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ABSTRACT

KEYWORDS: Critical transitions; Early warning signals; Power law scaling;

Tipping; Rate-induced tipping.

Critical transitions are ubiquitous in natural, economic, and social systems, manifesting

in the form of sudden changes to the state of the system when the system parameters are

varied past a critical point. They often result in dangerous and catastrophic outcomes

such as the collapse of ecosystems, epileptic seizures, melting of arctic sea ice, and

oscillatory instability in fluid mechanical systems. Whereas, critical transitions are

desirable in some instances, such as the onset of coherent lasing. This thesis aims to

study critical transitions and universal behaviour of diverse systems close to transition.

The critical transition to oscillatory instabilities in turbulent fluid mechanical systems is

observed to follow a unique route. During this transition, we uncover the existence

of an inverse square law scaling between the Hurst exponent (H) of a fluctuating

state variable and its spectral amplitude. Interestingly, we observe the same power

law exponent near -2 across various turbulent fluid mechanical systems such as

aeroacoustic, thermoacoustic and aeroelastic systems. The energy distributed over

a broadband of frequencies in the power spectrum gets condensed into a dominant

mode during the transition to an ordered dynamics. We call this phenomenon spectral

condensation and define a set of spectral measures to quantify it. These spectral

measures follow an inverse power law relation with the power corresponding to the

dominant peak in the spectrum, and is observed across fluid mechanical systems,

random laser and Chua’s circuit. The spectral measures and H vary gradually during

the transition to oscillatory instabilities and forewarn impending critical transitions

well before their onset. The power law scaling of these precursors with the spectral

amplitude can be used to predict the amplitude of oscillations expected after the

transition. Predicting the amplitude of the oscillations helps devise strategies to mitigate

iii



the ruinously high-amplitude oscillations, which can lead to catastrophic failures in real-

world systems.

The second part of this thesis focuses on the effects of continuous variation

of parameters on critical transitions. By performing experiments on a laminar

thermoacoustic system exhibiting subcritical Hopf bifurcation, we compare the efficacy

of various early warning signals. Lag-1 autocorrelation (AC) and H are found to be

suitable measures to predict the transition well-before its occurrence. The warning

time, obtained using AC and H , reduces following an inverse power law with the rate

of change of the control parameter. Further, experiments in a turbulent thermoacoustic

system showed critical transition only for fast variations of the parameter. Such

transitions during a quick variation of parameters are called rate-induced tipping (R-

tipping). We demonstrate a mechanism of R-tipping where another parameter, which is

not in our control, varies simultaneously at a different rate, and the competition between

the two variables determines the dynamics.
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GLOSSARY

The following are some of the commonly used terms in this thesis:

Tipping Sudden change in the state of a system upon gradual variations of

parameters

B-tipping Critical transitions induced due to bifurcation.

R-tipping Critical transitions induced due to fast rates of change of parameter.

Fractals Geometric shapes containing detailed structure at different scales and

they appear self-similar at various scales. Fractals have non-integer

dimension.
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ABBREVIATIONS

EWS Early warning signals

CSD Critical slowing down

AC Autocorrelation

VAR Variance

SKEW Skewness

FFT peak Amplitude of dominant mode of oscillations obtained from amplitude

spectrrum

TAI Thermoacoustic instability

CN Combustion noise

LCO Limit cycle oscillations
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NOTATION

English Symbols
H Hurst exponent
p′ Acoustic pressure fluctuations
Re Reynolds number
t Time
V Volts
I Current
P Power
r Rate of change of parameter
d Embedding dimension

Greek Symbols
[µm]

x[µn]
y Spectral measures with indices m, n, x, and y

α Linear damping
β Linear driving
σ Standard deviation
Γ Noise intensity
N Gaussian white noise

xxiv



CHAPTER 1

INTRODUCTION

1.1 CRITICAL TRANSITIONS

Critical transitions are sudden qualitative changes to the state of the system when

the system parameters are varied gradually. Certain physical parameter values

corresponding to the conditions at which a slight change in the parameters can cause

the transition are referred to as critical points. Many natural and human-made systems

such as Earth’s climate, wildlife population, financial markets, and ecosystems exhibit

critical transitions. They often result in dangerous and catastrophic outcomes such as

the collapse of ecosystems, epileptic seizures, melting of arctic sea ice, and oscillatory

instability in fluid mechanical systems. In contrast, critical transitions are desirable in

some instances, such as the onset of coherent lasing in lasers.

External conditions and the system parameters often change gradually with time

(Tilman et al., 2001; Scheffer et al., 2001). Some systems may respond in a smooth,

continuous way to such changes, while others may not show any change and respond

strongly when parameters approach a critical point. The sudden strong response

of the system results in a ‘catastrophic’ transition (Scheffer et al., 2001). Figure

1.1 a and b show examples of non-catastrophic transitions and Fig. 1.1c presents

saddle-node or fold bifurcation as an example of catastrophic transition in ecosystems.

Such catastrophic switch in the state of the system is common in systems exhibiting

multistability (presence of alternate stable attractors). Most importantly, when one

monitors the state of the system before the transition, little change in its state may

be observed and catastrophic transitions occur typically unannounced. Therefore,

obtaining early warning signals are difficult and recovering back to the previous state

is hard in cases of multistability. Conditions have to be reversed further back to the

forward critical point to recover (Scheffer et al., 2001). Studying catastrophic critical

transitions is indeed important as they are prevalent in real-world systems.



Fig. 1.1: Gradual and abrupt transitions in ecosystems. In (a) and (b), only one possible
dynamical state exists for each condition. While the transition in (a) is more
gradual, (b) looks like a sigmoid. Whereas, three equilibria exist for a given
condition in (c) and the transition between alternative stable states on the upper
and lower branches involve sudden jumps. The arrows indicate the direction
of change and the dashed line represent unstable attractor (c). Adapted from
(Scheffer et al., 2001).

Desertification, shifts between alternate states of lake ecosystems, reef ecosystem, and

oceans are some of the concerns in ecology which are generally known as ’regime

shifts’ in ecology. Critical transitions were studied in physics in the 1960s and were

often referred to as phase transitions. Currently, critical transitions in view of climate

change are the focus of major research. In climate science, the critical transitions are

named ‘tipping’. Different regions in the globe are categorized as tipping elements that

are considered threatened by critical transitions. This includes the possible melting of

Arctic sea ice (Eisenman and Wettlaufer, 2009), the transition from a wet to a dry Indian

monsoon system (Zickfeld et al., 2005), etc. We aim to study critical transitions in real-

world systems and find commonalities across disparate systems which are related to the

underlying bifurcation or the mechanism of transitions. Note that, The critical transition

that we are discussing in this thesis are different from the critical phenomena or the

concept of self-organized criticality (SOC) introduced by Per Bak and collaborators

Bak (2013). We study self-organization to an ordered dynamical state.

1.2 MECHANISMS OF CRITICAL TRANSITIONS

There are several possible methods through which critical transitions can occur. From a

mathematical point of view, Ashwin et al. (2012) classified critical transitions into three
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types based on the mechanism through which tipping occurs.

(a) Bifurcation induced tipping (B-tipping)

(b) Noise induced tipping (N-tipping)

(c) Rate induced tipping (R-tipping)

Here, we briefly explain each of these mechanism of tipping. The bifurcation-induced

transition (B-tipping) occurs when a system parameter is varied slowly through the

bifurcation point, leading to a transition from one stable state to another. It is commonly

known as the slow passage through the bifurcation. A delay in the bifurcation is

observed generally when the parameter is swept slowly through the bifurcation point

(Baer et al., 1989). When a system approaches and passes through a bifurcation, the

stability of the current state of the system changes and the system transitions to a new

stable state. A few types of bifurcations which are commonly studied in dynamical

systems are saddle-node, transcritical, pitchfork and Hopf bifurcations. During the last

decade, bifurcation-induced tipping has been extensively studied, especially in systems

with multistability and hysteresis. The two alternative states observed with dominance

of different species in the ocean sediment of the North Sea (Van Nes et al., 2007) and

loss of the summer sea ice cover in the Arctic (Eisenman and Wettlaufer, 2009) are two

examples with alternative stable states in ecology and climate science.

Alternatively, a system can transition to a new stable state due to inherent or extraneous

fluctuations, without even undergoing a bifurcation. Noise induced tipping refers to

such transitions due to random fluctuations. The state of the system switches to another

stable state due to the presence of noise of sufficient amplitude. In other words,

noise can drive the system between the coexisting attractors in systems exhibiting

multistability. Multistable systems with fractal basins of attraction are very sensitive

to noise and prone to N-tipping. In practice, many systems are usually intrinsically or

externally forced with perturbations of varying levels. Strong perturbations can cause

early transitions well before the deterministic bifurcation, thus early warning indicators

may not be reliable or even fail to detect such transitions. Noise-induced tipping
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has been observed in laser systems (Huerta-Cuellar et al., 2008), neuron populations

(Bressloff, 2010), climate system (Lucarini and Bódai, 2017), etc.

In non-autonomous dynamical systems, rate induced tipping may occur when a rate-

sensitive parameter is varied at rates faster than a critical rate. R-tipping is a scenario

where the system fails to track the changing quasi-steady state (Ashwin et al., 2012).

The rate of variation of parameter plays a more vital role than the actual value of the

parameter. Ashwin et al. (2012) showed that when a rate-sensitive parameter is varied as

a function of time, at a slow rate, the system dynamics follows the quasi-static attractor.

For faster rates of change of the parameter, above a critical rate, they observed that the

system can be driven outside the basin of attraction of the quasi-static attractor, and

can evolve towards a new stable state resulting in R-tipping. On the other hand, by

varying the bifurcation parameter in a bistable system, one can achieve preconditioned

rate induced tipping, as demonstrated by Tony et al. (2017). They reported that the

system could be driven towards the basin of attraction of the limit cycle before the

actual loss of stability of fixed point, for fast enough rates with a finite amplitude initial

perturbation. Here, the tipping depends on the rate of change of control parameter and

initial conditions. In these cases, the rate at which the parameter is varied determines

the tipping point, not the absolute value of parameter.

R-tipping is especially important for all phenomena where system parameters or

environmental (external) parameters change at a different time scale with respect to the

internal dynamics of the system (Feudel et al., 2018). However, a tipping in a practical

non-autonomous system are usually not due to just one of these mechanisms but often

a combination of all the three types of tipping. The interplay between rate of change of

parameter and noise in the system can bring high variability in tipping point in practical

systems. Therefore, determining the stability margin is difficult for practical systems

and efficient early warning signals are necessary for critical transitions in real systems.
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1.3 EARLY WARNING SIGNALS FOR CRITICAL TRANSITIONS

Many complex systems experience rapid and often unexpected shifts from one state to

another. Changes in temperature and climatic conditions, and financial markets are

notorious for catastrophic transitions. However, in most cases it is difficult to get

information about values at which system is highly prone to tipping or the critical

thresholds. Moreover, these sudden transitions are costly because it is difficult or

even impossible to restore to their previous state. Just monitoring the state of the

system provides no indication of an impending critical transition. To address these

challenges, we need early warning signals that can detect the system’s proximity to

critical transition. Although predicting such critical transitions is difficult, there is

indeed an architecture to such transitions. Dynamics of complex systems close to a

critical point have generic properties, even for disparate systems. Many studies have

proposed the use of common early warning signals (EWS) that can detect an impending

tipping. Such indicators are based on general mathematical properties that are close to

the critical transitions across different systems.

Critical transitions to an alternative state are most noticeable when the fluctuations in the

system are fairly small. Most of the research on EWS for critical transitions has focused

on this scenario, taking advantage of the fundamental property of critical slowing down

(CSD) that occur on approaching a bifurcation, when the equilibrium points are about

to loose their stability. Far from the transition, any perturbation in the system decays

fast, whereas, as the system approaches the critical point, it recovers slowly from the

external perturbations. Critical slowing down occurs when the real part of the dominant

eigenvalue decreases and finally crosses zero at the bifurcation point. The slowing down

starts far from the bifurcation point, and the recovery rate decreases smoothly towards

the transition (van Nes and Scheffer, 2007). This slow recovery leads to an increase in

the memory of the system.
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1.3.1 Conventional EWS based on critical slowing down

The slowness of return to the equilibrium can be identified from the rate of recovery

from external perturbations (van Nes and Scheffer, 2007; Veraart et al., 2012) or can

be indirectly measured from the small fluctuations in the state of the system caused by

the inherent fluctuations in environmental conditions ((Ives, 1995). Information about

the type of bifurcation and the distance to the bifurcation point can be obtained by

analysing the recovery of the system following a perturbation. However, it is impractical

to monitor the recovery rate to the perturbations in real systems, since such an endeavor

would require a precisely controlled environment to study the response of the system

to perturbations. Also, inherent and extraneous perturbations are always present in

most of the systems. However, the decrease in resilience to the perturbations due to

critical slowing down leads to an increase in the autocorrelation of fluctuations. Lag-

1 autocorrelation is generally used as a measure of the slowness of recovery from

natural perturbations. An increased variance of fluctuations can also occur prior to such

transitions (Scheffer et al., 2009; Dakos and Bascompte, 2014; Lenton et al., 2012).

The increase in lag-1 autocorrelation and variance as we approach a critical transition

is mathematically shown by Scheffer et al. (2009). The lag-1 autocorrelation and the

variance of the fluctuations are two commonly used early warning indicators that work

based on critical slowing down. These measures have been proven to predict B-tipping,

wherever the tipping is accompanied by a change of stability of the system (Scheffer

et al., 2009; Dakos et al., 2008).

Apart from lag-1 autocorrelation and variance, several other early warning signals

are commonly used in climate, ecological, financial, and biological systems. These

include skewness, kurtosis, low-frequency power spectrum, flickering, spatial variance,

spatial correlation and conditional heteroskedasticity (Scheffer et al., 2001; Guttal

and Jayaprakash, 2008, 2009; Dakos et al., 2012). These measures are not directly

connected to critical slowing down. However, they may show changes upon

approaching critical transitions. For instance, skewness and kurtosis are the third and
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fourth moments of a distribution, respectively. Skewness is a measure of the symmetry

of the data distribution about its mean. In other words, it indicates whether positive

fluctuations are statistically more likely than negative fluctuations and vice versa. In

contrast, kurtosis provides information about whether the tails of a given distribution

contain extreme values and how the tails differ from the tails of a normal distribution

(Xie et al., 2019). During a critical transition, these measures show variations if the

change in the potential landscape causes a change in the distribution of the values of the

state variable (Guttal and Jayaprakash, 2008). Different metrics of CSD with varying

sensitivity have been used as EWS in different systems.

1.3.2 Possibilities and limitations of critical slowing down based early warning

signals

An important application of CSD-based EWS is that it could be used in real time as a

warning of increased risk of imminent transitions. Perhaps the most notable feature of

CSD-based indicators is that they are generic for a range of bifurcations such as fold,

Hopf and transcritical bifurcations. Unlike any system-specific indicators, the CSD-

based indicators described here are related to the fundamental properties of dynamic

systems. Therefore, it can be used to obtain warning for different types of bifurcations

in many systems with apparently different dynamics. The systems can be as different

as the climate system (Dakos et al. 2008), a yeast population (Dai et al. 2012), a lake

(Carpenter et al. 2011) or a thermoacoustic system (Gopalakrishnan et al., 2016a).

These EWS are universally applicable. Despite these advantages, obviously there are

many limitations.

EWS based on critical slowing down has been widely used for early detection of

catastrophic regime shifts in complex natural systems. Some of these transitions may

be averted if we get a warning well in advance. However, there are several difficulties

in the detectability of EWS for practical systems. Critical slowing down based

methods assume that the system is brought closer to the bifurcation by the variation
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of parameters. This assumption does not hold for other alternative mechanisms of

transition, such as noise-induced and rate-induced transitions. A large perturbation

of the state of the system can trigger switching to an alternative basin of attraction,

which we cannot expect to forecast (Boettiger and Hastings, 2012a). Since there are no

changes in the underlying potential, CSD based EWS cannot be used to predict noise-

induced abrupt transitions (Livina et al., 2012). In another scenario where the control

parameter changes very fast or highly nonlinearly, causing rate-induced transition,

critical slowing down is not observed (Ritchie and Sieber, 2016).

Apart from these difficulties in application, we need to characterise the expected error

rates, false positives, and other uncertainties involved in forecasts. Boettiger and

Hastings (2012b) discussed the importance of quantifying the reliability of EWS in

avoiding false alarms and their sensitivity to missing subtle warning signs. The trade-

off between sensitivity and reliability of EWS needs to be quantified in order to compare

the performance of different EWS for different systems. In some cases, we would rather

not predict a transition than making a false alarm, and the opposite is preferred for

some other systems. To avoid such confusion, they proposed using a receiver-operating

characteristics (ROC) curve representing the rate of false alarms corresponding to any

sensitivity. By estimating both the risk of failed detection and false alarms, the ROC

curve helps us compare the performance of the different EWS with different levels of

sensitivity. This curve can be used to decide which indicator to use for a particular data

or system.

The performance of EWS depends on the characteristics of the data as well. Certain

EWS requires the data to be evenly sampled. Interpolating the data to obtain uniformly

distributed points may introduce artificially high autocorrelation. Another difficulty

encountered in the application of EWS is the choice of the window size and the overlap

of consecutive windows. Lenton et al. (2012) showed that the choice of window size

could influence the results. While a shorter sliding window provides a fluctuating and

less reliable indicator, large sliding windows provide smoother values (Dutta et al.,
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2018). A large window does not help capture time varying dynamics, and a reltively

smaller windows should be used. For different EWS, the optimum window size needed

to have convergence in the estimates is different.

In addition to these challenges, when typical patterns in statistical measures are used

as warning signals such as variance, autocorrelation, and skewness, a quantitative

definition of a statistically significant detection is crucial. For EWS derived from

statistical characteristics of time series, the quality of the data available is critical to

the usefulness of these indicators. In some cases, detecting EWS may require high-

resolution, high-quality data (Carpenter et al., 2011; Dakos et al., 2008; Clements et al.,

2015).

1.4 SCALING DURING CRITICAL TRANSITIONS

Critical transitions are often accompanied by power laws in the system properties

with a singularity at the critical point. From 1960s, there have been considerable

research in the field of critical phenomena, both theoretically and experimentally.

One of the major aims was to determine the form of the singularities that appears

in equilibrium properties at the critical point. Magnetization or susceptibility for a

magnetic system and the density and compressibility for a gas-liquid transition were the

commonly studied equilibrium properties. Although studying this problem theoretically

was difficult for practical systems, the 2D Ising model solution paved the way for

many numerical and phenomenological studies. Kadanoff [Kadanoff Physics 2, 1966]

attempted to provide a generic description of Ising model, which can be applied to

various systems. He proposed scaling theory with various critical exponents which are

assumed to characterize the complete nature of the singularities. This was similar to

the scaling relations derived by Widom [B. Widom 1965] for critical point anomalies in

experiments. Several others have proposed similar relations and critical exponents for

various systems, from empirical observations or heuristic arguments [JW Essam 1963,

ME Fisher 1967, C. Domb 1965].
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1.4.1 Universality and data collapse

The concept of universality has become one of the pillars of statistical physics. The

emergence of universality and data collapse is widespread and it appears in various

forms. To give an introduction to universality accompanied by data collapse, let us see

the example of critical phenomenon of liquid-gas transition in fluids [Hohenberg, P. C,

1977, Stanley, H. E, 1999, LÜbeck 2004]. When a gas is isothermally compressed,

at a certain pressure it changes to liquid state without any change in pressure. If the

process is repeated at a higher temperature, the same phenomenon occurs, but at a

different value of pressure. After a particular temperature, T = Tc, liquefaction of

the gas is not possible by increasing the pressure. At this critical point liquid-vapour

boundary vanishes. In the close vicinity of Tc, the fluid shows large fluctuations, since

it is between a relatively ordered liquid state and a disordered gaseous state. Density

fluctuations very close to the critical point are related to short-lived liquid state bubbles

in the gas. When the critical point is approached, these fluctuations become long lived

and infinitely long ranged, and liquid and vapor state coexist. Such behaviour of infinite

lifetime of fluctuations and the infinite range of correlation close to the critical point, is

not sensitive to the type of gas considered.

All the gases behave the same way near the critical point and this referred as

universality. Although the critical point (temperature, volumes and pressure) is different

for each of the gases, the equation of state near the critical point with variables scaled

with the critical point (P/Pc, T/Tc & V/Vc) will be just one curve. Therefore, the

equation of state collapses into a single equation, regardless of the nature of the fluid.

Universality and data collapse are observed everywhere in various forms in network

dynamics [Barzel, B, 2013], financial markets [Denys, M., 2016], Bose–Einstein

condensate [Klinder, J., 2015], supercritical fluids [Ha, M. Y., 2020], neuronal network

[Friedman, N, 2012], brain [Bhattacharya, J. ,2001, Serafino, M. et al 2021], etc.

A fundamental and deeper understanding of universality and scaling is provided by

Wilson’s renormalisation group theory (Wilson, 1971a,b), which is a topic in itself.
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Scaling laws have received a lot of attention in equilibrium thermodynamics for critical

transitions. Kandanoff proposed scaling relations near critical points in both theory

and experiments. The basic theoretical concepts are brought via the molecular field

theory approach, that uses the concept of an order parameter and indicates the close

relations among different phase transition problems (Kadanoff, 1966; Kadanoff et al.,

1967). Halperin and Hohenberg (1967, 1969) generalized Kandanoff’s scaling laws

to dynamic critical phenomena. Further, the renormalization group is used to explain

Kandanoff’s scaling theory (Wilson, 1971a). The concept of scaling, universality, and

renormalization became popular and are considered as the three pillars of the modern

theory of critical phenomena (Stanley, 1999).

1.4.2 Equilibrium phase transitions

A unified theoretical framework has been established for the case of equilibrium

phase transitions. Perhaps the best-known classic example of the equilibrium phase

transition is the Ising model, which can describe the liquid-vapor phase transition and

the transition from order to disorder in magnetic materials. The phase transition of

an equilibrium system is characterized by the singularity of the free energy and its

derivatives. A discontinuity in physical quantities on approaching the critical point are

observed due to this singularity. An order parameter is defined to describe the phase

transition, which have non-zero value in the ordered phase and goes to zero for the

disordered phase.

The paradigmatic example of equilibrium phase transitions, the Ising model, is a

simplified model for paramagnetic to ferromagnetic transitions in magnetic systems.

This model is defined on a d-dimensional lattice with N sites and each site, i, can

take spin Si = ±1. Magnetization, M = (1/N)
∑

i Si can be considered as the

order parameter. At a critical temperature, the Ising model exhibits a phase transition

from a state of non-zero magnetization to zero magnetization similar to ferromagnetic

to paramagnetic phase. Although magnetization varies continuously at T = Tc, its
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derivatives or change in the magnetization at Tc is singular and is described by a

continuous second order phase transition [Henkel et al. 2008 (book)]. If the system

undergoes phase transition for T < Tc by varying an external magnetic field, the

magnetization changes discontinuously which can be referred to as first order phase

transitions. Such sudden changes in system properties with a slight change in the

parameter, or first-order phase transitions, are often known as catastrophes (Thom 1972;

Zeeman 1977; Gilmour 1981; Arnold 1984; Poston and Stewart 1978; Deakin 1980;

Jackson 1991).

1.4.3 Non-equilibrium phase transitions

The models for equilibrium systems such as Ising model are elegant examples of

how complex dynamics emerges from local interactions. The idealized and simplified

concept of equilibrium systems could illustrate phase transitions, universality in the

dynamics close to critical point, etc., and had a great impact in setting up the framework

for studying critical phenomena in practical systems. In fact, almost all systems in

nature are out-of-equilibrium. Most of them are open systems where they are connected

to external reservoirs and the exchange of energy, particles, or other conserved

quantities with reservoirs results in nonvanishing energy, mass, or current flow. Besides,

real systems may experience strong time-dependent external perturbations. While

theoretical description of equilibrium systems has been understood for more than a

century, a fundamental conceptual framework for nonequilibrium systems does not

yet exist in spite of considerable efforts. A complete classification of all possible

universality classes in non-equilibrium systems remains difficult to this day, due to the

increasing complexity.

Nevertheless, in the past decades, there were some advances in the investigation of

nonequilibrium phase transitions in stochastic dynamical systems using numerical and

theoretical methods. Critical transitions in non-equilibrium systems have garnered

much research interest in the last few decades. As with equilibrium critical phenomena,
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the concept of universality and scaling are the most important tool for characterizing

the wide variety of non-equilibrium phase transitions. All systems within a particular

universal class follow certain scaling functions which are identical near the critical point

and they possess the same set of critical exponents. As the concept of universality is

well studied and established for equilibrium phase transitions, the central concept of

universality, which proved to be so useful, can be extended to the non-equilibrium case

as well.

For various kinds of transitions such as the transition to turbulence, critical transitions

and order emerging from chaos, there exist some universal scaling laws. Let us see the

case of transition to turbulence or the onset of chaos. The studies done by Huberman and

Rudnick (1980) identified a scaling behavior of chaotic flows. Near the critical point

for the onset of chaos, the envelope of Lyapunov exponent seems to approach zero

with a power-law behavior in systems exhibiting period doubling bifurcation. There

are many well-understood transitions to chaotic solutions. The three popular routes

to turbulence in dissipative systems Eckmann (1981), corresponding to universality

classes, are namely period doubling route, intermittency route and quasi-periodicity

route.

Feigenbaum discovered universal constants that determine the transition to turbulent

behavior for a large class of nonlinear systems undergoing period doubling route to

chaos (Feigenbaum, 1978, 1979, 1983; Bountis, 1981). The second route to chaos

observed is via intermittency wherein intermittent transition to turbulence happens

in dissipative systems (Pomeau and Manneville, 1980). Intermittency refers to a

state in which laminar flow is interrupted by turbulent bursts at apparently random

intervals. During the bursts, the trajectory goes to a larger chaotic attractor with the

old attractor as a subset of the larger one. Three types of bifurcations show these

characteristics, namely, cyclic fold, subcritical Hopf, and subcritical period doubling

bifurcations (Nayfeh and Balachandran, 2008a) and the intermittencies corresponding

to these bifurcations are labeled as type I, type II and type III, respectively (Pomeau

13



and Manneville, 1980). Different types of intermittency follow characteristic scaling

laws (Schuster and Just, 2006). The scaling suggests that the duration of the laminar

region is O(ϵ−1/2) for type I intermittency, O(ϵ−1) for type II and type III intermittency,

ϵ being a control parameter. Apart from these three standard types, there are other kinds

of intermittencies such as on-off intermittency with a power law exponent of −3/2

(Heagy et al., 1994) and spatio-temporal intermittency for which critical exponents

are still not settled. Intermittency is observed both in experiments involving turbulent

flows and in models based on nonlinear system of equations such as Lorenz equations

employed by Pomeau and Manneville (1980). Another established route to chaos is the

quasi-periodic route, wherein a finite number of Hopf bifurcations lead to chaos (Ruelle

and Takens, 1971).

