolution of acoustic energy based on a balance between the

second term representing the acoustic flux and the third term, the acoustic source. In

order to see whether acoustic energy will grow or decay over time, Eqn. (2.62) needs

to be integrated over the combustor volume (V ) and time. We have considered only

one-dimensional flow. However, the formulation above can easily be extended over

any general three-dimensional flow, given that the assumptions remain unchanged. For

averaging over time, we consider the fluctuations to be harmonic with frequency f such

that the time period is T = 1/f . Thus, the overall balance equation is expressed as:

d

dt

∫
V

∫
T

(
1

2
ρu′

2
+

p′2

2ρc20

)
dtdV +

∫
A

∫
T

p′u′dtdA =
γ − 1

γp̄

∫
V

∫
T

p′q̇′dtdV. (2.63)

The second term indicates the acoustic flux losses from the boundary of the control

volume. Thus, the equation above lays down the general condition for the growth or

decay of acoustic energy for a reacting flow inside a combustion chamber based on the

balance between the acoustic flux loss across the boundary and energy influx from the

source term.

2.3.2 The Rayleigh criteria and its extensions

Rayleigh (1878) was the first to qualitatively state the condition for the growth of

acoustic energy in reacting flows. He explained that if heat is added during local

maximum or taken away during a local minimum of the pressure oscillations, acoustic

energy will grow inside the duct. The acoustic energy will decay if the relations are

reversed. The Rayleigh criteria allude to a positive correlation between heat release rate
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and pressure fluctuations as the source of thermoacoustic instability, which is expressed

as:

γ − 1

γp̄

∫
V

∫
T

p′q̇′dtdV > 0. (2.64)

The correlation expressed through p′q̇′ is referred to as the Rayleigh index, and the

condition is used extensively for providing bounds of thermoacoustic stability (see

Lieuwen and Yang, 2005; Poinsot, 2017; Juniper and Sujith, 2018, for a review).

However, as can be observed from Eqn. 2.62, just a positive correlation between p′ and

q̇′ is often not enough, and one needs to explicitly account for acoustic efflux across the

boundary. Thus, an extended criteria implying the requirement for source term being

greater than loss term for thermoacoustic instability, can be expressed as:

γ − 1

γp̄

∫
V

∫
T

p′q̇′dtdV >

∫
A

∫
T

p′u′dtdA. (2.65)

Equation (2.65) is referred to as the extended Rayleigh criteria. Many studies have since

then extended the criteria for thermoacoustic instability for more general cases such

as combustion with a mean flow and entropy fluctuations (Chu, 1965; Myers, 1991;

Karimi et al., 2008) and for cases when the underlying eigenvalues of the system are

non-orthogonal (Nagaraja et al., 2009; Sujith et al., 2016; Magri et al., 2020).

2.3.3 Mechanisms of thermoacoustic instability

In general, thermoacoustic instability develops when acoustic fluctuations arising from

heat release rate fluctuations (Eqn. 2.61) get reflected from combustor walls and perturb
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the flame surface to close the feedback loop. If the phase at which the reflected acoustic

waves match the phase of fluctuations in the heat release rate and the losses are low (Eq-

2.65), thermoacoustic instability develops. Such feedback usually results in periodic

limit cycle oscillation of acoustic pressure and heat release rate at a frequency close to

one of the acoustic eigenmodes of the combustor.

There are many different mechanisms through which laminar and turbulent flames are

perturbed. These different mechanisms are often concomitant in laminar and turbulent

combustors. These different mechanisms arise because the heat release rate fluctuations

are related to the spatial structure of the laminar or turbulent flames. The overall heat

release rate depends on the rate of burning of reactants and the area of the flame. The

rate of burning can be expressed as ṁ = ρsc, where ρ is the density of reactants and sc

is the reaction consumption speed of the flame. Thus, the overall heat release rate can

be defined as (Lieuwen, 2012):

q̇(t) =

∫
A

ρschRdA, (2.66)

where hR is the heat released per unit mass of reactants consumed.

It is evident that any factor causing fluctuations in any of these quantities in Eqn. (2.66)

will cause fluctuations in the heat release rate. The heat release rate fluctuations can

then couple with acoustic pressure fluctuations to lead to thermoacoustic instability.

We briefly evaluate some of the mechanisms through which thermoacoustic instability

develops in gas turbine relevant conditions.
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Acoustic pressure coupling: Acoustic pressure and velocity perturbations directly affect

the heat of reaction, density of unburned reactants, flame speed and lead directly to

fluctuations in the heat release rate.

Velocity coupling: Reacting flows are often subjected to flow instabilities or intrinsic

instabilities. Flow instabilities can be due to vortex shedding past a flame holder such

as V-gutter in afterburners or at the point of sharp area expansion in dump combustors

(Poinsot et al., 1987; Schadow and Gutmark, 1992; George et al., 2018) or helical

instabilities in swirling flows (Bellows et al., 2007; Candel et al., 2014). Similarly,

reacting flames also depict flame instabilities known as Darrieus-Landau instability due

to flow dilatation and density gradients at the flame interface (Clanet and Searby, 1998;

Creta et al., 2011). In either of these cases, instabilities can lead to fluctuations in the

burning area and flame speed, which drive heat release rate fluctuations. Often, this

type of coupling is related to the mutual synchronization of the oscillatory reacting field

with the acoustic field (Pawar et al., 2017, 2019).

Equivalence ratio fluctuations: In partially premixed combustion, acoustic fluctuations

can travel upstream along the fuel and air line. These acoustic fluctuations can then

cause fluctuations in the equivalence ratio. These equivalence ratio fluctuations then

cause fluctuations in the heat release rate and also flame speed oscillations (Lieuwen

and Zinn, 1998; Lieuwen et al., 1998; Shreekrishna et al., 2010).

Intrinsic instability: In the mechanisms discussed above, thermoacoustic instability

develops in a manner where feedback is established between heat release rate

fluctuations and acoustic eigenmodes. In such a case, a clear causal relationship cannot
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be discerned. In contrast, Hoeijmakers et al. (2014) and Emmert et al. (2015) studied

flame-acoustic in anechoic combustors and found that turbulent flames can depict flame-

intrinsic feedback. The intrinsic feedback is established by a flame reacting to acoustic

velocity fluctuations created by its own heat release rate fluctuations, implying that

thermoacoustic instability can develop even when there are no acoustic reflections and

very large acoustic losses.

It is quite difficult to pinpoint exact mechanisms responsible for thermoacoustic

instability. What is, however, known is that the interactions between turbulence,

combustion, and acoustic are highly nonlinear and complex. These complex

interactions have been known to lead to highly nonlinear phenomena such as

thermoacoustic intermittency, quasiperiodicity, chaos, and n-period oscillations

(Sterling, 1993; Kabiraj and Sujith, 2012; Nair et al., 2014; Juniper and Sujith, 2018).

The highly nonlinear nature of the problem has necessitated the use of different

approaches in making the problem tractable. These include the use of flame transfer

and describing functions (Schuller et al., 2020), non-normal and adjoint-based models

(Sujith et al., 2016; Magri, 2019), distributed time-lag models (Polifke, 2020) and

complex systems approach (Sujith and Unni, 2020) in characterizing and controlling

thermoacoustic oscillations.

2.3.4 Bifurcations and transition to thermoacoustic instability

In the previous sections, we discussed the various mechanisms which underlie the

phenomenon of thermoacoustic instability. The means through which the state of
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instability is achieved is also of great practical relevance. The transition to the state of

thermoacoustic instability is achieved when some control parameter is changed. For

instance, thermoacoustic instability is observed in gas turbine combustors in power

plants when the equivalence ratio or flow velocity is altered to deal with an increase

or decrease in power demand. Thus, in general, one is concerned with the bifurcation

from a stable state of combustor operation to a state of limit cycle oscillation.

2.3.4.1 Hopf bifurcations to limit cycle oscillations

Thermoacoustic instability is generally considered to be a result of Andronov-Hopf, or

simply, Hopf bifurcation, where the system transitions from a steady state to limit cycle

oscillations. This can take place in two ways. Depending upon the nonlinearity in the

system, a change in a control parameter leads to the loss of linear stability of the steady-

state, at which point, the system displays limit cycle oscillations, and the amplitude of

oscillations gradually grows (Fig. 2.8a). A change in the parameter in the opposite

direction leads to a stable state gradually becoming linearly stable, and the oscillations

die down. This is referred to as supercritical Hopf bifurcation (Strogatz, 2018).

On the other hand, if there are significant nonlinearities in the system, a change in

parameter can lead to the stable state becoming nonlinearly unstable such that there is

an abrupt jump to a large amplitude limit cycle state at the Hopf point (Fig. 2.8b). A

mere change in the parameter in the opposite direction is not enough to attain the steady-

state, and the parameter requires to be changed significantly past the Hopf point to attain

the steady-state. The point at which the state of limit cycle oscillations jump back to
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Figure 2.8: Normal form of (a) Supercritical and (b) subcritical Hopf bifurcation for a
Van der Pol oscillators depicting the change in the amplitude of oscillations
with a change in control parameter µ. Adapted from Ananthkrishnan et al.
(1998) with permission from Elsevier.

a steady-state is known as the fold point (Fig. 2.8b). This entire scenario is referred

to as subcritical Hopf bifurcation (Strogatz, 2018). Practical combustors often depict

supercritical and subcritical Hopf bifurcation to limit cycle oscillations (Lieuwen, 2002;

Campa and Juniper, 2012; Etikyala and Sujith, 2017; Roy et al., 2021; Singh et al.,

2021).

2.3.4.2 Intermittency route to limit cycle oscillations

The paradigm of Hopf bifurcation is frequently invoked in experimental and modelling

studies of laminar and turbulent combustors. However, there are inherent problems in

its usage while discussing transitions in turbulent thermoacoustic systems.

The state of turbulent combustion system during stable combustor operation is never

steady in reality. Turbulent flames generate sound through non-steady volumetric

expansion and convective entropy modes (Strahle, 1971, 1978; Candel et al., 2009).

The radiated sound lacks any characteristic time scale, appears noisy, and possesses a
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Figure 2.9: Typical bifurcation diagram showing amplitude p′rms as a function of the
equivalence ratio φ as observed in a bluff-body stabilized combustor. State
(i) corresponds to the state of combustion noise, (ii-v) intermittency and (vi)
thermoacoustic instability. Figure is adapted from George et al. (2018) with
permission Cambridge University Press.

broadband signature (Fig. 2.9i). The sound generated during combustion is colloquially

referred to as combustion noise (Candel et al., 2009). However, later studies revealed

that combustion noise displays scale invariance (Murugesan and Sujith, 2015) and

possesses signatures of multifractality (Nair and Sujith, 2014). Nair et al. (2013)

and Tony et al. (2015) showed that the pressure fluctuations during combustion noise

are, in fact, deterministic, characterized with moderate to high dimensional chaotic

fluctuations.

A continuous variation of control parameters such as equivalence ratio or Reynolds

number leads to a transition from combustion noise to thermoacoustically unstable

combustor operation. In contrast to the scenario of Hopf bifurcation, the transition

is often associated with an intermediate state known as thermoacoustic intermittency

(Nair et al., 2014). Thermoacoustic intermittency comprises of a state where bursts of

periodic oscillations appear interspersed with chaotic oscillations (Fig. 2.9ii-v). Note
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that the description of the state of thermoacoustic intermittency is perfectly consistent

with the statistical definition of intermittency we have used in the previous sections.

In the present case, the extreme fluctuations take the form of large-amplitude bursts

of periodic oscillations. During the transition to thermoacoustic instability, there

is a gradual loss in multifractality associated with the acoustic pressure and HRR

oscillations (Nair and Sujith, 2014; Unni and Sujith, 2015). In other words, there is

a transition from a state possessing multiple time scales to one possessing a single

characteristic time scale.

2.3.5 Spatiotemporal behavior during intermittency route to thermoacoustic
instability

The flow field also depicts many interesting characteristics when the combustor

transitions to limit cycle oscillations through intermittency. Let us consider the case

of a bluff-body stabilized turbulent combustor. During combustion noise and epochs

of aperiodic oscillations during intermittency, small vortices are shed aperiodically, and

the heat release rate field remains spatially incoherent (George et al., 2018). In contrast,

during thermoacoustic instability and periodic bursts during intermittency, vortices are

shed periodically from the combustor’s backward-facing step. These vortices carrying

the air and fuel mixtures develop into large-scale coherent structures, which collide with

the bluff-body and combustor walls. The collision results in intense mixing zones and

leads to regions with intense heat release rate (George et al., 2018; Premchand et al.,

2019b). Raghunathan et al. (2020) measured the multifractal spectrum from the spatial

distribution of wrinkles on the flame surface at different states during the transition.

77



They showed that the span of the multifractal spectra increases during thermoacoustic

instability, indicating the significant increase in the spatial scales over which HRR

fluctuations occur (Raghunathan et al., 2020).

2.3.6 Control of thermoacoustic instability

In the foregoing discussion, we highlighted the mechanisms through which

thermoacoustic instability develops and characterized the states obtained during the

transition to thermoacoustic instability. In this section, we briefly review some of

the practical approaches utilized for abating thermoacoustic instability. The different

approaches used for controlling thermoacoustic instability can broadly be classified into

evasion/avoidance strategies, and passive and active control and evasion strategies.

The first strategy concerns the knowledge of the gas turbine stability margins and

operates the combustor at parametric conditions, which guarantees stable operation.

While simple in principle, knowing the stability of turbulent combustors is challenging

due to many nonlinear effects arising in complex geometries of real-time combustors.

A simpler way to evade thermoacoustic states in combustors is through the use of

measures capable of providing a warning when the state of the combustor is about to

change. This can be achieved by online monitoring of signals from the combustors,

such as measurements of acoustic pressure, temperature, etc. These measurements can

then be processed quickly using statistical tools for the prediction of thermoacoustic

instability.

Nair et al. (2014) showed that the state of thermoacoustic intermittency often presages
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the state of full-blown thermoacoustic instability. Since the transition state shows

a growing signature of periodicity (Fig. 2.9ii-v) as one approaches thermoacoustic

instability, they were able to use statistical measures which can detect the decrease

in fractal content of the signal. As the state of combustion noise has a multifractal

signature, the moments of acoustic pressure signal do not converge and depict power-

law with measurement scale (Nair and Sujith, 2014). As the periodic content of the

signal increases during the transition, the multifractal signature is lost. As a result,

Nair and Sujith (2014) were able to use the power-law exponent of the variance

of the pressure signal, known as the Hurst exponent, to quantify the change from

fractal to periodic nature of the signal. They found that the Hurst exponent decreased

to zero well before the system transitioned to full-blown thermoacoustic instability.

Thus, statistical measure of Hurst exponent was able to forewarn an impending

thermoacoustic instability. Since then, a number of such measures have been found to be

capable of forewarning the transition to thermoacoustic instability, such as recurrence

rate, Shannon rate and trapping time of the signal (Nair et al., 2014; Gotoda et al.,

2014), centrality measures of networks constructed from time series (Murugesan and

Sujith, 2016; Gotoda et al., 2017; Godavarthi et al., 2017), symbolic logic of pressure

signals (Unni et al., 2015) and machine learning-based approaches (Kobayashi et al.,

2019; Sengupta et al., 2021). The advances in the use of early warning systems have

been reviewed very recently in Pavithran et al. (2021).

We intend to extend the use of the Hurst exponent measured from the velocity field in

the combustor to optimize passive control strategies. So, we focus on approaches that

are very easy to implement and can be used as a testing ground for devising measures
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based on statistical information from the flow field of the combustor.

In general, passive control strategies are implemented through a change in some aspect

of the combustor (geometry, injector arrangement, dampers, etc.) independent of the

operation of the combustor (Zhao and Li, 2015). Passive control strategies are widely

implemented in practical combustion systems as they require low maintenance and

are highly durable. In contrast, active control involves continuously monitoring the

combustor and taking control measures based on the specific state of the system (Zhao

et al., 2018). These involve the use of actuators and tunable valves for modulating

the primary air, secondary air, and fuel flow rates. Active control through modulation

of flow rate has been successfully used for suppressing thermoacoustic instability

(Langhorne et al., 1990; McManus et al., 1990; Uhm and Acharya, 2005; Hathout

et al., 2002). Modulation of secondary fuel or air relies on the response of high-

speed actuators being robust. Ensuring fast response of actuators at frequencies where

the combustor dynamics are most sensitive to forcing is a challenge. In addition, the

durability of actuators operating in harsh environments of the combustor is another big

factor that has limited the implementation of active control strategies in practical gas

turbines.

Motivated by these limitations, Ghoniem and co-workers (Ghoniem et al., 2005; Altay

et al., 2007, 2010) considered steady injection of secondary air for achieving control in a

dump combustor. Ghoniem et al. (2005) found that the momentum-ratio of the jet to the

main flow above unity leads to a compact flame structure that is less driven by the wake

vortex. Later, Altay et al. (2010) compared the suppression observed during transverse
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and streamwise secondary air injection. For optimum transverse injection, a compact

flame structure anchored upstream of the backward-facing step led to the suppression.

On the other hand, optimum streamwise injection inhibited unsteady vortex formation

at the backward-facing step, leading to suppression.

Next, we consider the importance of the location of secondary air injection. Although

injecting secondary air near the location of flame anchoring leads to suppression, it also

affects the flame stability. Consequently, Ghoniem et al. (2005) and Altay et al. (2010)

used secondary H2 injection to increase flame stability and prevent blow-out. However,

injecting H2 led to higher flame temperatures and increased NOx levels considerably.

Thus, Ghoniem et al. (2005) had to optimize the main flow after the injection of

secondary air and H2 to reduce the temperature inside the combustor and decrease the

NOx levels. Later, Oztarlik et al. (2020) showed that secondary H2 injection in small

fractions alone could suppress thermoacoustic instability.

To bypass the back and forth adjustments in the main and secondary airflow, prevent

flame blow-out, and reduce the complexity involved in maintaining expensive H2

plumbing, we consider steady and unmodulated injection of secondary air away from

the region of flame anchoring. The optimal region for injection can be selected if

we can identify local regions responsible for thermoacoustic instability. Uhm and

Acharya (2005) considered the region of local maxima in HRR to be the optimum

region. In contrast, Ghoniem and co-workers (Ghoniem et al., 2005; Altay et al.,

2007, 2010) rationalized the optimum region as the region of flame anchoring, which

led to flame stabilization problems. In a similar study, Tachibana et al. (2007) used
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a distribution of the Rayleigh index to optimize for the choice of the secondary fuel

injector. Recently, Unni et al. (2018) used network centrality measures derived from

the Pearson correlation coefficient to identify regions of critical importance during

thermoacoustic instability for a bluff-body stabilized combustor. In a follow-up study,

Krishnan et al. (2019a) demonstrated that targeting regions with large network measure

values leads to the most effective control of thermoacoustic instability.

Thus, in Chapter 7, we extend the use of Hurst exponent from a one-dimensional system

to the spatio-temporal field of the combustor for measuring statistics of the velocity

field. Based on the difference in the scaling of statistics of the velocity field, we

optimize for the location of secondary air injection for optimal control. We show how

the predictive capability of the Hurst exponent can be better used for optimizing passive

control.

2.4 INTERIM SUMMARY

In this chapter, we introduced the background on turbulence, turbulent combustion, and

thermoacoustic instability. We emphasized the statistical theory of turbulence due to

Kolmogorov and discussed the broad implications of global and local universality and

the limitations due to the highly intermittent nature of small-scale structures in turbulent

flows. We further clarified the motivation for studying the small-scale phenomenology

of turbulent premixed flames with particular emphasis on the phenomenon of small-

scale intermittency. We also discussed the large-scale response of turbulent flames and

highlighted its importance in the context of thermoacoustic instability. We discussed

82



elementary mechanisms responsible for thermoacoustic instability. We then clarified the

motivation for extending statistical measures based on the flow field of the combustor

for devising optimal passive control strategies.

In summary, we clarified the requirement for analyzing turbulent premixed combustion

in a scale-dependent manner so as to understand small-scale dynamics related

to elementary flame processes and large-scale dynamics related to thermoacoustic

instability, and by extension, their use in devising practical control strategies. We

introduce the experimental setups and diagnostic techniques in the next chapter.
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CHAPTER 3

EXPERIMENTAL FACILITIES AND DIAGNOSTICS

In this chapter, we discuss the facilities used for carrying out experiments on turbulent

premixed flame for studying the dynamics of premixed flames subjected to turbulence

and harmonic forcing. We also describe the bluff-body stabilized combustor utilized for

studying thermoacoustic instability and its passive control.

3.1 TURBULENT V-FLAME FACILITY

The experimental facility1 consists of a combustor open to the atmosphere. The

combustor is equipped to stabilize premixed methane (CH4)-air flame on an oscillating

flame holder. The experimental facility is shown in Fig. 3.1. The experimental

configuration is designed to assess the effect of broadband forcing due to turbulence

and narrowband forcing due to oscillating flame holder on the flame dynamics. The

facility is based on past studies with similar research objectives (Petersen and Emmons,

1961; Kornilov et al., 2007).

The setup consists of a turbulence generator, premixing chamber, seeder, settling

chamber, flame holder coupled to a harmonic driver, and optically accessible

combustion chamber. Air and fuel enter into the premixing chamber through a port

at the bottom. Methane (CH4) is used as the fuel. The premixing chamber is packed

with ball bearings to facilitate thorough mixing of the fuel and air. Premixed air and
1We are thankful to Dr. Luke Humphrey for performing the experiments and Prof. Tim Lieuwen for

graciously providing us with the dataset. The experiments were performed in Ben T. Zinn laboratory at
Georgia Institute of Technology, USA.



Figure 3.1: Turbulent V-flame facility in Ben T Zinn lab in Georgia Tech. The large-
scale and small-scale statistics of flame fluctuations measurement from this
setup is reported in Chapter 4 and 5. Adapted from Humphrey et al. (2018)
with permission from Cambridge University Press.

CH4 enter the settling chamber and pass through a turbulence generator working on a

stator-rotor mechanism and is then guided into the combustion chamber by a nozzle of

exit diameter 36.3 mm. The entry into the combustion chamber is aided by a co-flow

air injected through the co-flow air channel at the bottom of the nozzle. The co-flow is

velocity matched to the main flow and ensues out of an annulus with an outer diameter

of 36.3 mm. The main fuel and air flow rates are controlled using Aalborg GFC-67,

0− 30 m3/min and Omega FMA-5428, 0− 3 m3/min mass flow controller, respectively.

Omega FMA-1843 gas flow and needle valve is used for controlling the air flow.

The flame is ignited by an electrically heated flame holder. The flame holder is a

nichrome wire (0.81 mm, American Wire Gauge 20) and is heated by 6 − 12 V

85



alternating current. The flame holder is suspended 10 mm above the nozzle exit. The

flame holder is coupled to speakers which drive the nichrome wire transverse to the

oncoming jet flow. Two modified speakers (make - Goldwood 90 W) are connected in

parallel and are utilized for oscillating the flame holder at different frequencies with

different forcing amplitudes. The input signal to the speakers is generated using a

function generator and amplified by two linear amplifiers.

The turbulence generator is made up of a fixed stator plate and a rotor plate. The

rotor plate contains several pie shaped slots to modify the blockage ratio. The rotor

plate can be rotated over a 28◦ range. By rotating the rotor, it is possible to change

the blockage ratio from 69% to 97%. The change in the blockage ratio leads to a

change in the turbulent intensity, measured as u′/ūy, in the range of 8% to 36%.

Here, ūy refers to the streamwise mean flow velocity and u′ the turbulent velocity

fluctuations. The uncertainty in measuring the angle of the top plate is ±0.25◦. The

turbulent generator can be controlled independently to change the mean flow velocity

and turbulent intensity. For all the turbulence levels considered in our study, the flames

correspond to either the corrugated flamelet or the thin reaction regime.

3.1.1 Optical diagnostics

Optical diagnostic was performed to determine the flame edges and velocity field.

Titanium oxide (TiO2) particles having a nominal diameter of 1 µm are used for seeding

the flow. The seeding is achieved by a cyclone seeder through which a portion of the

main air is diverted before the premixing plenum. The seeded flow enters upstream of
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Figure 3.2: Arrangement of the optical diagnostic setup for measuring the flame
surface and velocity field using TiO2 Mie scattering and PIV. Adapted from
Humphrey et al. (2018) with permission from Cambridge University Press.

the settling chamber as can be seen in Fig. 3.1. Only the main flow is seeded. Flame

edge is detected using TiO2 Mie scattering, and the velocity field is quantified through

particle image velocimetry (PIV). Flame images are acquired using Photron Fastcam

SAS high-speed video camera with a Nikon Micro-Nikkor f = 55m f /2.8 lens. For

experiments conducted at ff = 200 Hz and 750 Hz, the resolution was set at 768× 848

pixels, and for those at ff = 1250 Hz, it is set at 640 × 848 pixels. The camera and

laser pulse are controlled together by a dual head and are triggered simultaneously. A

frequency-doubled Litron Nd:YLF with a wavelength of 527 nm is used for producing

the laser sheet. The laser, associated optics, and the camera arrangement are depicted

in Fig. 3.2.

Experiments are conducted for three forcing frequencies ff = 200 Hz, 750 Hz and 1250

Hz to understand the effect of forcing at low, moderate and higher forcing frequency.

For understanding the effect of flow conditions, experiments are conducted at two

nominal mean flow velocities: Ū = 5 m/s and 8 m/s; and four turbulence levels varying

in the range: u′/ūy ≈ 8 − 35%. The experimental conditions were kept so as to avoid

the formation of cellular instabilities in the flame. The choice of forcing frequency
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Figure 3.3: The turbulence intensity profile measured at a downstream distance of y =
1.5 mm above the flame holder for ff = 200 Hz and for four different
turbulence levels at a nominal velocity of (a) 5 m/s and (b) 8 m/s. Here r is
the radius of the nozzle exit.

corresponds to the resonant frequency of the forcing system. At other frequencies, the

amplitude of oscillations of the flame holder were not high enough to have a reasonable

signal-to-noise ratio. The amplitude of forcing is determined by obtaining the time

series of the flame holder position and evaluating its amplitude at the frequency of

forcing. For ff = 200, 750 and 1250 Hz, the average Fourier amplitudes measured over

different mean flow and turbulent intensities are 〈B(ff )〉 ≈ 0.50, 0.37 and 0.26 mm,

respectively. For each of the forcing frequencies, images were acquired at a sampling

frequency ten times the forcing frequency (fs = 10ff ) to eliminate spectral leakage and

bias errors in spectral estimation.

LaVision DaVis PIV software (LaVision, 2006) is used to process the PIV data using

an algorithm that uses multiple passages across the flame image. In the first passage,

an interrogation window of size 48×48 pixel and 25% overlap is used. For resolving

finer flow structure, smaller window of size 8×8 pixel and 25% overlap is used for later

passage of the algorithm. This procedure yields a resolution of 13 pixels/mm between

velocity vectors. For a description of uncertainty in the PIV measurements, please refer
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to Humphrey (2017) and Humphrey et al. (2018).

Figure 3.3 shows the profile of turbulence intensity (u′/ūy) measured 1.5 mm from the

flame holder when the forcing frequency is ff = 200 Hz. Turbulence intensity at the

centerline increases due to the turbulence generated by the oscillating flame holder. The

intensity remains fairly constant on either side of the flame holder. The slight change

in its behavior as x/r → ±1 is due to the interaction of the main flow with the co-flow.

Here r = 13.7 mm is the radius of the nozzle.

3.1.2 Flame edge identification and post-processing

Raw images are post-processed for improving clarity using LaVision DaVis PIV

processing software. First, the images are de-wrapped using the default routine in the

software to remove flame distortions due to the presence of the glass window. Figure

3.4(a) shows a representative flame image which has been cropped and processed. A

weighted threshold algorithm proposed by Otsu (1979) is used to binarize the processed

images to clearly visualize the flame edges. Figure 3.4(b) shows the resultant binarized

image. We identify the flame front and extract only the primary flame edge, indicated

in green in Fig. 3.4(b).

As all the flame-flow conditions remain in the limit of corrugated flamelets and thin

reaction zone, the flame front remains continuous. We ignore flame holes and flame

islands. Thus, we can extract the instantaneous flame edge G(x, y, t). Note that the

G(x, y, t) can be multivalued, i.e., for a given x location, there are multiple values of

G. We extract a single-valued flame position, ξ(y, t) with respect to the y axis in the
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Figure 3.4: (a) Instantaneous Mie scattering image at at ūy = 4.2 m/s, u′/ūy = 26.5
and f0 = 750 Hz. (b) The resulting binarized flame edge with the flame
front identified in green. (c) Instantaneous flame edge, ξ(x, y, t), indicated
in color, and the mean flame edge, 〈ξ(y)〉, calculated using Eq. (3.1) and
indicated in black for ūy = 4.87 m/s, u′/ūy = 8.9% and f0 = 200 Hz. All
dimensions are in mm. Reproduced from (a) (Humphrey et al., 2018) with
permission from Cambridge University Press.

following manner:

1. We calculate the average flame position as:

〈ξ(y)〉 =
1

Nt

∑
t

1

Nx(t)

∑
x(t)

G(x, y, t), (3.1)

where, Nt refer to the number of images in the time series, and Nx refers to the
number of multi-valued flame locations in the x direction for a given y location
at a given instant of time. Thus, if the flame is not multivalued at a given time
instant, Nx = 1.