Similar to the universalities observed in equilibrium critical transitions, there are

scaling behavior identified for self-organization in turbulence. There are studies

on the emergence of order in plasma and fluids as self-organization in turbulence

(Shats et al., 2006). The plasma self-organizes from plasma turbulence to a quasi-

coherent state. For this transition, Tham and Sen (1994) experimentally obtained

simple scaling relationships between the electrostatic fluctuation levels and the linear

growth rate. Universality and scaling behavior have been investigated and well-

understood for equilibrium critical transitions and the transition to turbulence. However,

universal scaling behavior for order emerging from turbulent flows as self-organization

is not thoroughly established. Furthermore, although emergence of order and

pattern formation are widely observed in natural and engineering systems, universal

characteristics of self-organization to ordered dynamics in disparate physical systems

are unexplored.

1.5 THE CURRENT SCENARIO AND MOTIVATION

Critical transitions in real-world complex systems are not well understood and are

challenging, while they are extensively studied in simple isolated systems (Scheffer
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et al., 2012). Thus, investigating critical transitions in practical systems has great

relevance. We aim to explore the dynamics during critical transitions in various

systems such as fluid mechanical, optical and electronic systems. Also, studying

critical transitions in fluid mechanical systems has immediate applications in solving

industrial problems such as forewarning and mitigation of catastrophic transitions in

power producing gas turbines, rockets, etc.

Systems with an underlying turbulent flow can often exhibit transitions to oscillatory

instabilities as a result of interactions among the subsystems. The emergence of

such oscillatory instability in practical systems such as thermoacoustic, aeroacoustic

and aeroelastic systems can lead to catastrophic outcomes (Lieuwen and Yang, 2005;

Flandro and Majdalani, 2003; Larsen and Walther, 1997). For example, oscillatory

instabilities result in losses worth billions of dollars for the gas turbine industry

(Fleming, Feb 13, 1998). Extensive research has been carried out to understand

the dynamics of each of these systems independently. So far, the emergence of

such oscillatory instabilities in different systems such as thermoacoustic, aeroacoustic

and aeroelastic systems has been studied using different approaches. The various

frameworks used to study oscillatory instabilities are very system-specific. Also, the

attempts to find common elements across these systems are rare. We aim to analyse

critical transitions in diverse physical systems to explore universal dynamical behavior

close to critical transitions.

Apart from the transition to oscillatory instabilities in fluid mechanical systems, we

extend our investigation of generic features during critical transitions to emergence of

order from disorder to more diverse systems such as optical and electronic systems.

While critical transitions in these systems have been studied, ‘universal characteristics’

of the transition to ordered dynamics garnered less attention. Finding an element of

commonality during such critical transitions means that the solution to a given problem

is independent of the details of the problem set-up, and entirely different physical

systems can be described in the same way (Kadanoff, 1990).
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Understanding the universal features during critical transitions in real-world systems

will help in devising predictive schemes for undesirable critical transitions. In the

case of transition to oscillatory instabilities, knowing beforehand the amplitudes of

oscillations that are expected after transition helps devise strategies to mitigate the

effects. The universal features close to the transition or scaling relations can be used to

predict the onset and the amplitude of oscillatory instability.

Furthermore, much of the literature on critical transitions and their early warning signals

(EWS) focuses on quasi-steady variation of control parameters to determine the stability

of the system. Most critical transitions occurring in nature involve system parameters

changing continuously (Tsotsis et al., 1988; Kapila, 1981) along with a considerable

intensity of noise in the system. The existing studies focused on the continuous variation

of parameters employ numerical analysis of standard bifurcation models (Bilinsky

and Baer, 2018; Ashwin et al., 2017) and limited experimental studies are available

(Bonciolini et al., 2018; Scharpf et al., 1987; Tony et al., 2017; Pisarchik et al., 2014).

We aim to study the effects of rate of change of control parameter on the performance

of various EWS by investigating the variation of warning time provided by EWS with

the rate of change of parameter. When the system parameters vary continuously, the

effect of rate of change of parameter on warning time has never been explored before.

Apart from the effects of the rate of change of parameters on bifurcation, there are

scenarios where the rate can induce sudden transitions without having an underlying

bifurcation. Ashwin et al. (2012) classified this as rate induced transition (R-tipping).

While the quasi-steady variation of parameter exhibits no bifurcation, a continuous

variation at a rate faster than the critical rate can cause transitions. Tony et al. (2017)

achieved preconditioned R-tipping in an experimental system with subcritical Hopf

bifurcation. We investigate and demonstrate the mechanism of R-tipping in a real-world

system.
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1.6 OBJECTIVES OF THE CURRENT THESIS

The primary objective of the thesis is to identify universal features of critical transitions

in diverse physical systems and develop predictive schemes for impending critical

transitions. Another objective is to study the effect of the rate of change of parameters

on critical transitions and their early detection. The specific objectives are:

(a) Analysis of critical transitions in diverse physical systems to explore universal
dynamical behavior close to critical transitions.

(b) Characterize the dynamics during the emergence of order from disorder in fluid
mechanical, optical, and electronic systems by analysing time series data of the
system variables acquired experimentally and their power spectra.

(c) Develop early warning and predictive schemes for undesirable critical transitions
from the inferences obtained by studying the generic properties of critical
transitions. Forewarn the onset of oscillatory instabilities and predict their
amplitude at the onset, well before the transition.

(d) Investigate critical transitions in non-autonomous systems to identify the effect
of the rate of change of parameters on critical transitions and their early warning
signals.

(e) Demonstrate rate-induced transition in experiments and identify the mechanism
of rate induced critical transitions for fast variation of parameters.

1.7 OVERVIEW AND SCOPE OF THE THESIS

We study critical transitions in diverse physical systems. Universal characteristics of

critical transitions are explored in fluid mechanical, optical and electronic systems. A

significant part of this work is done by analyzing the critical transitions to oscillatory

instabilities in thermoacoustic systems and then by performing similar experiments in

other systems. Therefore, we carry out a detailed literature survey on critical transitions

in thermoacoustic systems, which is summarized in Chapter 2. Moreover, the results of

our work find immediate applications in real-world thermoacoustic systems such as gas

turbine and liquid rocket engine combustors.

The transition to oscillatory instabilities in turbulent fluid mechanical systems has been

studied extensively in the past in different system-specific methods. A universal route

through which oscillatory instabilities emerge in turbulent flows is presented in Chapter
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3. Then, we consider a wider variety of systems showing the emergence of order from

disorder and investigate the evolution of power spectrum during such transitions and

arrive at scaling laws in Chapter 4. Chapters 3 & 4 are focused on arriving at scaling

laws. Subsequently, the estimation of amplitude of oscillatory instabilities using the

results from Chapters 3 & 4 is illustrated in Chapter 5.

The chapters 6 & 7 focus on critical transitions in non-autonomous systems, where the

control parameter is varied at different rates to study the effect of rate of change of

parameter on the onset of critical transition and their EWS. Underlying mechanisms

of R-tipping are unexplored in real complex systems. Chapter 7 demonstrates a

mechanism of R-tipping in a turbulent thermoacoustic system. Finally, in Chapter 8, we

summarize our findings and their implications, and discuss some directions for future

research.
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CHAPTER 2

Critical transitions to oscillatory instability and their early

warning signals in thermoacoustic systems

1Oscillatory instabilities in fluid mechanical systems are prevalent across natural and

engineering systems. They manifest as high amplitude periodic oscillations in the

system variables. The phenomenon of oscillatory instability with large amplitude self-

sustained oscillations can cause catastrophic damages in many engineering systems.

For instance, thermoacoustic instability encountered in practical combustion devices

such as gas turbine engines and rocket motors is a significant challenge faced by the

propulsion and power industry (Juniper and Sujith, 2018; Lieuwen and Yang, 2005).

The spontaneous emergence of high amplitude oscillations results in severe vibrations,

fatigue, wear and tear, structural failure, failure of navigation and control systems,

and reduced life span of the combustor. Further, the consequences of thermoacoustic

instability include enhanced heat transfer leading to increased thermal and mechanical

loading to the combustor and eventual failure of the thermal protection system. In

extreme cases, thermoacoustic instability has resulted in forced shutdowns of power-

producing gas turbines (Lieuwen and Yang, 2005) and mission failures in the case of

rockets (Fisher and Rahman, 2009).

Note that the oscillatory instabilities that we are discussing in this thesis are stable

limit cycle oscillations according to the definition of dynamical systems theory.

However, these dynamically stable limit cycle oscillations appear as violent, dangerous

oscillations in fluid mechanical systems. The state of oscillatory instability is not a

stable configuration, considering the health of the system. Thus, the term oscillatory

‘instability’ has been used to describe high amplitude limit cycle oscillations in

thermoacoustic, aeroacoustic and aeroelastic systems.

1Contents of this chapter are published as a review paper (Pavithran et al., 2021b).



The transition to oscillatory instability often occurs when a system parameter is

varied. Under certain operating conditions, the interaction among the subsystems

of the fluid mechanical system results in the establishment of a positive feedback

mechanism (Rayleigh, 1878). Thermoacoustic instability arises due to this positive

feedback between the unsteady heat release rate fluctuations and the acoustic field in a

confinement (Fig. 2.1) (Poinsot et al., 1987; Güthe and Schuermans, 2007; Pawar et al.,

2017; McManus et al., 1993; Mondal et al., 2017). During the transition from a stable

operating state to an oscillatory state, the dynamics of the system undergoes a sudden

qualitative change.

A turbulent thermoacoustic system is a complex system wherein the nonlinear

interactions between the turbulent flow and the other subsystems lead to the emergence

of self-organised and ordered dynamical states (Sujith and Unni, 2020). During

the occurrence of thermoacoustic instability, spatially ordered patterns such as large

coherent structures are formed (George et al., 2018b), while we observe periodic

oscillations in the temporal evolution of the system variables. The emergence of

coherent dynamics in the flow, in turn, affects the coupling between the subsystems.

During this state of thermoacoustic instability, the interaction among the subsystems

is very strong and accompanied by ruinously large amplitude self-sustained pressure

oscillations.

The transition to thermoacoustic instability is a critical transition. When the control

parameter is changed gradually, a minor change can trigger a transition to a contrasting

state. The value of the parameter at which the state of the system shifts abruptly to

another state in response to a slight change in the parameter is known as ‘critical point’.

This sudden shift in the state of a system when parameters are changed past a critical

point is commonly referred to as critical transition or tipping (Scheffer et al., 2009,

2012). What causes some systems to have such critical transitions? The basic factor

causing critical transitions is a positive feedback mechanism (Scheffer et al., 2012;

Angeli et al., 2004). According to Scheffer et al. (2012), while these concepts are
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well studied in simple isolated systems, critical transitions in real complex systems are

challenging. Thus, studying critical transitions in thermoacoustic systems has great

relevance as it is a practical complex system that can be used as a test bed for tools from

complex systems theory.

Until recently, thermoacoustic transitions have not been studied from the point of

view of critical transitions. Critical transitions in a practical thermoacoustic system

are undesirable. Therefore, there is an increasing demand in developing early

warning signals (EWS) to detect the proximity of the system to a critical transition

(Gopalakrishnan et al., 2016a). Early detection of thermoacoustic transitions is of

utmost importance as it enables us to initiate appropriate control strategies to prevent or

mitigate the consequences of the impending catastrophe.

Flame blowout is another undesirable dynamics of a combustion system that leads to

unscheduled shutdown of engines. Combustors operating in lean fuel conditions may

experience flame blowout (Shanbhogue et al., 2009). Flame blowout can be described

as a transition from a reacting state to a non-reacting state in combustion systems.

Blowout can lead to flame extinction, which is highly detrimental in gas turbine and

aircraft engines. Therefore, early detection of blowout and the development of strategies

to mitigate it are crucial from a practical viewpoint (Sujith and Unni, 2021).

Here, we discuss the early warning signals used for critical transitions in both laminar

and turbulent thermoacoustic systems. A thermoacoustic system can either be in

laminar or turbulent regime, each exhibiting significantly different dynamics. In laminar

systems, the transition to thermoacoustic instability is equivalent to the transition

from a fixed point to limit cycle oscillations. In contrast, the transition in turbulent

thermoacoustic systems has been shown to be a transition from chaos to order (Nair

et al., 2013; Tony et al., 2015). The transitions in both laminar and turbulent systems

are detailed in the forthcoming sections. Different types of EWS are used to detect

the transitions for these systems. This review focuses primarily on highlighting how

the presence of inherent fluctuations in the system during the stable operation provides
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Fig. 2.1: A schematic representation of the feedback mechanism between the
subsystems during thermoacoustic instability. The coupling between the
acoustic field in the combustor and the unsteady heat release rate fluctuations
drives self-sustained oscillations.

EWS.

2.1 TRANSITIONS IN LAMINAR SYSTEMS

Traditionally, transition to thermoacoustic instability was viewed as a transition from a

fixed point to limit cycle oscillations (Lieuwen, 2002; Ananthkrishnan et al., 2005).

Ideally, this paradigm is appropriate only for the case of laminar thermoacoustic

systems. The stable operation prior to the onset of thermoacoustic instability has

a quiescent dynamical state with very low amplitude pressure fluctuations. These

negligibly low amplitude pressure fluctuations are comparable to the inherent noise in

the system or may even correspond to the measurement noise. This state of the system

can be considered as a stable fixed point in terms of dynamical systems theory. Any

small perturbations in the system decay during this stable operating state. On the other

hand, during thermoacoustic instability, we have a state of stable limit cycle oscillations.

We observe a Hopf bifurcation from a fixed point to limit cycle oscillations in laminar

thermoacoustic systems. The bifurcation can be either subcritical or supercritical Hopf

bifurcation depending on the operational conditions and the control parameter (Etikyala

and Sujith, 2017). The transition occurs gradually for supercritical bifurcation; while

reversing the parameter, limit cycle oscillations disappear at the Hopf point (Fig. 2.2a).

In contrast, there is a jump in the amplitude for subcritical Hopf bifurcation as we cross
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Fig. 2.2: (a) Supercritical bifurcation and (b) Subcritical bifurcation plots representing
transitions in laminar systems. The filled and the empty circles denote
the stable and unstable solutions of the the normal form equations of Hopf
bifurcation, respectively. Supercritical bifurcation has a continuous transition,
whereas subcritical bifurcation has an abrupt transition and has a hysteresis
(BCEF) while reversing the parameter. Reproduced with permission from
Gopalakrishnan and Sujith (2014)

the bifurcation point (Hopf point). Further, a subcritical bifurcation exhibits hysteresis,

where a simple reversal of the parameter to the Hopf point is not sufficient to revert back

to the fixed point state of the system (Fig. 2.2b). The parameter needs to be reversed

until the fold point to go back to the fixed point. In this case, the system is bistable in

the hysteresis region, as it has both stable fixed point and limit cycle solutions. Based

on the initial condition or the level of perturbations, the dynamics can be attracted either

to the fixed point or to the limit cycle (Etikyala and Sujith, 2017; Subramanian et al.,

2010; Gopalakrishnan et al., 2016b).

Bifurcations other than Hopf bifurcations also occur in thermoacoustic systems (Jahnke

and Culick, 1994; Lei and Turan, 2009; Sterling, 1993). Jahnke and Culick (1994)

showed a pitchfork bifurcation and a torus bifurcation leading to quasiperiodic

oscillations. Lei and Turan (2009) have reported chaotic oscillations using a

mathematical model for a thermoacoustic system, and Sterling (1993) has observed

a period doubling transition in a simple nonlinear model of a thermoacoustic system.

In an experimental study in a ducted laminar premixed combustor, Kabiraj et al. (2012)

observed a series of bifurcations. They observed periodic, quasiperiodic, aperiodic or
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chaotic oscillations. As they changed the location of the flame inside the duct, there

was a qualitative change in the dynamics. First, the steady-state characteristics in

the laminar premixed combustor changed to periodic oscillations via subcritical Hopf

bifurcation. In the subsequent bifurcations, the dynamics of the combustor transitioned

to oscillations having more than one dominant frequency. The periodic signal changed

to quasiperiodicity through a Neimark-Sacker bifurcation, and then to chaos through

the Ruelle-Takens route (Nayfeh and Balachandran, 2008a). Figure 2.3 shows this

bifurcation diagram. Recently, the presence of strange non-chaotic oscillations was

reported in the same system (Premraj et al., 2020).

Apart from these types of dynamics, Kabiraj and Sujith (2012) observed a state of

intermittency during the transition to flame blowout. The intermittency route to chaos

in a laminar thermoacoustic system was recently demonstrated by Guan et al. (2020).

Here, intermittency is characterised by alternating epochs between high-amplitude

irregular or chaotic dynamics and low amplitude periodic dynamics. Ananthkrishnan

et al. (1998) has explained another route to large amplitude oscillations as a primary

Hopf bifurcation followed by a secondary fold bifurcation. Such a secondary

bifurcation has been observed experimentally in a laminar system by Mukherjee et al.

(2015) and in a turbulent system by Singh et al. (2020).

There have been several studies on developing models to explain these bifurcations

and the nonlinear dynamical behaviours observed in thermoacoustic systems. Lei and

Turan (2009) modelled the dynamics by considering a simple non-autonomous system.

Subramanian et al. (2013) described the bifurcations in a laminar thermoacoustic

system known as Rijke tube, using Stuart-Landau equations. Further, they analytically

derived the relation between the nonlinearity in the model and the criticality of the

bifurcation. Kashinath et al. (2014) used multi-mode simulations to show the significant

contributions of the higher harmonics to the nonlinear dynamics and were able to

replicate similar results as observed in experiments conducted by Kabiraj and Sujith

(2012). Later, models based on synchronisation of oscillators have been developed to
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Fig. 2.3: Bifurcation plot for a laminar thermoacoustic system known as Rijke tube
showing a sequence of bifurcations for different values of xf . Reproduced
with permission from Kabiraj et al. (2012).

explain the transition to chaos in laminar thermoacoustic systems (Weng et al., 2020).

2.2 TRANSITIONS IN TURBULENT SYSTEMS

Most practical thermoacoustic systems are turbulent in nature. As mentioned earlier, the

transition from fixed point to limit cycle oscillations is an apt description for laminar

systems, but inadequate to describe the transition occurring in turbulent combustors.

Fundamentally, the characteristics of transitions observed in turbulent systems are

significantly different from those of laminar systems.

The dynamics during the stable operating state of a turbulent combustor cannot be

approximated as a fixed point; rather, the turbulent background flow brings inherent

fluctuations in the system variables such as acoustic pressure, heat release rate, and

velocity. For turbulent fluid mechanical systems, the stable operating state with low

amplitude aperiodic fluctuations was identified as high dimensional deterministic chaos

contaminated with measurement and dynamic noises (Nair et al., 2013; Tony et al.,

2015). In addition, this state is observed to have multifractal characteristics arising from

the underlying turbulent fluctuations (Nair and Sujith, 2014). As we approach the onset

of thermoacoustic instability, we observe bursts of periodic oscillations amidst low

amplitude chaotic oscillations (Fig. 2.4). In general, a state of intermittency presages the
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Fig. 2.4: Time series of acoustic pressure (left column) and heat release rate oscillations
(right column) acquired at various Reynolds numbers, illustrating the
transition to thermoacoustic instability. Reproduced with permission from
George et al. (2018b).

transition to self-sustained periodic oscillations in turbulent fluid mechanical systems

such as thermoacoustic, aeroacoustic, and aeroelastic systems (Nair et al., 2014c;

Nair and Sujith, 2016; Venkatramani et al., 2016). A turbulent system exhibits rich

dynamical behaviour during the transition to oscillatory instability. Statistical measures

such as rms and variance of pressure fluctuations vary more gradually during the

transition from chaos to limit cycle oscillations via intermittency as compared to a

classical subcritical Hopf bifurcation.

While studying this transition, the effects of turbulence are often neglected as

background noise in the traditional approach, where we separate the measured variables

into signal and noise. However, treating these fluctuations with their inherent
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Fig. 2.5: Time series of acoustic pressure fluctuations during intermittency acquired
from (a) a bluff body stabilised combustor and (b) a swirl stabilised combustor.
The zoomed views show epochs of large-amplitude oscillations amidst low-
amplitude aperiodic fluctuations. Reproduced with permission from Nair et al.
(2014c).

complexities, as opposed to the ‘signal plus noise’ approach, enables us to obtain

precursors to the impending transitions in practical systems. Moreover, quantifying

the complexity using tools from nonlinear dynamics enables the prediction of these

transitions well before the growth of amplitude of pressure oscillations. In this context,

characterising the intermittency statistics also helps in forewarning the transitions (Nair

et al., 2014c). Further, the intermittency observed during the transition to oscillatory

instabilities (Fig. 2.5), has large amplitude periodic oscillations and low amplitude

aperiodic fluctuations as opposed to the intermittency types (I, II and III) described

by Pomeau and Manneville (1980). Hence, we have a different type of intermittency

compared to classical intermittencies. The presence of a particular type of intermittency

indicates that the transition to oscillatory instability in turbulent fluid mechanical

systems occurs via a unique route. Such transitions have not been explored from the

perspective of critical transitions.
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2.3 EWS FOR CRITICAL TRANSITIONS

2.3.1 Critical slowing down based EWS

Critical slowing down occurs for a range of bifurcations such as fold, Hopf and

transcritical bifurcations. It is a phenomenon associated with the loss of stability as the

control parameter approaches a bifurcation point. The phenomenon of slowing down of

the dynamics on approaching a transition is known as critical slowing down (CSD) and

a detailed explanation is presented in Sec. 1.3.1. The slowing down starts far from the

bifurcation point, and the recovery rate decreases smoothly towards the transition (van

Nes and Scheffer, 2007).

The perturbations can be anything such as stochastic contents in the system or

extraneous noise. In most cases, when approaching a catastrophic bifurcation where

the current state loses stability, the potential landscape changes. Therefore, far from the

transition, if such a system is stochastically forced, the time evolution of the system is

characterised by low values of correlations in the time series. When the system is close

to the transition, the basin of attraction may shrink, and recovery from perturbations is

slow. Consequently, there is a longer memory for perturbations. A stronger correlation

between states at subsequent time intervals and the dynamics in the presence of noise

are characterised by a larger standard deviation. Lag-1 autocorrelation is generally

used as a measure of the slowness of recovery from natural perturbations. An increased

variance of fluctuations can also occur prior to such transitions (Scheffer et al., 2009;

Dakos and Bascompte, 2014; Lenton et al., 2012).

Several other early warning signals such as skewness, kurtosis, low-frequency

power spectrum, flickering, spatial variance, spatial correlation and conditional

heteroskedasticity are commonly used in climate, ecological, financial, and biological

systems (Scheffer et al., 2001; Guttal and Jayaprakash, 2008, 2009; Dakos et al., 2012).

Skewness is a measure of the symmetry of the data distribution about its mean. In

contrast, kurtosis provides information about whether the tails of a given distribution

contain extreme values and how the tails differ from the tails of a normal distribution.
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Fig. 2.6: (a) Time series of pressure fluctuations during the transition to thermoacoustic
instability in a laminar system where the control parameter K is increased in
time. Variation of (b) variance and (c) lag-1 autocorrelation calculated for a
moving window of half the size of the time series. A consistent increase or
decrease in the value of a measure is expressed as trend. Reproduced with
permission from Gopalakrishnan et al. (2016a).

These measures detect the change in distribution of the data during critical transition

and are discussed in Sec. 1.3.1.

In a laminar thermoacoustic system, Gopalakrishnan et al. (2016a) demonstrated

the working of CSD based early warning signals for a subcritical Hopf bifurcation.

They performed experiments in a laminar thermoacoustic system by varying the

control parameter every 20 s. They calculated CSD based EWS such as the lag-

1 autocorrelation, variance, and conditional heteroskedasticity (Seekell et al., 2011).

They found that the variance provides the most robust early warning sign of impending

thermoacoustic transitions (Fig. 2.6). Conditional heteroskedasticity was estimated by

considering the time series as an autoregressive process, and it captured the transition in

all the cases they analysed. The lag-1 autocorrelation showed an unexpected decreasing

trend on approaching the critical point for experimental data. They attributed the lack

of robustness of autocorrelation (AC) to the use of only a single realisation of the data.

Recently, An et al. (2019) used these critical slowing metrics for the data acquired in

a combustor during testing of a gas turbine engine to develop early warning signals for

imminent thermoacoustic instability.
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Other traditional measures such as root mean square of oscillations (rms), and the

amplitude of the dominant mode of oscillations from the amplitude spectrum are

generally used (Lee and Santavicca, 2003; Richards et al., 2003). Lieuwen (2005) used

the envelope of AC as a function of lags to calculate the damping coefficient at each

operating condition. The envelope of the oscillatory AC is calculated using the Hilbert

transform, and the damping coefficient is estimated by fitting an exponential decay

function to this envelope of autocorrelation. They used this methodology to determine

the dynamic stability margin, as the damping coefficient decreases during the transition.

2.3.2 Fractal and multifractal measures

Fractal patterns are everywhere in nature, including trees, rivers, mountains, clouds,

seashells, coastlines, etc. Geometrically, fractals have non-integer dimensions. Fractals

exhibit self-similar patterns across different scales, and statistical measures of a fractal

such as length, surface area and volume depend on the scale of measurement. A double

logarithmic plot of these measures as a function of the scale of measurement would

show a straight line, and the negative of the slope of this line is referred to as the ‘fractal

dimension’ of the fractal object.

A fractal time series displays properties dependent on the time scales of observation and

has a dimension between one and two (Mandelbrot, 1983). A mathematical fractal time

series x(t) at some scaling c is written as x(ct) = x(t)/cH , where H is a constant

(West et al., 2003). The scaling exponent H refers to the Hurst exponent of the

time series and H = 2 − D, where D is the fractal dimension. There are several

algorithms for calculating the Hurst exponent, such as multifractal detrended fluctuation

analysis (MFDFA) (Kantelhardt et al., 2002; Ihlen, 2012; Mandelbrot and Wallis,

1969), rescaled range analysis (R/S) (Mandelbrot and Wallis, 1969), wavelet approach

(Kantelhardt et al., 2002), and multifractal detrended moving average (MFDMA)

(Carbone et al., 2004).

The Hurst exponent provides information on the persistence or correlation of the time
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series. H > 0.5 indicates that the time series is persistent, wherein an increase in

value is mostly followed by another increase or vice versa. H < 0.5 represents

an antipersistent time series (an increase/decrease in value is mostly followed by a

decrease/increase), and H = 0.5 characterises an uncorrelated signal (Kantelhardt

et al., 2002; Ihlen, 2012). For a sinusoidal signal, we obtain H = 0, as the measures

do not depend on the scale of measurement (for scales greater than one cycle). Note

that, this sinusoidal signal may appear as a persistent one if we were to consider scales

smaller than one cycle. Hence, it is important to choose the appropriate range of scales

to calculate H .

Real-world fractal time series are self-similar only over a finite range of scales, unlike

mathematical fractals, which can be self-similar across a wide range of scales. Further,

H approaching a value of zero can be regarded as an indication of the emergence

of periodicity during the transition. H is a good EWS for detecting transitions with

changing fractal characteristics. In practical systems, a single fractal dimension cannot

completely represent certain complex topologies; rather, these objects can be described

with a range of fractal dimensions. Also, fluctuations with different amplitudes in the

signal follow different scaling behaviour. Fractal characteristics of such a signal can be

quantified using a multifractal spectrum.