2. The fluctuations of the flame edge above the mean is determined as G′(x, y, t) =
G(x, y, t)− 〈ξ(y)〉.

3. We define a locally averaged flame edge, which is averaged over all the x-location
at which the flame is multi-valued, as:

ξ′(y, t) =
1

Nx

∑
x

{G′(x, y, t)}. (3.2)

4. We now define a leading and trailing flame edge as:

ξ′(y, t) =


sup{G′(x, y, t)}, Leading Edge

inf{G′(x, y, t)}, Trailing Edge
(3.3)
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where, sup and inf are the supremum and infimum of the set defined by
{G′(x, y, t)} for a given y. Thus, the leading and trailing flame edge are
the farthest and closest points on the flame front from the y-axis at every
streamwise location, respectively. Note that this procedure is the same variable
transformation defined in §2.2.2.1 where the flame fluctuations are written with
respect to the ordinate. For the single-valued flame front, all the three processed
edges are the same. If the flame front remains single-valued, the locally x-
averaged, leading, and trailing edge are the same as the instantaneous flame front.
In the case of multi-valued edges, the leading edge propagates into the reactants
before the locally averaged flame front does and is followed by the trailing edge
(see inset of Fig. 3.5b).

The mean and instantaneous flame edges are shown in Fig. 3.4(c). The average flame

length is L̄f = ξ̄ cos θ and the width is W̄f = 〈ξ〉 sin θ, where θ is the half-angle

defined with respect to the mean flame edge 〈ξ〉. Figure 3.5(a) pictorially depicts the

instantaneous (- black), locally x-averaged (- blue), leading (-. green) and trailing (- -

red) flame edge.

We process 4000, 7500 and 12500 flame images, or roughly, a dataset consisting of

400, 750 and 1250 forcing cycles for ff = 200 Hz, 750 Hz and 1250 Hz, respectively,

and there are 10 data points every cycle. Finally, we decompose the time series of

the fluctuating flame position ξ′(y, t) into its spectral components through Fourier

transform to obtain ξ̂(y, f). The Fourier amplitude at the forcing frequency at a given

downstream distance makes up the flame response. The frequency component of the

signal is measured by using the standardized Fast Fourier Transform (FFT) routine

(Frigo and Johnson, 1998). The sampling frequency is ten times the forcing frequency

(fs = 10ff ) and has a frequency resolution of 0.488, 0.915 and 0.763 Hz/bin for a total

of 2048, 4096 and 8192 bins for ff = 200, 750 and 1250 Hz cases, respectively.

Figure 3.5(b) shows the difference edges for ff = 750 Hz, ūy = 4.12 m/s and u′/ūy =
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Figure 3.5: (a) Exaggerated pictorial depiction of converting multi-valued flame front
into a locally averaged, leading and trailing flame edge, all of which are
single-valued. (b) Representative left flame edge illustrating the difference
between the leading, trailing and locally averaged flame edge. (c) Flame
response of (-) locally averaged, (- -) trailing, (-.) leading flame edge as a
function of the downstream distance. The difference between the response
of leading and trailing edge (•) is plotted on the right axis. (b) and (c) are
plotted for ff = 750 Hz, ūy = 4.87 m/s and u′/ūy = 8.9%.

29.5%. Figure 3.5(c) shows the flame sheet response, ξ̂(y, ff ), for a representative case

with f0 = 750 Hz, ūy = 4.12 m/s and u′/ūy = 29.5%. It can be observed that the

locally x-averaged, leading, and trailing flame edge lead to a very similar response. For

shorter downstream distances, we notice that the response for all the three cases remains

identical as the flame is single-valued. At larger distances, the flame front becomes
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more and more contorted, and we observe some differences in the response among these

cases. However, the trend of the response visibly remains the same. The magnitude of

the difference in the response of leading and trailing edge (|ξ̂lead − ξ̂trail|) depicts very

small deviation close to the flame holder. The difference is more pronounced at larger

distances where the flame fluctuations are much more aperiodic, and the chances of cusp

and pocket formation are much larger (inset Fig. 3.5b). In any case, the present method

is able to capture the harmonic response with very little dependence on the choice of

edge used to process the results.

In Chapter 4, we use the flame fluctuations obtained from the leading edge to measure

the harmonic flame response under different turbulent intensities. In Chapter 5,

we measure the statistical properties for the cases where the fluctuations are visibly

aperiodic and anharmonic. The results discussed in these two chapters remain the same

when any of the leading, trailing, or locally averaged flame fluctuations are considered

instead.

3.2 BLUFF-BODY STABILIZED COMBUSTOR

We also perform experiments on a bluff-body stabilized combustor for demonstrating

passive control of thermoacoustic instability. The bluff-body combustor rig is depicted

in Fig. 3.6(a). The cross-section of the combustor is 90×90 mm2, and the length is 1100

mm. A stainless steel circular disk of 47 mm diameter and 10 mm thickness is used as

the bluff-body for stabilizing the combustor. A hollow shaft of ds = 16 mm diameter is

used for supporting the bluff-body. For the experiments, the location of the bluff-body
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is fixed at 35 mm from the dump plane of the combustor (Fig. 3.6b). Air first passes

through a settling chamber before being guided into the combustor through an inlet of

diameter di = 40 mm. We use Liquified Petroleum Gas (LPG) as the fuel. LPG is

made up of 60% butane and 40% propane by weight. The fuel is injected through holes

of 1.7 mm diameter present on the hollow shaft, 110 mm upstream of the backward-

facing step. The expansion ratio of the combustor is 6.45. The partially premixed

fuel-air mixture is ignited using an electric spark plug mounted on the back wall of

the combustion chamber. An 11 kV transformer is used for generating the spark. The

combustion products are exhausted through a decoupling chamber (1000 mm × 500

mm × 500 mm) into the atmosphere.

Air and fuel flow rates are controlled using mass flow controllers manufactured by

Alicat Scientific. The MCR series flow controllers have an uncertainty of ±0.8% of

the reading and ±0.2% of full-scale measurements. In our experiments, the fuel flow

rate is kept constant at 0.95 g/s while the air flow rate is varied from 9.80 g/s to 15.92

g/s such that the equivalence ratio (φ) varied in the range of 0.95 to 0.53. The nominal

air velocity varies in the range of υa = 8.1 m/s to 14 m/s. The air flow Reynolds

number, calculated as Re = υa(di − ds)/ν, varies from 12500 to 18000, where ν is

the kinematic viscosity of air-fuel mixture measured according to Wilke (1950). The

maximum uncertainty in the indicated value of φ, υa, and Re are ±1.6%, ±0.8% and

±0.8%, respectively.

Secondary air injection ports of 5 mm diameter are present on either side of the

centerline, as shown in Fig. 3.6(b). The injection port P1 is mounted on the dump
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Figure 3.6: (a) The bluff-body stabilized turbulent combustor used for studying passive
control of thermoacoustic instability in Chapter 7. (b) Schematic of
the combustor cross-section indicating the PIV and CH∗ field of view.
Secondary air injection ports (P1-P5) are present on either side of the
centerline for the passive control study. PT indicates the location of the
pressure transducer. All dimensions are in mm.

plane at a distance of 23.5 mm from the combustor centerline and is inclined at an

angle of 45◦ with the horizontal axis. The four transversely mounted injection ports

(P2-P5) are located at 15 mm, 25 mm, 45 mm, and 65 mm, respectively, from the dump

plane. These ports target different regions of the flow field and are used for passive

control. The secondary injection configuration was chosen to avoid flame anchoring and

stability problems during control experiments, as discussed in §2.3.6. The secondary

air is controlled through a separate mass flow controller. Secondary air is injected into

the combustor during thermoacoustic instability in steps of 0.16 g/s until 1.90 g/s.
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Piezoelectric transducers PCB103B02 are used for measuring the pressure inside the

combustion chamber. The transducers have a sensitivity of 217 mV/kPa and uncertainty

of±0.15 Pa. The pressure transducers are mounted on the combustor wall, 17 mm from

the dump plane. Two-component two-dimensional high-speed PIV measurements are

performed for acquiring the velocity field. The reactive flow field is seeded using 1 µm

diameter TiO2 particles. Mie scattering images were acquired with the aid of a Photron

SA-4 CMOS high-speed camera. The procedure for determining the velocity field from

Mie scattering images is detailed in (Krishnan et al., 2019b). ZEISS 100 mm camera

lens is used during the Mie scattering measurements. The lens is operated with f/2

aperture. A Phantom - V12.1 camera is used for acquiring chemiluminescence images.

This camera is also outfitted with a ZEISS 50 mm camera lens. The light emitted by

combustion is filtered using a bandpass filter centered around 435±10 nm to capture the

emissions from CH∗ radicals from a region spanning 87×78 mm around the bluff-body

(Fig. 3.6a). Due to limited sampling capability, only the flow-field spanning 45 × 40

mm from the dump plane to just beyond the bluff-body is imaged (Fig. 3.6b). The

sampling frequencies for pressure, chemiluminescence, and PIV measurements are 20

kHz, 4 kHz, and 2 kHz, respectively.

We performed optical diagnostics at specific fuel and airflow rates corresponding to

representative dynamical states of the combustion chamber, viz., combustion noise,

thermoacoustic intermittency, and thermoacoustic instability. We also performed

diagnostics during the control experiment to evaluate the effect of secondary jet on

the flow and HRR characteristics. The results of the control experiments are discussed

in Chapter 7.
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CHAPTER 4

LARGE-SCALE HARMONIC RESPONSE OF
TURBULENT PREMIXED FLAMES

In this chapter, we analyze the harmonic response of the V-flame subjected to broadband

and narrowband forcing. The primary motivation of this chapter is to understand the

large-scale harmonic flame response. Specifically, we focus on the nature of interaction

among coherent and harmonic wrinkles induced by the oscillating flame holder on

the flame and vortical disturbances induced by the flow on the flame. These local

interactions of convecting disturbances affect the local and global heat release rate

response. Quantifying the large-scale heat release rate response of turbulent flames

is important from the consideration of thermoacoustic instability, as discussed in §2.3.

4.1 HARMONIC RESPONSE OF FLAME SURFACE FLUCTUATIONS

4.1.1 Ensemble averaged flame response

We begin by plotting the ensemble-averaged flame fluctuations ξ′ at different phases of

the forcing cycle in Fig. 4.1 for different values of ff and nominal velocity of Ū = 5

m/s. We also note the wavelength of 〈ξ′〉 decreases with an increase in ff . Further,

an increase in ff leads to a decrease in the span in which coherent fluctuations travel.

It is evident that the response of flame fluctuations depends on the forcing frequency.

The content of this chapter have been published in A. Roy, & R. I. Sujith (2019) Nonlinear flame
response dependencies of a V-flame subjected to harmonic forcing and turbulence, Combustion and
Flame, 207, 101-119.

https://doi.org/10.1016/j.combustflame.2019.05.035
https://doi.org/10.1016/j.combustflame.2019.05.035


Figure 4.1: Ensemble-averaged flame fluctuations 〈ξ′〉 of the left flame edge plotted
at different phases of the forcing cycle indicated by the legend. The
experimental condition are: (a) f0 = 200 Hz, ūy = 4.83 m/s, u′/ūy = 8.4%,
(b) f0 = 750 Hz, ūy = 4.87 m/s, u′/ūy = 8.9%, and (c) f0 = 1250 Hz,
ūy = 4.69 m/s, u′/ūy = 7.6%.

The ensemble-averaged flame response shown in Fig. 4.1 also emphasizes the manner

in which coherent wrinkles, induced by the oscillating flame holder, convect along the

flame surface.

4.1.2 Amplitude spectrum of flame fluctuations

We plot the waterfall diagram depicting the amplitude spectrum at different turbulence

levels in Figs. 4.2 and forcing frequencies. The left column indicates the response at a

nominal flow velocity of Ū = 5 m/s, and the right column is for Ū = 8 m/s. The spectra
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were calculated from the time series of the fluctuations obtained at a representative

downstream location of y = 0.5λc. Here, λc = ūy/ff refers to the wavelength of the

coherent wrinkles induced by the flame holder. For all the cases, the spectrum becomes

increasingly more broadband with a marked decrease in the amplitude of the flame

response at the forcing frequency. We also notice a dependence of the response on the

forcing frequency as the peak flame response is much higher for ff = 750 Hz and 1250

Hz, much larger than 200 Hz for almost all turbulence levels and nominal velocities. The

inset in each sub-figure shows the peak response ξ̂(y, ff ) as a function of the turbulence

intensity u′/ūy. For nominal velocity of 5 m/s, there is a monotonic decrease in the peak

flame response for most of the cases of harmonic forcing. In contrast, for 8 m/s, the peak

response increases at intermediate turbulence levels and decreases at larger turbulent

intensities. Finally, we also observe peaks at sub- or super-harmonic frequencies at

certain conditions. These peaks probably appear due to a nonlinear transfer of energy.

4.1.3 Effect of turbulence on harmonic flame response

We now measure the harmonic response of the flame by determining the Fourier

transformed amplitude of the flame front at the forcing frequency f and isolate the

effects of changes in the mean flow velocity, turbulent intensity, and forcing frequency.

In Fig. 4.3, we plot the amplitude of harmonic flame response as a function of the

downstream distance at different forcing conditions. All the quantities, i.e., streamwise

distances, y, or spectral amplitude, ξ̂(y, f), are normalized using the wavelength of the

coherent wrinkles induced by the flame holder, calculated as, λc = ūy/ff .
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Figure 4.2: Amplitude spectrum of flame fluctuations ξ̂(y, f) plotted for different
turbulence levels (u′/ūy). Left column corresponds to a nominal velocity
of 5 m/s and right to 8 m/s. The forcing frequency is (a,b) ff = 200 Hz,
(c,d) ff = 750 Hz and (e,f) ff = 1250 Hz. The fluctuations are measured
at y = 0.5λc. The insets in each figure shows the variation in the strength
of the peak at the forcing frequency as a function of the turbulence level.

Figure 4.3(a,b) depicts the response at ff = 200 Hz for nominal velocity of Ū = 5 m/s

and 8 m/s, respectively. The effect of coherent wrinkles induced by the flame holder

on the flame can be recognized by spatial oscillations in ξ̂(y, ff ) at integer multiples of
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y/λc. For Ū = 5 m/s, the oscillations have a wavelength close to half of the wavelength

of the coherent wrinkles induced by the flame holder. However, a clear trend cannot be

distinguished for these cases. For Ū = 8 m/s, the spatial oscillations can be discerned

till y = λc. At larger distances, the coherent wrinkles are indistinguishable as a result of

anharmonic flame fluctuations (Figure 4.3b). The spatial oscillations with a wavelength

of the order of 0.5λc are a result of the convection of coherent wrinkles induced by the

oscillating flame holder along the flame edge.

Figures 4.3(c,d) shows the harmonic flame response at ff = 750 Hz and Figs. 4.3(e,f)

shows the harmonic response at ff = 1250 Hz for two different nominal velocities.

The flame response is markedly different at these higher forcing frequencies from that

of ff = 200 Hz. In Figs. 4.3(c-f), we observe two distinct length scales – short-

wavelength undulation on top of a long wavelength. The short-wavelength oscillations

clearly depict wavelength close to λc. Thus, the shorter wavelength oscillations are a

result of the convection of coherent wrinkles induced by the flame holder. The response

at the longer wavelength is possibly a result of fluctuations induced on the flame surface

by vortical disturbances (Shanbhogue et al., 2009a). These vortical disturbances act at

much larger wavelengths as compared to the coherent wrinkles induced by the flame

holder. Thus, the overall flame response we observe in Figs. 4.3(c-f) is a result of

interference due to a mismatch in the phase speed of short wavelength coherent wrinkles

and long-wavelength vortical disturbances.

In addition, for ff = 750 Hz and 1250 Hz, the response changes significantly when

nominal velocity is increased from Ū = 5 m/s to 8 m/s. We can clearly observe
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Figure 4.3: Amplitude of harmonic flame response ξ̂(y, ff ) as a function of
downstream distance measured at (a,b) ff = 200 Hz, (c,d) ff = 750 Hz and
(e,f) ff = 1250 Hz. Each subfigure compares the harmonic flame response
with increasing turbulence levels u′/ūy. The response is measured for a
nominal velocity of (left row) Ū = 5 m/s and (right row) Ū = 8 m/s.

a decrease in the amplitude of short wavelength coherent fluctuations. It is thus

evident that for lower nominal velocity, the harmonic response of flame fluctuations

is dominated by short-wavelength coherent disturbances induced by the flame holder.

In contrast, at larger nominal velocity, the harmonic flame response is dominated by

large-wavelength vortical disturbances.

Finally, we also notice that the peak of harmonic flame response shifts upstream with
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an increase in turbulent intensity in Figs. 4.3(c-f). For larger turbulence levels, the

flame response attains maxima very close to the flame stabilization point and decays

downstream. The shift in peak and decay in harmonic flame response at large turbulence

levels are a consequence of the enhanced kinematic restoration of harmonic wrinkles at

larger turbulence levels.

4.1.4 Interference of non-identical disturbances

The harmonic flame response observed in Fig. 4.3 implies the interference of

disturbances induced on the flame surface. These disturbances are: (1) broadband

convective disturbances propagating axially with velocity ūy, whose amplitude decays

downstream of the flame holder; (2) harmonic narrowband wrinkles induced by the

oscillating flame holder propagating tangentially along the flame front with velocity

uty,0; and (3) convective disturbances induced by the vortex shedding at the flame holder

convecting with velocity ūy whose amplitude depends on the frequency of forcing. Out

of these, we are interested in the interaction between coherent disturbances induced by

the oscillating flame holder and vortical disturbances.

The pronounced low wavelength oscillations seen for Ū = 5 m/s and f0 = 750 Hz

and 1250 Hz in Figs. 4.3(c,d) and 4.3(e,f) possibly arise because the forcing frequency

matches the vortex shedding frequency of the cylindrical flame holder that holds the

flame. The possibility of vortex shedding depends on the Strouhal number based on

the diameter of the flame holder, which is defined as Std = ffd/ūy. The Strouhal

number for various cases is indicated in Table 4.1. The range of Std indicated in
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Table 4.1: The range of Strouhal numbers, Std, based on the flame holder diameter
(d), considered in our study. The italicized values of Strouhal number
corresponds to the cases for which we expect vortex shedding by the flame
holder due to BVK instability.

ff Ū ūy|max ūy|min Std = ffd/ūy
(Hz) (m/s) (m/s) (m/s) -

200
5 4.83 3.78 0.03 - 0.04

8 8.14 6.06 0.02 - 0.03

750
5 4.87 3.76 0.13 - 0.16

8 7.94 6.01 0.08 - 0.10

1250
5 4.69 3.70 0.22 - 0.27

8 8.01 6.24 0.13 - 0.16

italics corresponds to the cases (ff = 750 Hz and 1250 Hz) where the flame response

depict interference pattern in the spatial oscillations. The italicized range of Std

is close to Std = 0.2 for which Bénard-von Kármán (BVK) instability arises for

flow past cylindrical bluff-bodies (Lieuwen, 2012; Cantwell and Coles, 1983). As

these vortical disturbances are quite pronounced, the harmonic response shows the

interference pattern between convecting vortical disturbances and the coherent wrinkles

induced by the oscillating flame holder. Local peaks (troughs) in the response appear

whenever there is constructive (destructive) interference between the two disturbances.

In general, the flame position is a function of the phase velocity of convective excitation,

ūy, and the flame wrinkle convection velocity, uty,0 (Lieuwen, 2012). These two

disturbances propagate at the same phase speed when the phase speed parameter,

kc = ūy/uty,0 = 1. For other cases, the disturbances interfere and give rise to length

scale, λint, defined as (Lieuwen, 2012):

λint/(λt sin θ) =
1

|1/kc − 1|
, (4.1)
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where, θ is the half-angle of the averaged V-flame (as indicated in Fig. 3.4c), λc =

ūy/ff is the convection length scale of vortical disturbances, and λt = uty,0/ff is the

length scale of wrinkles convecting tangentially along the flame front. The later can be

experimentally evaluated as an axially averaged quantity in the domain 0 < y < 60 mm

through the relation (Emerson and Lieuwen, 2015):

λt = 2π
∆y

∆∠ξ̂
, (4.2)

where, the phase of the flame edge response at a given axial location is calculated from

the Fourier transform as:

∠ξ̂(y, ff ) = tan−1
={ξ̂(y, ff )}
<{ξ̂(y, ff )}

. (4.3)

Thus we can calculate all the relevant quantities. We can also compare the interference

length scale calculated from Eqn. (4.1) which is indicated as λint,1 with λint,2 calculated

from harmonic flame response obtained in Fig. 4.3. We can calculate the latter as:

λint,2 = ∆ypeak/ cos θ, where ∆ypeak is the peak to peak distance measured axially as

indicated in Fig. 4.3(e). We note that λint,2 cannot be calculated in many cases where

the harmonic flame response do not show clear interference pattern. The comparison

between λint,1 and λint,2 is tabulated in Table 4.2. As can be noted, the λint,1 values

matched with λint,2 only for a few cases, viz., the case with highest turbulence level for

ff = 200 Hz and for ff = 750 Hz.

Equation (4.1) shows that the presence of fast propagating long wavelength disturbance

(ūy >> uty,0 or kc >> 1) will lead to shorter wavelength oscillations in the flame
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Table 4.2: Comparison of the interference length scale λint,1 calculated from Eqn.
(4.1) and λint,2 calculated from the harmonic flame response as λint,2 =
∆ypeak/ cos θ (see Fig. 4.3e). Also tabulated are the convective (λc) and
flame wrinkle (λt) length scales.

ff ūy u′/ūy λc λt kc λint,1/λc λint,2/λc
(Hz) (m/s) (%) (mm) (mm) - - -

200

4.83 8.50 24.14 16.14 1.50 15.47 0.61
3.78 30.21 18.90 1.50 12.82 0.45 0.60

8.14 8.60 4.71 69.47 0.58 22.40 -
6.06 31.29 30.24 72.85 0.42 16.07 -

750

4.87 9.11 6.50 5.21 1.24 1.49 1.05
4.67 15.11 6.23 4.51 1.38 0.98 0.94
4.12 26.93 5.49 2.92 1.88 0.42 0.973
3.76 29.75 5.02 33.75 0.15 0.39 -

7.94 8.89 10.59 10.75 0.98 17.34 -
6.01 32.33 8.01 16.75 0.48 0.63 -

1250

4.69 12.67 3.75 13.27 0.28 0.37 0.98
3.70 27.73 2.95 3.61 0.82 2.21 -

8.01 9.02 6.41 5.90 1.09 2.71 -
6.24 28.23 4.99 13.08 0.38 0.57 -

response (λint > 1) (Lieuwen, 2012). For ff = 200 Hz (refer to Table 4.2), oscillations

are more pronounced only for higher turbulence levels (Fig. 4.3a,b). For the highest

turbulence level, we find kc = 12.82 and interference wavelength is λint,1/λc = 0.45.

The interference length scale, λint,1, corresponds quite well with λint,2 determined

directly from the flame response (Fig. 4.3b). However, the mismatch for lower

turbulence levels arises due to the fact that vortical disturbances are not very pronounced

(Table 4.1), and only coherent disturbances due to the oscillating flame holder dominate

the response. So, there are no visible interference pattern.

For higher forcing frequencies ff = 750 Hz and 1250 Hz, the interference pattern

is quite evident. We notice that for these cases, the phase speed parameter (kc)

remains order unity, i.e., flame wrinkles and vortical disturbances convect with similar

106



phase speeds (ūy/uty,0 ∼ O(1)) and with similar wavelengths (λc/λt ∼ O(1)) and

magnitudes. Further, these disturbances have a substantial impact on the overall

response, indicating that the convecting velocity of these vortices is faster than the

wrinkle convection speed (ūy > uty,0), i.e., kc > 1 as can be confirmed from Table 4.2.

For cases where the magnitudes differ considerably, we obtain slight undulations on top

of the long-wavelength disturbance (see Figs. 4.3d) and 4.3f). The long-wavelength

disturbance is a result of vortical disturbances possessing a higher magnitude than the

coherent flame wrinkle induced by the flame holder.

4.1.5 Frequency dependence of flame sheet response at comparable flow
conditions

In this section, we isolate the effect of forcing frequency on the flame when the flow

conditions are comparable. We plot the harmonic flame response at different forcing

frequencies in Figs. 4.4 and 4.5 for Ū = 5 m/s and 8m/s at comparable turbulent

intensities, respectively.

We notice that for almost all the cases, the amplitude of the peak of the harmonic flame

response normalized by λc rises from 200 Hz to 750 Hz, before decreasing at 1250 Hz.

In the previous section, we observed that an increase in turbulence intensity led to a

shift in the peak of the global flame response closer to the flame holder. We notice a

similar behavior with increasing forcing frequency as well. For almost all the cases,

the global peak shifts closer to the flame holder, as indicated by the arrows in Figs.

4.4 and 4.5. Thus, at high turbulence levels (Figs. 4.3) and frequencies (Figs. 4.4 and

4.5), the flame response is invariably maximum close to the flame holder and decays
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Figure 4.4: Flame sheet response, ξ̂(y, ff ), for increasing forcing frequencies at
nominal velocity of Ū = 5 m/s and comparable flow conditions. The mean
velocity 〈ūy〉 and turbulent intensity 〈u′/ūy〉 are: (a) 4.8 m/s, 10.4%, (b)
4.7 m/s, 15.5%, (c) 4.1 m/s, 29.2%, and (d) 3.7 m/s, 33.2%, respectively.
Here 〈.〉 indicates the average of the flow condition indicated in the legend
of each sub-figure. The arrow in (a) and (b) indicates the shift in peak with
increasing frequency.

downstream. Finally, at higher turbulence intensities, the flame response at ff has

oscillations that look seemingly random and anharmonic. Thus, turbulent fluctuations

dominate harmonic response at higher forcing frequencies and turbulence levels.

4.2 HEAT RELEASE RATE RESPONSE

In §2.3.3, we observed that thermoacoustic instability develops through a coupling

between narrowband acoustic pressure fluctuations and heat release rate fluctuations.

The heat release rate fluctuations depend on the flame area fluctuations through leading

order contributions (Fleifil et al., 1996; Dowling, 1999; Schuller et al., 2003; Lieuwen,
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Figure 4.5: Flame sheet response, L̂(y, f0), for increasing forcing frequencies at
nominal velocity of Ū = 8 m/s and comparable flow conditions. The mean
flow velocity 〈ūy〉 and turbulence levels 〈u′/ūy〉 are:(a) 8.0 m/s, 8.7%, (b)
7.8 m/s, 14.7%, (c) 7.0 m/s, 27.5% and (d) 6.1 m/s, 35.1%, respectively.
Here 〈.〉 indicates the average of the flow condition indicated in the legend of
each sub-figure. The arrow in (a)-(c) shows the shift in peak with increasing
forcing frequency.

2012). In fact, the mean flame shape can preferentially suppress or promote the

contribution of heat release rate fluctuations (Durox et al., 2009). Here, we are

interested in finding out the manner in which the harmonic flame fluctuations discussed

in the earlier sections, affect the overall heat release rate fluctuations. This dependence

was expressed in Eqn. 2.66, which upon linearization leads to: q̇′(y, t) ∼ A′(y, t),

where A′ is the fluctuations in flame area.

In this section, we consider the effect of flame surface fluctuations on the area

fluctuations and eventually on the local and global heat release rate fluctuations.
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4.2.1 Flame asymmetry and cross-correlation

In order to determine the heat release rate response of the flame at different forcing

frequencies and turbulence intensities, it is important to consider any asymmetry that

may be present in the flame (Emerson and Lieuwen, 2015). The asymmetry in flame

fluctuations is shown in Fig. 4.6. We can clearly see that the flame response is

asymmetric for ff = 200 Hz (Fig. 4.6a). For higher frequencies, the response is visibly

symmetrical for y < 40 mm for f0 = 750 Hz (Fig. 4.6b) and y < 20 mm for ff = 1250

Hz (Fig. 4.6c). The span over which the flame retains symmetry is correlated to the

height of the ensemble-averaged flame response shown in Fig. 4.1.

In order to ascertain the relative degree of symmetry, we determine the phase difference

between the response of left and right flame edge. The relative phase is calculated as

∆φ(y, ff ) = ∠ξ̂left(y, ff ) − ∠ξ̂right(y, ff ), where ∠ξ̂ is determined according to Eqn.