In thermoacoustics, multifractal characteristics of aperiodic pressure fluctuations were

first identified by Gotoda et al. (2012). The dynamics close to lean blowout exhibits

self-affine structures dominated by stochastic fluctuations. As the control parameter

changes, the behaviour significantly changes to chaotic oscillations. They used the

box-counting method to estimate the multifractal spectrum from the phase space

reconstructed using pressure fluctuations. Then, Nair and Sujith (2014) used MFDFA

to quantify the fractal signatures of the pressure time series; they estimated H from

the second-order structure-function for a range of scales from 2 to 4 acoustic cycles.

The variation of H is used as a precursor for the onset of thermoacoustic instability

(Nair et al., 2017). They discovered that the stable operating state with low amplitude
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Fig. 2.7: (a) The variation of prms and the FFT peak during the transition to
thermoacoustic instability for a bluff body stabilised combustors as a function
of the control parameter Re. The growth of amplitude of oscillations during
the transitions is captured by these measures. (b) The corresponding variation
of the Hurst exponent (H). H drops to very low values well before the
amplitude rises. Redrawn with permission from Nair and Sujith (2014)

chaotic oscillations exhibits multifractal characteristics. This multifractality is lost

during the transition to periodic oscillations. The broad multifractal spectrum observed

during stable operation collapses to a small spectrum during the state of limit cycle

oscillations. The value of H decreases on approaching the transition as shown in

Fig. 2.7b (for a bluff-body combustor). Initially, H has high values (≤ 0.5) representing

the antipersistent nature of acoustic fluctuations and then decreases towards zero for

periodic oscillations. The drop in H happens gradually, well before rms of pressure

increases (shown in Fig. 2.7a) and H works as a good EWS for the onset of oscillatory

instability in turbulent systems (Nair and Sujith, 2014; Venkatramani et al., 2016; Nair

and Sujith, 2016; Kerres et al., 2016). Unni and Sujith (2015) studied the multifractal

characteristics of combustor dynamics close to the flame blowout and suggested that
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the H could forewarn an impending blowout (Unni et al., 2019b).

2.3.3 Recurrence quantification analysis

Recurrence of phase space trajectories is a fundamental property of a deterministic

dynamical system. A recurrence plot is a 2D representation of the time instants at which

the trajectory revisits roughly the same region in the phase space (Eckmann et al., 1995).

Recurrences in the phase space can be written as a matrix, Ri,j = Θ(ϵ − ||X⃗i − X⃗j||)

where, i, j = 1, 2, ..., n and X⃗i X⃗j represent the state vectors of the system at time

ti & tj , respectively. Θ is the Heaviside step function, and ϵ is the size of the small

neighbourhood area considered around each point in the phase space. Whenever the

trajectory revisits the area within the ϵ threshold, Ri,j is marked as 1 in the recurrence

matrix and can be indicated by a black point in the recurrence plot. We can use the

patterns in recurrence plots to study the topology of the phase space attractor, identify

the type of intermittency, etc. More details of the construction of recurrence plots and

the selection of threshold can be found in Webber Jr and Marwan (2015).

In practical systems where there is no access to all the independent system variables, we

perform recurrence analysis on the reconstructed phase space using the time series of a

single variable (Takens, 1981). Further, recurrence quantification analysis characterises

the organisation of black and white points in the recurrence plot, and several statistical

measures can be derived (Webber Jr and Marwan, 2015). These measures can be used

to quantify the transition to thermoacoustic instability. As the dynamics change from

low amplitude chaotic oscillations to high amplitude periodic oscillations, the topology

of the phase space attractor changes, and is reflected as a change in patterns in the

recurrence plots. The recurrence plot corresponding to limit cycle oscillations consists

of equally spaced diagonal lines indicative of the periodic dynamics. The recurrence

plot of a chaotic system has complex patterns with broken lines (Marwan et al., 2007).

In thermoacoustics, Kabiraj and Sujith (2012) used recurrence plots to characterise the

dynamics during the state of intermittency in a laminar system. In a turbulent system,
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Nair et al. (2014c) showed recurrence plots during the stable operation, intermittency,

and thermoacoustic instability. The recurrence plot corresponding to the chaotic

oscillations during the stable operation has black points and small rectangular black

patches. During intermittency, short diagonal line segments start to appear in the

recurrence plot, representing the periodic bursts. Limit cycle oscillations during the

state of thermoacoustic instability result in a parallel diagonal line structure in the

recurrence plot.

Fig. 2.8: Variation of recurrence measures as a function of Re in (a-c) swirl stabilised
combustor and (d-f) bluff body combustor. The length of the time series
(T ) used to estimate the recurrence measures is varied from 0.5 s to 3 s.
Reproduced with permission from Nair et al. (2014c).

In later studies by Nair et al. (2014b) and Gotoda et al. (2014), the patterns in the

recurrence plot were quantified to obtain early warning signals for an impending
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thermoacoustic instability, using measures such as recurrence rate (RR), Shannon

entropy (s) and trapping time (τ ). Figure 2.8 shows the variation of these measures

during the transition for a swirl stabilised and a bluff body stabilised combustors. Most

of them detect the transition in advance, compared to the steep rise in acoustic pressure

amplitude. The physical interpretation of decreasing values of these measures depends

on how the recurrences in the phase space within an ϵ-neighbourhood is defined. The

results shown in Fig. 2.8 are obtained by keeping the values of ϵ constant during the

dynamical transition. RR is the percentage of black points in the recurrence plot, s is

the Shannon entropy of the probability distribution of the diagonal line lengths and τ

is the average length of vertical lines, which is a measure of the duration for which the

trajectory is trapped in the same region. Here, decrease in these measures forewarns the

emergence of an ordered periodic motion. The recurrence measures provide precursors

for lean blowout as well (Unni and Sujith, 2016).

Godavarthi et al. (2017) constructed recurrence networks based on recurrences in the

phase space reconstructed from the time series of pressure fluctuations acquired from

a turbulent combustor. They selected the recurrence threshold following the approach

proposed by Jacob et al. (2016). The network measures derived from the topology

of the network, such as characteristic path length and average betweenness centrality,

were used as indicators of transitions in the thermoacoustic system. In a subsequent

work (Godavarthi et al., 2018), they applied the framework of synchronisation along

with the recurrence analysis to study the coupled behaviour of acoustic pressure and

heat release rate oscillations. They selected the recurrence threshold in such a way

that the recurrence rate is fixed for all the states throughout the transition (Zbilut

et al., 2002; Kraemer et al., 2018). They characterised the transition using cross

recurrences and joint recurrences of the two system variables. They presented this

transition as a transition from desynchronisation to intermittent synchronisation, then

to phase synchronisation, and finally to generalised synchronisation. The measures

derived from the joint and cross recurrence networks vary gradually during this
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transition and can be used as early warning signals. Likewise, Chiocchini et al.

(2018) applied synchronisation theory for thermoacoustic instability detection using

an interdependence index related to the coupling between the variables.

Kasthuri et al. (2019) showed several measures based on multifractal theory and

recurrence quantification analysis. They find that these are robust measures in

distinguishing dynamical states occurring in a model rocket engine combustor. Braun

et al. (2021) proposed lacunarity as a novel recurrence quantification measure and

demonstrated its efficacy in detecting transitions in thermoacoustic systems. Lacunarity

is a measure of heterogeneity in the temporal recurrence patterns in recurrence plots.

It is a broadly applicable measure as it works in the presence of noise and non-

stationarity, even for short time series. Apart from detecting transitions, lacunarity

can also distinguish between stable operation and near blowout states of thermoacoustic

systems. Dynamics prior to blowout exhibit dragon-king extreme events (Premraj et al.,

2021), which can serve as an early warning signal for blowout in combustors.

2.3.4 Complex networks

The high dimensionality and nonlinear properties of complex fluid mechanical systems

impose substantial methodological challenges to analyse and interpret the dynamics

from the data, especially in turbulent systems. Several methods based on statistics,

analytical formulation, and dynamical systems theory have been employed to study the

dynamics of complex systems in the past. Complex network theory has been largely

adopted in several areas such as climate systems, social networks, and biology (Costa

et al., 2011). Complex systems have interacting subsystems, and they often exhibit the

emergence of collective dynamics due to these interactions. Complex networks can be

constructed considering these subsystems as nodes and the interactions as links. The

evolution of network topology in complex systems can exhibit emergent dynamics.

Mathematically, complex networks are represented in terms of their adjacency matrix

A, where Aij = 1 if the nodes i and j are connected, otherwise Aij = 0, and Aii = 0 to
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avoid self connections. Complex networks can be constructed from temporal or spatial

data. Methodologies developed to map the time series to a network include proximity

networks, visibility networks, cycle networks, and transition networks (Zou et al.,

2019). Different network properties can be applied to quantify the varying network

topology during critical transitions.

Murugesan and Sujith (2015) introduced complex networks derived from acoustic

pressure data to study the transitions in a thermoacoustic system. They constructed

visibility graphs for the time series data at different operating conditions during the

transition to thermoacoustic instability. The peaks in the time series are considered as

nodes, and a link is activated between them based on the visibility criterion. We connect

the nodes if we can draw a straight line between them without intersecting the part of

the time series in between the two peaks. The network has different topologies for the

state of stable operation, intermittency, and thermoacoustic instability. The degree (k)

of a node is defined as the number of connections of that node. The distribution of the

percentage of nodes having degree k (degree distribution) during the stable operation

and intermittency follows a power law behaviour indicating the scale free nature of

the network. The network changes to a regular network as the system transitions to

thermoacoustic instability.

Such topological changes of the complex networks are quantified using various

network properties to provide early warning signals to detect the onset of impending

thermoacoustic instability (Murugesan et al., 2019). The variation of the clustering

coefficient, the characteristic path length, the network diameter, and the global

efficiency are found to capture the change in system dynamics well before the increase

in the amplitude of oscillations (Fig. 2.9). The clustering coefficient (C) of a node is

the ratio of the number of connections in the neighbourhood of a node to the maximum

possible connections in the neighbourhood. The average C reduces during the transition

(Fig. 2.9b). The characteristic path length is a measure of the shortest path length

in a network and it is related to the efficiency of information transport in a network.
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Fig. 2.9: (a) Variation of rms of pressure and (b-e) complex network measures during
the transition to thermoacoustic instability. The network measures, namely,
clustering coefficient (C/C0), characteristic path length (L/L0), network
diameter (D/D0), and global efficiency (E/E0) start to vary during the
intermittency regime and thereby detect the transition well before Prms.
Reproduced with permission from Murugesan and Sujith (2016).

The reader may refer to Murugesan and Sujith (2016) for more details and physical

interpretations of all the measures during the thermoacoustic transition.

Gotoda et al. (2017) used a modified version of the visibility graph to forewarn

blowout, and the average degree is found to detect the onset of blowout (Fig. 2.10).

Further, using recurrence networks, they detected the presence of a small-world nature

in networks constructed from the dynamical state close to blowout. Later, using

recurrence network, Godavarthi et al. (2017) reported the scale-free nature of the

network in a stable thermoacoustic system. Further, they used characteristic path

length and betweenness centrality measures to detect the transition to thermoacoustic

instability and lean blowout. Recently, Tandon and Sujith (2021) used cycle networks

to characterise the topological transformations in the phase space, thereby providing
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Fig. 2.10: Variations of the average degree of the network as a function of the
equivalence ratio for the transition towards lean blowout (decrease in ϕ). The
average degree is calculated for horizontal visibility networks constructed
using time series of (a) pressure fluctuations and (b) heat release rate
fluctuations. The network measure provides early warning for blowout.
Reproduced with permission from Gotoda et al. (2017).

precursors for thermoacoustic instability.

2.3.5 Symbolic time series analysis

Symbolic dynamic approach for pattern recognition has been developed for anomaly

detection in complex systems. Anomaly is the deviation of a system from its nominal

behaviour, which is often associated with changes in system parameters. Early detection

of anomalies in complex systems can be done using the concepts of symbolic dynamics

(Ray, 2004; Daw et al., 2003). A symbolic time series is created by first partitioning

the phase space of a dynamical system into a finite number of cells. Then, each of

these compact regions is labelled with a symbol. By following the trajectory, we find

the symbols corresponding to the boxes which the trajectory passes through or touches.

Thereby, the evolution of the trajectory can be mapped into a sequence of symbols.

Even though there is a possible loss of information due to the discretisation of the phase

space, the important features of the dynamics are mostly preserved in the symbolic time

series.

A state vector is constructed corresponding to the symbolic time series, representing the
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dynamics of the particular state. From the symbolic time series, probabilistic finite state

automata (PFSA) is constructed assuming that the PFSA is a Markov chain of order D.

A reference state is identified and partitioned such that the PFSA constructed will have

a uniform probability for all symbols. Then, an anomaly measure can be defined, which

will capture the deviation of a state from the reference state. The method of anomaly

detection has been used as an early warning for thermoacoustic instability.

Fig. 2.11: The concept of symbolic time series analysis. The time series is partitioned
and labelled, and a state probability histogram is then created. Reproduced
with permission from Unni et al. (2015).

In a mathematical model for a thermoacoustic system, anomaly detection using

symbolic dynamics was shown to identify flame blowout (Gupta et al., 2006;

Chakraborty et al., 2008; Datta et al., 2006). In a later study, Mukhopadhyay et al.

(2013) used symbolic time series analysis to obtain precursors for lean blowout in a

laboratory-scale gas turbine combustor. Unni et al. (2015) illustrated the application
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of symbolic time series analysis for the online detection of impending thermoacoustic

instability (Unni et al., 2018b). They constructed symbolic time series from the time

series of acoustic pressure, and the onset of thermoacoustic instability is considered as

the reference state. The anomaly measure detects the deviation from the reference state

and decreases as the system approaches the onset of thermoacoustic instability.

There have been studies on the combined application of symbolic time series analysis

and machine learning techniques such as deep convolutional neural networks (Sarkar

et al., 2015b,a), for early detection of combustion instability. Sarkar et al. (2015b)

used symbolic time series analysis as a data-driven method to predict thermoacoustic

instability in a swirl stabilised combustor. Recently, Ghalyan et al. (2019) tested the

decision making ability of symbolic time series analysis utilising a novel hidden Markov

model-based partitioning method. They could capture the dynamics using short length

time series data from laboratory-scale thermoacoustic experiments. Real-time decision-

making and active monitoring of dynamical systems often require algorithms that work

with short-length time series of sensor data.

2.3.6 Machine learning-based precursors

Critical transitions in thermoacoustic systems exhibit the emergence of periodic patterns

in the dynamics. Machine learning methods provide powerful tools for detecting

patterns in data. Data generated from a number of experiments under different operating

conditions can be used to learn the dynamics of the system. Recently, there has been

much interest in the early detection of thermoacoustic instability using data-driven

methods.

Kobayashi et al. (2019) developed a new method for early detection of thermoacoustic

instability by combining complex networks and machine learning techniques. To

detect a precursor to thermoacoustic instability, they used the standard support vector

machine (SVM) (Vapnik, 1999), which is a binary classifier recognising patterns. They

constructed transition networks with order patterns (permutation patterns). The order
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patterns are the nodes of the network, and the transition sequence of order patterns

determines the weight of an edge. The SVM helps in the classification of the dynamics

into three regimes on the feature space.

In another study by the same group (Hachijo et al., 2019), early detection of

thermoacoustic instability is realised by a combined method of permutation entropy and

machine learning. Permutation entropy is a measure of complexity of the dynamics in

the phase space. By reconstructing the phase space from the time series of pressure

fluctuations, they estimated the number of realisations of all possible permutations

of these phase space vectors. Entropy of permutation for all the vectors is known

as permutation entropy. The variation of permutation entropy can be used to detect

the transitions in thermoacoustic systems (Domen et al., 2015). Hachijo et al. (2019)

applied a support vector machine along with the measure of statistical complexity for

early detection of thermoacoustic instability.

In a prior work, Chattopadhyay et al. (2017) systematically quantified the map of

stability regions. Using the limited experimental data at certain conditions, they used

a Bayesian non-parametric method to predict the stability of the combustor system

at operating conditions at which experimental data are unavailable. The combustor

operators can use this stability map for predicting the system response by statistically

quantifying the uncertainties at operating conditions for which experimental data may

not be available. This information helps in the identification of the combustion system

parameters. More details on feature extraction and training the algorithm can be found

in the Chattopadhyay et al. (2017).

In a study by Sarkar et al. (2015a), early detection of thermoacoustic instability was

achieved by using a combination of deep convolutional neural networks (CNN) and

symbolic time series analysis (STSA). They used CNN as a feature extractor from

spatial data and learned meaningful patterns from unstable states, such as coherent

structures in the flow field. An STSA then captures the temporal dynamics of such

patterns as the system transitions to an unstable state, leading to early detection of
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thermoacoustic instability. An unsupervised pre-training approach with deep-belief

networks (DBN) is used to automatically extract the coherent structures in a very similar

study by Sarkar et al. (2015b). Ruiz et al. (2021) demonstrated the detection of the

extent of periodicity from recurrence plots during intermittency using a CNN, enabling

the prediction of proximity to the onset of thermoacoustic instability.

Very recently, a paper by Mondal et al. (2021) provides a proof-of-concept

demonstration of transfer learning, in which a deep neural network is trained on

relatively less expensive experiments in an electrically heated Rijke tube. Then, this

trained algorithm is used to predict thermoacoustic instability in a more practical

system such as a swirl-stabilised laboratory-scale combustion system. Dhadphale et al.

(2022) introduced a neural ordinary differential equation (neural ODE) framework to

model the coupled interactions of the subsystems of a thermoacoustic system. They

used simultaneously measured the pressure fluctuations and the heat release rate as

input for the neural ODE. Then, they defined an anomaly measure representing the

system’s proximity to periodic oscillations to provide early warning for the onset

of thermoacoustic instability. Waxenegger-Wilfing et al. (2021) applied a machine

learning approach to detect thermoacoustic instabilities in a cryogenic rocket thrust

chamber. Further, studies by Xiong et al. (2018), Bhattacharya et al. (2020);

Bhattacharya and Ray (2020), Mondal et al. (2018) and Sengupta et al. (2020) are some

recent works based on machine learning methods for early detection in thermoacoustic

instability. To detect the type of bifurcation, Bury et al. (2021) combined two network

architectures (convolutional neural networks (CNN) and long short-term memory

(LSTM) networks) and trained on simulated data from four types of bifurcation models:

fold, Hopf, and transcritical and neutral processes. This network detects each of these

four types in both empirical and model data, and has been tested to identify the transition

to thermoacoustic instability. A summary of the review on EWS is presented as a table

(Table. 2.1).
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Table 2.1: Early warning signals for critical transitions in thermoacoustic systems

Phenomenon/ Data source Laminar/ References
indicator Turbulent

Critical slowing down Experiment & model Laminar Gopalakrishnan et al. (2016a)
Experiment Turbulent An et al. (2019)

Multifractality Experiment Turbulent Nair and Sujith (2014)

Recurrence analysis Experiment Laminar Kabiraj and Sujith (2012)
Experiment Turbulent Nair et al. (2014c)
Experiment Turbulent Gotoda et al. (2014)
Experiment Turbulent Godavarthi et al. (2017)
Experiment Turbulent Chiocchini et al. (2018)
Experiment & model Turbulent Braun et al. (2021)

Complex networks Experiment Turbulent Murugesan and Sujith (2015, 2016)
Experiment Turbulent Godavarthi et al. (2018)
Experiment Turbulent Gotoda et al. (2017)
Model – Hashimoto et al. (2019)
Experiment Turbulent Tandon and Sujith (2021)

Symbolic time series Model – Gupta et al. (2006)
Model – Chakraborty et al. (2008)
Model – Datta et al. (2006)
Experiment Turbulent Unni et al. (2015)
Experiment Turbulent Sarkar et al. (2015b,a)
Experiment Laminar Ghalyan et al. (2019)
Experiment Laminar Mondal et al. (2020)

Machine learning Experiment Turbulent Sarkar et al. (2015b,a)
Experiment Turbulent Kobayashi et al. (2019)
Experiment Turbulent Hachijo et al. (2019)
Experiment Turbulent Chattopadhyay et al. (2017)
Experiment Turbulent Xiong et al. (2018)
Experiment & Model Laminar Bhattacharya and Ray (2020)
Experiment & Model Laminar Bhattacharya et al. (2020)
Experiment Laminar Mondal et al. (2018)
Experiment Turbulent Sengupta et al. (2020)
Experiment Turbulent Ruiz et al. (2021)
Experiment Turbulent Sengupta et al. (2021)
Experiment Turbulent Dhadphale et al. (2022)
Experiment Turbulent Waxenegger-Wilfing et al. (2021)
Experiment Turbulent Bury et al. (2021)

Damping coefficient Experiment Turbulent Lieuwen (2005)

System identification Experiment & Model Turbulent Lee et al. (2020)
Model – Rouwenhorst et al. (2017)
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2.4 MODELS TO STUDY CRITICAL TRANSITIONS IN

THERMOACOUSTIC SYSTEMS

2.4.1 Forced acoustic oscillator type models

Mathematical models have been developed to represent the dynamics of thermoacoustic

systems qualitatively. Many such models successfully capture the dynamics during the

transition to thermoacoustic instability. Noiray and Schuermans (2013) introduced a

model of a noise driven Van der Pol oscillator for transitions in a turbulent combustor.

They demonstrated a methodology to estimate the linear growth rates of the system from

the pressure signals recorded during thermoacoustic instability. A strong stochastic

forcing due to the turbulent reactive flow drives the limit cycle oscillations in their

model. Then, they extracted the linear growth rate from the stochastically forced limit

cycle oscillations using stochastic differential equations. This model could replicate

intermittency-like behaviour, although this work did not focus on the intermittency

route to thermoacoustic instability.

Matveev (2003) described thermoacoustic instability in a bluff-body stabilised

combustor using a kicked oscillator model. This model describes the coupling between

vortex shedding, heat release rate, and the acoustic field in the thermoacoustic system.

The acoustic field is considered as a kicked oscillator. The increased heat release during

impingement of a vortex with the wall or the flame holder adds energy to the acoustic

field, and such events are considered as ‘kicks’ to the acoustic oscillator. When a vortex

carrying well-mixed reactant mixture impinges on the combustor walls or on the flame

holder, there is a sudden increase in the reaction and consequently a spike in the heat

release. In this model, they assume that the periodic vortex shedding results in a periodic

oscillation of heat release rate during thermoacoustic instability. Consequently, the

acoustic field is driven by these periodic kicks of intense heat release. However, the

model does not capture the intermittent behaviour observed in turbulent thermoacoustic

systems. Then, Nair and Sujith (2015) proposed a modified kicked oscillator model

considering the turbulence and its interaction with other subsystems.
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To account for the effects of turbulence, Nair and Sujith (2015) used stochastic

terms to model the variations in the size and the velocities of the vortices in the

turbulent flow. As a result, they could capture the dynamics during the state of

intermittency. This model qualitatively captured the dynamics during the transition

via intermittency. However, the aperiodic fluctuations during the stable operation

have been reported to be deterministic chaos (Tony et al., 2015). Therefore, Seshadri

et al. (2016) developed a deterministic model that captures the dynamical transition

via intermittency. Furthermore, they have incorporated the feedback from acoustics

to hydrodynamics to adjust the kicking times without using stochasticity. Using

such a model and by deriving an amplitude equation based on the intermittency

statistics, Seshadri et al. (2018a) developed a novel methodology to predict the

amplitude of limit cycle oscillations (Sujith et al., 2021). Recently, the model of

stochastically forced coupled oscillators proposed by Bonciolini et al. (2021) also could

qualitatively reproduce the experimentally observed dynamics. Another approach of

modelling was fractional calculus, assuming an underlying fractional dynamics for

the thermoacoustic system. Varghese et al. (2021) obtained a fractional-order model

for pressure fluctuations which captures the multifractality in the pressure fluctuations

during the stable operation.

2.4.2 Synchronisation based models

The synchronisation framework has been used to study the onset of oscillatory

instabilities in fluid mechanical systems. The transition from chaos to limit cycle

oscillations during thermoacoustic instability is identified as synchronisation between

the unsteady heat release rate and the acoustic field in a turbulent thermoacoustic

system. Pawar et al. (2017) investigated the synchronisation between these subsystems

in a turbulent combustor, both experimentally and also using a model. In the framework

of synchronisation, the transition to thermoacoustic instability is described as a

transition from a desynchronised state (stable operation) to a generalised synchronised
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state (strong thermoacoustic instability) via an intermittent phase synchronised state

(intermittency) and a phase synchronised state (weak thermoacoustic instability).

To model the mutual interactions between the subsystems such as combustion,

hydrodynamics, and acoustic field, synchronisation between coupled oscillators could

be an appropriate approach. Using synchronisation properties, Dutta et al. (2019)

modelled the dynamics in a swirl stabilised combustor using Kuramoto oscillators

arranged circumferentially around the swirler. They obtained similar dynamics as

observed in the experiments by increasing the coupling strength between the oscillators.

However, a turbulent thermoacoustic system is a spatially extended system exhibiting

spatiotemporal self-organisation, forming large coherent structures as a spatially

ordered pattern.

Mondal et al. (2017) studied the spatiotemporal dynamics during the transition to

thermoacoustic instability. They analysed the spatial data representing instantaneous

heat release rate (q̇′) acquired simultaneously with the acoustic pressure (p′). The phase

difference between p′ and q̇′ at each location is represented as a phasor and embedded

over the spatial domain for each time instant. They observed a desynchronised

arrangement of phasors during the stable operation, whereas all the phasors are

synchronised during the occurrence of thermoacoustic instability. Interestingly, during

intermittency, there are regions of synchronised phasors and desynchronised phasors

coexisting, and these regions of synchrony and asynchrony change in time.

To model the dynamics of such a complex system, it is important to consider the

temporal and spatiotemporal synchronisation route to thermoacoustic instability. Here,

the mutual synchronisation among the oscillators of the turbulent reactive flow and

acoustic field results in the onset of thermoacoustic instability. Godavarthi et al. (2020)

developed a model using a network of locally coupled chaotic oscillators, which is

globally coupled to another chaotic oscillator. They considered a chaotic Van der Pol

oscillator to be analogous to the global acoustic field and the grid of Rössler oscillators

to be analogous to the heat release rate field. Rössler oscillators are mutually coupled
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to the neighbours in the grid and to the Van der Pol oscillator. As the coupling

from Van der Pol to Rössler oscillators increases (all the other coupling terms are

set to change proportionally), the dynamics change from a desynchronised state to

the generalised synchronised state through an intermittent phase synchronisation and

phase synchronisation. The model successfully captured the dynamics observed in

experiments in a turbulent combustor.

More recently, Weng et al. (2020) developed a synchronisation based model which

captures the multiple bifurcations in a thermoacoustic system. They considered the

acoustic field and heat release rate as nonlinearly coupled damped simple harmonic

oscillators. They reported a transition from limit cycle oscillations to chaos via

quasiperiodic route upon varying the coupling strength. During the transition,

the coupled oscillators undergo synchronisation, capturing the nonlinear dynamical

behaviour of a laminar thermoacoustic system.

2.5 CONTINUOUS VARIATION OF CONTROL PARAMETERS

Most studies investigating dynamical transitions vary the system parameters in a quasi-

steady manner. However, in many real systems, the system parameter is often changed

continuously. In such cases, the rate of variation of the parameter has a vital role in

determining the tipping point. Continuous variation of the parameter can delay the

transition from the point predicted by quasi-steady bifurcation analysis due to memory

effects (Baer et al., 1989). In some cases, it can advance the transition if the variation

of a rate-sensitive parameter is faster than a critical rate, as explained by Ashwin et al.

(2012). They observed rate-induced tipping (R-tipping), where the system can be driven

towards another stable state outside the basin of attraction of the quasi-static attractor.

In a laminar thermoacoustic system, Tony et al. (2017) discovered preconditioned rate-

induced tipping. With a fast enough variation of parameter and a finite amplitude

initial perturbation, they could attain tipping to limit cycle state before the actual

Hopf bifurcation. Bonciolini et al. (2018) investigated the rate-dependent transition
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delay along with the effect of noise in a laboratory-scale combustor system. In a

subsequent study, Bonciolini and Noiray (2019) presented a method of bifurcation

dodging to avoid thermoacoustic instability by varying the parameter at fast rates.

In a recent experimental study, Manikandan and Sujith (2020) reported R-tipping to

thermoacoustic instability via intermittency in a turbulent afterburner. Further, Zhang

et al. (2020, 2021) studied rate-dependent transitions in a mathematical model for

thermoacoustic systems. Unni et al. (2019a) investigated the interplay between the

noise in the system and the rate of change of the parameter in determining the tipping

point. The combined effects of rate and inherent noise in the system bring high

variability to the tipping point. Therefore, devising early warning signals for practical

systems where parameters change continuously is very important.

2.6 SPATIOTEMPORAL DYNAMICS OF THERMOACOUSTIC SYSTEMS

Many dynamical systems that exhibit critical transitions are spatially extended

systems. Hence, identifying tipping behaviour of such systems requires analysis of

the spatiotemporal dynamics as we approach the transition. Spatial heterogeneities can

cause variability in local temporal dynamics and hence introduce spatial inhomogeneity

in precursory events associated with the transition. Hence, it is essential to explore the

spatiotemporal dynamics during the transition to thermoacoustic instability. During

self-organisation leading to oscillatory instabilities, turbulent spatiotemporal systems

exhibit other behaviours such as the emergence of critical regions. As we approach

thermoacoustic instability, the interactions between the small scale vortices in the

reactive flow field, the acoustic field, and the flame lead to the formation of patterns with

large scale coherent structures in spatially extended systems (George et al., 2018b). The

periodic emergence of such coherent structures in the flow field alters the acoustic field,

and that in turn affects the pattern of vortex shedding. Such strong feedback between

the subsystems leads to self-organisation towards a stable spatiotemporal pattern during

thermoacoustic instability.
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Synchronisation analysis of spatial data representing instantaneous heat release rate

with the acoustic pressure enabled the discovery of chimera like patterns during

intermittency in a turbulent combustor (Mondal et al., 2017). Chimera state has

coexisting regions of spatial synchrony and desynchrony, and these regions change in

time. Later, Hashimoto et al. (2019) performed spatiotemporal analysis on a model

rocket combustor using the theories of complex networks and synchronisation and

identified such chimera like states. Based on synchronisation analysis, they proposed a

‘phase parameter’ for early detection of thermoacoustic instability.

In thermoacoustics, complex networks constructed from spatial data can aid the

understanding of the self-organisation of turbulent flow field leading to ordered

patterns. Unni et al. (2018a) and Krishnan et al. (2019, 2021) identified critical

regions in the flow field using correlation networks based on the velocity field. The

detection of critical regions in the system promoted the implementation of effective

control strategies to mitigate thermoacoustic instability (Krishnan et al., 2019, 2021).

Recently, Roy et al. (2021) demonstrated a passive control strategy for suppressing

thermoacoustic instability in a laboratory scale combustor by targeting critical regions

with a steady injection of micro-jet of air. The critical region to optimise the injection

is determined from the spatial distribution of the Hurst exponent measured from the

turbulent velocity field.

Further, Unni and Sujith (2017) compared the spatiotemporal characteristics of

the intermittency prior to and post thermoacoustic instability. They observed that

the flame switches between two types of dynamics. The flame oscillating in

an aperiodic manner switches to periodic roll-up due to periodic vortex shedding.

They also identified different flame dynamics during intermittency before and after

thermoacoustic instability. More recently, Raghunathan et al. (2020) explored the

multifractal characteristics of spatiotemporal dynamics from the spatial wrinkles on

the flame surface and found that there is a periodic oscillation of multifractal spectrum

obtained from the flame topology, corresponding to the periodic emergence of coherent
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structures in the flow field.

Further, the use of spatial data may help to study the origin of critical transitions, as

the tipping involves spatial reorganisation and pattern formation. We have to look at

spatiotemporal data for systems that embody spatiotemporal dynamics to explore the

spatial aspects of EWS. For instance, Stolbova et al. (2016) presented a method for

prediction of the onset and withdrawal of Indian monsoon using the relative variance

of fluctuations at different locations. For such a spatially extended complex system,

they identified particular geographic regions as tipping elements and used them as

observation locations for predicting monsoon timings. These locations were treated

as coupled reference points for the prediction. The prediction was made based on

the prebifurcation growth of fluctuations, a critical transition precursor, at the selected

geometric regions. A similar method is applied to a turbulent thermoacoustic systems

to identify tipping elements as early manifestation of the onset of thermoacoustic

instability (Raghunathan et al., 2022).

In another study, Stolbova et al. (2014) applied a complex network approach to study

the evolution of the network of extreme precipitation and thereby identified the origins

of dynamics in the organisation of extreme rainfall before, during, and after the Indian

summer monsoon. Such a spatiotemporal analysis translates into various of ways

to reveal additional information about the dynamics, including the origin of critical

transitions such as tipping elements and critical regions. Also, in a spatially extended

system, spatial interactions should be considered while studying the dynamics. For

instance, spatial mean, variance and skewness are found to be leading indicators for

regime shifts in ecological systems (Guttal and Jayaprakash, 2009). In summary,

quantifying the spatiotemporal evolution of the interaction among the subsystems is

essential for a deeper understanding of critical transitions in thermoacoustic systems.
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2.7 SUMMARY

A thermoacoustic system is a complex system that exhibits a critical transition to a

state of oscillatory instability known as thermoacoustic instability. We discussed the

dynamics during the transition to thermoacoustic instability in laminar and turbulent

systems. In real-world systems, inherent fluctuations are always present in the system

variables, especially in turbulent systems. The presence of such inherent fluctuations

in the system can cause new dynamical states such as intermittency during the critical

transition. Several early warning signals to detect the transition from stable operation to

thermoacoustic instability have been developed by characterising such states presaging

a critical transition. A brief review of early warning signals for oscillatory instabilities

in thermoacoustic systems is presented in this chapter.

In contrast with the transition from a fixed point to limit cycle oscillations in laminar

systems, turbulent systems exhibit a transition from a chaotic state to a limit cycle

via a state of intermittency. Due to the presence of such intermediate states, tipping

in the presence of inherent fluctuations or noise may not look like a clean critical

transition. However, it has several characteristics of critical transitions. We highlight

the importance of the inherent fluctuations in the system in providing early warning

signals for critical transitions. Currently, there are early warning signals developed

using a combination of physics and artificial intelligence-based methods. The scope

for such data-driven methods is increasing day by day, as these are more suitable for

the online detection of critical transitions. Further, we discussed the importance of

characterising spatiotemporal dynamics in spatially extended systems to understand

critical transitions better. Studies on spatiotemporal dynamics are necessary to identify

regions where the early manifestation of critical transitions occur, and such studies will

help the investigations on the origin of critical transitions.

Finally, to summarise, transitions to oscillatory instabilities is a significant class of

problems for investigating EWS in the context of critical transitions or tipping. The

dynamical transition in turbulent fluid mechanical systems is a challenging platform
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to apply tools from nonlinear dynamics, where many aspects are yet to be explored.

Further, we can extend the understanding and the measures developed for fluid

mechanical systems to study tipping in other spatiotemporal systems as well. Studying

critical transitions in real-world systems is relevant for both the engineering and the

science community and has practical applications.
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CHAPTER 3

Universality during critical transitions to oscillatory instabilities

in turbulent flows

1 Fractal characteristics of the time series undergo changes during a system variable

during critical transition to oscillatory instabilities. First, we discuss the transition

to oscillatory instabilities and the dynamics observed during transition by analysing

a fluctuating system variable. Finally, a scaling relation between the amplitude of

dominant mode of oscillations and Hurst exponent (a measure related to the fractal

dimension of the time series) is presented.

3.1 SELF-ORGANIZATION LEADING TO OSCILLATORY INSTABILITIES

A large number of physical systems involve turbulent flows that have chaotic variations

in properties such as pressure and velocity. Turbulent flows are characterized by

eddies of different length and time scales that interact nonlinearly. The transfer of

energy across eddies of different length scales takes place through various cascade

processes (Richardson, 1926; Kraichnan, 1967). A unique collective behaviour can

often arise from the interaction of multiple subsystems resulting in various phenomena

at many different scales. Turbulent flow systems can therefore be regarded as a complex

system. Although turbulent flows are chaotic, self-organization due to feedback in such

a complex system can cause the emergence of order from chaos.

Self-organization is a fundamental property of a complex system, where some form

of macroscopic order emerges from interactions between subsystems of an initially

disordered system. In turbulent flows, spatially extended patterns such as large coherent

structures are formed due to self-organization, for example, devastating cyclones

in atmospheric flows. Self-organization driven by feedback between subsystems in

turbulent systems can lead to oscillatory instabilities as observed in thermoacoustic
1The results presented in this chapter are published in (Pavithran et al., 2020b).



(Juniper and Sujith, 2018), aeroacoustic (Flandro and Majdalani, 2003), and aeroelastic

systems (Hansen, 2007). These oscillatory instabilities cause high amplitude vibrations

which are undesirable in engineering systems. In the present work, we study the

emergence of such oscillatory instabilities in three different fluid mechanical systems,

namely thermoacoustic, aeroacoustic, and aeroelastic systems.

Feedback between turbulent flow and other subsystems is often the cause for oscillatory

instabilities. Thermoacoustic instability arises due to the nonlinear coupling between

the reactive flow field and the acoustic field in a confinement (Lieuwen and Yang,

2005). Similarly, aeroacoustic instability is caused by the interaction between the

acoustic field in a confinement and vortex shedding in turbulent flows (Flandro and

Majdalani, 2003). Examples include the pleasant sounds generated in a flute or the

destructive large amplitude oscillations established in gas-transport pipelines (Kriesels

et al., 1995). Aeroelastic instability occurs as a consequence of the interaction of the

flow with the structural elements of the system (Hansen, 2007), e.g., the catastrophic

collapse of the Tacoma Bridge (Larsen and Walther, 1997). The transition to such

oscillatory instabilities from a state of chaotic oscillations in turbulent systems occurs

via intermittency (Nair et al., 2014c; Nair and Sujith, 2016; Venkatramani et al., 2016).

We attribute the emergence of ordered periodic oscillations from high dimensional

chaos to self-organization due to feedback between subsystems.

Conventionally, oscillatory instabilities in fluid mechanical systems are modeled as

a transition from a stable fixed point to periodic oscillations (i.e., Hopf bifurcation)

as the control parameter is varied. According to linear theory, the amplitude grows

exponentially during this transition, but then nonlinearities kick in and the amplitude

saturates. In the study of such oscillatory instabilities, the effects of turbulence are

often considered as background noise and are neglected in the traditional ‘signal plus

noise’ approach.

For turbulent flows, the stable operating point is never quiet, but is instead characterized

by low amplitude fluctuations arising due to the presence of turbulence. Recently, for

55



turbulent fluid mechanical systems, the stable operating state with aperiodic fluctuations

was identified as high dimensional deterministic chaos (Tony et al., 2015). This state

with underlying turbulent fluctuations possesses inherent complexity and multifractal

characteristics (Nair and Sujith, 2014; Venkatramani et al., 2017). Recent studies have

shown that treating these fluctuations with their inherent complexities (as opposed

to considering them as noise) is very rewarding in terms of obtaining precursors to

such instabilities in practical application (Nair et al., 2014c; Nair and Sujith, 2016;

Venkatramani et al., 2016).

Further, a state of intermittency presages the transition to the self-sustained periodic

oscillations in turbulent fluid mechanical systems (Nair et al., 2014c; Nair and Sujith,

2016; Venkatramani et al., 2016). The emergence of oscillatory instabilities in fluid

mechanical systems may then be regarded as the loss of complexity in the dynamics

(Nair and Sujith, 2014; Venkatramani et al., 2017). Thus, considering the emergence

of oscillatory instabilities from turbulence as a linear stability problem may not be the

most appropriate and useful way. A more comprehensive way is to view the onset of

oscillatory instabilities in a turbulent fluid mechanical system as order emerging from

chaos using the framework of self-organization due to feedback between subsystems.

We explore the scaling behaviour of such self-organization leading to oscillatory

instabilities in turbulent fluid mechanical systems. The proximity to the onset of

oscillatory instability in each system is quantified using the Hurst exponent (H) which

also serves as a system independent parameter to study the scaling behaviour of self-

organization. An unsteady variable of each of the three systems is measured as we vary

an appropriate system-specific control parameter to approach oscillatory instability. We

estimate H, which is related to the fractal dimension (D) as H = 2 − D, for the time

series corresponding to each state (Mandelbrot, 1982).
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3.2 DETAILS OF THE EXPERIMENTS AND DATA USED

We analyze data from thermoacoustic, aeroacoustic and aeroelastic systems to study the

transition from stable operation to oscillatory instabilities by changing the respective

control parameters. Here, we will briefly discuss the experiments and the range of

variation of control parameters. For all the three systems, the Reynolds number (Re) is

considered as the control parameter and Re increases as we increase the the mass flow

rate of air. The system variables used for the analysis are acoustic pressure fluctuations

for thermoacoustic, and aeroacoustic systems, whereas in the case of aeroelastic system,

the strain experienced by the structure is used for as the system variable.

3.2.1 Experiments on Thermoacoustic system

The schematic of the experimental setup is shown in Fig. 3.1a. The setup consists

of a settling chamber, a burner, a flame holding device and a combustion chamber

with variable duct length. The length of the combustion chamber is varied to achieve

different acoustic length scales and timescales. Also, the combustor can be equipped

with different flame stabilization mechanisms. The flame holding device (a bluff body

or a swirl) is attached to the burner by a central shaft. Then, there is a sudden expansion

from the circular burner to a square chamber. In this present work, data is presented

for a bluff-body stabilized combustor for two lengths: 700 mm and 1400 mm. As

opposed to this configuration, we also present data for a swirl stabilized combustor of

length 700 mm. The two flame stabilizing mechanisms render completely different

flow physics in the combustor leading to different mechanisms causing thermoacoustic

instability (Ghoniem et al., 2005; Steinberg et al., 2010). Liquified petroleum gas (LPG:

butane 60% and propane 40% composition by mass) is used as the fuel. Air is partially

premixed with LPG before the reactant mixture enters the combustion chamber. We

ignite this fuel-air mixture using a spark plug. The equivalence ratio is decreased in

order to attain different dynamical states in the system. The equivalence ratio is defined

as ϕ =
(ṁf/ṁa)actual

(ṁf/ṁa)stoichiometry
, where ṁf and ṁa are the mass flow rates of fuel and air,
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respectively. The mass flow rate of air is increased by keeping the mass flow rate of fuel

constant to decrease ϕ. The mass flows rates of air and fuel are controlled using mass

flow controllers (Alicat MCR series) with an uncertainty of ± (0.8% of reading + 0.2%

of full scale).

Fig. 3.1: Schematic of the experimental setups. (a) Turbulent combustor
(thermoacoustic system) exhibiting transition to thermoacoustic instability.
(b) An aeroacoustic system with two orifices. Vortices are shed when the
turbulent flow passes through the orifices. In both of these systems, we
measure the acoustic pressure fluctuations inside the duct during the transition
to thermoacoustic/aeroacoustic instability. (c) An aeroelastic system where
the left end of the beam has a small vertical fin attached to it. When a jet of air
passes along the length of the cantilever from left to right, vortices are shed
from the fins. We measure the resulting strain on the cantilever close to the
fixed end of the beam. In all the cases, Reynolds number (Re) is varied as
the control parameter to attain different dynamical states. The dimensions of
different experimental setups are not to scale.

As we approach thermoacoustic instability, the small vortices in turbulent reactive flows

interact with each other, with the flame and with the acoustic field creating larger

coherent structures. This emergent coherent dynamics in the flow field leads to the

establishment of a coherent acoustic field which, in turn, affects the pattern of vortex
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shedding. Such alteration in the flow also changes the coupling between the subsystems.

During thermoacoustic instability, the inter-subsystem interaction is very strong and a

stable spatio-temporal pattern is formed due to self-organization, accompanied by large

amplitude pressure oscillations (George et al., 2018b).

The Reynolds number (Re) is considered as the control parameter and Re increases

as we increase the the mass flow rate of air. The Reynolds number is calculated as

Re = 4ṁD1/πµD
2
0 where ṁ is the mass flow rate of air-fuel mixture, D0 is the

diameter of the burner and µ is the dynamic viscosity of the mixture. For bluff body

stabilized case, D1 is the diameter of the bluff body and for swirl stabilized case,

D1 = D0. We choose a range of Re values for different configurations so as to achieve

the transition from the low amplitude aperiodic fluctuations to the high amplitude limit

cycle oscillations. For thermoacoustic systems, the range of Re values are appropriately

chosen for different configurations so as to achieve the transition from the low amplitude

aperiodic fluctuations to the high amplitude limit cycle oscillations. For the bluff body

stabilized combustor of length 700 mm (frequency of oscillations, f ∼250 Hz), Re

is varied from (1.81 ± 0.052)×104 to (2.8 ± 0.073)×104. For bluff body stabilized

combustor of length 1400 mm (f ∼120 Hz), Re varies from (1.96 ± 0.006)×104 to

(3.53 ± 0.099)×104. Re variation for swirl stabilized combustor (length = 700 mm

and f ∼250 Hz) is from (1.61 ± 0.041)×104 to (1.96 ± 0.060)×104. The unsteady

pressure fluctuations inside the combustion chamber are measured using piezoelectric

transducers at different values of Re in the above mentioned ranges.PCB106B50

transducer (sensitivity 72.5 mV/kPa and resolution 0.48 Pa) is used for the combustor

with 700 mm length and PCB103B02 (sensitivity 217.5 mV/kPa and resolution 0.15 Pa)

transducer is used for the combustor with length 1400 mm. The transducer is located

at the antinode of pressure oscillations which is near the backward facing step. This

location helps us to record the maximum amplitude of the standing wave. The pressure

data is sampled at a rate of 10 kHz. The thermoacoustic data analyzed in this study are

reported in Nair and Sujith (2014), Nair et al. (2014c) and Unni and Sujith (2015), and
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we use the same data. More detailed descriptions of the experiments can be found in

these references.

3.2.2 Experiments on Aeroacoustic system

An aeroacoustic system consists of orifices located inside a duct. Vortices are shed

when the turbulent flow passes through the orifices. The interaction between the vortex

shedding and the acoustics inside the duct determines the dynamics of the aeroacoustic

system. The schematic of the aeroacoustic experimental setup is shown in Fig. 3.1b.

The current experimental setup consists of a cylindrical chamber, two pipes (lengths:

300 mm and 225 mm respectively), and two circular orifices of diameter 20 mm

each, thickness 2.5 mm and separated by a distance of 18 mm (a zoomed view is

shown in the circle). The turbulent flow enters the pipe through the large cylindrical

chamber, referred to as the decoupler, which isolates the duct from the upstream

pressure fluctuations. Thus, the pressure at both ends of the duct are maintained at the

ambient pressure. The mass flow rate of air is controlled using a mass flow controller

(Alicat MCR series) with an uncertainty of ±(0.8% of reading + 0.2% of full scale).

The experiments are conducted by increasing the mass flow rate of the air in the duct

from 1.633 ± 0.054 g/s to 2.695 ± 0.062 g/s in steps of 0.041 g/s. The Reynolds number

is calculated as Re = ρud/µ where ρ is the density of air, u is the velocity of inlet flow,

d is the diameter of the orifice and µ is the dynamic viscosity of air. Re is varied from

5615 ± 185 to 9270 ± 212. Here, f varies from 484 Hz to 540 Hz as we increase the

velocity of the inlet flow. We measure the pressure fluctuations inside the duct using a

pressure field pre-polarized microphone and a preamplifier system (PCB make, model

number 378C10, 1 mV/Pa sensitivity and 28.3 Pa resolution) fixed at a distance of 100

mm from the second orifice. The data is sampled at a rate of 10 kHz. I designed and

performed the experiments in aeroacoustic system at IIT Madras.
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3.2.3 Experiments on Aeroelastic system

In a similar manner, we study the transition to aeroelastic instability in a laboratory

scale aeroelastic system (Fig. 3.1c). The experimental setup consists of a cantilever

beam having 45 mm length, 25 mm width and 0.5 mm thickness. The right side of

the beam is fixed, and the left side of the beam is free. Note that the left end of the

beam has a small vertical fin (12 mm length) attached to it, akin to a winglet of an

aircraft wing. When a jet of air passes along the length of the cantilever from left to

right, vortices are shed from the fins. These vortices impart unsteady aerodynamic load

to the cantilever. We measure the resulting strain on the cantilever close to the fixed

end of the beam (5 mm from the fixed end), using a strain gauge (Micro measurements

make, pattern: 125LW, 3% strain range). For particular flow rates, the oscillations in the

cantilever beam becomes periodic and self-sustained, resulting in aeroelastic instability.

The Reynolds number is calculated as Re = ρud/µ where ρ is the density of air, u is

the velocity of the inlet flow, d is the size of the fin at the left end of the cantilever

and µ is the dynamic viscosity of air. Here, we increase Re from 2384 ± 159 to 4768

± 111 to capture the transition to aeroelastic instability (f ∼ 60 Hz). We record the

strain data corresponding to the structural vibrations in the system for different values

of the control parameter. Aeroelastic experiments were designed and performed by Dr.

Vishnu R. Unni and Prof. Abhishek Saha at University of California San Diego.

3.3 TRANSITION FROM CHAOS TO LIMIT CYCLE OSCILLATIONS VIA

INTERMITTENCY

In Fig. 3.2, we show representative datasets from all the three systems.

I) Figure 3.2a-c shows the acoustic pressure fluctuations in a thermoacoustic system

(case (i)) during the transition to thermoacoustic instability. Figure 3.2a corresponds

to a chaotic state far from the oscillatory instability. The time series consists of

low amplitude aperiodic fluctuations. Recently, Tony et al. (2015) showed that

these aperiodic fluctuations have features of high-dimensional chaos contaminated
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Fig. 3.2: Time series of state variables during the transition to oscillatory instability.
(a-c) Data representing the acoustic pressure fluctuations acquired from a
bluff body stabilized combustor of length 700 mm. The corresponding
Re for a, b and c are (1.9 ± 0.053)x104, (2.6 ± 0.069)x104 and (2.8 ±
0.073)x104 respectively. (d-f) Acoustic pressure fluctuations acquired during
the transition to aeroacoustic instability (Re = 5615 ± 185, 7283 ± 198 and
9270 ± 212 corresponding to d, e and f). (j-i) The time series of strain
experienced by the cantilever in the aeroelastic system the Re is varied (2384 ±
111, 3972 ± 142 and 4768 ± 159). In all the systems, we observe a transition
from low amplitude aperiodic fluctuations (a, d and g) to high amplitude
periodic oscillations (c, f and i) via a regime of intermittency (b, e and h) as the
control parameter is varied (Re increases from top to bottom). The transition
from aperiodicity to periodicity occurs via a regime of intermittency for other
configurations of these systems as well.

with white and coloured noise. Nair et al. (2014c) discovered that the transition to

thermoacoustic instability occurs through a state of intermittency, which contains

epochs of high amplitude periodic oscillations amidst low amplitude aperiodic

oscillations (Fig. 3.2b). Thermoacoustic instability (Fig. 3.2c) corresponds to a state

of high amplitude periodic oscillations. We observe a similar behaviour for all the

above mentioned combustor configurations during the transition to thermoacoustic

instability.

II) Figure 3.2d-f shows the time series of pressure fluctuations corresponding to the
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transition to aeroacoustic instability. The temporal behaviour of acoustic pressure

during this transition is similar to that in the thermoacoustic system, despite the fact

that the amplitude levels in both systems differ by orders of magnitude.

III) Figure 3.2g-i represents the time series of strain experienced by the structure during

the transition to aeroelastic instability. The observed oscillations are similar to those

of the thermoacoustic and aeroacoustic systems, even though we are measuring a

completely different unsteady variable.

From Fig. 3.2, we clearly see that these turbulent systems considered here follow an

intermittency route to oscillatory instability. We observe a similar transition in all

the three classes of systems even though the interacting subsystems and the physical

mechanisms involved are different.

3.4 FRACTAL CHARACTERISTICS AND HURST EXPONENT

Next, we quantify the proximity to the onset of oscillatory instability in the discussed

systems using the Hurst exponent (H). As mentioned earlier, the periodic content in

time series of the unsteady variable increases as we approach an oscillatory instability.

The state of low amplitude aperiodic oscillations has a fractal nature which is born out

of the inherent fractal nature of turbulence. As the system self-organizes into oscillatory

instability, the fractal time series transitions to a more regular periodic signal (Nair and

Sujith, 2014). We capture the variation of fractal characteristics of the time series by

calculating H .

Fractal objects exhibit self-similar features at various scales of magnification; therefore,

measures such as length, area, and volume are dependent on the scale of measurement.

For a fractal time series, the scaling of the rms of the standard deviation of fluctuations

with the length of the data segment gives H . For non-fractal objects such as sinusoidal

signals, H ≈ 0 as there is no scaling with the data length or the scale of the

measurement. We briefly describe the procedure of estimation of Hurst exponent in

Sec. 3.4.1.
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3.4.1 Estimation of Hurst exponent

There are several algorithms for calculating the Hurst exponent (H). They include

multifractal detrended fluctuation analysis (MFDFA) (Kantelhardt et al., 2002),

rescaled range analysis (R/S) (Mandelbrot and Wallis, 1969), wavelet approach

(Kantelhardt et al., 2002), and multifractal detrended moving average (MFDMA)

(Carbone et al., 2004). Among these techniques, we use MFDFA (Kantelhardt et al.,

2002; Ihlen, 2012).