4.3. We notice minor fluctuations in the phase difference |∆φ| < π whenever response

of one edge leads the other (Fig. 4.6c). In other cases, large jumps in phase |∆φ| > π

are visible in at large downstream distances. The phase jumps become quite random as

the flame response becomes anharmonic and incoherent.

Next, we see that the magnitude of the left and the right flame edge are also quite

different. This is due to slightly non-identical turbulence levels on the left and the right

side as shown in Fig. 3.3. The 〈.〉 indicated in the caption of Fig. 4.6 shows the average

of the turbulent intensity in the left and right side. In order to quantify symmetry, or

the lack thereof, we calculate the cross-correlation coefficient of the left and right flame
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Figure 4.6: (a-c) Comparison of harmonic response of the left and right flame edge for
representative forcing conditions for Ū = 5 m/s. (d-f) Axial dependence of
the phase difference, ∆φ between the response of the two flame edges. The
experimental conditions are: (a, d) ff = 200 Hz; 〈u′/ūy〉 ∼ 8.5%; (b, e)
ff = 750 Hz; 〈u′/ūy〉 ∼ 9.1%; and (c, f) ff = 1250 Hz, 〈u′/ūy〉 ∼ 12.7%.

Figure 4.7: The correlation coefficient between left and right flame edge for: Ū = (a-c)
5 m/s and (d-f) 8 m/s, and (a,d) ff = 200 Hz, (b,e) ff = 750 Hz and (c,f)
ff = 1250 Hz for increasing turbulence levels. The markers are consistent
with those in Figs 4.3.
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edge:

rLR(y) =
〈ξ′left(y, t)ξ

′
right(y, t)〉√

〈ξ′left(y, t)
2〉〈ξ′right(y, t)

2〉
. (4.4)

The correlation can only take values between +1 and −1. A value of +1 indicates

symmetry in the left and the right flame edge, −1 indicates anti-symmetry, and 0

indicates the presence of uncorrelated and asymmetrical wrinkles. The variation of

the cross-correlation coefficient with downstream distance is plotted in Fig. 4.7 for

the different cases. We notice that the flame is symmetric just downstream of the

flame holder and progressively becomes asymmetric as distance increases. At large

downstream distances, the flame response of the two edges becomes uncorrelated. An

increase in turbulence level leads to an increase in the degree of asymmetry in the flame

response. Further, case-wise comparison of Ū = 8 m/s with Ū = 5 m/s indicates that

Ū = 8 m/s has a greater asymmetry in the flame response.

In Fig. 4.8 we plot the correlation coefficient measured at the downstream location

where the flame sheet response has a global maximum. This correlation measured at

the location of the peak in flame response can be used as a global descriptor of the

flame asymmetry. We thus plot this correlation coefficient as a function of the turbulent

intensity for different forcing frequencies and at different nominal flow velocities.

We notice that the correlation value indicates symmetrically distributed wrinkles for

ff = 750 Hz and 1250 Hz for low and intermediate turbulence levels when Ū = 5

m/s (Fig. 4.8a). For higher nominal velocity, only the case with ff = 1250 Hz shows

a relatively high value of the correlation coefficient (Fig. 4.8b). For either of the two

nominal velocities and higher turbulence levels, the symmetric wrinkling disappears,
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Figure 4.8: Flame peak correlation between the left and the right edge measured at the
location of maxima in flame sheet response at nominal velocity (a) Ū = 5
m/s and (b) Ū = 8 m/s for different forcing frequencies.

and flame oscillations become asymmetrical and uncorrelated. For ff = 200 Hz, the

flame remains uncorrelated, regardless of the nominal flow velocity.

4.2.2 Local Heat Release Response

We calculate the local heat release response, and find its dependence on the forcing

frequency and turbulent intensity. The local heat release rate fluctuation can be

estimated as the mean of the contributions of two conical V-flames. Thus, we have:

q(y, t) =

∫ y

0

q̇′(y, t)dy =
1

2

(∫ y

0

q̇′left(y, t)dy +

∫ y

0

q̇′right(y, t)dy

)
, (4.5)

As we noted earlier, the heat release response is dependent on the area of the flame

fluctuations. The area exclusively depends on the flame front (ξ′) and the conical flame

geometry. The instantaneous fluctuation in the flame area over a differential conical

element dy is dA′ = 2πξ′(y, t)dy. Thus, the normal flame surface area fluctuations can
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be written as:

A′(y, t)

Ā
=

2

W̄f

√
W̄ 2
f + L̄2

f

∫ y

0

ξ′(y, t)dy, (4.6)

where, the normalization is obtained based on the mean curved surface area of the

conical flame, which is expressed as:

Ā = πW̄f L̄ = πW̄f

√
W̄ 2
f + L̄2

f , (4.7)

the mean flame width, W̄f = ξ̄ sin θ, and mean flame length, L̄f = ξ̄ cos θ (see

Fig. 3.4c). Due to flame asymmetry, each quantity in Eqn. (4.6) need to be

evaluated separately for the left and right flame branch. Similarly, W̄f and L̄f depends

on the forcing frequency, mean flow velocity and turbulent intensity. So, each of

these quantities have to be evaluated separately for every parametric case. Thus, the

component of the net normalized HRR at the forcing frequency can be calculated from

Eqns. (4.5) and (4.6) as:

ˆ̇q(y, ff )
¯̇q

=
1

2

∑
left,right

2

W̄f

√
W̄ 2
f + L̄2

f

∫ y

0

ξ̂(y, ff ) exp

(
i∠ξ̂(y, ff )

)
dy. (4.8)

Here, we have accounted for the phase of the flame response by including ∠L̂(y, ff )

in the integrand. The spatially integrated heat release rate response |ˆ̇q(y, ff )| evaluated

in the spatial domain 0 < y < 60 mm, is shown in Figs. 4.9 for ff = 200, 750 and

1250 Hz, respectively. The markers and colors in each of these figures are consistent

with the markers in Fig. 4.3, respectively. Equation (4.8) indicates that if the harmonic

flame response is finite and dependent on the axial location, there would be an increase
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in |ˆ̇q(y, ff )| with y. Similarly, if the phase of the flame response is finite and dependent

on the axial location, |ˆ̇q(y, ff )| will be oscillatory with nodes and anti-nodes present at

integer multiple of λc.

Further, local increase or decrease in the HRR would be affected due to the phase

difference in the response of the left and right flame edge. If the disturbances induced

on the flame surface are sinuous such that the maximum displacement of the left edge

corresponds to the minimum displacement of the right, i.e., the phase difference is 180◦,

the net increase in the area at one edge is cancelled by a decrease in the other. In

contrast, if the disturbances induced on the flame surface are varicose, i.e., the flame

response is symmetric with a negligible phase difference, the fluctuations would add up

to effect an increase in the flame area fluctuations. Thus, the sinuous flame response

would contribute to minimal heat release rate behavior due to the phase cancellation

effect in the flame response, while varicose flame response would lead to a higher and

more pronounced heat release rate.

In Fig. 4.9, we notice that the heat release rate response depicts the presence of a

standing wave structure with nodes and anti-nodes and an increase or decrease in the

mean heat release rate response arising from sinuous/varicose flame response. The

nodes and anti-nodes are seen quite clearly in each of the cases plotted in Fig. 4.9. The

effect of flame structure can similarly be observed. Varicose flame structure manifests

in the net increase in the heat release rate response with a progressive increase in the

magnitude at the nodal positions with increasing downstream distance for Ū = 5 m/s

cases (Figs. 4.9a,c,e). In contrast, we notice that for Ū = 8 m/s (Figs. 4.9b,d,f), the
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Figure 4.9: Normalized heat release response, |Q̂(y, ff )|/Q̄ measured from the flame
sheet response plotted as a function of the normalized downstream distance
y/λc for (a) Ū = 5 m/s and (b) Ū = 8 m/s at ff = 200 Hz. The markers are
consistent with those used in Fig. 4.3.

heat release rate response tends to decrease following an initial increase. The increase

is possible as a result of the flame response being symmetric downstream of the flame

holder (varicose flame structure) and becoming progressively asymmetric (sinuous or

uncorrelated flame structure) with increasing downstream distance. The slightly higher

asymmetry in the flame structure for Ū = 8 m/s as compared to Ū = 5 m/s can be

confirmed from Fig. 4.7 and 4.8. Thus, the flame asymmetry directly contributes to the

spatial nature of the heat release rate response of the system.
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Figure 4.10: Spatially integrated heat release response measured from the harmonic
flame response as a function of the (a) turbulence level, u′/ūy, for different
forcing frequencies and nominal velocities, and (b) forcing frequency, ff ,
at different turbulence levels. The 1/ff roll-off in the global heat release
rate response with increase in forcing frequency has been indicated in (b)

4.2.3 Global heat release rate response

Finally, we consider the effect of forcing frequency and turbulent intensity on the global

heat release rate response. The global heat release rate response can be obtained by

taking the integral in Eqn. (4.8) from y = 0 to y = L̄f . We plot the dependence of

the integrated response for increasing the turbulent intensity at a given frequency in

Fig. 4.10(a) at different nominal flow conditions, and its dependence on the forcing

frequency in Fig. 4.10 across different turbulence levels.

We notice that the heat release rate response at any given forcing frequency decreases

with increasing turbulence levels for most of the cases. The decrease in heat release rate

response is counter-intuitive as heat release rate response generally increases with an

increase in turbulence intensity (Bellows et al., 2007). As the heat release rate response

is calculated solely based on the flame response, it will reflect the factors which affect
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the harmonic flame response. The flame response shows a sharp decrease downstream

of the flame holder for higher turbulence levels due to enhanced kinematic restoration

(see Fig. 4.3c,e). Thus, the globally integrated HRR response shows a decrease with

increasing turbulence levels due to kinematic restoration.

The dependence of heat release rate response on the forcing frequency, however, is quite

well captured. We notice a decrease with increasing forcing frequency at any given

turbulence level. The decrease is reminiscent of the typical low-pass filter characteristic

of turbulent flames (Fleifil et al., 1996). The reduced response at higher turbulence

levels stems from the fact that there is an increase in the phase variations of the

heat release rate fluctuations with downstream distance, as can be confirmed from the

variation of ∆φ in Fig. 4.6(d-f). Further, the phase jumps become more prevalent at

larger downstream distances for cases with higher forcing frequencies. Thus, if the

flame response is integrated over space at any given instant of time, the net heat release

rate will be minimal due to variation in the phase of the harmonic flame response. In

other words, there would be a phase cancellation in the heat release response (Lieuwen,

2012). Such a response manifests in the 1/f decay generally seen in transfer function

measurements at higher forcing frequencies (Jones et al., 2010; Lieuwen, 2012). We

notice a similar decay in heat release rate response at higher frequencies for almost all

the cases (see Fig. 4.10b).
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4.3 INTERIM SUMMARY

In this chapter, we evaluated the large-scale harmonic response of turbulent premixed

V-flame at varying levels of turbulence intensity, nominal flow velocity, and forcing

frequency. Coherent, convective disturbances are introduced in the flame through the

flame holder, oscillating transverse to the streamwise direction, while a turbulence

generator induces broadband forcing on the flame. We isolate the dependence of flame

and heat release rate response on each of these effects.

We find that the amplitude spectrum broadens with the downstream distance, indicating

a decay in harmonic flame response at large turbulence levels and forcing frequencies.

We also observe that the amplitude of harmonic flame response depicts spatial

oscillations arising from the interference of coherent wrinkles induced on the flame

surface by the oscillating flame holder and fluctuations induced on the flame surface

by vortical disturbances. We observed that for low nominal velocities, coherent

wrinkles induced by the flame holder dominated the flame response. However, for

higher nominal velocities, the response was dominated by long-wavelength vortical

disturbances. We also observed that an increase in the forcing frequency and turbulence

levels almost always shifts the response peak closer to the flame holder.

Finally, we characterize the asymmetry in flame response and show the relationship

between the spatial flame response on the local and global heat release rate response.

For lower flow velocities, the flame remains comparatively symmetric (varicose flame

structure), resulting in flame area fluctuations which are more significant than higher
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flow velocities where the flame is asymmetric (sinuous or uncorrelated flame structure).

Consequently, for lower flow velocities, there is a progressive increase in heat release

rate response with increasing downstream distance. In contrast, for cases with higher

turbulence levels and higher nominal velocity, an initial increase in heat release rate

response is followed by a decrease at higher downstream distances. Finally, we find the

globally integrated heat release rate response, which tends to roll off with increasing

frequency (1/f dependence), consistent with low-pass filter characteristics of flames in

general. Similarly, there is a decay in the response with increasing turbulence levels,

indicating the effect of kinematic restoration on the global flame response.

In this chapter, we have only focussed on the harmonic response of flame fluctuations.

However, this approach is limited when characterizing the effect of fluctuations on

the flame surface due to high levels of turbulence. At high turbulent intensities, the

flame response is quite visibly anharmonic. In the next chapter, we introduce statistical

analysis of these turbulent fluctuations and expound on the small-scale dynamics of

flame fluctuations.

120





CHAPTER 5

SELF-SIMILARITY AND SMALL-SCALE INTERMITTENCY
IN TURBULENT PREMIXED FLAMES

In the previous chapter, we measured the harmonic response of the flame when subject

to large-scale effects such as variation in the mean flow velocities, turbulence levels,

and narrowband forcing at different forcing frequencies. We observed strong nonlinear

and anharmonic response at high turbulence levels. In fact, the flame response at

high turbulence levels decayed at all forcing frequencies. Thus, quantifying only the

harmonic response of the flame at high turbulence levels would yield an incomplete

picture of the interaction between the premixed flame and the turbulent background

flow.

Consequently, we consider the turbulence-flame interaction in greater detail. In

particular, we consider the statistics of the flame fluctuations obtained at high turbulence

levels and high forcing frequency. We begin by discussing the nature of the spectrum of

the flame surface fluctuations. We show that the spectrum has a pronounced scaling

behaviour, which we explain through heuristic arguments based on Kolmogorov’s

phenomenology of turbulent flows. We then quantify the higher-order moments of the

flame surface fluctuations and discuss their implications. Through a scale-dependent

analysis based on temporal two-point correlation of the flame fluctuations, we prove

that the fluctuations display small-scale intermittency. We determine the anomalous

scaling exponents associated with higher-order moments of the highly intermittent

flame fluctuations. We also introduce the multifractal formalism and quantify the

singularities of the underlying multiplicative processes, which give rise to small-scale



intermittency. We close the chapter with a discussion on the implications of the above

findings in the context of turbulent premixed flames.

5.1 SPECTRAL SCALING OF FLAME SURFACE FLUCTUATIONS

In this section, we quantify the spectrum of flame surface fluctuations. We focus on

the experimental dataset which shows the most pronounced anharmonic response. We

choose the highest forcing frequency and turbulence levels for two different mean flow

velocity. We designate these two cases as Flame F1 and F2 for ease of reference. The

experimental conditions for flame F1 are: ūy = 4.62 m/s, Red = 6.99 × 103, u′/ūy =

33.13% and u′/sL = 4.20. For the flame F2, ūy = 6.89 m/s, Red = ūyd/ν = 1.063,

u′/ūy = 32.13% and u′/sL = 5.89. The Damköhler number for the flames are Da =

2.11 and Da = 5.23, respectively. The nominal Reynolds number is defined as Red =

ūyd/ν, where d is the diameter of the nozzle from which the flow ensues (see Fig. 2.2a).

The control parameters for the two experiments are tabulated in Table 5.1.

5.1.1 Temporal power spectrum of flame fluctuations

In Fig. 5.1(b), we show a representative time series of the fluctuations ξ′ for the

two cases considered here. The fluctuations are measured at a location of y/λc = 2

downstream of the flame stabilization point. Here, λc = ū/ff is the wavelength of

coherent, harmonic disturbances induced by the oscillating flame holder. The flame
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Feature Flame F1 Flame F2

Mean flow velocity ūy 4.62 m/s 6.89 m/s

Root mean square velocity u′ 0.53 m/s 1.04 m/s

Turbulent intensity u′/ūy 0.33 0.32

Equivalence ratio φ 0.97 0.91

Kinematic viscosity ν 1.81× 10−5 m2/s 1.81× 10−5 m2/s

Forcing frequency ff 1250 Hz 1250 Hz

Convective wavelength λc = ūy/ff 3.7 mm 5.5 mm

Nominal Reynolds no. Red = ūyd/ν 6.99× 103 1.06× 103

Integral length ` 1.33 mm 7.1 mm

Integral Scale Reynolds no. Re` = u′`/ν 38.81 408

Laminar flame speed sL 0.37 m/s 0.34 m/s

Laminar flame thickness δF 0.44 mm 0.46 mm

Damköhler number Da = `sL/δFv
′ 2.11 5.23

Kolmogorov length η = Re
−3/4
` ` 0.085 mm 0.078 mm

Gibson length lg = (sL/u
′)3` 0.452 mm 0.249 mm

Table 5.1: Relevant properties of the two turbulent premixed flames considered in this
chapter. The convective wavelength is calculated as λc = ūy/ff . The
quantities sL and δF were obtained using CHEMKIN PREMIX calculation
(see Humphrey, 2017).

fluctuations are quite visibly aperiodic.

Before moving ahead, let us define the auto-correlation function associated with ξ′ as:

Rξ(τ) = 〈ξ′(t+ τ)ξ′(t)〉. (5.1)

We have assumed that the conditions of homogeneity and isotropy are fulfilled such that

Rξ is only a function of the time delay τ . We can then define the power spectrum of the
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Figure 5.1: Temporal power spectral density E(ω̃) measured at various axial locations
y/λc, for flame F1. The power spectra varies as E(ω̃) ∼ ω̃−α over an
intermediate range of frequencies. The estimated values of the exponent
−α at various y/λc are shown in the inset for both flames F1 and F2. In
both cases, the exponent is close to -2; the corresponding scaling behavior is
depicted by the solid line in the main panel. The frequency corresponding to
Gibson (ω̃g), Corrsin (ω̃c) and Kolmogorov (ω̃η) scales have been indicated
by dashed lines.

flame fluctuations as:

Eξ(ω) = |ξ̂(ω)2| =
∫
Rξ(τ)eiωτ/2πdτ. (5.2)

Here, the angular frequency is defined as: ω = 2πf . The quantities Eξ(ω) and Rξ(τ)

are the Fourier transform pairs.

The power spectra as a function of the normalized frequency corresponding to the two

cases are shown in Fig. 5.1. A sliding-window averaging method was used to smooth

out large variations in the spectra and obtain the underlying scaling behavior. The

frequencies corresponding to eddy turnover times at various length scales have also
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been indicated. Here, τη corresponds to the turnover time of a Kolmogorov sized (η)

eddy, τG is that of Gibson scale (`g) eddy and τc is for Corrsin scale (ηc) sized eddy.

The spectra for the two cases are quite evidently broadband. The small peak around

1250 Hz for flame F1 corresponds to the harmonic forcing of the flame stabilization

point. We notice that the strength of harmonic forcing is very low compared to the

broadband behavior of the spectrum induced by the turbulent flow. Such a peak is not

visible for case F2 with a higher mean flow. The roll-off behavior of the two spectra

is particularly interesting. We can clearly observe that the spectra have scale-invariant

behavior and scales as:

|ξ̂2(ω)| ∼ ω−α. (5.3)

For flame F1, the spectrum scales with the scaling exponent α = 2.15 while for flame

F2, α = 1.79 at y/λc = 2 in Fig. 5.1. We observe that the scaling persists for

two decades of fτη ∈ (10−2, 10−1). The broadband behavior of the spectra persists

for fluctuations measured at different downstream locations. To better understand the

overall behavior, the change in the scaling exponent α of the power spectrum of flame

fluctuations as a function of the downstream distance y/λc from the flame stabilization

point is plotted in the inset of Fig. 5.1. We observe that the value of the scaling exponent

for either of the two flames remains close to 2 very close to the flame stabilization point

and decays to lower values at larger downstream distances.
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5.1.2 Kolmogorov’s limit for temporal power spectrum

We now discuss the underlying phenomenology of turbulent flames which leads to

the scale-invariant spectra depicting a power-law behavior. Peters (1992) derived the

spectrum of turbulence-induced fluctuations of the scalar field ξ′(x, t) from the scalar

two-point correlation: Rξ(r, t) = 〈ξ′(x, t)ξ′(x+r, t)〉 (refer to discussion in §2.2.2.2).

The spectrum function associated with scalar fluctuation ξ′ is determined as,

Γ(k, t) = k2
∮
R̂ξ(k, t)dΩ = 4πk2R̂ξ(k, t), (5.4)

where, R̂ξ(k, t) is the Fourier transform of Rξ(r, t) and Ω is the solid angle over

the Fourier k−space. The spectrum of ξ′ is then assumed to be related to the

Eulerian velocity spectrum. Through a gradient diffusion hypothesis and dimensional

analysis, Peters (1992) derived the form of the spectrum function associated with flame

fluctuations, which is of the form:

Γ(k, t) = H(k − k`)k−5/3 exp
[
−3c3(`gk)1/3

]
exp

[
−3

4
c4(ηck)4/3

]
exp (−c5ηMk) .

(5.5)

It is evident that the spectrum of ξ′ would scale according to the classical Kolmogorov’s

k−5/3 scaling at scales smaller than the integral scale (`) and much larger than scales

where propagation (`g) and curvature (ηc, ηM ) effects become relevant (see Fig. 1.5).

However, as one approaches smaller scales, propagation and dissipation effects become

dominant in smoothing out fluctuations in ξ′, leading to the much steeper exponential
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decay of the spectrum. In Fig. 5.1 we have indicated the relevant time scales

associated with the turnover times of eddies of integral (τ`), Gibson (τg) and Obukhov-

Corrsin (τc) scale. Clearly, very high-frequency fluctuations are not sampled by Mie

scattering measurements used for capturing flame edges. However, we observe that

the measurements span intermediate-range above the Gibson scale till the integral scale

(τ` > t >> τg). More precisely, the flame fluctuations in ξ′ are well-sampled for a

range of scales unaffected by anisotropic effects at large scales and flame propagation

effects at scales below Gibson scale. Thus, for this intermediate range, we observe self-

similar scaling of the spectrum of ξ′. Thus, the spectrum function of ξ′ simply reduces

to,

Γ(k) ∼ k−5/3, ∀ ` > r > `g. (5.6)

In order to understand the scaling exponent, we need to consider the influence of

turbulence on the temporal power spectrum. In the inertial-advective range, eddies

of size (r) smaller than the integral scale (r < `) perturb the flame and contribute to

the higher frequency range of the time spectrum. In addition, these eddies are randomly

swept past due to random advection. The random advection of eddies would decorrelate

the measurements, leading to spectral broadening, an effect analogous to Doppler’s

redshift (Tennekes, 1975). The frequency of such a random advection would be of the

order of u′/`, where u′ is the root mean square of the fluctuations in the velocity field.

Thus, the spectral broadening effect would be expected to occur below u′/`, around the

infrared range of the spectrum (f < 1/τ`), which is precisely what we observe in Fig.

5.1.

127



Thus, the spectral scaling behavior of ξ′ would theoretically depend on eddies smaller

than the integral scale r < `. Thus, the frequency of fluctuations induced on the

flame surface is essentially due to eddy turnover in this range, which is of the order

ω = 2πf ∼ u′/r. However, 1/r implies the wavenumber k of the eddy, implying that

ω ∼ u′k. Further, in this range, the velocity spectrum scales according to Kolmogorov’s

theory u′2/k ∼ k−5/3 (see Eqn. 2.18). In other words, velocity scales as: u′ ∼ k−1/3.

Thus, the frequency of fluctuations induced on the flame surface is related to the

wavenumber of eddies through the simple scaling relation

ω ∼ u′k ∼ k2/3. (5.7)

Finally, we note that at higher frequencies (f > 1/τ`), the dynamics would be

unaffected by spectral broadening effects. Consequently, in the intermediate range

of scales, the temporal power spectrum Eξ(ω) of a flame fluctuation is essentially a

re-arrangement of the spatial power spectrum Γ(k), and the total integrated energy

contained in either of the two spectrum should be equivalent (Tennekes and Lumley,

2018). Denoting with Eξ(ω) ∼ |ξ̂2(ω)| the time spectrum of ξ′, we have the following

balance

∫
Eξ(ω)dω ∼

∫
Γ(k)dk.

Using the fact that the wavenumber is a function of the frequency k = k(ω) according

to Eqn. (5.7), and utilizing the form of spectrum function Γ(k) in Eqn. (5.6) obtained
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for the intermediate range, we have

∫
Eξ(ω)dω ∼

∫
Γ(k(ω))dk(ω),

∼
∫

[k(ω)]−5/3 ω1/2dω,

∼
∫ [

ω3/2
]−5/3

ω1/2dω,

∼
∫
ω−2dω. (5.8)

The correspondence between the left and right side of the equation implies that the time

spectrum of ξ′ must follow:

Eξ(ω) = |ξ̂2(ω)| ∼ ω−2. (5.9)

This is Kolmogorov’s limit of time spectrum associated with fluctuations on the flame

surface induced by turbulence in the inertial sub-range.

In Fig. 5.1(a), we show the scaling of the spectra for the two flames. We observe

that the scaling range starts around the frequency of integral scale turn over time and

continues well past the frequency of a Gibson-scale eddy. In Fig. 5.1(c), we depict

the variation in the scaling exponent −α with the fluctuations ξ′ measured at several

downstream locations. The scaling exponent varies around the limit of α = 2 for the

two flames. Thus, within experimental uncertainty, the scaling behavior of the time

spectrum of ξ′ follows directly from Kolmogorov’s phenomenology of turbulent flows

in the intermediate range. In this range, the flame fluctuations are neither affected

by large-scale anisotropies nor does it depend on very short-scale (or high frequency)
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curvature and propagation effects. The flame behaves as a passive scalar in this range

of scales, and the fluctuations induced on the flame surface simply reflect the signature

of turbulent flows. Further, the scale-invariant nature of the spectra with a well-defined

scaling exponent implies the cascade process through which the turbulence-induced

flame fluctuations are transferred from small to large frequencies. The transfer of energy

across scales in this range is self-similar. The cascade is essentially disrupted at scales

below the Gibson scale as strong propagation effects cause exponential decay in the

magnitude of fluctuations. However, as we have only limited data sampling capability,

the high frequencies where the exponential decay starts is not captured, and the spectra

appear to flatten at higher frequencies (f > 1/τg). Thus, despite the lack of dissipation-

scale resolution, we are able to delineate a clear self-similar power-law scaling, which

evidently follows from Kolmogorov’s arguments for passive scalars.

5.2 STATISTICS OF LARGE-SCALE FLAME FLUCTUATIONS

Now, we focus on the statistics of the flame fluctuations as a function of the distance

from the flame stabilization point. As we saw earlier, the scaling of the spectra follows

from Kolmogorov’s theory at short distances from the flame stabilization point. At

a larger distance, the scaling is quite different from α = −2. The departure from

Kolmogorov’s limit is a consequence of increasing large-scale anisotropy at large

downstream disturbances. Thus, the statistics are expected to reflect such a behavior.

In Fig. 5.2(a), we depict the change in the shape of the probability density function

(PDF) of ξ′(t) for increasing downstream distance. We observe that PDF changes

130



from nearly Gaussian (N (0, 1)) at small y/λc to a stretched-exponential possessing

significant tails. The PDF further becomes increasingly asymmetric and skewed. The

flame length, i.e., the length of the flame front at any given instant of time along the

flame fixed co-ordinate system, continuously varies in time due to the general large-

scale unsteadiness of the flow. Thus, for a given y−location sufficiently downstream of

the flame-holder, the flame front may or may not exist at a certain time instance. The

probability of finding a flame front decreases as we move downstream of the flame-

holder. Thus, we find large deviations from the mean flame locations for the instances

when the flame propagates large downstream distances. These large deviations are

responsible for the heavy-tails of the distribution. The peaks also sharpen, indicating

the higher probability of the flame not to have propagated thus far downstream.

We measure the higher-order statistics, i.e., the skewness and the flatness factor of the

PDF of fluctuations. The skewness and flatness factors (otherwise known as kurtosis)

are given by the third and fourth moments of the PDF. Formally, it is written as:

S =
〈ξ′3〉
σ3
ξ

, F =
〈ξ′4〉
σ4
ξ

. (5.10)

Here, the standard deviation is defined as σξ = 〈ξ′2〉1/2. The skewness indicates the

asymmetry of the PDF, implying the relative propensity of fluctuations to be either

positive or negative with respect to the mean value. The flatness factor quantifies the

“tailedness" of the PDF and captures the significance of extreme value fluctuations in

the PDF. The skewness of a zero-mean Gaussian distribution (N (0, 1)) is 0, and the

flatness factor is 3.
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Figure 5.2: (a) Probability density function (PDF) of flame position fluctuations
normalized by the standard deviation (σξ) for increasing downstream
distance from the flame holder (y/λc = 0.2, 1, 2, 5, 8). (b) Flatness factor
(〈ξ′4〉/σ4

ξ ) and skewness (〈ξ′3〉/σ3
ξ ) of the PDF of ξ′(t) as a function of the

downstream distance. The data corresponds to flame F1. The PDFs have
been shifted vertically for clarity.