For a given time series x(t) of length N, the mean subtracted cumulative deviate series

Y (k) is defined as,

Y (k) =
k∑

t=1

[xt− < x >], k = 1, 2, ..., N, (3.1)

where < x > is the mean of the time series. We first divide the deviate series Y (k) into

Nw = [N/w] non-overlapping segments of equal length w, where [N/w] represents

the greatest integer function. Then, we calculate the local trend for each of these

segments i by a polynomial fit of the series and obtain the fluctuations by subtracting

the polynomial fit (Ȳi) from the deviate series (Yi). The polynomial fit we use in the

current study is of order 1. The variance of fluctuations is determined as,

F 2(w, i) =
1

w

[ w∑
t=1

(Yi(t)− Ȳi)
2
]
, (3.2)

for each segment i = 1, 2, ..., Nw.

The structure function of order 2 and span w, F 2
w can be obtained as follows:

F 2
w =

[ 1

Nw

Nw∑
i=1

F 2(w, i)
]1/2

. (3.3)

We repeat the above steps for different time scales or span w. The slope of the linear

regime in a log-log plot of F 2
w, for a range of span sizes w gives the Hurst exponent (H).

The Hurst exponent represents the scaling of the rms of the standard deviation of

64



fluctuations with the scale size or the time interval considered for obtaining the

fluctuations. Generally, H has values between 0 and 1 for time series (i.e., fractal

dimension between 1 and 2). It provides a measure of persistence in a time series.

For a persistent time series wherein subsequent values are highly correlated, H > 0.5.

An antipersistent signal has H < 0.5, in which a high value of the signal is most likely

followed by a low value. H = 0.5 corresponds to an uncorrelated random process.

Fig. 3.3: Amplitude of the dominant mode of oscillations and the Hurst exponent for
unsteady pressure signals as a function of Reynolds number (Re). We analyze
the data from a laboratory bluff body stabilized combustor of length 700 mm
for different Re. The amplitude is obtained from the amplitude spectrum
plotted with a resolution of 4 Hz. The amplitude increases steeply near the
transition to thermoacoustic instability, whereas the Hurst exponent shows a
gradual decrease during the transition and it is approaching zero.

In our analysis, we compute H for the time series corresponding to the unsteady variable

obtained at each state during the transition to oscillatory instability in thermoacoustic,

aeroacoustic and aeroelastic systems. H for each state is calculated from the time series

segments of selected duration. Unlike mathematical fractal objects which possess self-

similarity across a wide range of scales extending up to infinity, real fractal objects

appear to be self-similar only over a limited range of scales; one cannot keep on

zooming in indefinitely to see the same structure. Thus, the time scales for calculation
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of H need to be selected carefully. The choice of the range of scale (or segment length)

should be optimal to capture the transition from an aperiodic to a periodic state (Kerres

et al., 2016). The periodicity at the onset of oscillatory instability will not be captured

if we select segments of the length corresponding to less than one cycle of oscillation.

Further, the fluctuations will be averaged out if we choose segments with a large number

of cycles. Therefore, we choose two to four cycles of oscillations during the periodic

regime as the optimum scale.

In Fig. 3.3, we plot the amplitude of the dominant mode of oscillations (A) and the

Hurst exponent (H) for the time series of pressure oscillations as a function of Reynolds

number (Re) for the thermoacoustic system (described earlier as case (i)). Note that, A

is the amplitude of the dominant peak from the amplitude spectrum of the fluctuating

state variable obtained using fast Fourier transform. The signal corresponding to

thermoacoustic instability has H very close to 0, as the signal is perfectly periodic. We

observe that during the transition, A increases steeply near the onset of thermoacoustic

instability as we vary the control parameter. In contrast, H gradually decreases towards

zero during the transition. The amplitude of oscillations or the value of A at the onset

of oscillatory instability depends on the specific system under consideration. On the

other hand, the variation of H describes the self-organization in turbulent flows into

oscillatory instabilities, independent of the system features.

3.5 SCALING OF HURST EXPONENT WITH THE AMPLITUDE OF

OSCILLATIONS

We plot the variation of A/AI with H in log-log scale (Fig. 3.4) for the five different

cases mentioned earlier. Here, we normalize A of each system with the amplitude of

oscillations at the onset of instability (AI) for the given system. We observe that all

the data points collapse to a single straight line and this reveals an inverse power law

relation between A and H during the intermittency regime. For all the data irrespective

of the frequency of oscillations or the physics of the system, the experimentally
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Fig. 3.4: Inverse power law scaling of amplitude with Hurst exponent. Variation of
amplitude with Hurst exponent is plotted on a logarithmic scale for the data
acquired from different systems. We observe a power law relation with a
constant power law exponent around -2.

observed value for the power law exponent is found to remain constant around -2 (-

1.83 ± 0.17 for the bluff body combustor with length 700 mm, -2.22 ± 0.58 for the

bluff body combustor with length 1400 mm, -2.06 ± 0.24 for the swirl combustor, -

2.02 ± 0.32 for the aeroacoustic system and -2.21 ± 0.19 for the aeroelastic system).

The uncertainties are estimated for 90% confidence intervals. The points with H > 0.1

are ignored while finding the power law exponent as they represent the low amplitude

aperiodic oscillations far away from the self-organized state.

Scaling laws and universality are important concepts in statistical physics. They

describe the striking similarity in the behaviour during critical transitions among

systems that are otherwise different. Scaling in non-equilibrium phase transitions

is a topic of interest in recent years (Täuber, 2017). For example, Tham and Sen

(1994) experimentally obtained a similar power law scaling relationship between

the electrostatic fluctuation levels and the linear growth rate for self-organization in

turbulent plasma leading to a quasi-coherent state.
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Transition to oscillatory instability in the class of turbulent fluid mechanical systems

discussed here occurs via the state of intermittency and we observe a universal scaling

law during the transition. In fluid dynamics literature, intermittency refers to a state in

which a laminar flow is interrupted by high amplitude turbulent bursts at apparently

random intervals (Nayfeh and Balachandran, 2008b). During the bursts, the phase

space trajectory goes to a larger chaotic attractor with the original periodic attractor

as its subset. Three types of bifurcations are associated with such intermittencies,

namely, cyclic fold, subcritical Hopf, and subcritical period-doubling bifurcations.

Intermittencies corresponding to these bifurcations are labelled as type I, II and III,

respectively (Manneville and Pomeau, 1979; Pomeau and Manneville, 1980)2.

In our case, to begin with, the system is chaotic and is Lyapunov stable. However,

during intermittency, this stability is lost and the system intermittently approaches limit

cycle oscillations. In contrast to the known types of intermittencies discussed above,

here, the intermittency comprises of high amplitude periodic oscillations amidst epochs

of low amplitude aperiodic oscillations (Pawar and Sujith, 2018). The trajectory in the

phase space goes to a larger periodic attractor from a smaller chaotic attractor during the

intermittent bursts (Fig. 3.2 b, e and h). Thus, there is an inherent difference in the type

of intermittency observed during the emergence of oscillatory instabilities in turbulent

flows, as observed for example in thermoacoustic, aeroacoustic and aeroelastic systems

compared to the classical ones.

In the present study, we observe the scaling behaviour in all the systems we have

examined, where oscillatory instabilities emerge in turbulent flows. We do not observe

this inverse power law relation in models such as kicked oscillator (Seshadri et al., 2016)

or noisy Hopf bifurcations (Noiray, 2017), even though they capture the transition from

chaos to limit cycle via intermittency. Further, this scaling is not exhibited by models

which capture the transition from chaos to periodic oscillations through type I, II and III

intermittencies (shown in the Supplementary material). This experimentally observed

2Several other types of intermittencies have been reported and discussed (Schuster and Just, 2006).
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scaling appears to be a universal property for a class of systems in which order emerges

from chaos, as a result of self-organization in turbulence following an intermittency

route.

Fully developed, isotropic turbulence has a well-known power-law scaling for its energy

spectrum (Richardson, 1926; Kraichnan, 1967), which shows the distribution of energy

across different wave numbers. The instances of self-organization in turbulence leading

to oscillatory instability discussed in this paper are associated with the emergence of

periodically shed, large coherent structures in the flow. This emergence of oscillatory

instability is accompanied by the redistribution of energy across different length scales

and thus deviation from the scaling observed in fully developed turbulent flows. In

the various systems which we examine, as we approach oscillatory instabilities by

changing some control parameter of each system, the redistribution of energy into the

most dominant scale (i.e., scale of coherent structure) in each system is captured by

studying the amplitude spectra of an appropriate state variable of the system. In our

study, we used unsteady pressure measurements for thermoacoustic and aeroacoustic

systems and strain rate for the aeroelastic system.

Oscillatory instabilities in engineering systems such as rocket engines, power-

producing gas turbine engines, gas transport pipelines and swaying skyscrapers are

undesirable and can produce ruinously high-amplitude vibrations with catastrophic

consequences. Using this scaling between H and A, we predict the amplitude of

oscillations well before the onset of oscillatory instability using the data points obtained

during the stable operation (Pavithran et al., 2018a). This a priori estimation of

amplitude helps in devising strategies to mitigate such oscillatory instabilities and also

helps save a lot of money involved in testing the hardware.

3.6 SUMMARY

In the present study, using three different systems, we describe a universal route through

which oscillatory instabilities emerge in turbulent flow. The amplitude of the dominant
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mode of oscillations increases following an inverse power law scaling with the Hurst

exponent of the time series of the appropriate state variable, and the scaling exponent is

invariant across the three systems considered. The proximity to the onset of oscillatory

instabilities is quantified by the Hurst exponent, which serves as a system independent

measure of self-organization. Here, the spectral amplitude of the dominant mode of

oscillations serves as the order parameter of the system.

Power law scaling have been discovered for various critical transitions. Here, we report

the experimental observation of a scaling behaviour (A ∝ H−2) for a class of non-

equilibrium systems. The discovery of this unique scaling enables a priori estimation

of the amplitude of oscillations at the onset of oscillatory instability. This information

of the amplitude can be critical in devising the counter measures needed to limit the

possible damages from such oscillatory instabilities.
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CHAPTER 4

Universality in spectral condensation

1We extend our work on the universal behaviour of transitions to oscillatory instabilities

to more diverse phenomena such as the onset of lasing in a random laser and Hopf

bifurcation in Chua’s circuit. Here, we try to bring different systems exhibiting the

emergence of ordered dynamics due to self-organization under the same umbrella,

since ‘universal characteristics’ of the transition to ordered dynamics in these systems

garnered less attention.

4.1 TRANSITIONS TO AN ORDERED STATE (PATTERN FORMATION) IN

FLUID MECHANICAL, OPTICAL, AND ELECTRONIC SYSTEMS

Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal

patterns in complex systems far from equilibrium. In other words, an ordered pattern

emerges from an initially disordered state. In dynamical systems, a pattern can be

any regularly repeating arrangements in space, time or both (Cross and Hohenberg,

1993). For example, a laser emits random wave tracks like a lamp until the critical

pump power, above which the laser emits light as a single coherent wave track with

high-intensity (Haken, 1984). A macroscopic change is observed in the laser system as

a long-range pattern emerges in time. Another example is the Rayleigh-Bénard system.

For lower temperature gradients, the fluid parcels move randomly. As the temperature

gradient is increased, a rolling motion sets in and the fluid parcels behave coherently

to form spatially extended patterns. The initial random pattern can be regarded as a

superposition of a variety of oscillatory modes and eventually some oscillatory modes

dominate, resulting in the emergence of a spatio-temporal pattern (Croquette, 1989;

Kelso, 1995).
1The results presented in this chapter are published in (Pavithran et al., 2020a).



Self-organization often results in the redistribution of energy from a wide range of

frequencies to a few dominant modes to form periodic patterns. Such a condensation in

the spectrum is analogous to the condensation phenomenon observed in classical and

quantum systems and we call this phenomenon spectral condensation. Bose-Einstein

condensation (BEC) occurring in quantum systems is characterized by occupation of

the same energy level by a large fraction of the particles as temperature approaches

absolute zero (Davis et al., 1995; Ketterle, 1999). The transition to the condensate

state, where the particles act collectively as a wave, can be viewed as the emergence

of an ordered pattern from a disordered state of particles having different energy.

Researchers have reported the observation of light condensation with the emission

spectrum collapsing to the frequency of the lowest-loss mode (Fischer and Weill, 2012;

Klaers et al., 2010; Conti et al., 2008; Fischer and Bekker, 2013). Similarly, by drawing

parallels to BEC, condensation phenomenon has been used to explain several dynamical

transitions where an ordered final state is achieved from an initially disordered state

even in classical systems (Sun et al., 2012). For instance, a population of coupled

oscillators forms a dynamical condensate where the condensation phenomenon leads

to global synchronization among the group of oscillators (Zanette and Mikhailov,

1998). Likewise, the framework of BEC has been utilized in predicting the competitive

dynamics in the evolution of complex networks (Bianconi and Barabási, 2001).

During self-organization, energy distributed in a broadband of frequencies gets

condensed into a dominant mode, analogous to a condensation phenomena. We call this

phenomenon spectral condensation and study its occurrence in fluid mechanical, optical

and electronic systems using the power spectrum of the appropriate system variables

(in the emission spectrum for the optical system). In conditions where the system is

influenced by external noise or inherent fluctuations, the emergence of such a periodic

pattern can be gradual as the parameter is varied. In this study, we quantify spectral

condensation across various systems by defining a set of spectral measures based on the

power spectrum. The power of the dominant mode is found to scale with these spectral
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measures following an inverse power law. From experimental observations, we find that

systems exhibiting self-organization driven by positive feedback follow unique way of

spectral condensation in spite of different underlying physical mechanisms. Note that

the self-organization that we are discussing in this paper is different (Watkins et al.,

2016) from the concept of self-organized criticality (SOC) introduced by Per Bak and

collaborators (Bak et al., 1987; Bak, 1996).

4.2 EXPERIMENTS

Fig. 4.1: Schematic of the experimental setups. (a) An optical system for random
lasing, wherein we observe a transition towards narrow-band lasing like
emission as we increase the excitation pulse energy (EPE) of the laser source.
(b) Electronic circuit known as Chua’s circuit is used for the experiments. The
variable resistor (R) is varied to obtain the transition from a fixed point to limit
cycle oscillations. In both the systems, we acquire data for different values of
the respective control parameters. For the random laser, the output emission
is collected using a fibre optic spectrometer. The voltage (v1) is measured for
the electronic circuit. The dimensions of different experimental setups are not
to scale.

Fluid mechanical systems examined in this study include thermoacoustic, aeroacoustic

and aeroelastic systems which exhibit transition to oscillatory instabilities upon varying

a control parameter. Details about the experiments are discussed in Chapter 3.

We analyze the power spectrum of a fluctuating system variable in the following

cases: a thermoacoustic system with different flame holding mechanisms and different

combustor lengths (Fig. 3.1a), an aeroacoustic system (Fig. 3.1b) and an aeroelastic

system (Fig. 3.1c). Thermoacoustic system with different combustor lengths helps to
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achieve different characteristic time scales. Further, the two flame holding mechanisms

in the combustor causes different mechanisms of thermoacoustic instability.

4.2.1 Optical system

A random lasing system consists of an optical gain medium with a large number of

scatterers dispersed in a random arrangement (Cao, 2003). The gain medium emits light

upon excitation by a suitable wavelength. Analogous to the standard cavity mirrors, the

feedback obtained through appropriate multiple scattering scenarios accounts for the

amplification. We perform random lasing experiments with zinc oxide particles (ZnO)

as scatterers and Rhodamine 6G dye as the gain medium. 50 mg of ZnO powder and 1

mg of Rhodamine 6G dye are dissolved in 3 ml of ethylene glycol to make a colloid and

is filled in a quartz cuvette for the experiment. Figure 1d represents the experimental

setup for the random lasing. We excite the sample with the second harmonic of an

Nd:YAG laser source (λ = 532 nm) with a repetition rate of 10 Hz and a pulse duration of

120 ps. The sample is positioned at an acute angle (50o±0.5o) to the incident beam and

the emission is captured by the collection lenses from the side. This arrangement helps

to avoid the reflected rays of the excitation source from the cuvette. We increase EPE to

achieve lasing. The output emission is collected by the tip of the fiber optic cable. The

emission spectrum is obtained using Research India RIS-T1708 spectrometer. I have

conducted the experiment at IIT Madras.

4.2.2 Electronic circuit

Chua’s circuit is used to study spectral condensation during the transition from a

fixed point to a limit cycle (Fig 1e shows the schematic of the circuit). It is a third-

order, autonomous electronic circuit having a linear resistor, two linear capacitors, a

linear inductor and one nonlinear element, known as Chua’s diode (Kennedy, 1992;

Lakshmanan and Murali, 1996). Chua’s diode has a nonlinear (piecewise-linear) v − i

characteristics (Lakshmanan and Rajaseekar, 2012). More details and diagram can

be found in Kennedy (1992). The circuit parameters are chosen to be C1 = 10 nF ,
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C2 = 100 nF and L = 18 mH . By reducing the variable resistor, R from 2000

Ω towards 0 Ω, Chua’s circuit exhibits a sequence of bifurcations. Here, we vary the

control parameter R to observe a transition from a fixed point to limit cycle oscillations.

The voltage (v1) is acquired using a 16 bit A/D card (NI6343) at a sampling rate of 200

kHz. I along with a co-author performed the experiments in aeroacoustic system at IIT

Madras.

4.3 MATHEMATICAL MODELS

4.3.1 Kicked oscillator model describing the thermoacoustic system

We use a kicked oscillator model to study the scaling observed during the transition to

limit cycle oscillations. Fluid mechanical systems that involve vortex shedding can

be modelled as kicked oscillators (Seshadri et al., 2016). In the model, the kicks

are random when we are far from the self-organized state and become periodic as we

approach the onset of oscillatory instability. In lasers, we observe a similar behaviour.

The individual electrons emit light wave-tracks randomly, and those running in the

axial direction are reflected multiple times between the mirrors and stay longer in the

medium, while all other tracks leave it. At a threshold excitation power, suddenly all

of them start to emit light in phase, and light intensity increases drastically (Haken,

1984). All the emitted light are in phase forming a giant wave track leading to a typical

synergetic phenomenon.

The kicked oscillator model captures the state of aperiodic oscillations, intermittency

and limit cycle oscillations as observed in practical systems mentioned earlier. Seshadri

et al. (2016) used a Galerkin expansion to express the acoustic variables in terms of the

natural modes of the duct. They obtained a kicked oscillator equation for the acoustics

modes as follows:

η̈n+ξnη̇n+ω2
nηn = Bn

∑
j

δ (t− tj) (3)
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Here Bn is the kicking strength, tjs known as the kicking times are the time instants of

each kick. The kicking time instants tjs are defined as follows:

tj = tj−1+(1− C (pa))Ta+C (pa)σTa|N (0, 1)| (4)

Here Ta is the dominant time period, N (0, 1) is the Gaussian white noise and σ is the

strength of the noise. C is a biased coin toss where 1 occurs with probability pa and 0

with a probability 1− pa and pa is called the aperiodic probability. pa is an estimate of

the aperiodic content in the time series. Here, we can think of the aperiodic probability

as a parameter (like the Reynolds number) that we are varying to achieve the different

dynamical states of the system. From equation (3) and (4) we can observe that for

pa = 0, the kicks are periodic and hence the dynamics correspond to a state of limit

cycle oscillations. Whereas pa = 1, the kicks occur at random time instants and hence

this corresponds to a state of aperiodic oscillations.

Following Seshadri et al. (2016), the kicking strength B is kept constant as 100 for this

study and the noise strength σ is selected as 5 and 1 for the aperiodic case and limit cycle

respectively. We vary the aperiodic probability from 1 to 0 (corresponding to aperiodic

fluctuations to limit cycle) in steps of 0.001 to obtain time series corresponding to

each aperiodic probability. Now for each of these time series, the Fourier transform

was evaluated and the spectral measures are computed. Now the variation of spectral

measures and the power corresponding to the dominant mode of oscillations are plotted

(Fig. 3d-f). We can see that this model captures the inverse power law relationship that

was observed in the experimental data.

4.3.2 Noisy Hopf bifurcation model

We examine another model of a nonlinear oscillator in the presence of noise which

exhibits subcritical and supercritical Hopf bifurcation.

η̈+αη̇+ω2η = η̇
(
β +Kη2 − γη4

)
+ξ (5)
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Here, α and β are linear damping and driving respectively. Following Noiray (2017), we

use additive white noise ξ of intensity Γ and having an autocorrelation < ξξτ >= Γδ(τ).

The values of the parameters ω, β, γ, K and Γ are kept constant (ω = 2π× 120 rad/s, β

= 50 rad/s, γ = 0.7, K = 9, Γ = 105). The linear damping (α) is varied from 95 rad/s

to 56 rad/s to capture the transition from an aperiodic state to a high amplitude limit

cycle oscillation. The corresponding time series of η for each value of α is obtained and

the spectral measures are evaluated from the power spectra of the time series of η. As

observed for the experiments, the spectral measures follow inverse powerlaw scaling

with peak power for noisy Hopf bifurcation as well, where periodicity arises out of a

noisy environment.

4.4 SPECTRAL CONDENSATION: SHARPENING OF THE POWER

SPECTRUM DURING PATTERN FORMATION

We analyze the sharpening of the dominant peak in the power spectrum of a fluctuating

system variable during the emergence of order. All the three fluid mechanical systems

exhibit a transition to oscillatory instability as we increase the Reynolds number (Re)

as shown in Fig. 3.2. Here, we present the evolution of the power spectrum only for

a representative set of data (Fig. 4.2a), although all aforementioned cases of the fluid

mechanical systems have been analyzed. The power spectrum has a broad peak for low

values of Re. We observe the transition of power spectra from a broad peak to a sharp

one as we approach the onset of the oscillatory instability. Each spectrum is normalized

with its maximum amplitude to emphasize the narrowing of the peak (Fig. 4.2b).

The optical system chosen for this study is a random lasing system (Fig. 4.1d). Unlike

conventional lasers, the lasing action in random lasers is achieved by strong multiple

scattering in the optical gain medium. The large number of scatterers which are

dispersed in the gain medium causes the light rays to scatter multiple times before they

exit the gain medium (Cao, 2003; Gummaluri et al., 2018). The emission spectrum of a

random laser, upon excitation by a pulse of suitable wavelength, is acquired using a fibre
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Fig. 4.2: Evolution of the spectrum for fluid mechanical, optical and electronic
systems. The evolution of power spectrum with variation in the corresponding
control parameter is presented on the left side and the normalized spectra
for each system is given on the right side of the panel. (a, b) Power
spectra obtained using Fast Fourier Transform (FFT) of the acoustic pressure
fluctuations for a laboratory-scale bluff body stabilized combustor of length
700 mm. The power spectra exhibit an increasing dominance of a single
peak on approaching oscillatory instabilities (for increasing Re) in all the
fluid mechanical systems discussed in this paper, and hence this figure is a
representative example. (c, d) Emission spectra of the random laser as we
progressively increase EPE. The power spectrum is obtained by multiplying
the photon count per second for each wavelength with its respective energy.
The broad spectrum starts to become a narrow lasing-like peak with increase
in EPE. (e, f) Power spectra obtained using FFT of the voltage signal (v1)
measured from Chua’s circuit and the corresponding normalized spectra are
shown respectively. The peak sharpens during the transition to limit cycle
oscillations as the resistance (R) is decreased. The power spectra using FFT
are plotted for a resolution of 4 Hz for visualization purpose.

optic spectrometer. There is an appreciable narrowing in the emission profile (Fig. 4.2c)

with the increment in excitation pulse energy (EPE), as is evident in Fig. 4.2d where
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each spectrum is normalized with its maximum power.

To study spectral condensation in electronic systems, we select Chua’s circuit (Fig. 4.1e)

which has become a paradigm for chaos (Chua et al., 1987; Lakshmanan and Murali,

1996). It consists of two capacitors, an inductor, a resistor and one nonlinear element

known as Chua’s diode. The system exhibits period-doubling bifurcation from a fixed

point to chaos with change in the resistance, R. Here, we focus on the transition

from a fixed point to a period-1 limit cycle. In experiments, external noise or inherent

fluctuations including thermal fluctuations of the electronic devices, their inaccuracies

and electromagnetic interference will make the fixed point noisy (Prebianca et al.,

2018). Thus, for the conditions for which a fixed point is expected, we observe low

amplitude noisy oscillations with a broad peak in the power spectrum centered around

the natural frequency. During this transition to limit cycle (noisy Hopf bifurcation),

we find a narrowing of the power spectrum (Fig. 4.2e, f) akin to that observed in fluid

mechanical and optical systems.

4.4.1 Spectral measures

Next, we quantify the sharpening of the power spectrum during spectral condensation

by defining ‘spectral measures’. The general expression for the spectral measure is:

[µx
m µy

n] =

[∫ +δF

−δF

P (F )

P0

∣∣∣∣Ff0
∣∣∣∣m dF

]x
×
[∫ +δF

−δF

P (F )

P0

∣∣∣∣Ff0
∣∣∣∣n dF]y . (1)

Here, µm is the mth moment of the power spectrum. P (F ) represents the power

corresponding to the modified frequency F = f − f0, where f is a variable indicating

the frequency of oscillations, f0 is the frequency corresponding to the dominant peak in

the power spectrum, and P0 = P (f0). The indices m, n, x & y of the spectral measure

are chosen to be positive integers. As our interest is to study the condensation towards

a single peak, we compute the spectral measures [µx
m µy

n] only in the neighbourhood

of width δF centered at f0. We set δF to f0/5, based on our analysis of a collection
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of data with vastly different values of f0. Also, the amplitude of the peak reduces

significantly within this range. Variations in the choice of δF can be tried out, based

on the appearance of the spectrum, such that it covers the spread of the peak during

condensation. The spectral measures, [µx
m µy

n] can be considered as the products of

moments of the power spectrum raised to integer powers. According to the definition

of the spectral measures, [µx
m µy

n] decreases as the peak gets sharper. In this study, we

present the analysis of three representative spectral measures, [µ2], [µ2 µ0] & [µ4 µ4].

Note that [µ2] is the second moment of the power spectrum in the δF neighbourhood of

f0, whereas, [µ2 µ0] & [µ4 µ4] are the products of higher moments of the distribution.

Higher moments give more weightage to the tail ends of the spectrum and thus its

variation indicates how the broad tails diminish.

4.5 INVERSE POWER-LAW SCALING OF SPECTRAL MEASURES WITH

THE PEAK POWER

We uncover an inverse power law relation between the spectral measures and the power

corresponding to the dominant peak (Fig. 4.3a-c) during spectral condensation. All the

data sets for the fluid mechanical, the optical and the electronic systems collapse to an

inverse power law scaling in spite of the different physics involved in the process of

condensation. We also present the analysis of data obtained from two models: kicked

oscillator model (Seshadri et al., 2016) and noisy Hopf bifurcation model (Noiray,

2017) discussed in Sec. 4.3. Both the models exhibit a transition from low amplitude

aperiodic oscillations to a high amplitude limit cycle, thereby a condensation behaviour

is observed in the power spectrum. We detect a similar scaling relation between [µx
m µy

n]

and P0/PN (Fig. 4.3d-f) as observed in experiments. This inverse power law behaviour

appears to be a universal characteristic of spectral condensation and the experimentally

observed value for the power law exponent (k) corresponding to the spectral measures

[µ2], [µ2 µ0] & [µ4 µ4]) are around -1.12 ± 0.13, -0.7 ± 0.08 and -0.50 ± 0.06

respectively (averaged across systems). The exponent (k) is found to reduce for the
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Fig. 4.3: The scaling behaviour of spectral measures with the peak power during
spectral condensation in experimental systems and models. Variation of the
normalized power (P0/PN ) corresponding to the dominant mode with the
representative spectral measures ([µ2], [µ2 µ0] & [µ4 µ4]) plotted in double
logarithmic scale (a-c) for the data acquired from experiments conducted in
different systems and (d-f) for the data generated from two models. The extent
of spectral condensation and the peak power differs by orders of magnitude
across these systems. Hence, we rescale the power corresponding to the
dominant peak (P0) as P0/PN to show the lines, log(P0) = k log ([µx

m µy
n]) +

C, in the same plot. The normalization factor, PN , is the estimated value of
peak power for [µx

m µy
n] = 1 obtained by extrapolating the line log(P0) =

k log ([µx
m µy

n]) + C for each system. This choice of PN forces all lines to
have C = 0. We observe an inverse power law behaviour for all the spectral
measures in the experiments as well as in the models. The uncertainties in the
power law exponent are shown for 95% confidence intervals.
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higher indices of the measure and k for higher moments have much narrower dispersion

across different systems (Sec. 4.5.2). It may be noted that we do not ignore any points

as power law tails and do not introduce any cutoffs in the power law scaling.

4.5.1 Functional form for the power spectrum

The existence of multiple invariant exponents motivates us to think about the existence

of a universal form for the power spectrum in the neighbourhood of f0. The power

law relations indicate that given a distribution of power over a range of frequencies,

the spectral measures at all levels of spectral condensation is already determined by

the inverse power law relations. Further, the power spectrum decays away from f0

and this decay is steeper for a sharp peak with higher amplitude. Thus, we consider a

functional form for the power spectrum which is a function of F and has P0 and f0 as

two parameters, and is as follows:

P (F ) = P0e

[
−(P0)

α
(

F
f0

)β
]
, (2)

where all the symbols retain their definitions. Here, both α and β have to be

strictly positive. By comparing with the experimentally obtained values of power law

exponents (k) for a set of spectral measures (for combinations of m, n, x & y), we

estimate the optimal values of the parameters α and β iteratively as α = 0.125± 0.017

and β = 0.317± 0.024 respectively.

4.5.2 Power law exponents for a set of spectral measures

The set of spectral measures show an inverse power law relation with the power

corresponding to the dominant mode during spectral condensation. The power law

exponents decrease for the higher indices of the measure. The power law exponents

calculated for different indices up to m = 4 and n = 4 are summarized in Fig. 4.4. We

have compared the exponents for different experimental systems and models. In Fig. 4,

bluff body combustor A and B represent bluff body combustor with length 700 mm and
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Fig. 4.4: Power law exponents obtained from the scaling relation between the spectral
measures and the peak power for the higher index spectral measures in
different experimental systems and models. Here, the exponential function
refers to the functional form of the power spectrum as defined in Eq. 4.1 in
the manuscript.

1100 mm respectively.

4.6 SUMMARY

During the transition to an ordered dynamics, there is a condensation of spectral power

to a dominant mode of oscillations, we call this as spectral condensation. We define

spectral measures to compare and quantify spectral condensation in different systems

and we uncover a universal route through which spectral condensation occurs in fluid

mechanical, optical and electronic systems. The dominant peak in the power spectrum

sharpens with an increase in peak power following inverse power law relations with the

spectral measures. Interestingly, the scaling exponents are found to be within a small

range across all the systems studied. In addition, we note that the area under the curve in
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the power spectrum is not constant during the process of spectral condensation. It is not

merely a redistribution of energy in the power spectrum; there is amplification due to

transfer of energy across subsystems through the positive feedback mechanism. Thus,

the total power associated with the system variable is not conserved during spectral

condensation.

From a practical viewpoint, these spectral measures can be used as a system

independent method to quantify dynamical transitions in systems where an emergent

periodic behaviour is observed. During spectral condensation in fluid mechanical

systems, the condensation of power to a dominant mode causes high amplitude periodic

oscillations which can have catastrophic effects on the system. In such cases estimating

the peak power during oscillatory instability will help to design control strategies to

mitigate oscillatory instabilities (Pavithran et al., 2020b). In future studies, it will be

interesting to study this scaling behaviour for biological systems.
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CHAPTER 5

Predicting the amplitude of oscillatory instabilities using the

scaling

1Oscillatory instability, especially thermoacoustic instability (TAI) is a severe problem

faced by the propulsion and power industry (Juniper and Sujith, 2018). Practical

combustion applications such as gas turbine engines and rocket motors often

encounter thermoacoustic instability. Thus, there has been an increasing demand for

methodologies to mitigate TAI. One solution to mitigate TAI involves implementing

control strategies to suppress these oscillations. In general, passive control strategies are

preferred. The control mechanisms generally involve modifications of the combustor

geometry, fuel injector geometry or microjet injection (Schadow and Gutmark, 1992).

These strategies are implemented based on ad hoc modifications, investing a lot of

money and time.

Alternately, there has been work on development of precursors to predict the proximity

to TAI, methods to estimate the amplitude of TAI using the data acquired during stable

operation, and implementing control strategies to suppress these oscillations. It would

be desirable to perform the detection and control before the system reaches TAI rather

than looking at the amplitude or root mean square (rms) of the fluctuations. There

have been successful attempts to predict the onset of TAI. The stability margin was

determined using several methods such as autocorrelation of the acquired pressure

signal (Lieuwen, 2005), exhaust flow and fuel injection rate modulation (Johnson et al.,

2000), etc. Recently, researchers have developed techniques to determine stability

boundaries based on only acoustic pressure measurements. There are several methods to

obtain early warning signals based on multifractality (Nair and Sujith, 2014), recurrence

quantification (Nair et al., 2014b; Gotoda et al., 2014), complex networks (Godavarthi

et al., 2018; Murugesan and Sujith, 2016), synchronization index, modified permutation
1The results presented in this chapter are published in (Pavithran et al., 2021a).



entropy (Gotoda et al., 2012), and a combination of artificial intelligence with physics-

based precursors (Kobayashi et al., 2019; Hachijo et al., 2019; Bhattacharya et al.,

2020). A detailed description of early warning signals for thermoacoustic instability

can be found in Chapter 2.

Being able to determine the amplitude during TAI helps to design appropriate control

strategies. If the estimated amplitude is low enough that the combustor can handle it,

then the combustor can be operated safely during TAI as well. However, if the amplitude

is deemed dangerous for the combustor, either we can evade TAI or appropriate

countermeasures such as increasing the flame length by using alternate fuel paths can

be made. Several studies have been conducted in the past to estimate the amplitude

of limit cycle oscillations (LCO) during thermoacoustic instability. Traditionally, the

amplitude is estimated utilizing flame describing functions (FDF) (Ćosić et al., 2013;

Stow and Dowling, 2004). FDF characterizes the linear or nonlinear response of flame

to external perturbations of different amplitudes and frequencies. For better predictions,

Krediet et al. (2010) considered acoustic boundary losses along with the FDF, and the

accuracy of the predictions could depend upon both the FDF and the acoustic losses

(Krediet et al., 2010).

Even though predicting the amplitude using FDF has been reported to be successful

in many cases, forcing the system at high amplitudes to obtain FDF is costly and

difficult for industrial engines. It is hard to design actuators to produce high amplitude

oscillations, and exciting such high amplitudes in high pressure gas turbine combustors

is not advisable. Recently, Seshadri et al. (2018b) proposed a methodology for

predicting the amplitude based on intermittency statistics where TAI is associated

with vortex shedding. They considered the acoustic field as a kicked oscillator and

the impingement of a vortex carrying unburned reactant mixture results in a burst of

heat release which, in turn, adds energy to the acoustic field. Then, an equation is

derived for the slow-varying amplitude of oscillations from the reduced-order model

for a combustion system with vortex shedding. They were able to predict the amplitude
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of LCO successfully for bluff body and swirl stabilized combustors.

While studying the transition to TAI, the effects of turbulence are often considered

as background noise and are neglected in the traditional approach. We treat these

fluctuations with their inherent complexities as opposed to considering them as noise

and quantify the fractal characteristics of the acoustic pressure fluctuations using a

measure known as Hurst exponent (H). H describes how the rms of the standard

deviation of fluctuations scales with the time over which it is calculated. While

the amplitude of pressure fluctuations increases steeply near the onset of the TAI,

H decreases smoothly and relatively much earlier than the rise in amplitude. The

amplitude of the dominant mode of oscillations follows an inverse square law scaling

with the Hurst exponent (Chapter 3). In the current study, we use this concept to predict

the amplitude of the LCO during TAI. Irrespective of the frequency of oscillations or

the underlying physics of the problem, the data acquired from various configurations

of thermoacoustic, aeroacoustic and aeroelastic systems obey this inverse square law.

Hence, we estimate the amplitude of LCO by extrapolating the universal power law

relation towards TAI (i.e., H tending to zero).

We also present a methodology to estimate the amplitudes of different modes of

oscillations separately using ‘spectral measures’ which quantify the sharpening of peaks

in the power spectrum. The spectral measures are calculated as the product of different

moments of the normalized power spectrum raised to integer powers, and they follow

inverse power law relations with the corresponding peak power (Chapter 4). Once we

have the time series of acoustic pressure oscillations during the stable operation, we

can generate the power spectrum and identify all the possible modes that are expected

to grow. The scaling relation enables us to predict the amplitude during TAI, given

the value of spectral measures and the amplitude at the safe operating condition. The

objective of this study is to present the application of the patent-pending methodologies

(Pavithran et al., 2018a,b) for predicting the amplitude of TAI.

In the rest of this chapter, we discuss the results which include characterizing the
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transition to TAI using the two methods and the interpretation of the inverse power laws.

Then, we detail the procedure of estimation of amplitude and illustrate its efficacy using

some examples. Details of experiments are provided in Chapter 3. Experiments were

performed with both bluff-body stabilized combustor and a swirl stabilized combustor

with different lengths of 700 mm, 1100 mm and 1400 mm. We focus on the transition

from the state of combustion noise (CN) to TAI following an intermittency (INT) route

in turbulent thermoacoustic systems. The Reynolds number (Re) is considered as the

control parameter to study this transition. We use the same data reported in Nair and

Sujith (2014), Unni and Sujith (2015) and Nair et al. (2014a), and discussed in Ch. 3.

5.1 TRANSITION TO THERMOACOUSTIC INSTABILITY: HURST

EXPONENT AND SPECTRAL MEASURES

The time series of acoustic pressure fluctuations acquired at different values of Re

during the transition are analyzed. Figure 5.1 shows three such time series and

the corresponding amplitude spectra for the states of CN, INT and TAI. The time

series during CN comprises low amplitude aperiodic oscillations which are multifractal

(Nair and Sujith, 2014). As we approach TAI, we start to observe bursts of periodic

oscillations in the data. A state of intermittency which consists of epochs of high

amplitude periodic oscillations amidst low amplitude chaotic oscillations is present

during the transition to TAI. The periodic content increases and becomes self-sustained

limit cycle oscillations (LCO) during the state of full-blown instability (discussed in

Chapter 3). Along with this, the dominant peak in the amplitude spectrum changes

from a broad peak to a sharp one (as discussed in Chapter 4).

Figure 5.2 shows the variation of p′rms and the amplitude of dominant mode (FFT peak)

as a function of Re. For relatively lower Re, both p′rms and FFT peak are very low

due to the presence of low amplitude aperiodic fluctuations during CN. We note that

p′rms is slightly greater than the FFT peak during CN, as the time series is aperiodic to

a great extent and the energy is distributed over a wide range of frequencies. The FFT
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Fig. 5.1: Time series and the corresponding amplitude spectrum of acoustic pressure
fluctuations during the transition from CN to TAI. The data obtained for the
bluff body stabilized combustor is presented here as a representative case; we
observe a similar transition in swirl stabilized combustor as well. (a) The
time series representing the state of CN (Re = (1.9 ± 0.053) × 104) consists
of low amplitude aperiodic oscillations. (b) The amplitude spectrum shows
a broad peak around f = 250 Hz. (c) We observe a state of INT at Re =
(2.6± 0.069)× 104. The time series during INT has bursts of high amplitude
periodic oscillations amidst epochs of low amplitude aperiodic oscillations.
This reflects as an increase in the amplitude of the peak in the amplitude
spectrum (d). Then, the amplitude of pressure fluctuations increases abruptly
during TAI. (e) The time series during TAI (at Re = (2.8 ± 0.073) × 104)
comprises high amplitude periodic oscillations and the resultant amplitude
spectrum (f) has a sharp peak around f = 250 Hz.

peak accounts for only the amplitude of the dominant mode. Hence, during TAI, we

observe that the FFT peak becomes higher than p′rms by a factor of
√
2 as expected for a

sinusoidal signal because all the energy is being transferred to a single frequency. Also,

the oscillations grow to a very high amplitude during TAI. We use Hann windowing

while performing fast Fourier transform (FFT). The method of windowing helps to get
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Fig. 5.2: The variation of p′rms and the FFT peak during the transition from CN to TAI.
The amplitude of dominant mode of oscillations computed from the amplitude
spectrum using the Fourier transform is referred to as the FFT peak. Both p′rms

and FFT peak are very low during CN. The amplitude of oscillations increases
as we approach TAI, which is captured by both p′rms and FFT peak. This figure
uses data acquired from a bluff body stabilized turbulent combustor.

a consistent estimation of the peak amplitude. We can minimize issues of spectral

leakage by applying windowing. In this case, we use a Hann window for 0.25 s long

data segments, thereby fixing a resolution of 4 Hz for the FFT. We find the FFT peak as

the average of peak amplitudes of these 0.25 s windows for the full 3 s data.

5.2 FRACTAL CHARACTERISTICS AND UNIVERSAL SCALING

To quantify the fractal characteristics of acoustic pressure fluctuations during the

transition to TAI, we use the Hurst exponent (H). For a time series, H is related to

the fractal dimension (D) as H = 2 − D. We calculate H following the procedure of

Multifractal Detrended Fluctuation Analysis (MFDFA) (Ihlen, 2012). In MFDFA, we

first subtract the mean (x̄) from the time series of length N , and calculate the cumulative
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Fig. 5.3: Variation of H as a function of Re for the acoustic pressure data from the bluff
body stabilized combustor. H approaches a limiting value of zero for LCO,
unlike amplitude which is unbounded and can increase to any level depending
on the system.

deviate series Y (k) as, Y (k) =
∑k

t=1[xt − x̄], where k = 1, 2, ..., N . Then, the deviate

series Y (k) is divided into non-overlapping segments of size w, and the number of such

segments, Nw is the greatest integer of N/w. To obtain the fluctuations, we subtract the

polynomial fit from the deviate series (Yi) for each segment i. The structure function of

order 2 is defined as follows:

F2(w) =

[
1

Nw

Nw∑
i=1

[
1

w

w∑
t=1

(Yi(t)− Ȳi)
2

]]1/2
. (5.1)

We calculate the structure function for different time scales w. The slope of the linear

regime of the plot of variation of F2 with the span w in a double logarithmic scale is

known as the Hurst exponent (H).

H takes values between 0 and 1 for time series, corresponding to fractal dimension

between 1 and 2. H > 0.5 indicates that the time series is a persistent one, i.e., an

increase (decrease) in the value of time series is likely to be followed by an increase

(decrease) in its value. In contrast, an antipersistent signal would have H < 0.5, which

is characterized by a decrease (increase) in the value is most likely to be followed by

an increase (decrease) in its value and vice versa. An uncorrelated random process has

H = 0.5. Unlike mathematical fractal objects, real fractal time series (experimental

data) possess fractal nature only for a certain range of time scales. Hence, we need to
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select a range of scales that is optimal to capture the fractal characteristics during the

transition. Here, we choose two to four acoustic cycles of oscillations of the natural

frequency of the system (Nair and Sujith, 2014; Kerres et al., 2016). If we select scales

with a length corresponding to less than one cycle of oscillation, then the periodicity in

the data may not be captured. Also, the fluctuations are averaged out for long segments

with a large number of cycles.

Fig. 5.4: The inverse square law relation between H and FFT peak during the
transition to TAI in turbulent systems. We present the scaling for the
data acquired from the bluff body stabilized combustor with different
lengths and a swirl stabilized combustor. As different configurations of the
thermoacoustic system can have different amplitudes of LCO, we normalize
the peak amplitude with the amplitude of LCO for that particular case. The
normalization is done only for visualization purpose. A dashed red line is
drawn to show the inverse power law.

The aperiodic fluctuations observed during the state of CN has H > 0.2 (Fig. 5.3). As

the periodic content in the signal increases during the transition, the fractal nature is

lost. H captures this changing fractal characteristics, exhibiting a monotonic decrease

in value tending towards zero. Moreover, the value of H is bounded. H decreases

smoothly during the transition, while the FFT peak increases steeply near the onset

of the TAI. The amplitude of the dominant mode of oscillations scales with the Hurst

exponent following an inverse power law, A0 ∝ H−2.0±0.2 (Fig. 5.4). We observe

this scaling relation during the emergence of oscillatory instabilities from turbulence,

in different configurations of thermoacoustic systems, aeroacoustic and aeroelastic

systems (Chapter 3). The average power law exponent is -2±0.2 across these systems.
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We disregard the states with H > 0.15 as the tail of the power law; we observe the

scaling approximately from H < 0.15. The tail of the power law consists of the states

which are far from TAI.

5.3 SPECTRAL MEASURES TO ESTIMATE THE AMPLITUDE OF

INDIVIDUAL MODES OF OSCILLATIONS

Fig. 5.5: A representative spectral measure [µ2µ0] as a function of Re in a semi
logarithmic scale. The variation has a fluctuating trend during CN. However,
the value of [µ2µ0] decreases monotonically as we approach TAI.

The emergence of self-sustained periodic oscillations from an initially disordered state

in various systems is accompanied by the phenomenon of spectral condensation, which

is the narrowing of the peak in the amplitude spectrum accompanied by the growth

of amplitude of the dominant oscillatory mode (Fig. 4.3). To quantify spectral

condensation, we have used spectral measures which are defined as the products of

different moments of the power spectrum. They showed that the peaks in the power

spectrum follow a power law scaling with these spectral measures (Chapter 4).

In this chapter, we aim to predict the amplitude of TAI using the scaling relation
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exhibited by the spectral measures. Therefore, we use the amplitude spectrum instead

of the power spectrum, akin to the manner in which we used power spectrum in Chapter

4 to obtain a universal scaling relation. The spectral measures are denoted as [µmµn],

where µm is the mth moment of the amplitude spectrum, and m & n are integers. Here,

we use a representative spectral measure [µ2µ0] (the product of 2nd and 0th moments)

defined as,

[µ2 µ0] =

[∫ +δF

−δF

A(F )

A0

∣∣∣∣Ff0
∣∣∣∣2 dF

]
×
[∫ +δF

−δF

A(F )

A0

dF

]
, (5.2)

where, A(F ) is the amplitude corresponding to the modified frequency F = f − f0.

Here, f is the variable indicating the frequency of oscillations, f0 is the central

frequency corresponding to the peak in the spectrum, and A0 is the maximum amplitude

at the center of the peak (A(f0)). We calculate the spectral measure for the peak at f0

in the neighbourhood of width δF (we use δF ∼ f0/5).

During the transition to TAI, the broad peak in the amplitude spectrum observed during

CN sharpens to a narrow peak, while the amplitude grows. According to Eq. 5.2,

the spectral measure [µ2µ0] decreases as the peak becomes sharper. We present the

variation of [µ2µ0] in Fig. 5.5. During CN, the spectral measure does not decrease

much and fluctuates near a constant value. Then, it starts to drop to a lower value as

we approach TAI. We calculate the spectral measure for all the possible modes that are

expected to grow. Thereby, we can track the growth of individual modes of oscillations.

The spectral measure follows an inverse power law relation with the corresponding

peak amplitude as, A0 ∝ [µ2µ0]
−0.66±0.1. We use this concept of universal scaling of

the peak amplitude and spectral measure to estimate the amplitude of individual modes

of oscillations. Note that the power law exponent obtained using the spectral measures

defined on the amplitude spectrum with the Hann window is different from the power

law exponent for spectral measures from the power spectrum (shown in Chapter 4).
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Fig. 5.6: The inverse power law scaling between FFT peak and [µ2µ0]. The data
acquired from the bluff body combustor with different lengths and the swirl
combustor obey the power law relation with the same exponent. The FFT
peak from the amplitude spectrum is normalized to show all these power
laws in the same plot (for the sake of visualization). The normalization
factor is the estimated value of FFT peak for [µ2µ0] = 1 obtained by
extrapolating power law for each system. The average value of the power
law exponent across different systems including thermoacoustic, aeroacoustic
and aeroelastic systems is found be around -0.66±0.1.

5.4 PROCEDURE TO ESTIMATE THE AMPLITUDE OF LIMIT CYCLE

OSCILLATIONS

These universal scaling relations during the transition to oscillatory instability are

observed not just in thermoacoustic systems, but also in other fluid mechanical systems

such as aeroacoustic and aeroelastic systems. Commonality among transitions in all

these systems is that they exhibit emergence of ordered behavior from a background

turbulent flow field following an intermittency route. However, the underlying physical

mechanisms involved in these systems are indeed different, suggesting that this scaling
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Fig. 5.7: Estimating the amplitude of limit cycle oscillations using (a) the scaling of
FFT peak and H and (b) the scaling of FFT peak and the spectral measure
[µ2µ0]. We use a few data points during the state of stable operation (shown
as black colour points) and extrapolate the power law behaviour towards TAI,
that is towards higher FFT peak. The CN data shown here is obtained from
the bluff body stabilized combustor of length 700 mm. The amplitudes in the
region between A and B are the estimated amplitude during TAI.

is characteristic of the underlying bifurcation in the system and is not determined by the

specific physical processes that govern the system. The current section aims to illustrate

the method of amplitude estimation of the limit cycle oscillations using these scaling

relations.

We describe the procedure of estimation of the amplitude of TAI using a few input

data during stable operation. We plot the power law relations, A0 ∝ H−2.0±0.2

and A0 ∝ [µ2µ0]
−0.66±0.1 passing through the points corresponding to the input data

acquired during stable operation. We extrapolate the power laws towards TAI to find the

y-intercept (refer Fig. 5.7). According to the definition of H and [µ2µ0], we know that

both reduce towards zero as we approach TAI. However, H and [µ2µ0] will never attain

the value of zero because of the discrete representation of the analog signal. We need

the limiting values for H and [µ2µ0] to estimate the amplitude of LCO. The theoretical

value for H is 0 for a pure sine signal; however, for a limit cycle data acquired for a finite

time duration, the lowest possible value would be around 0.02 (marked A in Fig. 5.7a).

To fix the lowest limit for [µ2µ0], we construct a unit amplitude sine wave with the same
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frequency as the natural frequency of the system and with the same sampling frequency

as that of the experimental data. The value of [µ2µ0] for this sine wave is the lower limit

A (marked in Fig. 5.7b). The theoretical value of [µ2µ0] for a sine wave according to

Eq. 5.2 is 0. This would happen only if the amplitude spectrum is a Dirac delta function

which has a nonzero amplitude only at f0. However, the finite time interval for which

the data is acquired attributes a nonzero width in the amplitude spectrum at f0. This

interplay between the localization in the time and frequency domain is in accordance

with Heisenberg’s uncertainty principle. In addition to this, we use a Hann window of

0.25 s length and the corresponding amplitude spectrum has a reduced resolution of 4

Hz. All these impose a nonzero limit on the value of the [µ2µ0] for a sine wave.

The estimated amplitude for this limit A corresponds to the maximally “clean" periodic

dynamics possible during TAI. For systems that exhibit a smooth transition to TAI

via intermittency, this estimate will always be higher than the amplitudes that are

practically attainable. A pure sine wave will not be achieved in turbulent systems.

The estimated maximum amplitude (limit A) can be considered for designing the

combustor. Now, we proceed to set an upper limit B for the threshold values of

H and [µ2µ0]. Here, we construct a sine wave with amplitude modulations using

the information from the time series of combustion noise. The periodic oscillations

during TAI appear to have inter-cycle variability in amplitude, as shown in Fig. 5.1(e).

Lieuwen (2002, 2003) discussed the role of noise and system nonlinearities upon

the temporal features of the limit-cycle pressure oscillations. Therefore, the limit B

corresponds to a sine wave with a noisy amplitude envelope as observed during TAI

in practical cases. We extract the envelope (E) of the acoustic pressure fluctuations

acquired during CN using Hilbert transform (Panter, 1965). Then, we construct a

unit amplitude sine wave and modify its envelope with the extracted amplitude from

the experimental data as x(t) = (1 + Enormalized)sin ωt. The amplitude envelope is

normalized (Enormalized = (E˘mean(E))/max(E)), as we consider only its temporal

characteristics.
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Further, we can continuously improve the prediction by narrowing the range of

estimated amplitudes between A & B, as we have more data points during the transition

to TAI. When we estimate the amplitude using the data acquired during INT, the

envelope of the signal is less noisy compared to that of CN and resembles experimental

data more. As a result, the values of H and [µ2µ0] corresponding to limit B reduce.

Using the envelope of INT shifts limit B towards A. Hence, we can narrow the range of

estimated amplitudes, as we have more data during intermittency. The shaded region in

Fig. 5.7 corresponds to the predicted region of TAI. A more elaborate explanation on

the method of selecting the limits A & B is given in Appendix A.

5.5 ILLUSTRATION OF EFFICACY OF THE ESTIMATION PROCEDURE

Fig. 5.8: Time series showing aperiodic oscillations during stable operation at Re =
1.95 × 104 and the time series with high amplitude limit cycle oscillations
during TAI (Re = 2.78× 104). The predicted amplitude (using H), indicated
with the red line, reasonably captures the actual limit cycle amplitude. The
data presented is for the case of the bluff body stabilized combustor.

We need to test how well the estimation works when applied to experimental data

obtained from practical thermoacoustic systems. We use pressure time series obtained

from a bluff body and a swirl stabilized combustors having lengths 700 mm to illustrate

the efficacy of the devised estimation technique. First, we take only one time series

during CN and try to predict the amplitude of TAI. In Fig. 5.2, there are two data

points in the region of TAI. In order to compare the predicted amplitude with the actual
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value, we find the H and [µ2µ0] of the data corresponding to TAI, which are available

from the experiments. Then, using the power law expression, we predict the amplitude

corresponding to that particular values of H and [µ2µ0], and we calculate the deviation

of this predicted values from the actual amplitudes.

Table 5.1: Estimated amplitude of limit-cycle oscillations using the scaling relation of
H and FFT peak from the time series acquired during the stable operation.
The first row in the table shows the results from only one time series. The
second row shows the results using the first and the second time series, and
so on.