In Fig. 5.2(b), we plot the variation of the skewness and the flatness factor of the PDF

of ξ′ as a function of the downstream distance. We observe that the skewness is non-

zero, indicating that inward (negative) fluctuations are more likely than outward ones.

In other words, the flame is slightly more likely to fluctuate towards the reactants with

respect to the mean flame position 〈ξ(y)〉 than towards the products.

As noted earlier, the PDF becomes increasingly heavy-tailed at larger downstream

distances. This is captured by the divergence of the flatness factor 〈ξ′4〉/σ4
ξ from 3,

for y far away from the flame-holder as a consequence of sporadic flame propagation
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to large distances. Thus, there is large-scale intermittency associated with flame

propagation which is a direct result of large-scale unsteadiness in the evolution of flame

fluctuations. On the other hand, near the flame stabilization point, there is no large-

scale intermittency, as is indicated by the Gaussian PDF (Fig. 5.2) and the skewness

and flatness factor following their respective Gaussian values. However, there can be

intermittent fluctuations associated with the small-scale fluctuations induced by the

turbulent flow. In the next section, we discuss the means of quantifying small-scale

intermittency.

5.3 SMALL-SCALE INTERMITTENCY IN FLAME FLUCTUATIONS

5.3.1 Non-Gaussian statistics of increments in flame fluctuations

In the foregoing discussion, we noted that at smaller scales, Kolmogorov’s

phenomenology becomes inexact due to extreme fluctuations in dissipation-based

quantities, which is referred to as small-scale intermittency. In order to determine

whether fluctuations display small-scale intermittency, we need to focus on scale-

dependent statistics. Thus, we compute the increments in the fluctuations of the flame

surface:

δξ′(y, τ) ≡ ξ′(y, t+ τ)− ξ′(y, t). (5.11)

Measuring the moments of the increment in the fluctuations δξ′(y, τ) allows a scale

dependent analysis of the statistics. Measurement of the statistics of increments

over a range of time scales (τ ) is tantamount to successive high-pass filtering
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Figure 5.3: PDF of the normalized flame position increment (δξ′(τ)/σξ) function for
different values of normalized time lag τ/τη measured from ξ′(t) at y/λc =
0.5 for flame F1. Each curve has been vertically shifted for clarity.

operation required to capture the extreme fluctuations appearing intermittently in the

measurements. In fact, the moments of the increment in fluctuations are related to the

auto-correlation defined in Eqn. (5.1). It is easy to observe that the second moment of

the increment is related to the correlation through the relation:

〈|δξ′(y, τ)|2〉 ≡ 2〈ξ′2〉
(

1− Rξ(y, τ)

〈ξ′2〉

)
. (5.12)

Here, 〈ξ′2〉 is the mean-squared fluctuations in ξ′.

We depict the PDF of the increments δξ′(τ), measured at y = 0.5λc, for increasing

values of τ for flame F1 in Fig. 5.3. For very large values of τ , the PDF approximately

follows the Gaussian. This is due to the fact that at large values of τ , the two points in
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the time series become decorrelated, leading to the Gaussian distribution. However, as

τ is decreased and approaches the turnover time of a Kolmogorov-sized eddy, the PDF

becomes progressively sharp and possesses significantly wide tails. The PDF indicates

the presence of intermittency at small scales.

In order to quantify the extent of intermittency, we define the structure-function

associated with the increments for a generalized order p as:

Sp(y, τ) ≡ 〈|δξ′(y, τ)|p〉 = 〈|ξ′(y, t+ τ)− ξ′(y, t)|p〉. (5.13)

We can therefore measure the skewness, and the flatness factor of the PDF indicated in

Fig. 5.3. In terms of the generalized structure-function, the skewness is S3/S
3/2
2 , while

the flatness factor is defined as S4/S
2
2 . We plot the skewness and flatness factor of the

PDF of the increments in the flame fluctuations measured at a distance of y/λc = 2

in Fig. 5.4. We note that at large time delay τ , the flatness factor is very close to 3,

implying Gaussian behavior, a fact we observed in Fig. 5.3 as well. The flatness factor

increases monotonically as the time delay is lowered and approaches the turnover time

of a Kolmogorov-sized eddy (τ → τη). In fact, the flatness factor is close to 50 at very

low values of τ , implying the unmistakable signature of small-scale intermittency.

The skewness of PDF also has similar behavior. At large values of τ , the skewness is

close to 2. The PDF is near Gaussian with slight positive skewness. However, as we

decrease the time delay, the skewness also increases monotonically. For time scales

comparable to τη, the skewness is significant, implying the relatively higher propensity

of the PDF of δξ′ to have positive values in comparison to negative values.
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Figure 5.4: Flatness factor S4/S
2
2 (�) and the skewness S3/S

3/2
2 (H) measured at

y = 2λc for flame F1. Note that the left axis for the flatness factor is in
logarithms while right axis for the skewness is linear.

5.3.2 Power-law scaling of structure functions

For statistically stationary signals, the increments δξ′(y, τ) and the structure function

Sp(y, τ) depend only on the time lag τ . Further, for statistically intermittent signals,

any general pth order moment do not converge to a specific value, and displays power-

law scaling with the measurement scale. We thus find that Sp(y, τ) depicts power-law

scaling with the time lag τ with the scaling exponent ζp(y), such that:

Sp(y, τ) ∼ τ ζp(y). (5.14)

In Fig. 5.5, we plot the structure-function up to the sixth order as a function of τ at

y = 0.5λc. We notice that Sp scales non-trivially with τ across two decades. Further,

the slope of the scaling increases as the order of the structure-function is increased. The

scaling of the structure-function of different orders saturates, indicating the outer cut-

off (τo). The outer cut-off is smaller but of the order of turnover time of eddy of the
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Figure 5.5: Structure function Sp with generalized order p is plotted as a function of the
normalized time lag for flame position increments at y/λc = 0.5 for flame
F1. Curves have been shifted vertically for clarity.

size of the integral scale (τo . τ`). Above the outer cut-off (τ > τo) ξ′ decorrelates

and randomizes from its values at earlier times, essentially forgetting its past. The

decorrelation leads to a Gaussian PDF as observed from Fig. 5.3 for large values of τ .

5.3.3 Kolmogorov’s limit for structure-function scaling

The exact nature of scaling of the higher-order structure-function is quite important. If,

for instance, we consider the signal to be non-intermittent and Gaussian, the scaling

of the higher-order structure-function follows from the first two moments of the PDF.

This allows one to unambiguously predict the behavior of the higher-order moments,

and hence, quantify the tails containing the extreme fluctuations. For example, it is

easy to deduce that any given odd moment of a Gaussian PDF should identically be

equal to zero, as one would expect of the third moment, which is the skewness. This is
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precisely the case of K41 theory, which implicitly assumes homogeneous and isotropic

turbulence, resulting in a Gaussian velocity field. Thus, the velocity structure function

defined on the velocity increments (δvr ≡ v(x + r) − v(x)), is expected to follow, for

any p, the relation (see Eqn. 2.22):

〈δvpr〉 = β′p(r〈ε〉)ζp , (5.15)

where β′p are empirical constants and 〈ε〉 is the average turbulent kinetic energy

dissipation. The scaling exponent assumes the form: ζp = p/3. Two of these structure-

function relations are quite important. The scaling of the second-order structure-

function, is of the form: 〈δv2r〉 ∼ r2/3〈ε〉. The equivalent spectral form leads to

the 5/3rd-law: Eu(k) ∼ 〈ε〉2/3k−5/3. Although the 5/3 scaling is empirically well

substantiated (Fig. 2.2a), the scaling of the structure-function for p = 2 is based on

dimensional arguments, and no exact relation is known. On the other hand, for p = 3,

the relation is mathematically exact, and is known as the 4/5th-law: 〈v3r〉 = −4/5〈ε〉r.

Thus, if the velocity field were to be Gaussian, the higher-order moments would follow

exactly from Eqn. (5.15) and result in a non-intermittent velocity field. However, as it

turns out, extensive experimental data show that the scaling exponents are fairly close to

the predictions of K41 theory up to order p = 3 (Frisch, 1995; Sreenivasan and Antonia,

1997). However, for p > 3, there is a deviation from the ζp = p/3 limit. The deviation

in the scaling exponents from the p/3 dimensional limit is known as anomalous scaling

exponents. The higher-order moments sample the tails of the PDF and quantify the

extreme value fluctuations in the velocity field. Thus, the higher the deviation, the

stronger the intermittency is, and the larger is the anomaly in the scaling exponent.
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In §5.1.2, we observed that the spectrum of flame fluctuations follows Eξ(ω) ∼ ω−2

for τ` < τ < τg. This would indicate that the second-order structure function should

scale as: 〈δξ′(τ)2〉/ω ∼ ω−2. It is straightforward to observe that 〈δξ′(τ)2〉 ∼ τ .

Generalizing to any arbitrary order p, we have

Sp(τ) = 〈δξ′(τ)
p〉 ∼ τ p/2. (5.16)

In other words, the scaling of the exponents of the structure function of the increments

in flame fluctuations should be:

ζp =
p

2
. (5.17)

We verify the exact behavior of the scaling exponents for the two flame data next.

5.3.4 Anomalous scaling exponents

The scaling of the structure function for various orders was shown in Fig. 5.5. We

determine the scaling exponent for the power-law obtained for various orders as the

slope of the resulting log-log plot, which is:

ζp =
log (Sp(τ))

log τ
, ∀ τ ∈ (τη, τo), p = 1, ..., 6. (5.18)

In Fig. 5.7, we plot the dependence of the scaling exponent ζp as a function of the

moment order p for fluctuations measured at y/λc = 2 for the two flames F1 and F2.

Evidently, ζp does not scale according to ζp = p/2 predicted based on Kolmogorov’s

dimensional limit and, in fact, shows a large deviation from the dimensional limit.
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Figure 5.6: The variation of the scaling exponents ζp with the order p of the structure
function, for both flames at y/λc = 2. The dashed line indicates the non-
intermittent limit of ζp = p/2. The strong deviation of ζp from this limit
for p > 2, implies that the exponents scale anomalously and that the flame
fluctuations are strongly intermittent. The error bars represent the standard
deviation of the measured values obtained from different time series.

Further, the exact nature of the dependence of ζp on p is non-trivial. First, the monotonic

increase in the value of ζp indicates that the higher-order moments of δξ′ sufficiently

capture the intermittent properties of ξ′ even when its PDF of ξ′ is Gaussian close

to the flame stabilization point. Second, the concavity of ζp − p curve follows from

Hölder’s inequality (Eqn. 2.28). Finally, the deviation in ζp from p/2 becomes larger

with increase in the order p. The deviation implies very strong intermittency at the

smaller scales. A comparison with the typical plots of scaling exponents for velocity

and passive scalars in turbulent flows (Fig. 2.4) indicates much stronger intermittency

in the fluctuations of the flame surface (Fig. 5.6).

In our foregoing discussion, we noted that the structure functions are determined at

various downstream locations. Thus, the scaling exponents would also depend upon

the downstream location. Thus, in Fig. 5.7, we plot the variation in ζp as a function of
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Figure 5.7: The moment order exponent ζp plotted as a function of the normalized
downstream distance y/λc and order p.

moment order p and downstream location y/λc. We observe that the flame fluctuations

depict small-scale intermittency at all downstream locations.

Having shown that the flame fluctuations depict small-scale intermittency, we use the

statistical model of multifractality to capture intermittent statistics, explain the role of

singularities, and extract important information about the nature of the fluctuations from

the multifractal spectrum.

5.4 MULTIFRACTAL BEHAVIOR OF TURBULENT FLAMES

In this section, we explain the motivation for invoking the statistical model of

multifractal formalism in characterizing the intermittent fluctuations in turbulent

premixed flames and explain various important factors of the multiplicative process

that leads to the observed small-scale intermittency.
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5.4.1 Generalized dimension of flame fluctuations

As explained earlier, moments of intermittent quantities do not converge and are

dependent on the measurement scale. Consequently, one obtains a power-law relation

between the moment of a given order q and the scale of measurement (Halsey et al.,

1986). This is expressed as

〈δξ′qτ 〉 ∼ 〈δξ′〉q
(
τ

τ`

)µ(q)
∀ q ∈ R. (5.19)

Here, we have used τ` as a normalizing scale and 〈δξ′〉 is obtained by averaging over

scale τ`.

The scaling exponent of the power-law scaling of the moments is referred to as the mass

exponent and is denoted as µ(q) = (q − 1)Dq. The order q is essentially an amplifier

that can be tuned to accentuate certain fluctuations over others. For q > 0, the major

contribution to the value of the moment on the left-hand side of Eqn. (5.19) is from

peaks in ξ′ that gets larger as q is increased. While, for q < 0, the major contribution

to the average is from peaks in ξ′ of smaller and smaller intensities as q is decreased to

larger negative values.

In Fig. 5.8, we depict the scaling of the moment of order q (Eqn. 5.19) as a function

of the time delay τ . We have considered the fluctuations of flame F1 measured at

y = 0.5λc for exemplifying the nature of scaling. We notice that the general q-order

moment of ξ′ does not converge. Instead, we observe power-law scaling over a sizeable

range of τ . This is a consequence of the fact that the fluctuations ξ′ are generated as a
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Figure 5.8: Scaling of the generalized moment (Eqn. 5.19) with time scales τ for
various order q. The linear fits are also indicated for each case. The
slope of the qth order moment with τ gives the mass exponent µ(q) and the
generalized dimension Dq. The fluctuations ξ′(t) corresponds to y = 0.5λ
for flame F1.

result of some underlying multiplicative process and, thus, have a fractal (multifractal)

nature. Further, the scaling exponents are different for different q. We also observe

that the scaling is much steeper for increasing larger negative values of q for which the

contributions to the moments are only from small fluctuations in ξ′. In contrast, for

larger positive values of q, only large fluctuations in ξ′ contribute to the moments, and

the slope becomes progressively shallower.

The generalized dimension is then defined as:

Dq = µ(q)/(q − 1). (5.20)

Dq refers to the dimension of a set which, when used to intersect with the original

measure, produces divergence of the moment of order q (Mandelbrot, 1989). Further,

Hentschel and Procaccia (1983) showed that the D0 corresponds to the fractal
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Figure 5.9: The variation of (a) the generalized dimension Dq, and (b) the mass
exponent µ(q) = (q − 1)Dq as a function of the generalized moment order
q measured from ξ′ at the indicated y/λc values for flame F1.

dimension of the support of the measure, D1 the information dimension, and D2 the

correlation dimension. The information dimension is determined from the Shannon

entropy in the signal (Hentschel and Procaccia, 1983). Essentially, D1 quantifies the

growth in the Shannon entropy as the time delay τ is varied. Finally, the correlation

dimension is measured from the scaling of the correlation between the measure, which

is the moment of ξ′, among points separated by time duration τ .

The generalized dimension is measured from the slope of the linear fit of the logarithm

of generalized moment, and is expressed as:

µ(q)

q − 1
= Dq =

log
[
(δ〈ξ′qτ 〉/〈δξ′〉q)

1/q−1
]

log (τ/τ`)
. (5.21)

In Fig. 5.8, the linear fit on the log-log plot is indicated for scaling of each moment

for different order q. The variation in the values of Dq and mass exponent µ(q) is

further shown in Fig. 5.9 for ξ′ measured at the indicated y/λc locations for flame F1.

Since the fluctuations in ξ′ arise out of multiplicative cascade, where the cascade is
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Generalized dimension y/λc = 0.5 y/λc = 1 y/λc = 1.5

Fractal dimension D0 1.10 1.14 1.21

Information dimension D1 1.02 1.10 1.12

Correlation dimension D2 1.00 1.06 1.08

Table 5.2: Generalized dimension of the fluctuations ξ′ for flame F1 measured at the
three locations.

embedded in E−dimensional space. The process of analyzing the data is essentially

akin to obtaining the samples ξ′ by taking a one-dimensional cut through a higher-

dimensional multiplicative process. Thus, for the present case, we can do as well

assuming E = 2, which results in intermittent fluctuations in time. We note that

the condition of maxDq < E is followed (Mandelbrot, 1989). Further, we observe

that the value of Dq decreases as a monotonic function of q, satisfying the criteria for

generalized dimensions of the underlying attractor (Hentschel and Procaccia, 1983).

The mass exponent µ(q), likewise, is a monotone decreasing function of q. Finally,

The fractal dimension D0 of ξ′ for all the three downstream distances is greater than

1, implying a fractal behavior. The exact values of the fractal, information, and the

correlation dimensions are tabulated in Table 5.2.

5.4.2 Singularities and the multifractal spectrum

As noted earlier, surfaces in turbulent flows are inherently fractal in nature and arise

from the spatially hierarchical and temporally random structure of the velocity field

(Sreenivasan, 1991a). Likewise, flames also depict fractal behavior and have been quite

well studied in the past (Gouldin, 1987; Kerstein, 1988; Gülder et al., 2000). Thus, we
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have a measure (moments of ξ′) distributed on a fractal interface.

At this stage, it is important to delineate the meaning of measure and the support exactly.

For instance, let us consider tossing two unbiased dice. The sum of outcomes of tossing

two dice is the set of integers contained in [2, 12]. The probability of obtaining a

number between 2 and 12 would be contained in (0, 1). In other words, the probability

measure is said to be supported by the set [2, 12]. In the context of turbulence, measure

could refer to the moment of a flow variable such as velocity, kinetic energy, etc.

A simple example of measure is an an iso-concentration contour of a scalar variable

(concentration, temperature, etc.), which by definition, is the same everywhere. Thus,

the measure is same as the support. This can be contrasted, for instance, with the actual

distribution of scalar dissipation (defined as scalar increments) in real space. In which

case, the support is the scalar concentration, and the measure is the spiky distribution of

the scalar dissipation.

As discussed in §2.1.6, intermittent measures are generated by a multiplicative process

where a conserved measure (e.g., the total energy of a flow) is divided unequally from

one generation to next. As the number of unequal divisions increases, the measure

becomes progressively uneven and intermittent. If the rule of division remains fixed

from one to the next generation, the statistical properties of the measure depict a power-

law (see Fig. 5.5 and Fig. 5.8).

Let us suppose that the measure of fluctuations ξ′, as indicated in Fig. 5.1b, in the

limit [0, t] is M([0, t]). It is obvious that the measure is an increasing function of time

such that the increments in the measure M([0, t + dt]) − M([0, t]) essentially gives
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the fluctuations ξ′ at time t. If the fluctuations in ξ′ were to be regular, the measure

would have continuous density defined as M(∆t)/∆t. In the limit ∆t→ 0, the density

would tend to its true value. However, that would not be the case for the fluctuations

shown in Fig. 5.1b, as the fluctuations are irregular and would remain so if one were

to examine it on an even finer scale. A simpler test is to divide the fluctuations into

two halves. It becomes quite clear that the measure would not be equally distributed

among the two halves. If, on the other hand, we were to take the limit t → ∞, the

fluctuation would be even more ‘wiggly’ and uneven. Thus, it follows that the measure

M([0, t]) is continuous and fails to have local density. In other words, the measure is not

differentiable and is thus, singular. It is precisely this point that underlies the concept

of multifractal distribution discussed in §2.1.7.

As the underlying measure giving rise to fluctuations in ξ′ is singular, we define the

singularity exponent α which relates the measure contained in a box of size τ with the

scale of measurement through the relation:

〈δξ′τ 〉
〈ξ′〉

∼
(
τ

τ`

)α−1
. (5.22)

Here, 〈δξ′τ 〉 denotes the measure which is taken to be the moment of the increment in

fluctuations, δξ′τ = ξ′(t+ τ)− ξ′(t), contained in the interval [0, τ ].

The equation above is akin to performing a box-counting and determining the integrated

measure contained in the box size. The singularity exponent α is the local singularity

strength, which depends on the location of the box and its size. Equation 5.22

emphasizes that different values of α (for all α < 1) are associated with regions of
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different singularity strengths. The smaller the value of α is, the larger is the strength of

the fluctuations. In contrast, for α > 1, the fluctuations are from regular regions where

the measure is differentiable.

Since α is indicative of the local singularity strength and varies depending upon τ ,

the measure is evidently then distributed on an infinity of iso-α interfaces which are

intertwined together. Thus, the number of boxes N of size τ which have the exponent

α within a band of α and α + dα is given by (Halsey et al., 1986):

N(α)dα ∼ ρ(α)

(
τ

τ`

)−f(α)
dα. (5.23)

Here, the scaling exponent f(α) can be interpreted as the fractal dimension associated

with counting the number of boxes covering an iso-α set for α > 0 and f(α) ≥ 0. The

measures f(α)−α andDq−q are analogous to each other. The need for the multifractal

description using the relation between f(α) − α allows us to understand the nature of

the underlying multiplicative process, which leads to the singular distribution of the

observed measure.

The measure f(α) − α and Dq − q are associated with each other by direct or inverse

Legendre transform. This is obtained as (Halsey et al., 1986):

f [α(q)] = qα(q)− (q − 1)Dq, (5.24)

α(q) =
d

dq
[(q − 1)Dq] , (5.25)

given that the following conditions are followed: f ′(α) < 0 and ∂f(α)/∂α = q. Thus,
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Figure 5.10: Multifractal spectrum f(α) as a function of the singularity spectrum (α)
obtained from the Legendre transform of Dq and q.

given the Dq − q curve, we can use the inverse Legendre transform to obtain f(α)− α.

Thus, we use a central differencing scheme to obtain the derivative of (q − 1)Dq with

respect to q. Using the Legendre transform relation above, we obtain α and f(α).

We plot the multifractal spectrum f(α) as a function of the singularity exponent in Fig.

5.10 for the fluctuations measured at the indicated y/λc locations for flame F1. First,

we observe a number of salient features from the multifractal spectra. We note that

the spectra for each case have a maximum (∂f/∂α = 0) at α > 1 where f(α) = 1.

The value f(α) = 1 implies that the fluctuations in ξ′ are supported on a set whose

dimension is unity, which is the embedding space itself. Second, from Eq. 5.22, we

note that 0 < α < 1 indicates singularities. Thus, the part of f(α) − α spectra for

0 < α < 1 follows from the singularity in the fluctuations. The value αmin specifies the

largest singularities in the dataset. Further, the singularities are distributed on a fractal

set whose fractal dimension is given by f(1), which is less than the dimension of the

embedding space for all three cases. In contrast, α > 1 signifies the contribution to the
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Condition
y/λc = 0.5 y/λc = 2

α f(α) α f(α)

αmin 0.73 −0.18 0.75 −0.03

αmax 1.40 0.092 1.73 −0.03

w = αmax − αmin 0.67 - 0.98 -

∂f/∂α = 0 1.12 1.00 1.23 1.00

f(1) 1.00 0.89 1 0.85

∂f(α)/∂α = 1 1.05 0.97 1.04 0.92

Table 5.3: Comparison of the properties of the multifractal f(α)−α spectrum for flame
F1 at two locations.

spectrum from fluctuations that are non-singular, regular, and differentiable.

Finally, the special point where ∂f(α)/∂α = 1 corresponds to the measure-theoretic

support of the fluctuations. This point indicates the set of fluctuations that are quite

prevalent. These fluctuations are weakly singular as f is quite close to unity. Thus, it

follows that there are strong fluctuations with singularity strength αmin which are rarer.

The majority of the fluctuations, however, correspond to weakly singular regions. For

the fluctuations measured at the three locations, the fluctuations measured closest to the

flame holder are the most singular as αmin is the lowest for the case closest to the flame

holder. The fluctuations measured at larger distances contain more regular regions as

the spectrum spans a greater region for α > 1.

Next, we compare the multifractal behavior of the fluctuations measured for the two

flames at the same location. We plot the f(α)−α spectra for the cases in Fig. 5.11. The

properties of the two spectra are depicted in Table 5.4. Much of our previous discussion

remains valid for the observed spectra. We notice that the most singular regions have

αmin values which are very similar. Further, fluctuations arising from regular regions
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Figure 5.11: Comparison of multifractal spectrum f(α) as a function of the singularity
spectrum (α) obtained from the Legendre transform of Dq and q for flame
F1 and F2.

Condition
Flame F1 Flame F2

α f(α) α f(α)

αmin 0.75 −0.03 0.73 −0.01

αmax 1.73 −0.03 1.44 −0.09

w = αmax − αmin 0.98 - 0.71 -

∂f/∂α = 0 1.23 1.00 1.04 1.00

f(1) 1.00 0.85 1.00 0.98

∂f(α)/∂α = 1 1.04 0.92 0.97 0.97

Table 5.4: Comparison of the properties of the multifractal f(α)−α spectrum measured
at y/λc = 2 for flames F1 and F2.

are much more pronounced for the Flame F1 as the majority of the spectra lies in the

range α > 1.

Thus, in this section, we have depicted that intermittent fluctuations arise as a result

of the underlying multiplicative process, which leads to a singular distribution of

measures. We then showed that the quantification of the underlying singularities

explains various features of the small-scale intermittency.
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5.5 INTERIM SUMMARY

In this chapter, we reveal the presence of self-similarity and intermittency in the small-

scale fluctuations of a turbulent premixed flame. From temporal measurements of the

position of a methane-air V-flame, we find that the power spectrum has as a power-law

dependence on frequency, over an intermediate range of time scales, with a scaling

exponent close to -2. This exponent is explained as a consequence of the flame

fluctuating passively in response to perturbations from inertial-range turbulent eddies.

We quantify the large-scale intermittency of the flame fluctuations, which arises from

the general unsteadiness in the flow and leads to large variations in the flatness factor

of the PDF of flame fluctuations at large downstream distances. Next, we calculate

the moments of the temporal structure-function and find that they scale anomalously

– a signature of small-scale intermittency – showing that higher frequency fluctuations

have increasingly non-Gaussian, wide-tailed probability distributions. The anomalous

scaling is confirmed by noting the deviation of the empirically determined scaling

exponents from the exponents obtained from Kolmogorov’s limit. Finally, we depicted

that the intermittent fluctuations are much better represented through the multifractal

spectrum.

Our results have important implications for modelling turbulent premixed flames while

also showing how a flame reflects the characteristic features of the turbulent carrier flow.

In the next chapter, we will analytically derive the effect of intermittent turbulent kinetic

energy dissipation on the fractal dimension of turbulent flames.
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CHAPTER 6

FRACTAL DIMENSION OF PREMIXED FLAMES
IN INTERMITTENT TURBULENCE

In this chapter, we discuss the effects of small-scale intermittency in turbulent flows on

the dynamics of turbulent premixed flames. We begin by introducing the formalisms

of fractals and their relation to measures and embedding space. We then discuss the

application of concepts of fractals in general turbulent flows and in turbulent premixed

flames. We then derive the fractal dimension for thickened premixed flames with

low Da values. We analytically show that the fractal dimension applicable for low

Da flames needs to be appropriately corrected as small-scale intermittency leads to

fluctuations in the inner cut-off of turbulent flames. We derive two corrections and

discuss their implications.

6.1 FRACTALS, MEASURES AND DIMENSIONS

Let us begin with an explanation of fractal objects. Fractal objects are complex objects

made up of reduced-size copies of the whole (Mandelbrot, 1982). We can measure the

length, area, or volume of such objects by covering the entire object with square boxes

of side r. The total number of boxes (N ) required to cover such a surface obeys the

power-law scaling (Mandelbrot, 1982):

N ∼
(
r

ro

)−D
, (6.1)

The content of this chapter have been published in A. Roy & R. I. Sujith (2021) Fractal dimension
of premixed flames in intermittent turbulence. Combustion and Flame, 226, 412-418.

https://www.sciencedirect.com/science/article/pii/S0010218020305812
https://www.sciencedirect.com/science/article/pii/S0010218020305812


where ro is an outer cut-off scale and D is referred to as the fractal dimension of the

complex object. Equation (6.1) can be verified by considering a square of size ro. If

we use smaller squares r = ro/2 to cover the larger square, we will need N = 4 =

(r/ro)
−D. It is evident that D = 2 would be required to fulfil the equality. Thus, the

concept of fractal dimension is a generalization of the usual Euclidean dimension. Since

the square spans R2 space, we obtained D = 2. Thus, we can easily extend this concept

for quantifying the length, area, and volume of complex shapes and objects. A property

of fractal objects which is quite important is that the fractal dimension (D) is greater

than or equal to the dimension of the embedding space Rd, i.e., D ≥ d. For the example

of the simple square, we considered, the fractal dimension is equal to the embedding

dimension.

In general, one is interested in determining some measure associated with the complex

fractal object. This is precisely what we tried to do when measuring the number of

boxes required to cover the square. Equation (6.1) implies that the number of boxes, or

more generally, the measure, changes with the measurement scale. An intuitive way of

understanding this is by considering the challenge associated with measuring the length

of the coast of a country. At the level of satellite imagery, the length of the coast would

be quite small as smaller relief in the feature would be hidden in the image. However, as

the resolution is increased, more features would be revealed, and the length of the coast

would increase. This is exactly what is engendered in Eqn. (6.1), and is also evident

from our earlier discussion on the distribution of multiplicative processes in §2.1.6.