Re FFT Peak H Apredicted ∆A,%

1) Bluff body (Actual limit cycle amplitude = 1737 Pa)
2.12 ×104 75.32 0.142 1864 9
2.16×104 82.22 0.132 1807 6
2.20×104 95.97 0.135 1922 12

2) Swirl (Actual limit cycle amplitude = 1509 Pa)
1.35×104 139.64 0.129 1658 10
1.41×104 567.29 0.057 1325 -12
1.46×104 1119.97 0.043 1440 -5

Table 5.2: Estimated amplitude of limit-cycle oscillations using the scaling relation of
spectral measure and FFT peak from the time series acquired during the
stable operation.

Re FFT Peak [µ2µ0] Apredicted ∆A,%

1) Bluff body (Actual limit cycle amplitude = 1737 Pa)
2.00 ×104 90.84 1.23 1506 -13
2.04×104 77.23 3.39 1712 -2
2.08×104 82.32 3.12 1865 7

2) Swirl (Actual limit cycle amplitude = 1509 Pa)
1.35 ×104 139.64 0.37 1007 -33
1.41 ×104 567.29 0.05 1052 -30
1.46 ×104 1119.97 0.02 1212 -20

Subsequently, we try to predict using a higher number of time series data during the

CN and INT. Such estimates are in good agreement with the actual values (Fig. 5.8).
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The predicted amplitudes and the error in prediction, using H and [µ2µ0] are listed in

Table 5.1 & 5.2. Each row in the table shows the results obtained using all the data in

the preceding rows together. The actual amplitudes of LCO for bluff body and swirl

stabilized combustors are 1737 Pa and 1509 Pa, respectively. For the bluff body case,

the estimate obtained using three input time series is 1922 Pa and 1865 Pa using H

and [µ2µ0], respectively. Note that, these values are within 12% and 7% of the actual

amplitude. The estimates using H and [µ2µ0] for the swirl stabilized combustor have

-5% and -20% deviation from the actual value. The accuracy of estimation using a

single input time series depends on how well that particular data point fits to the power

law scaling. Therefore, we can get significantly low errors in the estimate by using

multiple input time series acquired during the transition. An input time series, and

the LCO along with the predicted amplitude (indicated with a red line) are shown in

Fig. 5.8. The predicted value is indeed close to the actual amplitude of LCO. Note that

the methods discussed in this paper are valid for highly turbulent systems which exhibit

a steep, albeit smooth transition to TAI via INT. However, it is not clear whether such

an approach will work if there is an abrupt jump in the amplitude at the onset of TAI.

Further work needs to be done to estimate the amplitude of TAI under such conditions.

5.5.1 Estimating the amplitude of multiple modes of oscillations

We extend the method to predict the amplitude of individual modes of oscillations in

thermoacoustics systems, exhibiting multiple modes of oscillations. The experimental

setup shown in Fig. 3.1 is observed to have thermoacoustics instability with a single

frequency. However, the combustor with a preheater arrangement (to preheat the

reactants) is found to excite different frequencies at different temperatures. Refer Pawar

et al. (2020) for more details of the experiments with preheater setup. We use the

pressure data acquired at a preheat temperature of 3000C. Figure 5.9 shows the time

series and the amplitude spectra during CN and TAI. At this temperature, the peak at

158 Hz and 456 Hz become sharper during TAI. The dominant mode during TAI is 158
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Fig. 5.9: (a) low amplitude aperiodic p′ during CN and (b) the corresponding amplitude
spectrum with two broad peaks around 160 Hz and 500 Hz. (c-d) Both the
modes grow as we reach TAI, and the peak at ∼158 Hz becomes dominant.
The predicted amplitudes of these two modes are marked with red circles in
the spectrum.

Hz (amplitude increases from ∼100 Pa to ∼1734 Pa). Also, the amplitude of the peak

at 456 Hz increases from ∼80 Pa to ∼418 Pa, during the transition.

We calculate the [µ2µ0] in the neighbourhood of both the peaks (f1 = 158 Hz and f2

= 456 Hz) and estimate the amplitude using the scaling relation A ∝ [µ2µ0]
−0.66. The

estimated peak amplitude values using 3 pressure time series data during CN is marked

with red colour circles in Fig. 5.9b. Further, the estimated values using a single time

series and multiple time series data are listed in Table 5.3. When we compare the

predicted and the actual values, the estimates for the first and second peak are within

30% and 10% error, respectively. Thus, the methodology using spectral measure can be

applied to predict the amplitude of individual modes during TAI.

For the data from the combustor with preheater (with multiple modes), there is a

significant error in the estimated amplitude calculated using the scaling of H . The

possible reasons for this inaccuracy could be the low levels of turbulence present in

the system and the presence of multiple peaks in the amplitude spectrum. Unlike the

scaling of [µ2µ0], the scaling with H is observed only in turbulent fluid mechanical
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Table 5.3: Estimation results for data with multiple modes

Re FFT peak [µ2µ0] Apredicted ∆A,%

1) First mode, f1 = 158 Hz (Actual amplitude = 1734 Pa)
1.81 ×104 146.45 3.68 1236 -29
1.83×104 139.71 4.11 1250 -27
1.84×104 113.43 5.84 1261 -27
2) Third mode, f2 = 456 Hz (Actual amplitude = 418 Pa)
1.81 ×104 88.06 0.36 390 -6
1.83 ×104 105.80 0.26 381 -9
1.84 ×104 96.78 0.41 403 -4

systems. Further, the presence of peaks other than the dominant modes in the amplitude

spectrum can effect the value of H since it is calculated over a certain range of time

scales. Nevertheless, the variation of H during the transition provides indication of the

impending TAI well in advance, and H can be used as a precursor. Further studies need

to be done to identify the exact reason for the inaccuracy in amplitude estimation.

In this study, we showed the method of amplitude prediction for longitudinal modes.

However, many practical combustors seldom show a single dominant frequency and

often exhibit multiple frequencies. Further, the mode of instabilities can also be

transverse (or azimuthal) or a combination of transverse and longitudinal modes. In

the future, a detailed study for the performance of Hurst exponent and spectral measure

towards early warning and amplitude estimation for such modes needs to be done.

Further, multiple experiments in different configurations of the experimental setup with

changes in different control parameters to approach thermoacoustic instability need

to be conducted to establish more accurate error bars for the power law exponent.

In the future studies, we aim to derive a theoretical framework for studying spectral

condensation.

102



5.6 SUMMARY

In this study, we present two different methods to predict the amplitude during

thermoacoustic instability, by using time series data during the state of stable operation

or intermittency. First, we show that the universal scaling relation between the

amplitude of the dominant mode and the Hurst exponent in the intermittency regime can

be exploited to predict the amplitude during TAI. We demonstrate that this method can

predict the amplitude fairly accurately in practical systems, by applying this procedure

to the data from a bluff body and a swirl stabilized combustor. However, in the case

of a combustor with a preheater that exhibits multiple modes of oscillations, there is a

significant error in the predicted amplitude. We speculate that this inaccuracy is due to

the low levels of turbulence present and due to the presence of multiple peaks in the

amplitude spectrum. Further studies need to be done to pinpoint the exact reason for

this inaccuracy.

Along with this, we also show that the amplitude during TAI can be predicted by

using the scaling relation between the amplitude of the dominant mode and the spectral

measure. For this method as well, we show that the predictions are fairly accurate for

the bluff body and swirl combustor. Interestingly, using this method, we are able to

predict the amplitude of different modes of oscillations in the case of the combustor

with a preheater. To improve the predictions, we need to perform more experiments

with combustors exhibiting multiple frequencies.

Both these methods can be used by manufacturers of industrial gas turbines to estimate

the amplitude during TAI, even without approaching anywhere close to instability. In

other words, the amplitude can be estimated without exposing the combustor to large

amplitudes and thereby endangering it. In the future, we would most probably see

artificial intelligence based methods or a combination of AI with physics-based methods

such as that presented here to predict the amplitude during TAI. AI based models are

heavily used for the purpose of forecasting, especially for financial and weather data,

currently. Such methods, when applied to thermoacoustics, in combination with physics
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based approaches such as that presented here, would hopefully give us more powerful

tools to predict the amplitude during thermoacoustic instability.
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CHAPTER 6

Effect of rate of change parameter on early warning signals for

critical transitions.

1The dynamics of many natural and human-made systems are controlled by various

parameters which evolve in time. A tiny perturbation in a system parameter can

qualitatively alter the state of the system when it crosses a critical threshold. This

phenomenon is generally known as tipping or critical transition, wherein a small

change of a parameter can cause a sudden transition in the state of the system (Lenton

et al., 2008). In earth’s climate system, a gradual change in local climate can affect

ecosystems and can sometimes trigger a drastic switch to a contrasting state (Scheffer

et al., 2001; Carpenter et al., 1999). Contagion in financial markets (National-Research-

Councils and other, 2007; May et al., 2008), and spontaneous asthma attacks (Venegas

et al., 2005) are other instances of tipping.

There are various mechanisms through which tipping occurs such as bifurcation-

induced (B), noise-induced (N) or rate-induced (R) tipping (Ashwin et al., 2012).

Sometimes, the rate of change of parameter plays a more pivotal role than the actual

value of the parameter. When a rate-sensitive parameter is varied as a function of time,

at a slow rate, the system dynamics follows the quasi-static attractor. For faster rates

of change of the parameter, above a critical rate, the system can be driven outside the

basin of attraction of the quasi-static attractor, and can evolve towards a new stable

state resulting in rate induced tipping (R-tipping). In such cases, the rate at which the

parameter is varied determines the tipping point, not the absolute value of parameter.

However, practical systems may exhibit tipping phenomena as a result of a combination

of bifurcation, rate and noise.

In the current study, we explore the effects of rates of change of bifurcation parameter

on ‘bifurcation induced tipping’. When we vary the bifurcation parameter continuously
1The results presented in this chapter are published in (Pavithran and Sujith, 2021).



at a finite rate, tipping will be delayed considerably from the parameter value predicted

by the bifurcation analysis (Baer et al., 1989). Due to the continuous variation of the

control parameter, the system stays in the vicinity of the unstable attractor for some

time even after the stability is lost. This phenomenon is referred to as ‘rate-delayed

tipping’ (Bonciolini et al., 2018). The delay observed in the transition is found to be

dependent on the rate of change of parameter and the initial conditions (Park et al.,

2011; Berglund, 2000). Later, Majumdar et al. (2013) reported that this delay in tipping

is independent of the rate of change of control parameter and determined solely by the

initial value of the parameter. Recently, Bonciolini et al. (2018) showed experimentally

that the delay in bifurcation increases with rate of change of parameter. After such

contradictory observations in literature, Unni et al. (2019a) highlighted the role of

interplay between the inherent noise in the system and rate of change of parameter in

deciding the tipping point. Even though the delay increases with the rate of change of

parameter, noise brings a high variability in the tipping point. Determining the stability

margin is difficult for practical systems where stability boundaries are smeared due to

this interplay between noise and rate. Devising efficient EWS for abrupt transitions

in real systems is of critical importance. For example, predicting earthquakes, climate

changes, and catastrophic events in engineering systems are desirable from social and

economic viewpoints. However, predicting such tipping before the occurrence of the

event is challenging because the system may not show any indication before the tipping

point is reached, especially when there is combined effects of rate and noise.

Abundant studies discussing quasi-static bifurcations or B-tipping are available in

literature. Despite the inherent characteristics of the systems, the dynamics close to

the bifurcation point are found to be the same across different systems (Schroeder,

2009). The transitions through various types of bifurcations are related and generic

early warning signals exist for catastrophic bifurcations (Scheffer et al., 2009).

The phenomenon known as critical slowing down near the bifurcation point gives

information about the impending tipping for many types of bifurcations. The two

106



commonly used early warning indicators that work based on critical slowing down are

the lag-1 autocorrelation and the variance of the fluctuations of a system variable. These

measures have been proven to predict B-tipping, wherever the tipping is accompanied

by a change of stability of the system (Scheffer et al., 2009; Dakos et al., 2008).

Recently, Wilkat et al. (2019) showed that there is no evidence of critical slowing down

prior to human epileptic seizures. They conjecture that the tipping mechanisms for the

human epileptic brain may be a combination of B-tipping, R-tipping and N-tipping and

there may be no easily-identifiable EWS for such cases. Most tipping events occurring

in nature involve system parameters changing at a constant, varying or undetermined

rate along with considerable intensity of noise in the system (Tsotsis et al., 1988;

Kapila, 1981). Then, tipping can be influenced either by noise or by the effect of

rate of change of the parameter. Thus, prediction becomes hard with conventional

EWS. There are many other issues when dealing with rate dependent phenomena.

For example, consider the case where the entire transition happens at a very fast rate

such that there is not enough data available. Computing precursors in such conditions

will be challenging. Even if we get warning, will there be enough time to perform

a control action? The outstanding question is: ‘can we predict transitions in the real

systems, considering the combined effects of inherent noise and the rate of change of

the parameter?’

In the present study, we choose to work with a prototypical thermoacoustic system

(known as a horizontal Rijke tube) exhibiting Hopf bifurcation, because (i) we observe

a catastrophic transition similar to that observed in many practical situations, (ii) we

can obtain time series data for a long duration with high sampling frequency, (iii) we

can vary the control parameter at different rates and, (iv) we can repeat the experiments

at same conditions to verify the observations.

The Rijke tube undergoes a subcritical Hopf bifurcation from a non-oscillatory to an

oscillatory state (thermoacoustic instability) as we vary the control parameter (Matveev,

2003; Juniper, 2011; Gopalakrishnan and Sujith, 2015). Often, control parameters in
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practical systems are changed continuously at a finite non-zero rate. Developing EWS

for transition to TAI will help to evade such disastrous events.

In this chapter, we study the effects of rate of change of control parameter on the

performance of various EWS, by investigating the variation of warning time provided

by EWS with the rate of change of parameter. Further, we present a mathematical

model that captures qualitatively, the key features observed in the experiments. Section

6.1 describes the experimental setup. Subsequently, the results and discussions are

discussed and the main conclusions are given in Sec. 6.8. We provide the details of the

methodologies for calculating different measures in Appendix A. e show the robustness

of EWS with the selection of threshold for warning in 6.3 and the analysis to check for

false warnings in Appendix C.

6.1 EXPERIMENTS

We perform experiments on a laminar thermoacoustic system known as the horizontal

Rijke tube (Fig. 6.1). The setup consists of a horizontal duct with a square cross-

section which houses an electrically heated wire mesh. Air enters the duct through a

rectangular chamber known as the decoupler, which isolates the duct from the upstream

fluctuations. The decoupler ensures that the pressure fluctuations at the end connected

to it are negligible. The duct is open to the atmosphere at the end away from decoupler.

Thus, the pressure at both the ends becomes equal to the atmospheric pressure. This

design helps to maintain an acoustically open boundary condition (i.e., acoustic pressure

fluctuations, p′ = 0) at both the ends. A DC power supply (TDK-Lambda, GEN 8-400,

0-8 V, 0-400 A) is used to provide electric power to heat the wire mesh. The mass flow

rate of air through the duct is controlled using an electronic mass flow controller (Alicat

Scientific, MCR series) with an uncertainty of ±(0.8% of reading + 0.2% of full scale).

We measure the acoustic pressure fluctuations inside the duct using a piezoelectric

sensor (PCB103B02, sensitivity: 217.5 mV/kPa, resolution: 0.2 Pa and uncertainty:

0.15 Pa) at a sampling rate of 10 kHz. A more detailed description of the setup can be
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Fig. 6.1: Schematic of the horizontal Rijke tube used for the experiments. It comprises
a 1 m long duct, an electrically heated wire mesh and a rectangular chamber
called decoupler. The wire mesh is shown separately outside the duct.
A piezoelectric transducer is mounted on the duct to acquire the acoustic
pressure fluctuations inside the duct.

found in Gopalakrishnan and Sujith (2015). I conducted the experiments for the data

used for this study at IIT Madras.

In the present study, we control the voltage (V ) applied across the wire mesh and the

current through the mesh changes accordingly. Therefore, we estimate the power (P )

generated in the wire mesh by measuring both the voltage and current. The uncertainty

in the measurement of voltage is (0.1 Vrated+ 0.1 Vmeasured)% and the uncertainty in the

measurement of current is (0.3 Irated+ 0.1 Imeasured)%, where Vrated = 8 V and Irated =

400 A. All the other parameters such as the location of the heater mesh (27.5 cm from

the decoupler) and the mass flow rate of air (100 SLPM) are kept constant suitably to

obtain subcritical Hopf bifurcation.

First, we perform experiments where V is varied in a quasi-steady manner by allowing

the system to evolve for a finite time duration at a constant P . We let the system reach

its asymptotic state and then measure the acoustic pressure fluctuations at different

values of P . We select the maximum heater power to be less than 1152 W for all

the experiments, as the wire mesh may melt and get damaged due to overheating at
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Fig. 6.2: (a) The variation of rms of the acoustic pressure fluctuations (p′rms) for the
quasi-static experiments. p′rms shows an abrupt jump at the heater power
∼600 W, denoted as µ. (b) A typical variation of voltage (V ) at a constant
rate of increase (dV /dt = 60 mV/s) and the corresponding variation of heater
power (P ). (c) The pressure signal (p′) acquired continuously as the control
parameter is varied in time.

higher powers. Subsequently, we increase V continuously at different rates and record

the pressure signals during the ramp. Here, ramp refers to the continuous increase of

the heater power in time. In this paper, we report a linear variation of V ; i.e, the rate

(r = dV/dt) of change of V is constant (V = V0 + r t). As we have programmed

V to vary linearly, I changes accordingly and then the corresponding variation of P is

quadratic.

6.2 RATE-DEPENDENT TIPPING-DELAY IN A THERMOACOUSTIC

SYSTEM

We first conduct quasi-static experiments to identify the range of parameter values

required to capture the transition to high amplitude limit cycle oscillations. We calculate

the root mean square (rms) value of the acoustic pressure fluctuations (p′rms) acquired

at different values of heater power (P ). Figure 6.2a represents the bifurcation diagram

showing the variation of p′rms as a function of P . We observe that p′rms ≈ 0 for a

range of P corresponding to a quiescent state with amplitude levels comparable to the

noise floor (∼ 5 Pa) of the system. At a particular control parameter value, the system

transitions to high amplitude limit cycle oscillations. This transition is reflected in p′rms
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Fig. 6.3: Time evolution of p′ as a function of time-varying P for three different rates
of change of V . The rate of change of rms of fluctuations is also shown in
the inset to identify the onset of TAI. Here, the maximum rate of change of
p′rms is considered as the onset of oscillations. The delay in the transition, δ, is
found to increase with an increase in r. Here, p′rms is calculated for a moving
window of 1 s with an overlap of 0.9 s.

as an abrupt rise and is attributed to subcritical Hopf bifurcation. The parameter value

at which this transition occurs, marked as µ in Fig. 6.2a, is known as the Hopf point.

As mentioned earlier, we perform experiments with a linear variation of V . Therefore,

P changes continuously starting from a heater power which is far lower than µ and

increases through the Hopf point to a high value. Here, the variation of P is from 0

to 1152 W in a nonlinear fashion. Thus, throughout this study, we mention the rate

of change of voltage with time (r = dV /dt) which is kept constant for each run

of the experiment. In Fig. 6.2b-c, we plot the typical variation of V and P and the

corresponding acoustic pressure signal (p′ = p − p) depicting the transition from a

quiescent state to high amplitude limit cycle oscillations. Here, p is the mean of p.

Figure 6.3 provides the evidence for rate-dependent tipping-delay as reported in

literature (Baer et al., 1989; Bonciolini et al., 2018; Unni et al., 2019a; Scharpf et al.,

1987). We plot the time evolution of p′ as a function of time-varying P for three

different r (30 mV/s, 60 mV/s, and 120 mV/s) in Fig. 6.3. It is quite challenging

to define a tipping point for the onset of oscillations for dynamic bifurcations, unlike
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the quasi-static bifurcations. The difficultly in defining a tipping point is because the

oscillations take a finite time to grow, and the parameter would have changed to another

value by that time. Hence, we adopt the following method to select the tipping point.

We calculate the rate of change of p′rms. The sudden increase in the growth rate of

oscillations reflects as a maximum in the rate of change of p′rms (shown in the inset of

Fig. 6.3). The delay (δ) in the tipping is marked from the Hopf point to the maximum

of rate of change of p′rms (Fig. 6.3). Henceforth, we use this method to define the onset

of TAI in this study.

According to bifurcation theory, the system loses its stability at the Hopf point, µ. Due

to memory effects, the system continues to be in the vicinity of the unstable attractor

for a finite time. This phenomenon of rate-dependent tipping-delay occurs during slow

passage through Hopf bifurcation as described by Baer et al. (1989). On comparing the

delay (δ) in the onset of TAI for different r, we observe that δ increases with an increase

in r (see Fig. 6.3), congruent with the observations reported in other systems (Baer et al.,

1989; Bonciolini et al., 2018; Unni et al., 2019a; Scharpf et al., 1987). In the case of r

= 120 mV/s (the fastest shown in Fig. 6.3), we observe a delayed onset of ∼470 W from

µ. Furthermore, we vary the control parameter at very fast rates, but limiting the values

of P to 1152 W so as to not damage the heated wire mesh. In such cases, we do not

observe tipping within the duration during which the power is varied; instead, it occurs

when we let the system evolve at the final value of P , allowing more time. Hence, we

confirm that the delay in the tipping increases with rate, by performing experiments at

various rates. This trend need not be the same for highly turbulent systems where the

inherent fluctuations can perturb the unstable fixed point, causing it to tip towards the

stable limit cycle.

6.3 EWS FOR CRITICAL TRANSITIONS

We compute several EWS for the pressure signal acquired continuously during the

ramp for the experiments performed at different rates of change of control parameter.
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Fig. 6.4: Variation of p′rms, lag-1 autocorrelation (AC), variance (VAR), skewness
(SKEW), kurtosis (K) and Hurst exponent (H) during the transition to TAI
in Rijke tube. Each column corresponds to the results for a particular rate
(r) of change of V ((a)-(f): r = 5mV/s, (g)-(l): r = 30mV/s, (m)-(r): - r =
80mV/s). The onset of TAI is marked with a red colour dotted line and quasi-
static Hopf point µ is marked on the x-axis. p′rms, and VAR starts to increase
almost at the onset of TAI, whereas, K and SKEW detect the tipping slightly
before p′rms increases. In contrast, AC and H give early warning well-before
the transition to TAI for all the cases shown here.
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The following measures are considered in this study: p′rms, lag-1 autocorrelation (AC),

variance (VAR), skewness (SKEW), kurtosis (K), and Hurst exponent (H). Here, we

provide an overview of the different EWS used in the present study.

The root mean square (rms) of a time series, p(t), is defined as the square root of the

mean square or the arithmetic mean of the squares of all the elements in the time series.

It is also known as the quadratic mean.

prms =

√√√√ 1

N

(
N∑
i=1

p2i

)
(6.1)

where N is the total number of data points. Root mean square value has been widely

used in many engineering applications as a first step to check the sudden increase in the

amplitude of fluctuations about the mean.

Autocorrelation is the correlation of a signal, p(t), with a delayed copy of itself as a

function of delay (τ ). It is defined as follows:

AC(τ) =
1

N

∑N
i=1 p(i) p(i− τ)

σ2
(6.2)

In the current study, we consider lag-1 autocorrelation which computes the correlation

between values that are one time step apart. In this study, we refer to lag-1

autocorrelation as AC. Variance (VAR) is the expectation of the squared deviation from

the mean. VAR measures how the data is spread out from their average value and it is

the second moment of the distribution.

VAR =
1

N

N∑
i=1

(pi − p)2 (6.3)

where p is the mean and N is the number of data points. For critical transitions, both

AC and VAR increase based on the phenomenon of critical slowing down. Systems

approaching a transition to a new stable state, where the current stable state becomes

unstable due to change in the control parameter, show slow response to external
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perturbations. The phenomenon of slow recovery rate to the external perturbations close

to a critical transition is known as critical slowing down (Strogatz et al., 1994) (CSD).

This slowing down leads to an increase in autocorrelation and variance of fluctuations

(Scheffer et al., 2009; Dakos et al., 2012).

When a system is driven gradually closer to a critical transition, the increase in the

autocorrelation occurs much before the actual transition. Similarly, the impact of

perturbations do not decay fast, and their accumulating effect increases the variance

of fluctuations. CSD results in increased short term memory of the system, and hence

autocorrelation at low lags would increase. CSD is observed in realistic models of

spatially complex systems (Lenton et al., 2009) as well as in simple models (Dakos

et al., 2008) and has been used as EWS for critical transitions (Scheffer et al., 2009).

Skewness (SKEW) and kurtosis (K) are not directly connected to critical slowing down.

SKEW is a measure of the symmetry of the probability distribution of the data about

its mean; i.e., whether the distribution is biased towards one side over the other. A

distribution is said to be negatively skewed (or left skewed) when a majority of the data

falls to the right of the mean. On the other hand, a distribution is positively skewed (or

right skewed) when more data is concentrated to the left of the mean. The skewness of

a random variable is its third moment.

SKEW =

∑N
i=1(pi − p)3/N

σ3
(6.4)

where p is the mean, σ is the standard deviation, and N is the number of data

points. SKEW is zero for a normal distribution. Negative SKEW indicates that the

distribution is skewed left and positive SKEW indicates that the distribution is skewed

right. Skewed left means that the left tail is longer than the right tail and vice versa.

Generally, asymmetry of fluctuations may increase (SKEW increases) on approaching

a catastrophic bifurcation, as the potential landscape near the transition would be less

steep on one side of the equilibrium than the other (Guttal and Jayaprakash, 2008;

Scheffer et al., 2009). Kurtosis (K) gives information about whether the distribution has
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heavy tails, or is more centred. The kurtosis of a normal distribution is 3, and a higher

K indicates more outliers in the data. Very close to the tipping point, a comparatively

longer distribution with fatter tails results in a high value of kurtosis, K > 3. If Kurtosis

is less than 3, it means that the distribution has lesser outliers compared to the normal

distribution. The kurtosis is the fourth standardized moment and is defined as follows:

K =

∑N
i=1 (pi − p)4 /N

σ4
(6.5)

where p is the mean, σ is the standard deviation and N is the number of data points.

Apart from these conventional measures, we investigate the fractal characteristics of

the data close to tipping (Nair and Sujith, 2014; Sujith and Unni, 2020). We use the

Hurst exponent (H), which is related to the fractal dimension (D) of the time series

(Mandelbrot, 1983; Hurst, 1951) as H = 2 − D. For a fractal time series, the scaling

of the rms of the standard deviation of fluctuations with the length of the data segment

gives H . We calculate H following the algorithm of Multifractal Detrended Fluctuation

Analysis (MFDFA)(Kantelhardt et al., 2002), which is described in detail in sec. 3.4.1.

H is a measure of persistence or correlation of a signal. If an increase in the value

is more likely to be followed by another increase in value, then the signal is called

persistent. A persistent or a positively correlated signal has H > 0.5, an anti-persistent

or negatively correlated signal (an increase in value is mostly followed by a decrease

in value, or vice versa) have H < 0.5 and uncorrelated white noise has H = 0.5.