Another important aspect is the concept of cut-off in the range of fractal scaling. For

computer-generated fractals, Eqn. (6.1) can be measured to arbitrarily large resolutions.
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However, for practical objects, there is often an inner and outer cut-off beyond which

the measure of an object no longer scales as a fractal. We discuss more about the inner

and outer cut-off in §6.4.

In the case of surfaces in turbulent flows, the flux of important physical quantities

such as species, mass, momentum, etc., depending on the length, area, or volume of

these complex fluctuating surfaces. We can therefore find the area of a complex surface

embedded in R2 space by multiplying the area of the smallest box used for counting.

Thus, the total area is expressed as:

AT = r2N = r2o

(
r

ro

)2−D

. (6.2)

Here, the reference area is indicated by A0 = r2o . We observe that the exponent in

Eqn. 6.2 provides information of the dimension of the embedding space through the

numerical value of 2 and fractal dimension D. The difference between the embedding

dimension and fractal dimension is referred to as co-dimension (Mandelbrot, 1982).

The co-dimension quantifies the intersection of the fractal object of dimension D with

the embedding space Rd of dimension d.

We utilize these concepts extensively for measuring the fractal dimension of turbulent

flames in the next sections.
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6.2 FRACTALS IN CLASSICAL TURBULENT FLOWS

The complex, intertwined motion of turbulent flows has led to the widespread use

of fractals and related concepts to understand the phenomenology of turbulence

(Mandelbrot, 1982; Sreenivasan, 1991a). Most notably, scalar iso-surfaces in

homogeneous, isotropic turbulence have been shown to have fractal behavior where

the area is independent of the measurement scale and depends only upon the scaling

exponent, known as the fractal dimension (Sreenivasan, 1991a). These predictions

have been tested and validated in controlled experiments (Sreenivasan and Meneveau,

1986; Sreenivasan et al., 1989). The most renowned example of the fractal behavior

of scalar surfaces in turbulence is the fractal dimension of clouds which was shown to

be D = 7/3 by Lovejoy (1982). Later studies predicted the limit of D = 7/3 through

considerations of particle-pair diffusion (Hentschel and Procaccia, 1984) and scaling

arguments related to the estimate of flux of passive scalar in entraining turbulent flows

with sharp interfaces separating the turbulent from quiescent regions(Sreenivasan et al.,

1989).

For scalar surfaces in well-developed turbulence, Constantin et al. (1991) derived the

estimate of the area of an iso-scalar surface contained within a ball (of radius r) using

the co-area formula of geometric measure theory. They showed that for scales below

the inner cut-off, the scalar diffusion dominates the advection and smears out the scalar

gradient, leading to a smooth area. Consequently, the iso-surface only appears as a

fractal above some inner cut-off dependent on the local Reynolds number. The fractal

dimension was then shown to be D = 8/3 after assuming that the velocity estimate
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follows Kolmogorov’s phenomenology. Further, the fractal dimension of D = 8/3

was also suggested by Mandelbrot (1975) for scalars in Gaussian random fields and

Kolmogorov spectra.

Small-scale intermittency plays a crucial role in determining the dynamics of passive

scalar surfaces. As explained, small-scale intermittency refers to the increasing non-

Gaussian behavior in dissipation quantities when one approaches scales close to

Kolmogorov’s length scale. The small-scale intermittency is tied to the multifractality

in the dissipation field, leading to extreme-value fluctuations in dissipation quantities,

localized non-uniformly and intermittently throughout space (Sreenivasan and Antonia,

1997). Sreenivasan et al. (1989) showed that intermittent dissipation of turbulent

kinetic energy significantly affects the lower cut-off estimate and leads to corrections

to the estimate of the fractal dimension of scalar iso-surfaces in entraining flows. The

correction was a result of the fact that for spatially intermittent dissipation, the moment

of dissipation taken over a box size of a given scale depends on the scale itself. Thus, the

inner cut-off defined on the averaged dissipation will vary if the scale over which the

averaging is performed depends on the measurement scale. Hentschel and Procaccia

(1983) and Halsey et al. (1986) introduced the multifractal formalism for describing

intermittent fields, which was then adopted by Meneveau and Sreenivasan (1990) for

characterizing the intermittent nature of dissipation. They presented a more refined

analysis by explicitly performing an integration over boxes along the interface and

derived the correction to the fractal dimension.
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6.3 FRACTALS IN PREMIXED TURBULENT FLAMES

A closely related problem to the statistical description of scalar surfaces in turbulence

is the description of propagating interfaces in turbulence. Propagating interfaces are

frequently encountered in the study of premixed combustion and are of practical

importance. In the limit where flow time scales are much larger compared to combustion

time scales (i.e., Damköhler number, Da = τη/τF = (η/δF )2 >> 1), one can

unambiguously define a flame surface by considering an iso-temperature or iso-

concentration surface (Borghi, 1985; Peters, 2001). In other words, internal flame

processes are not affected by turbulent fluctuations, and the effect of turbulence is

restricted only to wrinkles on the flame surface. Such flames are referred to as

corrugated flamelets (see §2.2.1). Here, τη indicates the time scale with respect to a

Kolmogorov scale (η) vortex, and τF is the flame time scale, and δF is the laminar

flame thickness. In contrast, for low Da flames, a range of eddies have turnover times

comparable to the reaction time scale. These eddies can penetrate and disrupt the

preheat zone. The scalar transport (heat and reactants) are enhanced due to turbulence,

leading to a thickening of the preheat zone (Law, 2010). These flames are appropriately

referred to as thickened flames. In the present chapter, we consider flames in the

thickened flame limit (Da ' 0.1− 10) where the turbulence can only affect the preheat

zone and not the reaction zone. Further, we consider high turbulence levels, such that

cellular instabilities do not cause any cut-off in the fractal scaling range (Chaudhuri

et al., 2011).

Early studies on the application of fractals in combustion considered the limit of
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Da >> 1 and assumed the flame surface to be a passive interface with a fractal

dimension 7/3 (Gouldin, 1987; Kerstein, 1988). However, Kerstein (Kerstein, 1988)

showed that the similarity in the estimate of fractal dimension to that of passive scalars

in turbulence is only coincidental. It was shown that a dynamical balance between

wrinkling due to turbulent convection and smoothing effects due to flame propagation

is established at all length scales in the scaling range. The fractal dimension of 7/3

was recovered naturally by considering the balance between characteristic burning time

governed by turbulent burning velocity and eddy turnover time. Since then, the fractal

dimension of D = 7/3 has been well-validated in experiments since then (Mantzaras

et al., 1989; North and Santavicca, 1990; Thiesset et al., 2016), although the exact value

has been noted to depend on the measurement approach, as summarized in Gülder et al.

(2000). Later, Kerstein (1991) considered the effect of intermittency in turbulent kinetic

energy dissipation and arrived at a corrected value of the fractal dimension, which was

quite similar to the correction obtained by Meneveau and Sreenivasan (1990). However,

the two approaches were quite different and implied the possibility of geometrical

equivalence of different surfaces in turbulent flows.

Application of concepts of fractals in the description of turbulent flames, however, has

remained confined to combustion in the corrugated flamelet regime (Da >> 1). This

has led to the development of various combustion models (Gouldin, 1987; Gouldin

et al., 1989; Mantzaras et al., 1989; Gülder, 1991; Gülder and Smallwood, 1995; North

and Santavicca, 1990; Gülder et al., 2000). In particular, researchers have been quite

successful in obtaining closure for the unresolved flame area in Large Eddy Simulation

(LES) models (Lindstedt and Vaos, 1999; Knikker et al., 2002; Charlette et al., 2002;
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Fureby, 2005; Hawkes et al., 2012). However, the success has not translated nearly as

well while modeling low Da flames, with some exception (Chatakonda et al., 2010;

Hawkes et al., 2012; Keppeler et al., 2014). As mentioned earlier, for low Da flames,

a range of turbulent eddies can penetrate and disrupt the preheat zone. Nonetheless, the

fractal framework is still applicable as the burning rate of the flame depends on the flux

of fuel across the iso-concentration surface, which is being entrained by the eddies in

the preheat zone, provided that there are no local extinctions. Thus, even for the case of

low Da flames, one can define the flame surface as an iso-surface of progress variable

based on fuel mass fraction and extract statistical properties of the fractal iso-surface

(Chatakonda et al., 2013). Thus, the fractal properties of low Da flame surfaces are

expected to differ from that of corrugated flamelets (Chatakonda et al., 2010, 2013).

For low Da thickened flames (Da = 0.44− 4.22), Chatakonda et al. (2013) considered

a balance between flame stretch rates at the smallest scales of wrinkling. A balance

of the tangential flame strain and the effects of curvature and flame propagation leads

to a modified inner cut-off scale known as the Obhukhov-Corrsin length scale (ηc).

The effect of this modified inner cut-off scale then leads to a modified prediction

in the fractal dimension of low Da flames, which is equal to D = 8/3. This

prediction was then verified through direct numerical simulation of hydrogen-air flame

and thermonuclear flames in type 1a supernovae (Chatakonda et al., 2013).
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6.4 ESTIMATE OF FRACTAL DIMENSION OF THICKENED FLAMES

We define the flame surface as an iso-concentration surface of a progress variable based

on fuel mass fraction. This allows us to define a flame surface even for low Da flames

where turbulent eddies penetrate the preheat zone, as the net burning rate depends upon

the flux of reactants across the fuel iso-concentration surface. We assume that the

flame is devoid of any local extinction. We consider a flame surface, defined in this

manner, propagating freely into a volume containing a combustible mixture where the

flow is homogeneous and isotropic. The flame surface divides the region of reactants

and products. We focus on the wrinkles on the flame surface induced by turbulent

fluctuations in the inertial range such that the flame does not experience any anisotropic

effects due to the directional nature of flame propagation and mean shear in the flow.

Then, it follows that the fluctuations on the flame surface are locally isotropic, and the

wrinkles follow dynamic self-similarity.

We assume that the Reynolds number is sufficiently high such that there is a significant

scale separation. The outer cut-off can then be conveniently defined as the integral

length scale `, as done previously (Gouldin, 1987; Gülder, 1991). Thus, the true area of

the flame surface, AT , can be written from Eqn. (6.2) as

AT (r) = A0

(r
`

)2−D
, (6.3)

where A0 = `2 and D is the fractal dimension of the flame. In order to get the true

area of the flame correctly, it is important to estimate the inner cut-off below which
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the flame surface is no longer a fractal. Here, we present the formulation given in

Chatakonda et al. (2013) for determining the inner cut-off. A more detailed derivation

is given in Hawkes et al. (2012).

For a stable and well-maintained flame surface in a turbulent flow field, turbulence-

induced tangential flame strain at the lowest length scales are balanced by the effects

of curvature and flame propagation (Hawkes et al., 2012). The tangential flame strain

rate due to an eddy of size r is aT = u′/r, where u′ is the velocity characteristic

of eddies of size r. Further, following Kolmogorov’s phenomenology (Eqn. 2.17),

we have u′ ∼ (〈ε〉r)1/3, where 〈ε〉 is the rate of turbulent kinetic energy dissipation

averaged over the volume `3. Thus, the tangential flame strain rate can be re-written as

aT ∼ (〈ε〉r)1/3/r.

The effect of flame propagation in balancing the tangential flame stretch is negligible

for low Da flames, and is well-supported by theory (Peters, 1999) and DNS results

(Hawkes and Chen, 2005). In such a case, the equilibrium on the flame surface

is maintained by the effect of curvature alone (Hawkes et al., 2012). Curvature is

quantified by the divergence of the surface normal ∇ · n. The balance between the

curvature and the tangential flame strain is, thus, D〈(∇ ·n)2〉s ∼ 〈aT 〉s, where D is the

diffusivity and 〈〉s indicates average weighted by the surface area of the flame surface

(Chatakonda et al., 2013). The balance then leads to

〈(∇ · n)2〉s ∼
1

r2
r2

D
(εr)1/3

r
. (6.4)

We can then define the Obhukhov-Corrsin length scale (ηc) based on the balance above
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as (Chatakonda et al., 2013)

ηc ∼
(
D3/〈ε〉

)1/4 ∼ Sc−3/4η, (6.5)

where the Schmidt number (Sc) is defined as the ratio of the kinematic viscosity (ν)

and the diffusivity (D), i.e., Sc = ν/D. Note that ηc in Eqn. (6.5) was introduce in

the context of scalar turbulence (Eqn. 2.36). Here, η is the Kolmogorov length scale

and is related to the kinematic viscosity and mean turbulent kinetic energy dissipation

as η = (ν3/〈ε〉)1/4. For premixed flames, Sc is generally less than 1, such that we get

the following hierarchy of spatial scales: η < ηc < r < `.

We note that the inner cut-off scale (ηc) makes physical sense if we consider an

advection-diffusion balance at the inner cut-off. The scalar evolution is governed by

the advection-diffusion equation (Eqn. 2.34), where diffusion of the scalar competes

with advection of scalar for Peclet number Pe ∼ u′r/D ∼ 1. For Sc < 1 or ν < D,

diffusion of the scalar is more effective than the diffusion by vorticity. Consequently, the

scalar gradient induced by advecting eddies below the inner cut-off will be smoothed

by diffusion, leading to a smooth surface. The surface will then appear fractal only

above an inner cut-off where the gradients induced by the eddies dominate diffusive

effects, leading to a fractal surface. Thus, ηc demarcates the length scale below which

the surface appears smooth and above which the surface appears fractal.

We assume local isotropy such that KOC phenomenology (cf. §2.1.8) is followed. Thus,

at the inner cut-off (r ∼ ηc), the scalar gradient is given by δCηc/ηc, where δCηc is the

difference in scalar concentration associated with length scale ηc. Thus, according to

163



KOC phenomenology (cf. Eqn. 2.40), we have

δCηc ∼ (ηc/`)
1/3C. (6.6)

where, C is characteristic scalar fluctuation at the integral scale.

Thus, the total scalar flux across the flame interface is proportional to the total area

(AT ), the diffusivity (D), and the scalar gradient (δcηc/ηc), which is

F ∼ ATD
(
δCηc/ηc

)
(6.7)

∼ A0DC
(
ηc/`

)2−D(
ηc/`

)1/3
(1/ηc) (6.8)

Using the definition of ηc from Eqn. (6.5) and the scaling relation in the universal

inertial subrange, η/` ∼ (Re)−3/4 where, Re = u′`/ν, we obtain:

F ∼ A0cu
′(Sc)3/4(D−8/3)(Re)3/4(D−8/3) ∼ A0cu

′(Pe)3/4(D−8/3). (6.9)

Thus, we express the scalar flux in terms of only the Peclet number (Pe = ScRe =

u′`/D). In the above estimate of scalar flux, we assumed that the gradient follows from

a cascade of the scalar fluctuations, which is halted as the scales approach r ∼ ηc.

Thus, the scalar cascade, by analogy with the cascade of the accompanying turbulent

eddies, is expected to be independent of the details of diffusivity (D) and depends only

on the scalar properties associated with the largest scales. Consequently, the scalar flux

determined in Eqn. (6.9) must be independent of the Peclet number. Thus, for Pe

independence, the fractal dimension must be D = 8/3 = 2.67.

164



A clarification regarding the physical mechanism leading to the two limits of fractal

dimension – D = 7/3 and 8/3 – for both the reacting and non-reacting flow is in order.

The fractal dimension is D = 7/3 for iso-surfaces in entraining flows (Sreenivasan

et al., 1989) and high Da flamelet combustion (Gouldin, 1987; Kerstein, 1988). In this

case, the scalar gradient depends only on the difference in the concentration value across

the iso-surface in entraining flow and the thin reaction zone separating the reactants and

products in flamlets. In other words, turbulence only facilitates scalar flux by inducing

fractal characteristics to the flame interface, thereby increasing the total area of the

interface according to Eqn. (6.3), without affecting the scalar gradient and the transport

process. We re-emphasize Kerstein’s viewpoint (Kerstein, 1988) that the value of D =

7/3 for flamelet combustion, although the same as the dimension of iso-scalar surfaces

in entraining non-reacting flows, is purely coincidental and should not be taken as an

equivalence between them.

In contrast, the fractal dimension is D = 8/3 for iso-scalar surfaces in well-developed

turbulence (Constantin et al., 1991) and low Da flames (Chatakonda et al., 2013). In

both of these surfaces, the inner cut-off plays a very important role. The inner cut-off

is determined by the scale at which scalar advection due to turbulent eddies balances

the scalar diffusion. Below this inner cut-off, diffusion smears out any fluctuations on

the interface, making it smooth and regular. Thus, the interface only appears a fractal

above this inner cut-off. Further, we derive the net scalar flux (Eqn. 6.8) by considering

that the characteristic scalar difference (δcηc) is dependent on the inner cut-off through

the relation: δcηc ∼ η
1/3
c . The scalar gradient then scales as: δcηc/ηc ∼ η

−2/3
c . Thus,

turbulence not only increases the surface area of the flame iso-surface through the fractal
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scaling but also aids the transport of reactants by actively altering the scalar gradients.

Thus, the increase in the estimate of D for low Da flames is reflective of the higher

degree of flame-turbulence interaction as a result of enhanced transport in the preheat

zone.

6.5 INFLUENCE OF INTERMITTENCY ON THE FRACTAL DIMENSION
OF THE FLAME

6.5.1 A coarse-grained estimate based on the moments of the intermittent
dissipation field

So far, we have considered an averaged dissipation 〈ε〉 over volume `3. The volume-

averaged dissipation controls the inner cut-off scales η and ηc. However, the formulation

here also suffers from the same setbacks that Kolmogorov (1941b,a) suffered from,

and that has to do with the averaging procedure. Any spottiness in the large scales of

the flow would affect the local cascade of energy flux, which, when averaged, would

lead to departure from universal statistics (cf. §2.1.4). Instead, a locally averaged

dissipation 〈εηc〉 over volume η3c should be considered (cf. Eqn. 2.21). This locally

averaged dissipation 〈εηc〉 varies strongly in space. Fluctuations in dissipation will lead

to fluctuations in the inner cut-off ηc through Eqn. (6.5). Thus, we can obtain the

correction by spatially averaging the flux after replacing averaged η and ηc with their

corresponding locally fluctuating value. The fluctuations in the inner cut-off will also

affect the scalar difference and the gradients.

The local dissipation can be related to the averaged dissipation by generalizing the
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empirical power-law relation given in Eqn. (2.24). We re-write this in terms of general

order q and generalized dimension Dq, such that we have (Sreenivasan et al., 1989):

〈εqηc〉 = 〈ε〉q(ηc/`)(q−1)(Dq−1), (6.10)

where, Dq indicates the generalized dimension of order q where q is any real number

and 〈ε〉 is the averaged dissipation in box of size `3. For q = 2, we get the variance of

dissipation: 〈ε2ηc〉 = 〈ε〉2(ηc/`)−µ, where µ = 1 −D2 is the well-known intermittency

exponent expressed in Eqn. (2.24).

We note that Eqn. (6.10) is a restatement of the fact that any general q order moment

of intermittent quantity depends upon the scale itself through a power-law relation

characterized by the scaling exponent (q − 1)Dq. The moment order q is used to focus

on fluctuations associated with a given scale r. For q > 0, the major contributions on the

left-hand side of Eqn. (6.10) are from local maxima in εr, while for q < 0, contributions

are from fluctuations of smaller intensities.

We are interested in measuring the flux across the interface allowing for the variability

in quantities which are defined on the value of dissipation εr such as η and ηc. Thus,

instead of calculating the flux based on η and ηc defined by average dissipation rate 〈ε〉,

we measure the spatial average of flux based on η and ηc defined by the unaveraged

dissipation rate εr. This is essentially equivalent to replacing 〈ε〉1/4 with 〈ε1/4〉 in the

defintion of η and ηc. Thus, we replace q = 1/4 in Eqn. (6.10) and find that:

〈ε1/4〉 ∼ 〈ε1/4ηc 〉 = 〈ε〉1/4(ηc/`)3/4(1−D1/4). (6.11)
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Further, we can re-write Eqn. (6.5) as:

ηc ∼ (D3/εηc)
1/4. (6.12)

Substituting Eqn. (6.11) in Eqn.(6.12), we find:

ηc
`
∼ 1

`

(
D3

εηc

)1/4

∼ (ScRe)X , (6.13)

where, X = −(3/4)/
[
1 + 3/4(1 −D1/4)

]
. Substituting Eqn. (6.13) in Eqn. (6.5) and

carrying out the algebra, it is straightforward to see that the flux becomes:

F ∼ A0cu
′(ScRe)Y ,

where,

Y =
3/4
[
D− 8/3− 3/4

(
1−D1/4

)]
1 + 3/4(1−D1/4)

.

The Peclet number (Pe = ScRe) independence stipulates that B = 0, from which we

obtain:

D =
8

3
+

3

4

(
1−D1/4

)
. (6.14)

Equation (6.14) makes up our first result. We emphasize that although the fluctuations

in the dissipation rate are quite strong, the inner cut-off scale has a quarter power

dependence on the dissipation rate so that the strong variability in dissipation rate does

not exactly translate to comparable fluctuations in the cut-off scale. Hence, we expect

the corrections to be small.
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6.5.2 A fine-scaled estimate based on the multifractal formalism

As mentioned above, the intermittent nature of dissipation leads to fluctuations in the

inner cut-off ηc (Eqn. 6.12). Intermittent quantities are conveniently analyzed through

multifractal formalism, and we adopt the same in this section.

To find the corrections, we find the total flux by integrating boxes along the flame

interface in the manner detailed in Meneveau and Sreenivasan (1990). We assume that

the flame is contained in a domain of size `3. We cover the entire domain in cubic

boxes of size ηic, which is the inner cut-off scale for our problem. Thus, the total flux

is due to the sum of contributions of each of these boxes along the entire interface.

The contributions of each box again depends on the area of the element ((ηic)
2), the

diffusivity (D), and the scalar gradient (δCηc/ηic). Thus, the total flux after substituting

the appropriate scalings associated with the gradient becomes:

F ∼
∑
i

ηicDδCi
ηc ∼ cu′`2(ScRe)−1

∑
i

(ηic/`)
4/3. (6.15)

Locally, for a domain of length scale ηic, the dissipation depends on the local singularity

strength αi through the relation (Sreenivasan, 1991a):

εηc ∼ 〈ε〉
(
ηic
`

)αi−3

. (6.16)

The value of αi quantifies the strength of singularity in the dissipation field. For values

of αi < 3, ηc → 0 leads to εηc → ∞, implying that smaller values of αi correspond

to stronger peaks in εηc . In contrast, αi > 3 corresponds to regular region with smooth
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variation in εηc . We can then express the inner cut-off ηic in terms of singularity exponent

αi alone by substituting Eqn. (6.16) into Eqn. (6.12) to obtain:

ηic/` ∼
(η
`

)4/(αi+1)

(Sc)−3/(αi+1). (6.17)

Now, we calculate the number of cubic boxes of size ηic having local singularity

exponent α = αi. The total number of boxes containing singularity exponent αi in

the box `3 is defined by the scaling relation (cf. Eqn. 2.31):

N(αi) ∼
(
ηic
`

)−f(αi)

. (6.18)

Here, f(αi) is the distribution of the fractal dimension of each iso-αi set for f(αi) ≥ 0.

Interpretation for f(αi) < 0 is more nuanced, and can be found in Mandelbrot (1989).

For the present purposes, we can assume that the bound f(αi) ≥ 0 holds without any

loss in generality. Substituting Eqn. (6.17) in Eqn. (6.18), we obtain

N(αi) ∼
(η
`

)−4f(αi)/(αi+1)

(Sc)3f(αi)/(αi+1). (6.19)

In order to make further progress, we need to determine the total number of boxes of

size ηiOC and singularity exponent αi only along the flame interface. Let S1 and S2

indicate the set containing the fractal flame element of dimension D and singularity αi

of dimension f(αi) in 3-dimensional space R3, respectively. We are interested in the

intersection of the sets S1 and S2. Physically, this translates to intersection of the space

where dissipation is intermittent and the space of the fractal surface of the flame. The
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condition of intersection of objects in the embedding space is mathematically expressed

in terms of the co-dimension. The co-dimension of S1 and S2 in R3 is 3 − D and

3− f(αi). The additive property of sets S1 and S2 stipulates:

co-dim(S1) + co-dim(S2) < dim(Rd), (6.20)

which is the condition of intersection of sets S1 and S2 in a d-dimensional space

(Mandelbrot, 1982). Thus, we have:

[3− f(αi)] + [3− D] < 3⇒ f(αi) + D > 3. (6.21)

The dimension of the intersection of S1 and S2, i.e., the set of singularities αi only along

the fractal flame interface, follows from the above equation as: D = f(αi) + D − 3.

Thus, the total number of boxes where α = αi along the interface is given by the

dimension of the intersection of the sets S1 and S2 so that Eqn. (6.19) gets modified to

N(αi) ∼
(
η

`

)−4D/(αi+1)

(Sc)3D/(αi+1). (6.22)

Note that we have cast the contribution of each box of size ηic to the total flux in terms

of the distribution of singularity only along the interface. Thus, the summation in the

contribution of all the individual boxes, defined in Eqn. (6.15), can be replaced with

an integral over the entire spectrum of singularity exponent α. The flux can then be
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calculated as

F ∼ Cu′`2(ScRe)−1
∫
N(α)(ηc(α)/`)4/3dα. (6.23)

Substituting the expression for N(α) from Eqn. (6.22) and ηc from Eqn. (6.17) in Eqn.

(6.23), we obtain

F ∼ Cu′`2(ScRe)−1
∫ (η

`
Sc−3/4

)X
dα, (6.24)

where, X = −4(D −4/3)/(α+ 1) = −4[f(α)−13/3 +D]/(α+ 1). The power law in

Eqn. (6.24) is dominated by the smallest exponent in the integrand. Thus, Eqn. (6.24)

can be solved using the method of steepest descent in the limit of small η << `. The

saddle point is determined from ∂X/∂α = 0, which leads to:

df

dα
=
f(α)− 13/3 + D

α + 1
. (6.25)

Now, we know that q = df/dα which relates the order of the generalized dimension q

and the singularity specturm f(α). Further, the generalized dimension Dq is related to

the f(α) through the following relation (Halsey et al., 1986):

Dq =
1

(q − 1)
[qα− f(α)]. (6.26)

Now, whenenver Eqn. (6.25) is satisified for a given q, we assign it the value Q such

that

df

dα
=
f(α)− 13/3 + D

α + 1
= Q = −X/4. (6.27)

172



From here, we can work out the relation for f(α), which is

f(α) = Q(α + 1) + 13/3− D. (6.28)

The integral in Eqn. (6.24) is evaluated at the saddle point where, in the power of the

integrand, we substitute X = −4Q. In such a case, the total flux across the flame

surface can be re-written, after substituting η/` ∼ Re−3/4, as:

F ∼ Cu′`2(ScRe)−1+3Q. (6.29)

Further, from Eqns. (6.26), (6.27) and (6.28) we get

DQ =
Qα− f(α)

Q− 1
,

which after substituting Eqn. (6.28) leads to

D = 13/3 +Q+ (Q− 1)DQ. (6.30)

As mentioned earlier, the flux should be independent of the Peclet number (Pe =

ScRe), which upon enforcing in Eqn. (6.29) we obtain −1 + 3Q = 0, which yields

Q = 1/3. Consequently, we find from Eqn. (6.30) the correction in the fractal

dimension of the flame front as:

D =
8

3
+

2

3
(3−D1/3). (6.31)
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Equation (6.31) makes up the second result of our paper and is a direct result of the

fluctuations in the area of low Da flames due to small-scale intermittency.

6.6 DISCUSSION

As mentioned earlier, Kerstein’s (Kerstein, 1988) result of D = 7/3 corresponds to

the fractal dimension associated with Damköhler’s large-scale limit. The dynamics

of such flames are dominated by strong propagation effects. The limit D = 7/3 is

numerically comparable to the large-scale limit of D = 7/3 in a superlayer of entraining

turbulent flow as found by Sreenivasan et al. (1989). Later, Kerstein (1991) derived the

corrections to the fractal dimension due to dissipation-scale intermittency and observed

the same numerical correction as obtained for entraining turbulent flow by Meneveau

and Sreenivasan (1990). On the other hand, the limit of D = 8/3 was derived by

Chatakonda et al. (2013) by accounting for Damköhler’s small-scale limit, which is

similar to the dimension of the interface due to small-scale fluctuations inside the core

of a turbulent jet (Constantin et al., 1991). The equivalence in the value of D for low

Da flames with that seen for an interface in turbulence indicates the passive scalar

limit of the flame. The flame dynamics are controlled by the turbulent flux of scalar

concentration (reactants, temperature, etc.) across the reaction zone analogous to the

transport of passive scalar in fully-developed turbulence.

Equations (6.14) and (6.31), which quantify the effect of dissipation-scale intermittency

on the fractal dimension of the interface associated with Damköhler’s small-scale limit,

make up the main result of this chapter. We arrive at the two results through two
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key considerations. The first result is a consequence of spatially averaging the scalar

flux across the interface after accounting for the variability in the inner cut-off due to

dissipation-range intermittency, instead of calculating the average flux by considering

an inner cut-off based on the average dissipation rate. The second result follows

from a more fine-scale analysis based on multifractal formalism. The multifractal

formalism accounts for the underlying multiplicative process, which leads to small-

scale intermittency. Thus, we have accounted for either of the two processes which

cause small-scale intermittency. The first is related to the coupling between large-scale

spottiness of turbulence (cf. §2.1.4) and its effect on the averaging procedure, while

the second arises due to the multiplicative cascade process (cf. §S2.1.5-Small-scale

intermittency).

The particular form in which the correction to the fractal dimension of low Da flames

has been expressed in Eqn. (6.14) and (6.31) allows us to also correlate the fractal

dimension with the velocity structure function. We know that the moment of velocity

difference (∆vr) between two points separated by distance r follows a power-law of the

form (Eqn. 2.22):

〈δupr〉 ∼ 〈[u(x+ r)− v(x)]p〉 ∼ rζp , (6.32)

where ζp is the scaling exponent associated with order p. For homogeneous isotropic

turbulence, the scaling exponent is ζp = p/3, and follows directly follows from

Kolmogorov’s work (Kolmogorov, 1941b). Intermittent nature of dissipation rate

manifest in the scaling exponent deviating from ζp = p/3 at p > 3. Following

Meneveau and Sreenivasan (Meneveau and Sreenivasan, 1987a, 1990), we find for
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intermittent turbulence that the scaling exponent for p = 1 is related to the moment

exponent through the relation:

ζ =
1

3
+

2

3

(
3−D1/3

)
(6.33)

Comparing this with Eqn. (6.31), we observe that

D =
7

3
+ ζ. (6.34)

Thus, the second correction in Eqn. (6.31) shows that the fractal dimension of low Da

flames is also related to the scaling exponent of the velocity structure-function.

Experimentally measuring the multifractal spectrum of turbulent kinetic energy

dissipation in turbulent reacting flows is a significant challenge as it involves the

determination of two-point velocity and scalar concentration correlations. The

generalized dimension DQ, which appears in Eqs. (6.14) and (6.31), can then only

be measured from high fidelity turbulent DNS data.

We believe that the corrections to the value of the fractal dimension of lowDa premixed

turbulent flame would be relatively small. Nonetheless, the considerations made above

are still important. To the best of our knowledge, we did not find any study on turbulent

combustion which have measured these dissipation quantities (DQ, f(α), α, etc.). So,

we do not know the exact extent of variation in the estimate of D. The determination of

f(α)− α and Dq − q from DNS data appears worthwhile as it has the potential to lead

to better closure models for low Da flames used in LES and a better understanding of
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the effects of dissipation-range intermittency on the flame dynamics.

6.7 INTERIM SUMMARY

In this chapter, we derive corrections to the fractal dimension of premixed flames in

the limit of Da ∼ O(1). We consider the flame surface to be defined by an iso-

concentration surface based on the progress variable of the fuel mass fraction. For

low Da flames, we obtain the so-called Obhukov-Corrsin length scale after considering

a dynamical balance on the flame surface at the smallest scales. Upon considering the

net flux across the flame surface, we obtain the upper limit for the fractal dimension

of low Da flames as D = 8/3. However, such a consideration does not account for

the intermittent nature of turbulent kinetic energy dissipation, which leads to strong

fluctuations in the dissipation field. Such fluctuations lead to significant variability in

the inner cut-off and consequently to the scalar flux and total area of the flame interface.

We account for these effects by adopting a coarse-grained approach based on the

moments of the dissipation field and a fine-scale analysis through the use of multifractal

formalism. We obtain two corrections in the estimate of the fractal dimension of lowDa

flames (Eqs. 6.14 and 6.31). We show that the correction is intimately tied to the scaling

exponent of the velocity structure-function (Eqn. 6.34). Thus, we analytically quantify

the effect of intermittent turbulent dissipation upon low Da premixed combustion.
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CHAPTER 7

CRITICAL REGION AND SMART PASSIVE CONTROL IN A
TURBULENT THERMOACOUSTIC SYSTEM

In our discussion regarding thermoacoustic instability in Chapter 2, we highlighted

the importance of quantifying the spatiotemporal behavior of the reacting flow field

during the transition to the state of thermoacoustic instability (TAI). The dynamics of a

thermoacoustic system are controlled by the spatiotemporal evolution of the interaction

between three subsystems – turbulent flow field, combustion, and acoustic field of the

combustor. Quantifying this spatiotemporal evolution using the right mathematical

tool is crucial in forewarning an impending thermoacoustic instability. Nair et al.

(2014) found that the scaling of the acoustic pressure fluctuations (quantified by

the Hurst exponent, H) during combustion noise and intermittency fares better than

corresponding measures based on tracking the amplitude of the pressure oscillations

when predicting thermoacoustic instability. Nonetheless, such single-point acoustic

measurements cannot be used to predict the changes required in the combustor to

control thermoacoustic instability in advance. Thus, there is a need for extending such

an analysis in the spatial domain.

We also emphasized the challenges in developing even a relatively simple passive

control strategy involving an unmodulated secondary air. Thus, the key objectives of

this chapter are to optimize for secondary air-injection location targeting the critical

The content of this chapter have been published in A. Roy, C. Premchand, M. Raghunathan, A.
Krishnan, V. Nair & R. I. Sujith (2021) Critical region in the spatiotemporal dynamics of a turbulent
thermoacoustic system and smart passive control. Combustion and Flame, 226, 274-284.

https://www.sciencedirect.com/science/article/pii/S0010218020305678?dgcid=author
https://www.sciencedirect.com/science/article/pii/S0010218020305678?dgcid=author


region in the combustor without hampering the flame stability. Such a critical

region is determined from spatiotemporal quantities such as the amplitude of velocity

fluctuations, mean vorticity, Rayleigh index, and averaged heat release rate (HRR) field.

Further, we wish to extend the analysis using the Hurst exponent (H) in the spatial

domain. As mentioned earlier, H measured from single-point pressure measurements

is invaluable in predicting impending instability. A spatial analysis using H may

provide useful insights in optimizing secondary air injection location during the states

leading up to TAI. Consequently, the advantages of optimized passive control can be

complemented by the predictive capability of the Hurst exponent, resulting in a smart

passive control strategy.

7.1 CHARACTERIZING THE TURBULENT COMBUSTOR

The bluff-body stabilized combustor used for control experiments was detailed in

§3.2. Experiments were performed by varying the air flow rate to obtain the state of

thermoacoustic instability. Acoustic pressure (p′), heat release rate (q̇) and velocity field

(u(x, y, t)) of the combustor were measured. The details of the diagnostic techniques

are provided in §3.2.

Figure 7.1 depicts the transition of the turbulent combustor from the state of combustion

noise (CN) to thermoacoustic instability (TAI) through the state of intermittency (INT).

In Fig. 7.1(a), we show the change in p′rms as a function of the nominal velocity υa

of air (bottom axis) and equivalence ratio φ (top axis). Markers ‘A’, ‘B’, and ‘C’

correspond to three points representative of the states of CN, INT, and TAI, used for
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Figure 7.1: Intermittency route to thermoacoustic instability observed in the turbulent
combustor. Variation of (a) p′rms and (b) the frequency corresponding to the
acoustic (fa) and hydrodynamic mode (fh) as a function of nominal velocity
of air υa (bottom axis) and equivalence ratio φ (top axis). Adapted from (a)
(George et al., 2018) with permission from Cambridge Unversity Press, and
(b) (Premchand et al., 2019b) with permission from AIP Publishing.

the subsequent spatiotemporal analysis. The state of thermoacoustic intermittency is

characterized by bursts of periodic oscillations appearing apparently randomly among

aperiodic oscillations (cf. Fig. 2.9ii-v). Note that this state fits the statistical definition

of intermittency, which we have used in the preceding chapters. Here, the extreme

fluctuations during thermoacoustic intermittency (INT) take the form of large amplitude

bursts of periodic oscillations.

Figure 7.1(b) shows the change in the dominant frequency of the pressure fluctuations

and spatially-averaged velocity time series during the transition to thermoacoustic
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instability. We can observe the two separate time scales – acoustic (1/fa) and

hydrodynamic (1/fh) – during intermittency (Premchand et al., 2019b). At the onset of

thermoacoustic instability, the frequency of vortex shedding matches with the acoustic

mode of the combustor. This process is associated with the mutual synchronization

of the acoustic, hydrodynamic, and HRR field of the combustor (Pawar et al., 2017;

Premchand et al., 2019b). In §7.3, we discuss the spatiotemporal dynamics from the

perspective of optimization for the location of secondary injection. A more thorough

discussion on the spatiotemporal dynamics of bluff-body stabilized combustors can be

found in George et al. (2018) Premchand et al. (2019b).

7.2 NONLINEAR TIME SERIES ANALYSIS: THE HURST EXPONENT

The time-series of velocity fluctuations obtained from different locations in the

combustor during CN and INT are intermittent, and hence, central moments diverge

over time (Nair et al., 2014). The fluctuations during the state of TAI are periodic.

It is instructive to calculate the scaling of the moments with respect to the change in

measurement time scale. The transition from CN to TAI can, thus, be expressed in

terms of the change in the nature of scaling of velocity fluctuations.

The scaling exponent of the second moment, or the variance, is called the Hurst

exponent. The scaling is a measure of long-term memory in the system. Historically,

the Hurst exponent was utilized to determine the optimum dam size for the Nile river

based on long-term flood and drought data (Hurst, 1951). The Hurst exponent was later

connected to the geometry of fractals by Mandelbrot (1982). We measure the Hurst
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exponent using Multifractal Detrended Fluctuation Analysis (MFDFA) (Kantelhardt

et al., 2002), which we briefly discuss below.

We first perform Reynolds decomposition and calculate the fluctuations in x and y

velocity component (u′x, u′y) by subtracting the respective time-averaged values (ūx, ūy)

at all points in the velocity field obtained from PIV measurements. We then determine

the total magnitude of velocity fluctuations as:

uT (x, y, t) =
√

[(u′x(x, y, t)]
2 + [u′y(x, y, t)]

2. (7.1)

Finally, we detrend the time series by subtracting the mean to obtain the fluctuations of

the resultant velocity: u′T = uT − ūT , where ūT is the time-averaged resultant velocity.

Note that u′T is essentially the same as turbulent velocity fluctuations defined as the

root mean square of the fluctuating velocity components. We plot the representative

turbulent velocity fluctuations, measured at a representative point inside the combustor

as indicated in the inset. The turbulent velocity fluctuations are plotted during the three

states of combustor operation in Figs. 7.2(a-c). We can clearly observe an increase

in periodic content of the velocity fluctuations during the transition to TAI. We aim to

quantify the change in the nature of the signal with the Hurst exponent.

We then calculate the cumulative deviate series:

yk =
k∑
t=1

u′T (t) =
k∑
t=1

[uT (t)− ūT ]. (7.2)

where, k = 1, 2, ..., N with N being the length of the signal. The deviate series
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Figure 7.2: (a-c) Time series of turbulent velocity fluctuations (u′T ) during combustion
noise, intermittency and thermoacoustic instability at a representative point
inside the combustor shown in the inset in (b). The three states correspond
to point A, B and C indicated in Fig. 7.1. (d) The variation of the second-
order structure function F2(s) measured from u′T with the scale s for the
three states.

is divided into ns non-overlapping segments (yi(t), i = 1, 2..., ns) of equal span s.

Local trends are removed by a local polynomial fit ȳi onto the deviate series yi. Local

fluctuations are obtained by subtracting the fit from the deviate series. The computation

time of the Hurst exponent is approximately proportional to the polynomial order used

for local detrending. Hence, we consider a local linear fit for detrending as it is

computationally faster and produces reliable results. The qth order structure-function,

Fq can be obtained from the local fluctuations as (Kantelhardt et al., 2002):

Fq(s) =

[
1

ns

ns∑
i=1

(
1

s

s∑
t=1

[yi(t)− ȳi]2
)q/2]1/q

∀q 6= 0. (7.3)

The second-order structure function scales as F2(s) ∼ sH within the bounds set by the
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minimum and maximum window size. The Hurst exponent H is then determined as:

H =
logF2(s)

log s
∀ s ∈ [2/fa, 4/fa]. (7.4)

The Hurst exponent, H , measures the correlation and persistence in a time series. If

a large (small) value is more likely to be followed by another large (small) value, the

signal is said to be persistent and long-range correlated. Such signals have H > 0.5. If

a large (small) value is more likely to be followed by a small (large) value, the signal is

anti-persistent. For such signals, H < 0.5 and only short-range correlations exist (Nair

and Sujith, 2014). H = 0 indicates a purely periodic signal, while H = 0.5 indicates

white noise. Thus, the spatial distribution of H indicates the persistence and correlation

in the velocity fluctuations over the flow-field.

We plot the second-order structure function F2 as a function of the scale s measured

from the time series of turbulent velocity fluctuations u′T (t) at a representative point in

the flow field for the three states of combustor operation in Fig. 7.2(d). We observe

that the Hurst exponent is H = 0.62 during combustion noise. The signal shown in

Fig.7.2(a) is thus persistent and possesses long-range correlations. In fact, the signal

is fractal in nature. In contrast, during intermittency and thermoacoustic instability,

H = 0.31 and H = 0.2, which are much lower. The representative signal shown in

Figs. 7.2(b,c) suggests anti-persistent and periodic behavior. The decreasing value of

H during the transition to thermoacoustic instability is an indicator of the increasing

periodic content in the system dynamics. We repeat this process over the entire flow

field and obtain the spatial distribution of H over the entire flow field.
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We chose the scaling of the structure-function within the bounds s ∈ [2/fa, 4/fa] for

two key reasons. First, s ∈ [2/fa, 4/fa] ensures that the segment size is not too low

to be within a periodic cycle and not too large as to become completely uncorrelated

(Kerres et al., 2016). Such behavior is also evident from Fig. 7.2, where we observe that

F2 is relatively flat for low values of s (< 2/fa), indicating the high correlation between

the segments by them being in the same periodic cycle. Similarly, for large s (> 4/fa),

F2 shows oscillations, indicating contributions from decorrelated segments. Second, the

acoustics of the combustor impose a characteristic length and time scale on the turbulent

flow. Consequently, one only needs to be concerned with the scaling of the structure-

function of turbulent velocity fluctuations in the range of time scales comparable to the

acoustic time scale. The onset of thermoacoustic instability is captured by the gradual

disappearance of the scaling of the structure-function in the bounded range of s.

7.3 SPATIOTEMPORAL BEHAVIOR DURING THE TRANSITION TO
THERMOACOUSTIC INSTABILITY

We start by analyzing the spatiotemporal dynamics during the transition from CN to

TAI. As already discussed, we acquire simultaneous data associated with velocity,

CH∗ chemiluminescence, and pressure fluctuations. In Fig. 7.3, we plot the Fourier

amplitude of the resultant velocity fluctuations (uT ) at the acoustic frequency fa i.e.,

|ûT (fa)|, the time-averaged vorticity (ω̄z(x, y)), and the time-averaged heat release rate

field (q̄(x, y)) during combustion noise, intermittency and thermoacoustic instability at

parametric points A, B and C indicated in Fig. 7.1(a). We also plot the Rayleigh index,
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Figure 7.3: Comparison of the Fourier amplitude of turbulent velocity fluctuations
|ûT (fa)| (m/s), time-averaged vorticity ω̄z (×103, s−1), time-averaged
heat release field q̄ (a.u.) and time-average Rayleigh index RI (a.u.)
during the states of (a-d) combustion noise, (e-h) intermittency and (i-l)
thermoacoustic instability. The flow conditions are indicated in Fig. 7.1.
The span of the ordinate and abcissa are indicated in Fig. 3.6b. The gray
region indicates the position of the bluff-body.

which is defined as:

RI(x, y) =
1

NT

∫ NT

0

p′(t)q̇′(x, y, t)dt, (7.5)

as discussed in §2.3.2. Here, N(= 686) denotes the total number of cycles, and

T (= 1/fa) denotes the time period of oscillations. The spatial distribution of the

Rayleigh index quantifies the strength of acoustic power sources and sinks depending

upon positive or negative feedback between pressure and heat release rate oscillations,

respectively.

During the state of combustion noise at φ = 0.86 and υa = 8.1 m/s, flow fluctuations

show broadband characteristics. The Fourier transformed amplitude |ûT (f)| at the

acoustic mode f = fa is very low (Fig. 7.3a). Notice that the scale only extends

until 0.1 m/s, which is very low. The time-averaged vorticity field shown in Fig. 7.3(b)
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indicates that the vortices evolve only along the shear layer (SL). The transverse span

of vorticity contour indicates that the size of vortices is very small. We also notice the

absence of the outer recirculation zone (ORZ). The time-averaged heat release rate field

also shows very low values (Fig. 7.3c). Likewise, the Rayleigh index shows very low

values throughout the combustor (Fig. 7.3d).

During the state of intermittency at φ = 0.66 and υa = 11.1 m/s, |ûT (fa)| shows

higher values above the shear layer as compared to the state of combustion noise due to

intermittent periodic oscillations of turbulent velocity induced by intermittent acoustic

pressure oscillations (fig. 7.3e). During epochs of periodic oscillations, larger vortices

are shed, leading to the flow recirculating at the dump plane. This can be seen from the

rather large distribution of ω̄z in Fig. 7.3(f). The maximum of ω̄z along the shear layer

indicates that most of the vortices are shed along the shear layer but only recirculate

intermittently. The time-averaged heat release rate field (Fig. 7.3g) and Rayleigh index

(Fig. 7.3b) also show higher values when compared with that during combustion noise.

There is a significant change in the spatiotemporal behaviour during the state of TAI at

φ = 0.63 and υa = 12.3 m/s (Figs. 7.3i-l). Thermoacoustic instability in bluff-body

stabilized combustors is associated with the phenomenon of vortex-acoustic lock-on

wherein the frequency of vortex shedding matches the acoustic frequency fh = fa (as

shown in Fig. 7.1b) and is central to the establishment of the thermoacoustic feedback

in the combustor (Poinsot et al., 1987; Chakravarthy et al., 2007; Pawar et al., 2017).

Accordingly, we observe a clearly defined region with a very high value of |ûT (fa)|

(Fig. 7.3i). The periodically shed vortices from the dump plane and the tip of the bluff-
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Figure 7.4: Phase-averaged heat release rate field at the indicated phases of the acoustic
cycle during the state of thermoacoustic instability. The gray mask indicates
the position of the bluff-body.

body develop into large coherent structures which recirculate into the outer recirculation

zone (ORZ) and can be observed from the high value of ω̄z (Fig. 7.3j).

The large coherent structures carrying unburnt reactants impinge on the bluff-body and

the combustor walls and lead to intense heat release. The time-averaged heat release

rate field in Fig. 7.3(k) shows maxima in the HRR fluctuations downstream of the

bluff-body. To better understand the HRR dynamics, we show the phase-averaged

value of HRR from the mean-subtracted chemiluminescence images at 0◦, 90◦, 180◦,

and 270◦ of the acoustic cycle in Fig. 7.4. The phase-averaged HRR field is indicative

of the evolution of the flame structure at different points of the acoustic cycle. In the

phase-averaged CH∗ field, we observe very intense regions in the heat release rate above

the bluff-body. The intensity increases from moderate to high positive/negative values

as one moves closer to maxima (90◦) and minima (270◦) of the pressure fluctuations.

At pressure maxima (90◦), we observe large positive heat release rate fluctuations

occupying considerable space above the bluff-body. During pressure minima (270◦),

negative fluctuations dominate the field. This behavior is consistent with the Rayleigh

criteria (§2.3.2), where large positive fluctuations in the HRR field appear at pressure

maxima and vice versa. The relation between pressure and HRR fluctuations is better

understood from the plot of the local Rayleigh index in Fig. 7.3(l). We observe very
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high and positive values of the local Rayleigh index in the region above the bluff-body.

These are the primary acoustic power sources that drive thermoacoustic instability.

As we mention earlier, precursor-based methods are great for predicting impending

thermoacoustic instability. However, such methods do not provide any information

required for implementing passive control measures. Passive control requires

knowledge about the relative importance of different regions in the flow field. Based

on the considerations made above, we find different regions of interest from different

measures. For instance, the region between the dump plane and the bluff-body appears

significant based on the large amplitude of |ûT (fa)| during thermoacoustic instability

(Fig. 7.3i). Similarly, the maxima in ω̄z during thermoacoustic instability (Fig. 7.3j)

emphasizes the importance of the outer recirculation zone. Likewise, q̄(x, y) points

towards the region after the bluff-body (Fig. 7.3k), while phase-averaged heat release

field (Fig. 7.4) and Rayleigh index (Fig. 7.3l) highlights the importance of the region

above the bluff-body. We test the efficacy of passive control when these “critical”

regions are selectively targeted with secondary air injection. Finally, as with the

precursor, we would like to determine whether it is possible to predict such critical

regions inside the combustor during the state of intermittency itself.
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7.4 PASSIVE CONTROL OF THERMOACOUSTIC INSTABILITY

7.4.1 Suppression of thermoacoustic instability

We now attempt passive control of thermoacoustic instability using secondary air

injection from various ports mounted on the combustor side-walls (see Fig. 3.6b).

Figure 7.5(a) shows the amplitude of pressure oscillations (p′rms) as a function of the

ratio of momentum of the injected air to that of the primary air, (υinj/υa)
2 (bottom

axis) and the ratio of mass flow rate, ṁinj/ṁa (top axis). The plot essentially depicts

the effectiveness of targeting various regions of the flow field in getting suppression.

We notice that targeting the region between the dump plane and bluff-body through

either port P1 or combined injection through P2 and P3 leads to a significant decrease

in p′rms. There is a decrease from 1.75 kPa to 0.22 kPa, which amounts to an 87.4%

reduction in the amplitude of limit cycle oscillations. During the state of control, the

amplitude levels are similar to those observed during the state of combustion noise and

low-amplitude intermittency. Individually injecting from P2 and P3 does not lead to

any reduction. Further, targeting the region above the bluff-body through port P4 or the

region after the bluff-body through port P5 does not lead to any reduction in p′rms, and

in fact, lead to a slight increase in the amplitude of the limit cycle oscillations.

We also plot the time series and the sound pressure level (SPL) in Figs. 7.5(b) and

7.5(c) at representative points I and II indicated in Fig. 7.5(a) . We observe a shift in the

dynamics from the thermoacoustic limit cycle at point I to fluctuations resembling the

state of intermittency during suppression at point II. The maximum amplitude during
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Figure 7.5: Illustration of control of thermoacoustic instability through secondary air
injection targeting different regions of the combustor. (a) Amplitude of
pressure fluctuations, p′rms, as functions of the momentum ratio, (υinj/υa)

2,
and mass flow ratio, ṁinj/ṁa. Representative (b) time series and (c) sound
pressure level (SPL) observed during thermoacoustic instability, point I in
(a), and subsequent control, point II in (a). Subfigure (a) adapted from
(Krishnan et al., 2019b) with permission from IOP Publishing.

suppression is of the order of 100 Pa. We further observe a 24.2 dB drop in the

sound pressure level from 150.2 dB during thermoacoustic instability to 126 dB after

suppression (Fig. 7.5c).

The above exercise shows us the relative importance of different regions of the flow
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field as far as passive control is concerned. The region between the dump plane and

bluff-body, as identified by the amplitude of turbulent velocity fluctuations |ûT (fa)| in

Fig. 7.3(i), is “critical" to the spatiotemporal dynamics of thermoacoustic instability.

Thus, targeting the critical region through P1 and P2+P3 leads to effective control.

Other regions such as the top of the bluff-body or region downstream of the bluff-

body identified respectively from the Rayleigh index (Fig. 7.3l) and averaged HRR

(Fig. 7.3k) are not as crucial and, hence, cannot be used for optimizing the location of

secondary injection. This is in direct contrast to Tachibana et al. (2007), who observed

the most significant control when secondary micro-jet of air targeted the region of the

largest Rayleigh index in their swirl-stabilized combustor. We surmise that the Rayleigh

index identifies the region of the most significant acoustic driving; however, it does not

always identify the region most sensitive to control. Thus, we cannot always use the

local Rayleigh index or average HRR for determining the critical region.

7.4.2 Spatiotemporal behavior during suppression

Next, we analyze the effect of secondary air injection on different measures. Figure 7.6

depicts the spatial dynamics associated with the state of suppression (point II indicated

in Fig. 7.5a). We notice many differences in the dynamics during thermoacoustic

instability. The maxima of |ûT (fa)| is much lower during the state of control and moves

from the region between the dump plane and the bluff-body (Fig. 7.3i) to the top of the

bluff-body (Fig. 7.6a). The time-averaged vorticity field ω̄z shows vortices concentrated

along a small region along the shear layer, indicating the suppression of the large

coherent structures formed during thermoacoustic instability (Fig. 7.3a). We further
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Figure 7.6: (a) Amplitude of velocity fluctuations |ûT (fa)|, (b) time-averaged vorticity
ω̄z, (c) time-averaged HRR q̄ and (d) Rayligh index RI during suppressed
state corresponding to point II in Fig. 7.5(a) attained after inject secondary
air from port P1.

notice that the mean flame structure (Fig. 7.6c) is no longer as concentrated downstream

of the bluff-body, as was the case during thermoacoustic instability (Figs. 7.3k). In

fact, the HRR gets more distributed and extends far downstream. Accordingly, the

Rayleigh index is very low value throughout the combustor, indicating the reduction in

the strength of acoustic power sources inside the combustor due to secondary injection.

During the state of suppression, the pressure fluctuations show intermittent
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Figure 7.7: Heat release rate field during the state of suppression of thermoacoustic
instability for point II indicated in Fig. 7.5a. (a) Intermittent acoustic
pressure fluctuations during suppression and (b) an enlarged portion
showing alternate cycles of periodic and aperiodic fluctuations. (c) Points i-
iv correspond to q̇′(x, y) at four points of the periodic cycle indicated in (b).
Points v-viii correspond to q̇′(x, y) at the indicated points during aperiodic
oscillations as indicated in (b).

characteristics (Fig. 7.7a,b). We plot the instantaneous mean-subtracted HRR field

q̇′(x, y) at four points during the epoch of periodic oscillations in Figs. 7.7(ci-iv) and

aperiodic oscillations in Fig. 7.7(cv-viii). We can observe that the flame is anchored

along the shear layer after the bluff-body and extends downstream. During periodic

oscillations, the instantaneous HRR field shows no concentrated spots in the HRR

field as were present during thermoacoustic instability (Fig. 7.4). The entire field is

distributed with moderate levels of HRR fluctuations. During aperiodic oscillations, the

HRR field is incoherent. Finally, the instantaneous HRR field does not show any visible

correlation with pressure fluctuations either during periodic or aperiodic oscillations,

leading to very low values of the Rayleigh index (Fig. 7.6d).
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7.4.3 Mechanism of suppression

The suppression of thermoacoustic instability depends upon the underlying mechanism

and the effect of micro-jet injection on it. In the present combustor, thermoacoustic

instability develops when the reactive field mutually synchronizes with the acoustic

field (Pawar et al., 2017). Vortices from the unstable shear layer are shed at the acoustic

frequency and develop into large coherent structures in the region between the dump

plane and the bluff-body (George et al., 2018; Premchand et al., 2019b). These large-

scale vortices carry unburnt reactants, which upon collision with the bluff-body and

the combustor walls, release large amounts of heat (Fig. 7.4). Consequently, the heat

release rate and Rayleigh index are, thus, largest above and beyond the dump plane (Fig.

7.3k,l). However, the source of such a large heat release rate can still be traced back to

the unstable shear layer developing at the dump plane (Premchand et al., 2019a).

Secondary injection from port P1 suppresses perturbations in the shear layer from

amplifying, thereby hindering the formation of large coherent structures and, eventually,

thermoacoustic instability. On the other hand, injection ports P2 and P3 are further

downstream of the dump plane and at a larger distance from the shear layer than P1.

Thus, injection from P2 and P3 alone are not enough to control the shear layer and

require combined injection for control. On the other hand, injection ports P4 and P5 are

much further downstream and cannot impede the unstable shear layer from developing

into large coherent structures. Thus, they are ineffective in attaining control.
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7.5 OPTIMIZED PASSIVE CONTROL USING HURST EXPONENT

We have established that effective passive control of thermoacoustic instability depends

crucially on the region targeted using secondary air injection. Determination of the

critical region is non-trivial as different physical measures point to different regions.

Of these, we observed that amplitude of turbulent velocity fluctuations |ûT (x, y, fa)|

correctly identifies the critical region, targeting which led to the suppression of

thermoacoustic instability. The critical region is also identified from network-based

measures, as shown in Krishnan et al. (2019a). However, neither |ûT (x, y, fa)| nor

the network-based measures in (Krishnan et al., 2019a) are able to distinguish the

critical region during the state of intermittency. We remedy this by implementing the

spatiotemporal analysis using Hurst exponent calculated from the turbulent velocity

fluctuations (uT ), as discussed in §7.2.

During the state of combustion noise at φ = 0.86 and υa = 8.1 m/s, H values in the

range (0.5, 1.2) are distributed throughout the combustor (Fig. 7.8a). The regions with

different H indicate the difference in the nature of the turbulent velocity fluctuations.

The presence of values of H > 0.5 indicates that the dynamics of velocity fluctuations

are persistent, i.e., a large (small) value is more likely to be followed by another large

(small) value. In fact, the velocity fluctuations in regions with 0.5 < H < 1 have

fractal characteristics and possess long-range correlations typically associated with

fully-developed turbulent flows (Mordant et al., 2002). Thus, the aperiodically shed

small-scale vortices during combustion noise have persistent and fractal behavior.
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Figure 7.8: Field of Hurst exponent (H) calculated from the intensity of velocity
fluctuations during (a) combustion noise, (b) intermittency and (c)
thermoacoustic instability. The experimental conditions for (a-c)
correspond to the points A, B and C in Fig. 7.1, and (d) corresponds to
point II in Fig. 7.5.

Figure 7.8(b) shows the distribution of H during the state of intermittency at φ = 0.66

and υa = 11.1 m/s. We observe large-amplitude periodic bursts embedded randomly

amidst the low amplitude aperiodic fluctuations in the measured pressure signal. We

notice that the H values in the range of (0.2, 0.7) are distributed across the flow field.
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Regions with H < 0.5 indicate anti-persistent behavior in that large (small) values

associated with velocity fluctuations are more likely to be followed by a small (large)

fluctuation. For H close to 0 indicates anti-persistent and periodic behavior. This

indicates that the velocity field exhibits periodicity temporally. The region withH close

to 0.2 indicates the region over which spatial coherence is maximum in the field.

During thermoacoustic instability at φ = 0.63 and υa = 12.3 m/s (Fig. 7.8c), we

observe that the field has H values predominantly lesser than 0.5. We can observe that

the H values in the region immediately after the dump plane are very low (H ≈ 0.1).

Signals with H values near-zero imply the absence of scaling of the structure-function.

In other words, the fluctuations are bounded. As a consequence, the signal displays a

strong anti-persistent behavior, characteristic of periodic signals. Thus, in the region

with H < 0.3, the temporal dynamics of velocity fluctuations are nearly periodic, and

much of the spatial region displays coherence.

We plot the histogram of H values observed during the three different states in Fig.

7.9. We can observe that the histogram shifts to lower H values during the transition

from combustion noise to thermoacoustic instability. This shift clearly indicates that the

dynamics of velocity fluctuations are predominantly periodic and anti-persistent during

thermoacoustic instability. In contrast, during combustion noise, the dynamics show

persistent behavior possessing long-range temporal correlations.

Figure 7.8d shows the distribution of H when control using secondary jets from

injection port P1 is successfully implemented. The experimental condition corresponds

to point II in Fig. 7.5a. We observe that the expansive region with H close to 0 during
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Figure 7.9: Histogram showing the distribution of the Hurst exponent (H) during the
states of combustion noise (CN), intermittency (INT), and thermoacoustic
instability (TAI).

the state of thermoacoustic instability, located between the backward-facing step and

the bluff-body, is no longer present. In other words, secondary injection disrupted

the region with coherence in spatiotemporal dynamics. The resultant flow field has

a distribution of H values ranging from 0.5 to 1, which has persistent behavior similar

to that observed during the state of combustion noise (Fig. 7.8a).

Thus, we see that the Hurst exponent correctly identifies the critical region in the

flow field, as was also done by Fourier transformed velocity amplitude |ûT (fa)| (Fig.

7.3i). As noted earlier, |ûT (fa)| identified the critical region only during thermoacoustic

instability. Similarly, network-based measures also identified the critical region during

thermoacoustic instability (Krishnan et al., 2019a). In contrast, we observe that H

can capture the critical region even during the state of intermittency (Fig. 7.8b),

which is something we do not observe from the field of |ûT (fa)| during the state of
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intermittency (Fig. 7.3e). Hence, it is possible to predict the critical region from the

velocity field obtained during the state of intermittency. To the best of our knowledge,

prediction of the critical region for targeted passive control during the states leading up

to thermoacoustic instability has not been achieved until now. Thus, the Hurst exponent

proves to be a very robust measure in analyzing the temporal and spatiotemporal

dynamics of thermoacoustic systems.

A literature review suggests that the intermediate state of intermittency is observed in

almost all types of combustion systems (Nair et al., 2014; Gotoda et al., 2014; Pawar

et al., 2016; Ebi et al., 2018; Kheirkhah et al., 2017). Such an intermittent state is

also associated with corresponding intermittent states in the spatio-temporal dynamics,

such as intermittent vortex shedding (George et al., 2018; Kheirkhah et al., 2017) and

chimera-like states where spatial patches of order develop amidst disorder (Mondal

et al., 2017). Thus, the Hurst exponent can be used to analyze spatial data such as

PIV and distinguish spatial regions displaying distinct dynamics. For our purpose, the

Hurst exponent was able to predict the critical region where the dynamics are periodic

and most sensitive to passive control. We thus believe that the present methodology is

generalizable to arbitrary combustor geometries and other intermittent states observed

in the combustion dynamics literature.

7.6 INTERIM SUMMARY

In the present chapter, we develop a smart passive control strategy for combating

thermoacoustic instability in a bluff-body stabilized turbulent combustor. We analyze
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the transition from combustion noise to thermoacoustic instability through the state of

intermittency. We use several measures, such as the Fourier amplitude of turbulent

velocity fluctuations, time-averaged vorticity, averaged heat release rate (HRR), and

Rayleigh index to quantify the spatiotemporal dynamics of the combustor. We optimize

the secondary air injection location based on the location of the maxima of these

physical measures. We find that secondary injection targeting the region of maxima

in the amplitude of turbulent velocity fluctuations leads to the highest suppression. We

observe a 20 dB drop in the sound pressure level. More importantly, we found that

targeting local regions identified from maxima in the Rayleigh index and averaged

HRR did not lead to any significant suppression compared to the past study. The

Rayleigh index identifies the most significant acoustic power sources; however, it does

not identify the most suitable region for control.

It has been found that the Hurst exponent is a much more robust measure than the

velocity amplitude for predicting thermoacoustic instability (Nair et al., 2014). We

extend this into the spatiotemporal domain to combine the predictive abilities of the

Hurst exponent with the idea of optimizing the location of secondary air injection.

Using the spatial distribution of the Hurst exponent during the state of thermoacoustic

instability, we are able to correctly identify the critical region recognized by the

amplitude of turbulent velocity fluctuations, thus validating our approach. We then find

that the spatial distribution of the Hurst exponent can predict the critical region during

the state of intermittency, in contrast to the other physical measures. The capability

of the Hurst exponent in predicting the critical region during the state of intermittency

constitutes the most important finding of our study.
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In closing, we note that the present methodology has the potential for broad application

in combustors. First, it can be used to determine critical regions most suited for

aiming control strategies without infringing upon the stability of the flame. Second, the

distribution of Hurst exponent can be used to predict critical region if the flow-field is

known during the states before full-blown thermoacoustic instability. Thus, for already

commissioned combustors, critical regions can be obtained from LES simulations and

used to determine the right combination of secondary air-injection ports for efficient

control of thermoacoustic instability. Such control can expand the operational regime

of combustors leading to reduced costs and energy saving in gas turbine combustors.

Finally, we believe that the present methodology can be extended to any turbulent

combustion systems displaying intermittent states.
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CHAPTER 8
CONCLUSION AND OUTLOOK

Turbulent premixed combustion is a multi-scale phenomenon replete with interactions

taking place at small and large scales. These scale-dependent interactions give

rise to a rich phenomenology. At large scales, the interaction of heat release rate

response of premixed flames can couple with acoustic oscillations and drive destructive

thermoacoustic instability. While at the small scales, extreme fluctuations of the

premixed flames can alter flame properties, cause intense fluctuations in quantities such

as turbulent flame speed, flame strain rate, etc., and in severe cases, can promote flame

quenching. Thus, understanding the scale-dependent response of premixed flames is of

paramount importance. This thesis deals with both of these aspects.

We explain the effects of nonlinear interference on the harmonic flame response and

characterize the large-scale heat release rate response of turbulent flames. At very

high turbulence levels, the harmonic response only reflects a part of the picture of the

overall flame dynamics. Consequently, we quantify the statistics of turbulent flame

fluctuations. We show that the power spectrum of turbulent flame fluctuations depicts

a well-defined power-law behavior with a scaling exponent of −2 over an intermediate

range of scales. The exponent of power-law scaling is explained as a response of

flame surface fluctuating passively to the turbulent flow. We calculate the higher-order

moments of the turbulent flame fluctuations and find that they scale anomalously – a

signature of small-scale intermittency. We then quantify the multifractal spectrum of

the multiplicative cascade process, which is responsible for the phenomenon of small-

scale intermittency.



Turbulent flame surfaces depict pronounced fractal scaling, another consequence of

dynamic self-similarity arising due to cascades in turbulent flows. We analytically

consider the effect of small-scale intermittency on the fractal behavior of the thickened

premixed flames and derive corrections to the fractal dimension. The corrections are a

result of extreme fluctuations in dissipation quantities which cause strong variability in

the inner cut-off of fractal scaling and lead to a change in the fractal dimension.

Finally, we study the practical aspect of control of thermoacoustic instability in

turbulent combustors. The transition to unstable combustor operation is associated

with a change from a steady-state where system dynamics show fluctuations

possessing fractal signature, which is progressively lost as the system moves closer

to thermoacoustic instability. We determine the spatial distribution of Hurst exponent

from the velocity field, which captures the loss in the fractal signature from different

regions and predicts critical region which, when targeted, leads to optimal control.

Thus, in this thesis, we have comprehensively demonstrated the statistical aspect of

turbulent premixed combustion, differentiated between the scale-dependent response,

discovered signatures of small-scale intermittency, accounted for the effect of small-

scale intermittency of flames, and contrived a novel statistical method of controlling

thermoacoustic instability.
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8.1 FUTURE DIRECTIONS

The present thesis promises exciting new directions for future work. Small-scale

intermittency has not been studied in turbulent combustion research till now and raises

important questions. Flame fluctuations are central to quantities of long-standing

practical interest such as turbulent flame speed, heat release rate, flame curvature, etc.

For instance, turbulent flame speed (sT ) is related to flame fluctuations to the leading

order through the relation (Chaudhuri et al., 2012): sT/sL ∼ 〈[1 + (∂xξ)
2]1/2〉. Small-

scale intermittency in ξ′ would lead to extreme fluctuations in the gradient ∂xξ as well

as sT . Thus, it will be interesting to study the effect of small-scale intermittency on the

behavior of these quantities as a follow-up to the present investigations.

A related question is the prediction of higher-order moments of flame fluctuations

in turbulent combustion. The concept of multiplicative processes and multifractals

underlies the phenomenon of small-scale intermittency. Thus, it would be interesting to

investigate the effect of multifractal scalar dissipation on the prediction of anomalous

scaling exponents of higher-order moments of turbulent flame fluctuations. This will

not only clarify the mechanism of small-scale intermittency but also prove useful in

the statistical modelling of turbulent premixed flames, which often relies on the use of

log-normal statistics.

We also underscored the importance of the fractal nature of flame surfaces in

the study of premixed turbulent combustion. In our analysis, we observed that

quantities such as burning rate and heat releaser rate depend on the flux of reactants
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across the fractal flame interface. We also observed that the sound radiated during

turbulent combustion possesses unmistakable fractal signatures (Nair and Sujith,

2014). Turbulence essentially imprints various signatures of dynamic self-similarity

on the flame surface and the radiated sound. Hence, it would be fascinating to

analytically model the turbulent combustion using fractal formalism and discern their

effects on combustion noise. Recently, Raghunathan et al. (2020) observed that the

fractal dimension of turbulent premixed flames increases during the occurrence of

thermoacoustic instability from their corresponding value during combustion noise.

Thus, it would be a challenge to unify the concomitant fractal behavior of the premixed

flame and the loss of multifractality during the transition to thermoacoustic instability

through a self-consistent statistical model.
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64. Falkovich, G., K. Gawȩdzki, and M. Vergassola (2001). Particles and fields in fluid
turbulence. Reviews of Modern Physics, 73(4), 913. 47, 48

65. Feller, W., An introduction to probability theory and its applications, vol 2. John Wiley
& Sons, 2008. 39

66. Fleifil, M., A. M. Annaswamy, Z. Ghoneim, and A. F. Ghoniem (1996). Response of
a laminar premixed flame to flow oscillations: A kinematic model and thermoacoustic
instability results. Combustion and Flame, 106(4), 487–510. 65, 108, 118

67. Freeman, S., D. S. Lee, L. L. Lim, A. Skowron, and R. R. De León (2018). Trading
off aircraft fuel burn and no x emissions for optimal climate policy. Environmental
Science & Technology, 52(5), 2498–2505. 13

68. Frigo, M. and S. G. Johnson, Fftw: An adaptive software architecture for the fft.
In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3. IEEE, 1998. 91

69. Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press,
1995. xv, xvi, 28, 36, 38, 40, 41, 47, 138

70. Frisch, U., P.-L. Sulem, and M. Nelkin (1978). A simple dynamical model of
intermittent fully developed turbulence. Journal of Fluid Mechanics, 87(4), 719–736.
40

211



71. Fureby, C. (2005). A fractal flame-wrinkling large eddy simulation model for premixed
turbulent combustion. Proceedings of the Combustion Institute, 30(1), 593–601. 160

72. Gagne, Y. (1980). Contribution à l’étude expérimentale de l’intermittence de la
turbulence à petite échelle. Ph.D. thesis, Université de Grenoble. xvi, 33

73. George, N. B., V. R. Unni, M. Raghunathan, and R. Sujith (2018). Pattern formation
during transition from combustion noise to thermoacoustic instability via intermittency.
Journal of Fluid Mechanics, 849, 615–644. xvii, xx, 72, 76, 77, 180, 181, 195, 200

74. Ghoniem, A. F., A. Annaswamy, S. Park, and Z. C. Sobhani (2005). Stability
and emissions control using air injection and H2 addition in premixed combustion.
Proceedings of the Combustion Institute, 30(2), 1765–1773. 80, 81

75. Godavarthi, V., V. Unni, E. Gopalakrishnan, and R. Sujith (2017). Recurrence
networks to study dynamical transitions in a turbulent combustor. Chaos, 27(6),
063113. 79

76. Gokulakrishnan, P. and M. S. Klassen, NOx and CO formation and control. In
T. Lieuwen and V. Yang (eds.), Gas Turbine Emissions. Cambridge University Place,
New York, 2013. xv, 8, 9, 10, 11

77. Gokulakrishnan, P., M. Ramotowski, G. Gaines, C. Fuller, R. Joklik, L. Eskin,
M. Klassen, and R. Roby (2008). A novel low nox lean, premixed, and prevaporized
combustion system for liquid fuels. Journal of Engineering for Gas Turbines and
Power, 130(5). 13

78. Goldenfeld, N. (2006). Roughness-induced critical phenomena in a turbulent flow.
Physical Review Letters, 96(4), 044503. 47

79. Gotoda, H., H. Kinugawa, R. Tsujimoto, S. Domen, and Y. Okuno (2017).
Characterization of combustion dynamics, detection, and prevention of an unstable
combustion state based on a complex-network theory. Physical Review Applied, 7(4),
044027. 79

80. Gotoda, H., Y. Shinoda, M. Kobayashi, Y. Okuno, and S. Tachibana (2014).
Detection and control of combustion instability based on the concept of dynamical
system theory. Physical Review E, 89(2), 022910. 79, 200

81. Gouldin, F., K. Bray, and J.-Y. Chen (1989). Chemical closure model for fractal
flamelets. Combustion and Flame, 77(3-4), 241–259. 159

82. Gouldin, F. C. (1987). An application of fractals to modeling premixed turbulent
flames. Combustion and flame, 68(3), 249–266. 62, 145, 159, 161, 165

83. Gülder, Ö. L., Turbulent premixed combustion modelling using fractal geometry. In
Symposium (International) on Combustion, volume 23. Elsevier, 1991. 159, 161

84. Gülder, Ö. L. (2007). Contribution of small scale turbulence to burning velocity of
flamelets in the thin reaction zone regime. Proceedings of the Combustion Institute,
31(1), 1369–1375. 62

212



85. Gülder, Ö. L. and G. J. Smallwood (1995). Inner cutoff scale of flame surface
wrinkling in turbulent premixed flames. Combustion and Flame, 103(1-2), 107–114.
159

86. Gülder, Ö. L., G. J. Smallwood, R. Wong, D. R. Snelling, R. Smith, B. M.
Deschamps, and J.-C. Sautet (2000). Flame front surface characteristics in turbulent
premixed propane/air combustion. Combustion and Flame, 120(4), 407–416. 62, 145,
159

87. Halsey, T. C., M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman (1986).
Fractal measures and their singularities: The characterization of strange sets. Physical
Review A, 33(2), 1141. 41, 142, 148, 157, 172

88. Hamlington, P. E., A. Y. Poludnenko, and E. S. Oran (2012). Intermittency in
premixed turbulent reacting flows. Physics of Fluids, 24(7), 075111. 60, 61

89. Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade (2006).
Global temperature change. Proceedings of the National Academy of Sciences, 103(39),
14288–14293. 4

90. Harari, Y. N., Sapiens: A brief history of humankind. Random House, 2014. 1

91. Hassa, C., Partially premixed and premixed aero combustors, in gas turbine emissions.
In T. Lieuwen and V. Yang (eds.), Gas Turbine Emissions. Cambridge University Place,
New York, 2013. 14

92. Hathout, J., M. Fleifil, A. Annaswamy, and A. F. Ghoniem (2002). Combustion
instability active control using periodic fuel injection. Journal of Propulsion and Power,
18(2), 390–399. 80

93. Hawkes, E. R., O. Chatakonda, H. Kolla, A. R. Kerstein, and J. H. Chen (2012).
A petascale direct numerical simulation study of the modelling of flame wrinkling for
large-eddy simulations in intense turbulence. Combustion and Flame, 159(8), 2690–
2703. 160, 162

94. Hawkes, E. R. and J. H. Chen (2005). Evaluation of models for flame stretch due to
curvature in the thin reaction zones regime. Proceedings of the Combustion Institute,
30(1), 647–655. 162

95. Hemchandra, S., N. Peters, and T. Lieuwen (2011). Heat release response
of acoustically forced turbulent premixed flames – role of kinematic restoration.
Proceedings of Combustion Institute, 33(1), 1609–1617. xvi, 63, 65, 66

96. Hentschel, H. and I. Procaccia (1984). Relative diffusion in turbulent media: the
fractal dimension of clouds. Physical Review A, 29(3), 1461. 156

97. Hentschel, H. G. E. and I. Procaccia (1983). The infinite number of generalized
dimensions of fractals and strange attractors. Physica D, 8(3), 435–444. 41, 143, 144,
145, 157

213



98. Hoeijmakers, M., V. Kornilov, I. L. Arteaga, P. de Goey, and H. Nijmeijer (2014).
Intrinsic instability of flame–acoustic coupling. Combustion and Flame, 161(11), 2860–
2867. 73

99. Holzer, M. and E. D. Siggia (1994). Turbulent mixing of a passive scalar. Physics of
Fluids, 6(5), 1820–1837. 47

100. Humphrey, L. (2017). Ensemble-averaged dynamics of premixed, turbulent,
harmonically excited flames. Ph.D. thesis, Georgia Institute of Technology. xiv, 89,
123

101. Humphrey, L. and T. C. Lieuwen, Experimental investigation of the ensemble-
averaged turbulent displacement speed. In 55th AIAA Aerospace Sciences Meeting,
Grapevine, Texas. 2017. 64

102. Humphrey, L. J., B. Emerson, and T. C. Lieuwen (2018). Premixed turbulent flame
speed in an oscillating disturbance field. Journal of Fluid Mechanics, 835, 102–130.
xvii, 64, 65, 85, 87, 89, 90

103. Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of
American Society of Civil Engineers, 116, 770–799. 181

104. IEA (2021). Global energy review. https://iea.blob.core.
windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/
GlobalEnergyReview2021.pdf. Retrieved on July 3, 2021. xv, 3, 6, 7

105. Jones, B., J. G. Lee, B. D. Quay, D. A. Santavicca, K. Kim, and S. Srinivasan,
Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine
combustor. In ASME Turbo Expo. 2010. 65, 118

106. Juniper, M. P. and R. I. Sujith (2018). Sensitivity and nonlinearity of thermoacoustic
oscillations. Annual Reviews of Fluid Mechanics, 50, 661–689. 16, 17, 70, 73

107. Kabiraj, L. and R. Sujith (2012). Nonlinear self-excited thermoacoustic oscillations:
intermittency and flame blowout. Journal of Fluid Mechanics, 713, 376–397. 73

108. Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde,
and H. E. Stanley (2002). Multifractal detrended fluctuation analysis of nonstationary
time series. Physica A, 316(1-4), 87–114. 182, 183

109. Karimi, N., M. J. Brear, and W. H. Moase (2008). Acoustic and disturbance energy
analysis of a flow with heat communication. Journal of Fluid Mechanics, 597, 67–89.
70

110. Karman, T. and L. Howarth (1938). On the statistical theory of isotropic turbulence.
Proceedings of the Royal Society of London, 164(917), 192–215. 31

111. Karpetis, A. and R. Barlow (2002). Measurements of scalar dissipation in a turbulent
piloted methane/air jet flame. Proceedings of the Combustion Institute, 29(2), 1929 –
1936. 60

214

https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf
https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf
https://iea.blob.core.windows.net/assets/d0031107-401d-4a2f-a48b-9eed19457335/GlobalEnergyReview2021.pdf


112. Kaufmann, A., F. Nicoud, and T. Poinsot (2002). Flow forcing techniques for
numerical simulation of combustion instabilities. Combustion and Flame, 131(4), 371–
385. 65

113. Keppeler, R., E. Tangermann, U. Allaudin, and M. Pfitzner (2014). Les of low to
high turbulent combustion in an elevated pressure environment. Flow Turbulence and
Combustion, 92(3), 767–802. 160

114. Kerres, B., V. Nair, A. Cronhjort, and M. Mihaescu (2016). Analysis of the
turbocharger compressor surge margin using a hurst-exponent-based criterion. SAE
International Journal of Engines, 9(3), 1795–1806. 185

115. Kerstein, A. R. (1988). Fractal dimension of turbulent premixed flames. Combustion
Science and Technology, 60(4-6), 441–445. 62, 145, 159, 165, 174

116. Kerstein, A. R. (1991). Fractal dimension of propagating interfaces in turbulence.
Physical Review A, 44(6), 3633. 62, 159, 174

117. Kerstein, A. R. (2002). Turbulence in combustion processes: Modeling challenges.
Proceedings of the Combustion Institute, 29(2), 1763–1773. 62

118. Kheirkhah, S., J. M. Cirtwill, P. Saini, K. Venkatesan, and A. M. Steinberg (2017).
Dynamics and mechanisms of pressure, heat release rate, and fuel spray coupling during
intermittent thermoacoustic oscillations in a model aeronautical combustor at elevated
pressure. Combustion and Flame, 185, 319–334. 200

119. Knikker, R., D. Veynante, and C. Meneveau (2002). A priori testing of a similarity
model for large eddysimulations of turbulent premixed combustion. Proceedings of the
Combustion Institute, 29(2), 2105–2111. 159

120. Kobayashi, T., S. Murayama, T. Hachijo, and H. Gotoda (2019). Early detection
of thermoacoustic combustion instability using a methodology combining complex
networks and machine learning. Physical Review Applied, 11(6), 064034. 79

121. Kolmogorov, A. N. (1941a). Dissipation of energy in locally isotropic turbulence. 32,
16. xxiii, 19, 22, 29, 31, 37, 166

122. Kolmogorov, A. N. (1941b). The local structure of turbulence in incompressible
viscous fluid for very large reynolds numbers. Doklady Akademii Nauk SSSR, 30(4),
301–305. xxiii, 19, 29, 46, 166, 175

123. Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the
local structure of turbulence in a viscous incompressible fluid at high reynolds number.
Journal of Fluid Mechanics, 13(1), 82–85. 35, 46

124. Kornilov, V., K. Schreel, and L. De Goey (2007). Experimental assessment of the
acoustic response of laminar premixed bunsen flames. Proceedings of the Combustion
Institute, 31(1), 1239–1246. 84

215



125. Krishnan, A., R. Manikandan, P. Midhun, K. Reeja, V. Unni, R. Sujith,
N. Marwan, and J. Kurths (2019a). Mitigation of oscillatory instability in turbulent
reactive flows: A novel approach using complex networks. European Physical Letters,
128(1), 14003. 82, 196, 199

126. Krishnan, A., R. Sujith, N. Marwan, and J. Kurths (2019b). On the emergence of
large clusters of acoustic power sources at the onset of thermoacoustic instability in a
turbulent combustor. Journal of Fluid Mechanics, 874, 455–482. xxi, 96, 191

127. Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course
of Theoretical Physics). Course of theoretical physics / by L. D. Landau and E. M.
Lifshitz, Vol. 6. Pergamon Press, 1959. 34

128. Langhorne, P., A. Dowling, and N. Hooper (1990). Practical active control system for
combustion oscillations. Journal of Propulsion and Power, 6(3), 324–333. 80

129. LaVision (2006). Flowmaster PIV/PTV - systems. http://www.lavision.de/
en/products/flowmaster/index.php. 88

130. Law, C. and C. Sung (2000). Structure, aerodynamics, and geometry of premixed
flamelets. Progress Energy and Combustion Science, 26(4-6), 459–505. 63

131. Law, C. K., Combustion physics. Cambridge university press, 2010. xvi, 15, 18, 49,
158

132. Lee, D. S., D. Fahey, A. Skowron, M. Allen, U. Burkhardt, Q. Chen, S. Doherty,
S. Freeman, P. Forster, J. Fuglestvedt, et al. (2021). The contribution of global
aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment,
244, 117834. 6

133. Lefebvre, A. H. (1977). Lean premixed/prevaporized combustion. NASA CP-2016. 13

134. Lieuwen, T. (2003). Modeling premixed combustion-acoustic wave interactions: A
review. Journal of Propulsion and Power, 19(5), 765–781. 17

135. Lieuwen, T., V. McDonell, E. Petersen, and D. Santavicca (2008). Fuel flexibility
influences on premixed combustor blowout, flashback, autoignition, and stability.
Journal of Engineering for Gas Turbines and Power, 130(1). 14

136. Lieuwen, T. and K. McManus (2003). Introduction: Combustion dynamics in lean-
premixed prevaporized (lpp) gas turbines. Journal of Propulsion and Power, 19(5),
721–721. 13, 14

137. Lieuwen, T., Y. Neumeier, and B. T. Zinn (1998). The role of unmixedness and
chemical kinetics in driving combustion instabilities in lean premixed combustors.
Combustion Science and Technology, 135(1-6), 193–211. 72

138. Lieuwen, T. and B. T. Zinn, The role of equivalence ratio oscillations in driving
combustion instabilities in low NOx gas turbines. In Symposium (International) on
Combustion, volume 27. Elsevier, 1998. 72

216

http://www.lavision.de/en/products/ flowmaster/index.php
http://www.lavision.de/en/products/ flowmaster/index.php


139. Lieuwen, T. C. (2002). Experimental investigation of limit-cycle oscillations in an
unstable gas turbine combustor. Journal of Propulsion and Power, 18(1), 61–67. 75

140. Lieuwen, T. C., Unsteady combustor physics. Cambridge University Press, 2012. 18,
63, 71, 104, 106, 108, 118

141. Lieuwen, T. C. and V. Yang, Combustion instabilities in gas turbine engines:
operational experience, fundamental mechanisms, and modeling. American Institute
of Aeronautics and Astronautics, 2005. 7, 16, 70

142. Lindstedt, R. and E. Vaos (1999). Modeling of premixed turbulent flames with second
moment methods. Combustion and Flame, 116(4), 461–485. 159

143. Lovejoy, S. (1982). Area-perimeter relation for rain and cloud areas. Science,
216(4542), 185–187. 156

144. Maghon, H., A. Kreutzer, and H. Termuehlen, The v84 gas turbine designed for base-
load and peaking duty. In Proceedings of the American Power Conference, volume 50.
1988. xv, 10

145. Magri, L. (2019). Adjoint methods as design tools in thermoacoustics. Applied
Mechanics Review, 71(2). 73

146. Magri, L., M. P. Juniper, and J. P. Moeck (2020). Sensitivity of the rayleigh criterion
in thermoacoustics. Journal of Fluid Mechanics, 882. 70

147. Mahrt, L. (1989). Intermittency of atmospheric turbulence. Journal of Atmospheric
Sciences, 46(1), 79–95. 48

148. Mandelbrot, B. B., Possible refinement of the lognormal hypothesis concerning the
distribution of energy dissipation in intermittent turbulence. In Statistical models and
turbulence. Springer, 1972, 333–351. 40, 61

149. Mandelbrot, B. B. (1975). On the geometry of homogeneous turbulence, with stress
on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics,
72(3), 401–416. 157

150. Mandelbrot, B. B., The fractal geometry of nature, volume 1. WH freeman New York,
1982. 153, 155, 156, 171, 181

151. Mandelbrot, B. B., Multifractal measures, especially for the geophysicist. In Fractals
in geophysics. Springer, 1989, 5–42. 40, 143, 145, 170

152. Mantzaras, J., P. Felton, and F. Bracco (1989). Fractals and turbulent premixed engine
flames. Combustion and Flame, 77(3-4), 295–310. 159

153. Mcdonell, V. and M. Klein, Ground-based gas turbine combustion: Metrics,
constraints, and system interactions. In T. Lieuwen and V. Yang (eds.), Gas Turbine
Emissions. Cambridge University Place, New York, 2013. 12

217



154. McKinney, M. L. and J. L. Lockwood (1999). Biotic homogenization: a few winners
replacing many losers in the next mass extinction. Trends in ecology & evolution,
14(11), 450–453. 5

155. McManus, K., U. Vandsburger, and C. Bowman (1990). Combustor performance
enhancement through direct shear layer excitation. Combustion and Flame, 82(1), 75–
92. 80

156. Meneveau, C. and T. Poinsot (1991). Stretching and quenching of flamelets in
premixed turbulent combustion. Combustion and Flame, 86(4), 311–332. 62

157. Meneveau, C. and K. Sreenivasan (1990). Interface dimension in intermittent
turbulence. Physical Review A, 41(4), 2246. 157, 159, 169, 174, 175

158. Meneveau, C. and K. Sreenivasan (1991). The multifractal nature of turbulent energy
dissipation. Journal of Fluid Mechanics, 224, 429–484. xvi, 33, 41, 43

159. Meneveau, C. and K. R. Sreenivasan (1987a). The multifractal spectrum of the
dissipation field in turbulent flows. Nuclear Physics B, 2, 49–76. 175

160. Meneveau, C. and K. R. Sreenivasan (1987b). Simple multifractal cascade model for
fully developed turbulence. Physical Review Letters, 59(13), 1424. 43

161. Michalke, A. (1971). Instability of a compressible round free-radial understanding
the influence of the strain-layer thickness. Technical report, German Research and
Examination Center for Air and Space EV Berlin, West Germany. 63

162. Mondal, S., V. R. Unni, and R. I. Sujith (2017). Onset of thermoacoustic instability
in turbulent combustors: an emergence of synchronized periodicity through formation
of chimera-like states. Journal of Fluid Mechanics, 811, 659–681. 200

163. Monkewitz, P. A. and K. Sohn (1988). Absolute instability in hot jets. AIAA Journal,
26(8), 911–916. 63

164. Morales, A. J., I. M. Lasky, M. K. Geikie, C. A. Engelmann, and K. A. Ahmed
(2019). Mechanisms of flame extinction and lean blowout of bluff body stabilized
flames. Combustion and Flame, 203, 31–45. 15

165. Mordant, N., J. Delour, E. Léveque, A. Arnéodo, and J.-F. Pinton (2002). Long
time correlations in lagrangian dynamics: a key to intermittency in turbulence. Physicl
Review Letters, 89(25), 254502. 196

166. Murugesan, M. and R. Sujith (2015). Combustion noise is scale-free: transition
from scale-free to order at the onset of thermoacoustic instability. Journal of Fluid
Mechanics, 772, 225–245. 76

167. Murugesan, M. and R. Sujith (2016). Detecting the onset of an impending
thermoacoustic instability using complex networks. Journal of Propulsion and Power,
32(3), 707–712. 79

218



168. Myers, M. K. (1991). Transport of energy by disturbances in arbitrary steady flows.
Journal of Fluid Mechanics, 226, 383–400. 70

169. Myerson, A. L., The reduction of nitric oxide in simulated combustion effluents
by hydrocarbon-oxygen mixtures. In Symposium (International) on Combustion,
volume 15. Elsevier, 1975. 11

170. Nagaraja, S., K. Kedia, and R. Sujith (2009). Characterizing energy growth
during combustion instabilities: Singularvalues or eigenvalues? Proceedings of the
Combustion Institute, 32(2), 2933–2940. 70

171. Nair, V. and R. Sujith (2014). Multifractality in combustion noise: predicting an
impending combustion instability. Journal of Fluid Mechanics, 747, 635–655. 76,
77, 79, 184, 206

172. Nair, V., G. Thampi, S. Karuppusamy, S. Gopalan, and R. Sujith (2013). Loss
of chaos in combustion noise as a precursor of impending combustion instability.
International Journal of Spray and Combustion dynamics, 5(4), 273–290. 76

173. Nair, V., G. Thampi, and R. Sujith (2014). Intermittency route to thermoacoustic
instability in turbulent combustors. Journal of Fluid Mechanics, 756, 470–487. 73, 76,
78, 79, 178, 181, 200, 201

174. NASA (2021). Global climate change: Evidence. https://climate.nasa.gov/
vital-signs/carbon-dioxide/. Retrieved on July 5, 2021. xv, 3, 4, 5

175. Newell, A. C., S. Nazarenko, and L. Biven (2001). Wave turbulence and intermittency.
Physica D, 152, 520–550. 48

176. North, G. and D. Santavicca (1990). The fractal nature of premixed turbulent flames.
Combustion Science and Technology, 72(4-6), 215–232. 159

177. Oboukhov, A. (1949). Structure of the temperature field in turbulent flows. Isv. Geogr.
Geophys. Ser., 13, 58–69. 45, 47

178. Oboukhov, A. M. (1962). Some specific features of atmospheric tubulence. Journal of
Fluid Mechanics, 13(1), 77–81. 34

179. Oefelein, J. C. and V. Yang (1993). Comprehensive review of liquid-propellant
combustion instabilities in f-1 engines. Journal of Propulsion and Power, 9(5), 657–
677. 16

180. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernatics, 9(1), 62–66. 89

181. Oztarlik, G., L. Selle, T. Poinsot, and T. Schuller (2020). Suppression of instabilities
of swirled premixed flames with minimal secondary hydrogen injection. Combustion
and Flame, 214, 266–276. 81

182. Pan, L., J. C. Wheeler, and J. Scalo (2008). The effect of turbulent intermittency on
the deflagration to detonation transition in supernova ia explosions. The Astrophysical
Journal, 681(1), 470. 62

219

https://climate.nasa.gov/vital-signs/carbon-dioxide/
https://climate.nasa.gov/vital-signs/carbon-dioxide/


183. Pao, Y.-H. (1965). Structure of turbulent velocity and scalar fields at large
wavenumbers. Physics of Fluids, 8(6), 1063–1075. 57

184. Pao, Y.-H. (1968). Transfer of turbulent energy and scalar quantities at large
wavenumbers. Physics of Fluids, 11(6), 1371–1372. 57

185. Parisi, G. and U. Frisch, On the singularity structure of fully developed turbulence.
In G. P. M. Ghil, R. Benzi (ed.), Turbulence and Predictability in Geophysical Fluid
Dynamics. North Holland, Amsterdam, 1985. 41

186. Park, G. I., M. Bassenne, J. Urzay, and P. Moin (2017). A simple dynamic subgrid-
scale model for LES of particle-laden turbulence. Physical Review Fluids, 2(4), 044301.
48

187. Pavithran, I., V. R. Unni, and R. Sujith (2021). Critical transitions and their early
warning signals in thermoacoustic systems. The European Physical Journal Special
Topics, 1–22. 79

188. Pawar, S. A., S. Mondal, N. B. George, and R. Sujith (2019). Temporal and
spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor.
AIAA Journal, 57(2), 836–847. 72

189. Pawar, S. A., A. Seshadri, V. R. Unni, and R. I. Sujith (2017). Thermoacoustic
instability as mutual synchronization between the acoustic field of the confinement and
turbulent reactive flow. Journal of Fluid Mechanics, 827, 664–693. 72, 181, 187, 195

190. Pawar, S. A., R. Vishnu, M. Vadivukkarasan, M. Panchagnula, and R. Sujith
(2016). Intermittency route to combustion instability in a laboratory spray combustor.
Journal of Engineering for Gas Turbine and Power, 138(4). 200

191. Pelce, P. and P. Clavin (1982). Influence of hydrodynamics and diffusion upon the
stability limits of laminar premixed flames. Journal of Fluid Mechanics, 124, 219–237.
52

192. Peters, N., Laminar flamelet concepts in turbulent combustion. In Symposium
(International) on Combustion, volume 21. Elsevier, 1988. 49, 54

193. Peters, N. (1992). A spectral closure for premixed turbulent combustion in the flamelet
regime. Journal of Fluid Mechanics, 242, 611–629. 19, 22, 48, 51, 53, 55, 56, 57, 58,
59, 63, 126

194. Peters, N. (1999). The turbulent burning velocity for large-scale and small-scale
turbulence. Jounral of Fluid Mechanics, 384, 107–132. 63, 162

195. Peters, N., Turbulent combustion. IOP Publishing, 2001. 15, 18, 39, 55, 63, 158

196. Petersen, R. E. and H. W. Emmons (1961). Stability of laminar flames. Physics of
Fluids, 4(4), 456–464. 84

197. Picardo, J. R., A. Bhatnagar, and S. S. Ray (2020). Lagrangian irreversibility
and eulerian dissipation in fully developed turbulence. Physical Review Fluids, 5(4),
042601. 48

220



198. Poinsot, T. (2017). Prediction and control of combustion instabilities in real engines.
Proceedings of the Combustion Institute, 36(1), 1–28. 17, 70

199. Poinsot, T. and D. Veynante, Theoretical and numerical combustion. RT Edwards,
Inc., 2005. 15, 61, 68

200. Poinsot, T. J., A. C. Trouve, D. P. Veynante, S. M. Candel, and E. J. Esposito
(1987). Vortex-driven acoustically coupled combustion instabilities. Journal of Fluid
Mechanics, 177, 265–292. 63, 64, 72, 187

201. Polifke, W. (2020). Modeling and analysis of premixed flame dynamics by means of
distributed time delays. Progress in Energy and Combustion Science, 79, 100845. 73

202. Prasad, R. R., C. Meneveau, and K. R. Sreenivasan (1988). Multifractal nature of
the dissipation field of passive scalars in fully turbulent flows. Physical Review Letters,
61(1), 74. 43

203. Prather, M. J., J. Hsu, N. M. DeLuca, C. H. Jackman, L. D. Oman, A. R.
Douglass, E. L. Fleming, S. E. Strahan, S. D. Steenrod, O. A. Søvde, et al. (2015).
Measuring and modeling the lifetime of nitrous oxide including its variability. Journal
of Geophysical Research: Atmospheres, 120(11), 5693–5705. 9

204. Preetham, S. Hemchandra, and T. C. Lieuwen (2007). Response of turbulent
premixed flames to harmonic acoustic forcing. Proceedings of the Combustion Institute,
31(1), 1427–1434. 64

205. Premchand, C. P., N. B. George, M. Raghunathan, V. R. Unni, P. R. Sujith, and
V. Nair (2019a). Lagrangian analysis of flame dynamics in the flow-field of a bluff-
body stabilized combustor. Journal of Engineering for Gas Turbine and Power. 195

206. Premchand, C. P., N. B. George, M. Raghunathan, V. R. Unni, R. I. Sujith, and
V. Nair (2019b). Lagrangian analysis of intermittent sound sources in the flow-field of
a bluff-body stabilized combustor. Physics of Fluids, 31(2), 025115. xx, 77, 180, 181,
195

207. Raghunathan, M., N. B. George, V. R. Unni, P. R. Midhun, K. V. Reeja, and
R. I. Sujith (2020). Multifractal analysis of flame dynamics during transition to
thermoacoustic instability in a turbulent combustor. Journal of Fluid Mechanics, 888.
62, 77, 78, 206

208. Ralph, M., P. Kuentzmann, L. Maurice, and J. Tilston (2009). Report of the
independent experts to CAEP 8 on the second NOx review & long term technology
goals. London, March. 14

209. Rayleigh, J. W. S. (1878). The explanation of certain acoustical phenomena. Nature,
18(455), 319–321. 16, 17, 69

210. Richardson, L. F. (1926). Atmospheric diffusion shown on a distance-neighbour graph.
Proceedings of the Royal Society of London, 110(756), 709–737. 38

221



211. Ritchie, H. (2020). Climate change and flying: what share of global
CO2 emissions come from aviation? https://ourworldindata.org/
co2-emissions-from-aviation. 6

212. Rogers, D. E. (1956). A mechanism for high-frequency oscillation in ramjet
combustors and afterburners. Journal of Jet Propulsion, 26(6), 456–462. 63

213. Roy, A., S. Singh, A. Nair, S. Chaudhuri, and R. Sujith (2021). Flame dynamics
during intermittency and secondary bifurcation to longitudinal thermoacoustic
instability in a swirl-stabilized annular combustor. Proceedings of the Combustion
Institute, 38(4), 6221–6230. 75

214. Saddoughi, S. G. and S. V. Veeravalli (1994). Local isotropy in turbulent boundary
layers at high reynolds number. Journal of Fluid Mechanics, 268, 333–372. xv, 31, 32

215. Saha, A., S. Chaudhuri, and C. K. Law (2014). Flame surface statistics of constant-
pressure turbulent expanding premixed flames. Physics of Fluids, 26(4), 045109. 62

216. Schadow, K. and E. Gutmark (1992). Combustion instability related to vortex
shedding in dump combustors and their passive control. Progress in Energy and
Combustion Science, 18(2), 117–132. 63, 64, 72

217. Schuller, T., D. Durox, and S. Candel (2003). A unified model for the prediction of
laminar flame transfer functions: comparisons between conical and v-flame dynamics.
Combustion and Flame, 134(1-2), 21–34. 108

218. Schuller, T., T. Poinsot, and S. Candel (2020). Dynamics and control of premixed
combustion systems based on flame transfer and describing functions. Journal of Fluid
Mechanics, 894. 73

219. Searby, G. and J. Quinard (1990). Direct and indirect measurements of markstein
numbers of premixed flames. Combustion and Flame, 82(3-4), 298–311. 52

220. Sengupta, U., C. E. Rasmussen, and M. P. Juniper (2021). Bayesian machine learning
for the prognosis of combustion instabilities from noise. Journal of Engineering for Gas
Turbines and Power, 143(7), 071001. 79

221. Shanbhogue, S., D. H. Shin, S. Hemchandra, D. Plaks, and T. Lieuwen (2009a).
Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic
forcing. Proceedings of Combustion Institute, 32(2), 1787–1794. xvi, 63, 64, 65, 66,
101

222. Shanbhogue, S. J., S. Husain, and T. Lieuwen (2009b). Lean blowoff of bluff body
stabilized flames: Scaling and dynamics. Progress in Energy and Combustion Science,
35(1), 98–120. 14, 15

223. Shin, D. H. and T. Lieuwen (2012). Flame wrinkle destruction processes in
harmonically forced, laminar premixed flames. Combustion and Flame, 159(11), 3312–
3322. xvi, 64, 66

222

https://ourworldindata.org/co2-emissions-from-aviation
https://ourworldindata.org/co2-emissions-from-aviation


224. Shin, D. H. and T. Lieuwen (2013). Flame wrinkle destruction processes in
harmonically forced, turbulent premixed flames. Journal of Fluid Mechanics, 721, 484–
513. 64

225. Shraiman, B. I. and E. D. Siggia (2000). Scalar turbulence. Nature, 405(6787), 639.
47, 48

226. Shreekrishna, S. Hemchandra, and T. Lieuwen (2010). Premixed flame response to
equivalence ratio perturbations. Combustion Theory and Modelling, 14(5), 681–714.
72

227. Singh, S., A. Roy, R. KV, A. Nair, S. Chaudhuri, and R. Sujith (2021). Intermittency,
secondary bifurcation and mixed-mode oscillations in a swirl-stabilized annular
combustor: Experiments and modeling. Journal of Engineering for Gas Turbines and
Power, 143(5), 051028. 75

228. Skalska, K., J. S. Miller, and S. Ledakowicz (2010). Trends in NOx abatement: A
review. Science of the total environment, 408(19), 3976–3989. 8, 9, 11, 12

229. Sreenivasan, K. (2004). Possible effects of small-scale intermittency in turbulent
reacting flows. Flow, Turbulence and Combustion, 72(2-4), 115–131. 60

230. Sreenivasan, K. and C. Meneveau (1986). The fractal facets of turbulence. Journal of
Fluid Mechanics, 173, 357–386. 156

231. Sreenivasan, K., R. Ramshankar, and C. Meneveau (1989). Mixing, entrainment
and fractal dimensions of surfaces in turbulent flows. Proceedings of the Royal Society
of London A, 421(1860), 79–108. 156, 157, 165, 167, 174

232. Sreenivasan, K. R. (1991a). Fractals and multifractals in fluid turbulence. Annual
Reviews of Fluid Mechanics, 23(1), 539–604. 39, 40, 145, 156, 169

233. Sreenivasan, K. R. (1991b). On local isotropy of passive scalars in turbulent shear
flows. Proceedings of the Royal Society of London, 434(1890), 165–182. 47

234. Sreenivasan, K. R. (1995). On the universality of the kolmogorov constant. Physics of
Fluids, 7(11), 2778–2784. 30

235. Sreenivasan, K. R. and R. Antonia (1997). The phenomenology of small-scale
turbulence. Annual Reviews Fluid Mechanics, 29(1), 435–472. xvi, 36, 47, 48, 138,
157

236. Sterling, J. D. (1993). Nonlinear analysis and modelling of combustion instabilities in
a laboratory combustor. Combustion Science and Technology, 89(1-4), 167–179. 73

237. Stone, R. (2002). Counting the cost of London’s killer smog. Science, 298, 2106–2107.
3

238. Strahle, W. C. (1971). On combustion generated noise. Journal of Fluid Mechanics,
49(2), 399–414. 75

223



239. Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science,
4(3), 157–176. 75

240. Strogatz, S. H., Nonlinear dynamics and chaos with student solutions manual: With
applications to physics, biology, chemistry, and engineering. CRC press, 2018. 74, 75

241. Sujith, R., M. Juniper, and P. Schmid (2016). Non-normality and nonlinearity in
thermoacoustic instabilities. International Journal of Spray and Combustion Dynamics,
8(2), 119–146. 70, 73

242. Sujith, R. and V. R. Unni (2020). Complex system approach to investigate and mitigate
thermoacoustic instability in turbulent combustors. Physics of Fluids, 32(6), 061401.
17, 63, 73

243. Tachibana, S., L. Zimmer, Y. Kurosawa, and K. Suzuki (2007). Active control
of combustion oscillations in a lean premixed combustor by secondary fuel injection
coupling with chemiluminescence imaging technique. Proceedings of the Combustion
Institute, 31(2), 3225–3233. 81, 192

244. Temme, J. E., P. M. Allison, and J. F. Driscoll (2014). Combustion instability of a
lean premixed prevaporized gas turbine combustor studied using phase-averaged piv.
Combustion and Flame, 161(4), 958–970. 13

245. Tennekes, H. (1975). Eulerian and lagrangian time microscales in isotropic turbulence.
Journal of Fluid Mechanics, 67(3), 561–567. 127

246. Tennekes, H. and J. L. Lumley, A first course in turbulence. MIT press, 2018. 27, 128

247. Thiesset, F., G. Maurice, F. Halter, N. Mazellier, C. Chauveau, and I. Gökalp
(2016). Modelling of the subgrid scale wrinkling factor for large eddy simulation of
turbulent premixed combustion. Combustion Theory and Modelling, 20(3), 393–409.
159

248. Tian, H., R. Xu, J. G. Canadell, R. L. Thompson, W. Winiwarter,
P. Suntharalingam, E. A. Davidson, P. Ciais, R. B. Jackson, G. Janssens-Maenhout,
et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks.
Nature, 586(7828), 248–256. 9

249. Tony, J., E. Gopalakrishnan, E. Sreelekha, and R. Sujith (2015). Detecting
deterministic nature of pressure measurements from a turbulent combustor. Physical
Review E, 92(6), 062902. 76

250. Tsinober, A., An informal conceptual introduction to turbulence, volume 483. Springer,
2009. 47

251. Turns, S. R., Introduction to combustion, volume 287. McGraw-Hill Companies, 1996.
2

252. Tylecote, R. F. (1977). A history of metallurgy. British Corrosion Journal, 12(3),
137–140. 1

224



253. Uhm, J. H. and S. Acharya (2005). Low-bandwidth open-loop control of combustion
instability. Combustion and Flame, 142(4), 348–363. 80, 81

254. UNCC (2016). United nations climate change: The paris agreement. https:
//unfccc.int/process-and-meetings/the-paris-agreement/
the-paris-agreement. 5

255. Unni, V. R., A. Krishnan, R. Manikandan, N. B. George, R. Sujith, N. Marwan, and
J. Kurths (2018). On the emergence of critical regions at the onset of thermoacoustic
instability in a turbulent combustor. Chaos, 28(6), 063125. 82

256. Unni, V. R., A. Mukhopadhyay, and R. Sujith (2015). Online detection of impending
instability in a combustion system using tools from symbolic time series analysis.
International Journal of Spray and Combustion Dynamics, 7(3), 243–255. 79

257. Unni, V. R. and R. Sujith (2015). Multifractal characteristics of combustor dynamics
close to lean blowout. Journal of Fluid Mechanics, 784, 30–50. 77

258. Vohra, K., A. Vodonos, J. Schwartz, E. A. Marais, M. P. Sulprizio, and L. J. Mickley
(2021). Global mortality from outdoor fine particle pollution generated by fossil fuel
combustion: Results from GEOS-Chem. Environmental Research, 195, 110754. 3

259. Wake, D. B. and V. T. Vredenburg (2008). Are we in the midst of the sixth mass
extinction? A view from the world of amphibians. Proceedings of the National
Academy of Sciences, 105(1), 11466–11473. 5

260. WHO (2018). Ambient air pollution. https://www.who.
int/data/gho/data/themes/topics/topic-details/GHO/
ambient-air-pollution. 3

261. Wilke, C. (1950). A viscosity equation for gas mixtures. The Journal of Chemical
Physics, 18(4), 517–519. 94

262. Winkler, D., W. Geng, G. Engelbrecht, P. Stuber, K. Knapp, and T. Griffin
(2017). Staged combustion concept for gas turbines. Journal of the Global Power
and Propulsion Society, 1, 184–194. 12

263. Wirth, M. and N. Peters, Turbulent premixed combustion: A flamelet formulation and
spectral analysis in theory and ic-engine experiments. In Symposium (International) on
Combustion, volume 24. Elsevier, 1992. 59

264. Woodrow, P. (1997). Nitric oxide: some nursing implications. Intensive and Critical
Care Nursing, 13(2), 87–92. 8

265. Yu, M. H. and P. A. Monkewitz (1990). The effect of nonuniform density on the
absolute instability of two-dimensional inertial jets and wakes. Physics of Fluids A:
Fluid Dynamics, 2(7), 1175–1181. 63

266. Zhao, D. and X. Li (2015). A review of acoustic dampers applied to combustion
chambers in aerospace industry. Progress in Aerospace Science, 74, 114–130. 80

225

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ambient-air-pollution
https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ambient-air-pollution
https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ambient-air-pollution


267. Zhao, D., Z. Lu, H. Zhao, X. Li, B. Wang, and P. Liu (2018). A review of active
control approaches in stabilizing combustion systems in aerospace industry. Progress
in Aerospace Science, 97, 35–60. 80

226





CURRICULUM VITAE

1. NAME : Amitesh Roy

2. DATE OF BIRTH : 10 April, 1994

3. EDUCATIONAL QUALIFICATION

2012 Bachelor of Technology (B.Tech.)

Institution : Vellore Institute of Technology, Vellore, Tamil Nadu

Specialization : Mechanical Engineering

2021 Doctor of Philosophy (Ph.D.)

Institution : Indian Institute of Technology Madras, Chennai

Specialization : Aerospace Engineering

Registration date : 12 July, 2016

227





DOCTORAL COMMITTEE

CHAIRPERSON: Dr. H. S. N. Murthy

Professor and Head

Department of Aerospace Engineering

GUIDE: Dr. R. I. Sujith

Professor

Department of Aerospace Engineering

MEMBERS: Dr. Sunetra Sarkar

Professor

Department of Aerospace Engineering

Dr. P. A. Ramakrishnan

Professor

Department of Aerospace Engineering

Dr. Niket Kaisare

Associate Professor

Department of Mechanical Engineering

228



229


	LIST OF PUBLICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	GLOSSARY
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Historical overview
	Mankind and fire
	Environmental concerns and global warming
	The way forward: Alternative and low-emission technologies

	Gas turbines: Turbulent, lean premixed combustion technology
	Pollutant Emissions
	NOx generation pathways
	Emission mitigation strategies
	Lean, premixed combustion
	The challenge of lean, premixed turbulent combustion
	The problem of thermoacoustic instability

	Motivation
	Objectives
	Overview of the thesis

	BACKGROUND
	Turbulent flows
	Governing equations of turbulent flows
	Scales of turbulent motion
	Universal equilibrium theory of turbulence
	Higher-order statistics of turbulent flows
	Small-scale intermittency in turbulent flows
	Intermittent fields and multiplicative processes
	The multifractal formalism
	Scalar fields in turbulent flows

	Turbulent combustion
	Regimes of turbulent premixed flames
	Premixed flame formulation
	Large-scale flame response

	Thermoacoustic instability
	Wave equation and acoustic energy balance in reacting flows
	The Rayleigh criteria and its extensions
	Mechanisms of thermoacoustic instability
	Bifurcations and transition to thermoacoustic instability
	Spatiotemporal behavior during intermittency route to thermoacoustic instability
	Control of thermoacoustic instability

	Interim summary

	EXPERIMENTAL FACILITIES AND DIAGNOSTICS
	Turbulent V-flame facility
	Optical diagnostics
	Flame edge identification and post-processing

	Bluff-body stabilized combustor

	LARGE-SCALE HARMONIC RESPONSE OF 0.2cmTURBULENT PREMIXED FLAMES
	Harmonic response of flame surface fluctuations
	Ensemble averaged flame response
	Amplitude spectrum of flame fluctuations
	Effect of turbulence on harmonic flame response
	Interference of non-identical disturbances
	Frequency dependence of flame sheet response at comparable flow conditions

	Heat release rate response
	Flame asymmetry and cross-correlation
	Local Heat Release Response
	Global heat release rate response

	Interim summary

	SELF-SIMILARITY AND SMALL-SCALE INTERMITTENCY 0.2cmIN TURBULENT PREMIXED FLAMES
	Spectral scaling of flame surface fluctuations
	Temporal power spectrum of flame fluctuations
	Kolmogorov's limit for temporal power spectrum

	Statistics of large-scale flame fluctuations
	Small-Scale intermittency in flame fluctuations
	Non-Gaussian statistics of increments in flame fluctuations
	Power-law scaling of structure functions
	Kolmogorov's limit for structure-function scaling
	Anomalous scaling exponents

	Multifractal behavior of turbulent flames
	Generalized dimension of flame fluctuations
	Singularities and the multifractal spectrum

	Interim Summary

	FRACTAL DIMENSION OF PREMIXED FLAMES 0.2cmIN INTERMITTENT TURBULENCE
	Fractals, measures and dimensions
	Fractals in classical turbulent flows
	Fractals in premixed turbulent flames
	Estimate of fractal dimension of thickened flames
	Influence of intermittency on the fractal dimension of the flame
	A coarse-grained estimate based on the moments of the intermittent dissipation field
	A fine-scaled estimate based on the multifractal formalism

	Discussion
	Interim Summary

	CRITICAL REGION AND SMART PASSIVE CONTROL IN A 0.2cmTURBULENT THERMOACOUSTIC SYSTEM
	Characterizing the turbulent combustor
	Nonlinear time series analysis: the Hurst exponent
	Spatiotemporal behavior during the transition to thermoacoustic instability
	Passive control of thermoacoustic instability
	Suppression of thermoacoustic instability
	Spatiotemporal behavior during suppression
	Mechanism of suppression

	Optimized passive control using Hurst exponent
	Interim Summary

	CONCLUSION AND OUTLOOK
	Future directions

	REFERENCES