Fractal analysis has found a variety of applications in life sciences, engineering,

econophysics, and geophysics (Ivanov et al., 1999; Hu et al., 2004; Grech and Mazur,

2004; Vandewalle and Ausloos, 1997; Grech and Pamuła, 2008; Alvarez-Ramirez et al.,

2008; Matos et al., 2008; Domino, 2011; Suyal et al., 2009; Kilcik et al., 2009; Nair

and Sujith, 2014; Unni and Sujith, 2015; Gotoda et al., 2012). For instance, it has

been used to distinguish healthy patients from patients with heart failures (Ivanov et al.,

1999; Havlin et al., 1999). Similarly, the variations in the H of geoelectric and seismic

fluctuations provide indicators for earthquakes (Telesca et al., 2001). In econophysics,
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Qian and Rasheed (2004) used H as a measure of financial market predictability. In the

present study, we use H to predict critical transitions in a thermoacoustic system.

To study the effect of rate of change of parameter on the performance of the

aforementioned EWS, we plot the variation of these measures as a function of P for

three representative cases of r: 5 mV/s, 30 mV/s and 80 mV/s in the first, second and

third column, respectively (Fig. 6.4). We compute the measures for a moving window

of size 1 s with an overlap of 0.9 s. The choice of this particular window size is to

ensure that at least 100 cycles of oscillations are covered in a window. The Hopf point

(µ) is marked at 600 W with a red coloured arrow for reference, even though the tipping

occurs after a delay. p′rms indicates the growth in the amplitude of oscillations during the

transition. VAR detects the transition almost at the same P where the amplitude rises

which is reflected as a steep increase in the p′rms at the onset of TAI, while SKEW and K

seem to perform slightly better than p′rms and VAR. Initially, we observe small negative

SKEW values indicating a slightly left/negatively skewed distribution, and during the

transition, it shifts to a slightly right/positively skewed distribution. Nevertheless, there

is no significant change in SKEW during the transition, since −0.5 < SKEW < 0.5 is

generally considered as symmetric distribution. Thus, the distribution has not changed

in terms of skewness, and we cannot consider the change in SKEW as a precursor for

the tipping. Besides, kurtosis has a value ∼3 pertaining to a normal distribution during

the quiescent state. After the transition to TAI, kurtosis reduces to a value lower than

3. It appears that in all the cases, there is a local maxima for the kurtosis at the onset

of TAI. However, we observe a drop in the kurtosis for the first case (Fig. 6.4e), prior

to the tipping point. Close to the tipping, the variation of kurtosis is not consistent for

different rates: it reduces for the first case (Fig. 6.4e) and increases for the other cases

(Fig. 6.4k,q). Hence, we do not recommend K as a good EWS for critical transitions in

practical systems.

Among these conventional measures, lag-1 autocorrelation (AC) appears to be the best

EWS for this type of transition. An initial quiescent state results in near zero AC

117



Fig. 6.5: Rate of change of p′rms, lag-1 autocorrelation (AC), and Hurst exponent (H)
with P is plotted for different rates of change of V . The maximum rate of
change of AC and H occurs much before the maximum growth of p′rms. As
the rate of change of input voltage with time (dV /dt) increases (from (a)-(d)),
the delay (in terms of P ) in growth of amplitude increases.

due to the low amplitude uncorrelated noise. AC increases as periodicity increases

and approaches 1 for limit cycle oscillations. It is clear from these experiments that

AC is a more robust early warning measure compared to p′rms, VAR, SKEW and K.

Earlier studies (Gopalakrishnan et al., 2016a; Ghanavati et al., 2014) have reported that

autocorrelation in the presence of fluctuations is a less effective precursor compared to

variance. Actually, variance starts to build up gradually long before the transition, but

it increases rapidly only at the tipping point. In fact, variance is the square of p′rms. As

we do not know the amplitude of oscillations in the final state, it is difficult to rely on

variance to determine when the transition will take place. In contrast, the value of AC is

bounded between 0 and 1, and we know how close we are to the tipping from the value
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of AC.

The fractal based measure, H fluctuates between the values 0.2 to 0.5 for the fixed point

state. Even though the flow field is laminar, there is noise present in the fixed point

state originating from different sources such as the compressor or electronic noises.

Therefore, the fixed point state with low amplitude aperiodic noisy fluctuations would

give H values between 0.2 and 0.5. During the transition to the state of limit cycle

oscillations, H approaches zero. H captures the periodicity (or the loss of fractal nature)

in the data even if the amplitudes are very low. We start observing an emergence of

periodicity as we approach the tipping point. The inherent noisy fluctuations perturb

the system from the stable fixed point. These noise-induced oscillations occur at

frequencies centred around the natural frequency of the system and the oscillations

decay in time. These fluctuations contain very low amplitude bursts of periodicity

which has oscillations around the natural frequency of the system (Wiesenfeld, 1985).

Capturing this slight periodicity in the system variables close to the transition, H starts

to decrease towards 0 well-before the rms of fluctuations grows. For very slow rates, H

tends to decrease before µ (Fig. 6.4f). For relatively faster rates, the tipping is delayed

significantly from µ; nevertheless, H forewarns the tipping well-before the rise in p′rms

(Fig. 6.4l,r).

We repeat the computations of all EWS for data acquired at many different rates of

change of V . The results shown in Fig. 6.4 are for three representative cases from this

collection of data. A similar inference is obtained for even faster rates of change of

voltage up to 240 mV/s. In all the cases, AC and H prove to be the better measures to

forewarn an impending TAI compared to other measures such as VAR, SKEW and K,

and both AC and H have comparable effectiveness.

In summary, there are two things happening on approaching the transition; one is

the growth of the amplitude of oscillations due to Hopf bifurcation, and the second

is the increase in temporal correlation. Out of all the EWS discussed here, rms and

variance capture the growth of amplitude of oscillations; skewness and kurtosis detect
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the changing distribution of data during the transition; lag-1 autocorrelation determines

the increasing correlation between consecutive time instants; H looks at the increasing

correlation as well as the emergence of periodicity. AC and H are capturing features

that are different from the features captured by p′rms, VAR, SKEW and K. Variance,

skewness and kurtosis do not change if we were to shuffle the data randomly. However,

AC and H will change upon shuffling the data. Hence, AC and H are capturing the

temporal correlations present in the data more than just the statistical characteristics

of the data. From Fig. 6.5, it is clear that the increase in correlation occurs prior to

the growth of amplitude. Therefore, AC and H are able to predict the tipping well in

advance. For faster rates of change of control parameter, growth of correlation occurs

at a much lower parameter value than the growth of amplitude in the signal.

6.4 VARIATION OF WARNING TIME WITH RATE

Our analysis shows that AC and H are effective EWS for critical transitions in the

considered thermoacoustic system. Next, we compare the early warning time for

different rates using AC and H . Till now, we were focused on the warning in

the parameter space, i.e., at what parameter value we can predict, compared to the

tipping point. Ultimately, EWS need to be compared across both temporal domain and

parameter space.

Figure 6.6-6.7 show the variation of H and AC as a function of the control parameter

(left column) and time (right column), for different values of r. Variation of p′rms is

plotted on the right axis for comparison. A window of 20 s time interval is shown (right

column) for all the plots, for the sake of comparison. The time t′ is selected as a time

instant before the tipping point within a window of 20 s. The warning time is marked as

τ (blue shaded region in Figs. 6.6-6.7). We calculate τ by selecting a threshold in AC

and H so that, when it crosses the threshold we are warned of an impending tipping.

In the present case, we select AC = 0.4 and H = 0.1 as the threshold, because H never

reduces to 0.1 unless the system is proceeding towards an impending tipping. Similarly,
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Fig. 6.6: Variation of p′rms and H evaluated for data acquired at different rates of change
of V is plotted as a function of the P (left column - a,c,e,g,i,k) and time
(right column - b,d,f,h,j,l). Rate of change of parameter increases from top to
bottom. For all these rates, we are able to predict the tipping using H , before
p′rms starts to increase. The green dotted line represents to the threshold value
of H = 0.1. The warning time before the tipping (marked with blue colour) is
the difference between the time at which H crosses the threshold and the time
at which maximum rate of change of p′rms is observed.
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Fig. 6.7: Variation of p′rms and AC is plotted as a function of control parameter, P , (left
column - a,c,e,g,i,k) and time, t, (right column - b,d,f,h,j,l) evaluated for data
acquired at different rates of change of P . Rate of change of control parameter
increases from top to bottom. For all the transitions shown, AC provides an
early warning before p′rms starts to rise. The green dotted line represents to the
threshold value of AC. The warning time, τ , (marked with blue colour) is the
difference between the time at which AC crosses the threshold and the time at
which maximum rate of change of p′rms is observed.
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Fig. 6.8: The effect of rate of change of control parameter on EWS for critical
transitions

AC also has fluctuations, but, AC = 0.4 is out of bounds for the quiescent state. The

green dotted line in Figs. 6.6-6.7 corresponds to the selected threshold value of H = 0.1

or AC = 0.4. The time between H = 0.1 or AC = 0.4 and the onset of TAI (corresponds

to the maximum rate of change of p′rms) is considered as τ . This choice of threshold

for AC and H are not unique, and any other slightly different threshold also will work

equally well. Before the amplitude rises steeply, we have more warning time (τ ) in the

case of a relatively slower rates shown in Fig. 6.6b,d.

In terms of the parameter, we get warning at a parameter value well ahead of the tipping

point for faster rates (Figs. 6.6k,l and 6.7k,l). However, the time needed to reach the

tipping point is really short, as the rate of change of P is fast. Hence, we have relatively

lesser time to implement control actions for faster rates (Figs. 6.6k,l and 6.7k,l). For

slower rates, we have more time for control, but we are close to the tipping point in the

parameter space (Fig. 6.6a,b and 6.7a,b). As we are going closer to the tipping point

in case of slower rates, there is a possibility of N-tipping if external noise or inherent

fluctuations of significant magnitude are present. The analysis of warning time using
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AC provides a similar inference, wherein slower rates result in more warning time and

faster rates give more early warning in terms of the control parameter (Fig. 6.7). These

findings are summarized in Fig. 6.8.

Fig. 6.9: Warning time (τ ) obtained from (a) AC and (b) H are plotted as a function
of r in logarithmic scale. (b) The value of τ decreases with r following an
inverse power law relation as τ ∝ rn with n = -0.76 ± 0.10 and n = -0.84 ±
0.08 for AC and H , respectively. The threshold for obtaining warning is 0.4
for AC and 0.1 for H .

Next, we examine how the warning time (τ ) varies with the rate of change of voltage

with time (r = dV /dt). We calculate τ by selecting a threshold, as mentioned in the

preceding paragraph. As we increase the rate, τ decreases drastically (see Fig. 6.9). We

observe an inverse power law relation between the warning time and the rate of change

of parameter as τ ∝ rn with n = - 0.76 ± 0.10 and n = -0.84 ± 0.08 for AC and H ,

respectively. The uncertainty in fitting is estimated with 95% confidence. The scaling

with a constant exponent holds for a range thresholds for AC (threshold: 0.2-0.8) and H

(threshold: 0.15-0.06). The scaling using different thresholds are shown in Appendix

B.

124



6.5 QUANTIFICATION OF THE PERFORMANCE OF EARLY WARNING

SIGNALS

We quantify how reliable an early warning measure is in avoiding false alarms, and

how sensitive it is to missing subtle warning signs. We use a method known as

‘Receiver Operating Characteristic (ROC)’ to quantify this trade-off between reliability

and sensitivity of EWS. In other words, ROC illustrates the trade-off between false

alarms and failed detection.

Fig. 6.10: The distributions of three different early warning signals (Auto correlation
at lag-1 (AC), Hurst exponent (H), and skewness (SKEW)) are shown for
the case of the stable system (orange) and the system approaching a critical
transition (violet). The corresponding ROC are shown in the bottom row.
The dotted diagonal line representing a random classifier such as a coin toss
is shown for a comparison. Here, AC and H show better performance than
SKEW.

The top row of Fig. 6.10 shows the distribution of different EWS under the case

of the stable system and the system approaching a critical transition. The closer

these distributions are to each other, the more severe the problems of false alarms

and failed detection. If they overlap exactly, then it is difficult to tell apart. From

these distributions, following Boettiger and Hastings (Boettiger and Hastings, 2012b),
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we estimate ROC which represents the true positive rate and the corresponding false

positive rate at any detection sensitivity. Suppose the EWS measure is increasing during

the critical transition, the false positive rate is the integral of the distribution of the

measure for the stable system right side of a selected threshold. The integral of the

distribution under the right side of the threshold for the system approaching a transition

gives the true positive rate. The sensitivity and accuracy of an EWS depend on both

the indicator and the data available. Here, in Fig. 6.10, I show representative cases of

indicators and datasets.

6.6 MODEL FOR NOISY HOPF BIFURCATION WITH CONTINUOUS

VARIATION OF PARAMETER

In the present study, we use the model of a nonlinear oscillator with additive noise

exhibiting subcritical Hopf bifurcation (Noiray, 2017).

η̈ + αη̇ + ω2η = η̇
(
β +Kη2 − γη4

)
+N1, (6.6)

dα

dt
= 2rt,

where η and η̇ are the state variables, α and β are linear damping and driving

respectively and ω is the natural frequency. We use additive Gaussian white noise N1 of

intensity Γ1 with an autocorrelation < N1N1 τ >= Γ2
1δ(τ). Following Noiray (2017),

the values of the parameters ω, β, γ and K are kept constant as follows: ω = 2π× 120

rad/s, β = 50 rad/s, γ = 0.7, and K = 9. We select a low value of Γ1 =
√
10−1 as

we are modelling a laminar system. Here, the linear damping (α) can be considered as

the bifurcation parameter analogous to the control parameter in the experiment. α is

reduced from 200 rad/s to -50 rad/s to capture the subcritical Hopf bifurcation from a

state of stable fixed point to limit cycle oscillations.

In order to study the effect of rate of change of parameter in the model, we vary α

continuously. In experiments, the heater power is changing nonlinearly even though we
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Fig. 6.11: (a) Bifurcation diagram showing the variation of η′rms as a function of linear
damping, α. The Hopf point (µ) is at α = 50 rad/s, where α = β. (b) The
time series of η obtained by solving Eq. 6.6 for a continuous variation of α
is shown along with a zoomed view of the bursts occurring during the fixed
point state.

vary V linearly. To replicate a similar variation of the control parameter, we change α

as α = α0 + r t2 in the model. Initially, the linear damping α is high (200 rad/s) to

obtain a fixed point. Upon decreasing α, once α = β, the fixed point becomes unstable.

However, there has to be a non-zero perturbation for the system to escape from the fixed

point. The additive white noise term (N1) in Eq. 6.6 constantly perturbs the system from

the fixed point and helps to jump to the limit cycle state. In experiments, even though

the system is laminar, low amplitude noisy fluctuations are always present in the flow

field.

Although the above model captures the dynamic transitions qualitatively, the initial

fixed point state appears to have bursts with a high level of periodicity (Fig. 6.11b),

unlike the noisy aperiodic fluctuations observed in the experiments. Notably, the

fixed point in Hopf bifurcation under the influence of noise contains fluctuations with

bursts of periodicity with shallow peaks near the fundamental frequency of the system

(Wiesenfeld, 1985; Fujisaka and Inoue, 1989). However, the experimental data appears

to be more aperiodic. In experiments, the base state with constant airflow and zero
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heater power itself generates low amplitude aperiodic pressure fluctuations which will

also get measured along with the system dynamics. This inherent fluctuations and the

measurement noise involved in the dynamics could be modelled by adding Gaussian

white noise (N2) with intensity Γ2 to the time series of η(t) obtained by solving the

model.

η(t) = η(t) +N2(t). (6.7)

We choose a noise intensity ratio, Γ2/Γ1 = 0.03, to replicate the experimental data

qualitatively. A very low value of Γ2/Γ1 would result in high values of AC and

low values of H due to the presence of low amplitude bursty oscillations during the

noisy fixed point state. As we gradually increase the intensity of external noise (i.e.,

increasing Γ2/Γ1), the values of H increases and AC decreases. Then, the values during

the transition also matches with those obtained from experiments. However, if we add

external noise more than necessary, it would suppress all the underlying dynamics and

produce AC = 0 and H = 0.5 due to the white noise characteristics. The addition of

external noise to the output with a particular ratio of intensity makes the signal more

aperiodic and match the characteristics of experimental data.

Now, with this model, all the previously discussed EWS are computed for data

generated with different rates of change of α is shown in Fig. 6.12. For all the measures,

we observe a similar performance as that observed for the experiments. Again, AC and

H provide a better warning for an impending TAI compared to the other measures. For

faster rates of change of parameter, SKEW and K predict the tipping slightly better for

the model when compared to the experiments. For slower rates of change of parameter,

the transition is more abrupt in terms of the control parameter and all measures except

AC and H detect this very close to the tipping point. In contrast, the growth of amplitude

of fluctuations is more gradual for faster rates of change of parameter, and the other

measures (SKEW and K) are also able to predict the tipping before η′rms and VAR

increases.

Next, we analyze the warning time obtained using AC and H for different rates of
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Fig. 6.12: Variation of η′rms, lag-1 autocorrelation (AC), variance (VAR), skewness
(SKEW), kurtosis (K) and Hurst exponent (H) with the parameter α
during the transition to limit cycle oscillations in the model. Each column
corresponds to the results for a particular rate of change of α ((a)-(f): r =
-0.0005, (g)-(l): r = -0.05, (m)-(r): - r = -5). The point of the maximum
rate of change of η′rms is marked with a red dotted line. For higher values
of r, kurtosis and skewness detect the tipping before η′rms and VAR. Here,
AC and H consistently give early warning well-before the transition to limit
cycle oscillations for all the rates.
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Fig. 6.13: Warning time (τ ) obtained from (a) AC and (b) H are plotted as a function
of r in a double logarithmic plot for both linear (blue colour) and quadratic
(green colour) variation of α. We observe a power law relation between τ
and AC and τ and H . The threshold chosen for obtaining warning is 0.4 for
AC and 0.1 for H .

change of α. The warning time reduces with the rate of change of parameter following

an inverse power law relation. We show the scaling for linear and nonlinear variation

of the parameter as α = α0 + rl t and α = α0 + rnl t
2 (Fig. 6.13). The trends are

qualitatively the same, even though the obtained exponents are different from those of

experiments. This difference in the exponent could be because of multiple reasons. The

transition depends on the rate of change of parameter, the initial value of the parameter

and the type and intensity of noise present in the system. Also, the other parameters such

as the β, κ and γ can be varied to adjust the model to represent the experimental system

better. In the current study, we vary V linearly; ideally, P has to vary as P = V (t)2/R,

where R is the resistance. However, R can change slightly with temperature as V

increases. In real systems, as we vary one parameter in the system, there can be multiple

parameters changing simultaneously. Hence, the actual control parameter in practical

systems can be a combination of multiple parameters. We do not attempt to obtain

the exact parameters and condition, but only aim for a qualitative match between the

experiment and the model.
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6.7 RELATION BETWEEN LAG-1 AUTOCORRELATION AND VARIANCE

CLOSE TO THE TIPPING POINT

Critical slowing down leads to an increased autocorrelation and variance of fluctuations

in a stochastically perturbed system approaching a bifurcation (Scheffer et al., 2009).

Near the critical point, AC tends to one, and VAR tends to infinity. Here, we examine

the variation of lag-1 autocorrelation (AC) with the variance of fluctuations close to the

tipping where the AC grows and saturates to 1. VAR stays nearly zero almost till the

onset of TAI and then shoots up to really high values. At the same time, AC increases

gradually during the transition. Here, we observe that AC scales with VAR following a

hyperexponential relation (Varfolomeyev and Gurevich, 2001),

d(V AR)

d(AC)
= k(V AR)a. (6.8)

Refer to Fig. 6.14a for the scaling obtained from experiments and Fig. 6.14b for data

from the model. The most common growth principle is exponential, where a = 1 in

the above equation. To determine the exponent a, we fit d(V AR)
d(AC)

with V AR in a double

logarithmic plot (Figs. 6.14c-d). The fitting is performed only for the data points in the

middle of the curve in Fig. 6.14a. The scaling shown in Fig. 6.14c is a representative

case of one experiment with a rate of 3 mV/s. The exponent is found to be a = 1.94 ±

0.02 for the experiments and a = 1.99 ± 0.01 for the model. On integrating Eq. 6.8,

we get V AR = [a1(k AC + constant)](1/a1), where a1 = −a + 1 and a ∼ 2 from

the Fig. 6.14. Finally, we have empirically found a relation between AC and VAR

for dynamic Hopf bifurcation as follows VAR ∝ −1
k AC+constant

. If we apply the limits

approaching the tipping point: VAR tends to infinity as AC tends to one, we get the

constant as −k and the final expression as,

V AR ∝ 1

1− AC
. (6.9)
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Fig. 6.14: (a-b) Increase in the variance of fluctuations as a function of AC shows a
curve increasing faster than exponential (hyperexponential). (c-d) To find
the exponent of the hyperexponential function, a linear fit is done on the
double logarithmic plot of d(A)

d(AC)
vs. VAR.

We observe the same scaling exponent for linear and nonlinear variation of the control

parameter in the model. The scaling relation seems to be independent of the functional

form of the parameter. This hyperexponential scaling observed in experiments and

model irrespective of the rate of change of parameter and the functional form of control

parameter suggests that this can be a scaling during the occurrence of dynamic Hopf

bifurcation.

6.7.1 Autocorrelation for turbulent systems

Generally, the increase in lag-1 autocorrelation on approaching critical transitions is

used as a measure of CSD. However, obtaining a significant increase in lag-1 AC to

warrant early warning is not so straightforward. Lag-1 AC can be high even before

the CSD, due to the presence of correlated dynamics in the system. In such cases,

one must be careful in using lag-1 AC as an indicator of CSD. Autocorrelation for

a time series can be evaluated at different lags. ACτ , the autocorrelation estimated
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at lag τ , may increase or decrease as we approach the critical transition. CSD

accompanies many types of bifurcations. However, the variation of ACτ is different

for the transition to non-oscillatory state (e.g., transcritical and fold bifurcations) and

transitions to oscillatory state (e.g., Hopf bifurcations). For non-oscillatory bifurcations,

ACτ decreases with lag. Whereas, for oscillatory bifurcations, the variation of ACτ is

periodic with lag, having a time scale depending on the dominant time scale during the

oscillatory state (Bury et al., 2020).

Conventionally, EWS using AC is computed for a particular lag throughout the

transition. Autocorrelation for all lags will increase on approaching the transition to

a non-oscillatory state (Fig. 6.15a). On the other hand, during the transitions associated

with an oscillatory state, autocorrelation may show an increasing or decreasing trend,

depending on the chosen lag (Fig. 6.15b). Selecting the most suitable lag is not trivial;

at lags lower than 1/4th of the time period, autocorrelation increases closer to the

transition, but it decreases for higher lags near half the time period. Bury et al. (2020)

explained this as a possible reason for the previously reported contradictory trends of

autocorrelation. We need prior knowledge of the time scales in the system to select the

appropriate lag. Relying on lag-1 AC for EWS, as generally followed, may not be the

correct method to capture such transitions in practical systems.

Nevertheless, lag-1 AC is shown to provide EWS in a laminar thermoacoustic system,

where the transition is a subcritical Hopf bifurcation from fixed point to limit cycle

oscillations (Pavithran and Sujith, 2021). Autocorrelation is almost zero for the

noisy fixed point state and 1 for LCO. In contrast, in a turbulent system, the stable

operating state is not a fixed point with noise; rather, it is characterised by deterministic

fluctuations arising from the turbulent flow (Tony et al., 2015). These turbulent

fluctuations possess a high correlation between each time instant, resulting in a very

high value for AC at lag-1 (Fig. 6.16b). In general, AC at lag-1 may not work for any

given deterministic system. Thus, we need to explore the performance of AC for several

lags to capture the transition.

133



Fig. 6.15: Autocorrelation as a function of lag for (a) fold bifurcation and (b) Hopf
bifurcation. Autocorrelation function is plotted at various parameter values
on approaching the bifurcation and are plotted in different colours ranging
from blue to orange. As we approach the transition, this autocorrelation
function changes as indicated by the arrows. For fold bifurcation, AC
increases at all lags. In contrast, the trend of AC depends on the lag for
Hopf bifurcation. During the transition, AC increases for lags less than T/4
and decreases for lags near T/2. Reproduced with permission from Bury
et al. (2020).

Towards this purpose, we use acoustic pressure data during the transition to

thermoacoustic instability in a turbulent combustor. Refer Sec. 3.2.1 for more details on

the experimental setup and the measurements. We vary the control parameter (Reynolds

number) continuously towards thermoacoustic instability. We calculate AC for several

lags up to a maximum lag corresponding to 2 cycles of oscillations. AC at low lags have

high values for stable operation as well as for thermoacoustic instability, because of the

correlated nature of the fluctuations. Instead of AC at lag-1, we can plot the variation of

AC at different lags to find the most sensitive lag to capture the transition. Using only

the data before transition, finding the optimum lag for each system may be difficult for

real systems. We define a general AC vector with many different lags, and the variance

of such a vector can be used as EWS for turbulent complex systems. The variance of

autocorrelation over τ (VAR(AC)) for the data acquired for a constant change of airflow

rate of 10 SLPM/s shows better performance as EWS compared to rms, lag-1 AC, and

variance (see Fig. 6.16). VAR(AC) captures the transition well before the amplitude

grows. Further, it is a bounded measure wherein values change between 0 to 0.5, unlike

the variance of the signal. In the presented case, we observe that the performance of
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Fig. 6.16: The variation of EWS calculated for pressure fluctuations obtained from
a turbulent combustor where the control parameter is varied continuously.
Here, the rms and variance increase gradually with increase in the control
parameter, whereas AC at lag 1 hardly changes during the transition.
However, the Hurst exponent and the variance of AC detects the transition
much before p′rms rises. The variance of AC for multiple lags increases and
approaches a maximum of 0.5. The autocorrelation is a periodic function of
lag for a periodic signal and the variance of AC over two cycles would be
0.5.
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VAR(AC) in detecting the transition is as good as the Hurst exponent.

6.8 SUMMARY

We study several early warning signals for critical transitions in a thermoacoustic

system. Compared to the quasi-static bifurcation, the onset of tipping is delayed when

the control parameter is varied continuously at a finite rate. We confirm the observation

of increased delay with increase in the rate of change of control parameter. By analyzing

the performance of various early warning signals, we observe that the variance, kurtosis

and skewness do not provide adequate warning; they change only when p′rms rises. The

lag-1 autocorrelation and the Hurst exponent are able to predict the transition well-

before the tipping point. We confirmed this observation by performing experiments

at different rates of change of control parameter. For slower rates, AC and H give

more warning time compared to faster rates, even though we are relatively close to

the transition in terms of the parameter. On the other hand, for faster rates where

we have relatively lesser time to initiate control measures, AC and H capture the

tipping at a parameter value which is well ahead of the tipping point. Furthermore,

we notice that the warning time reduces with the rate of change of parameter following

an inverse power law relation. Then, we perform a similar analysis for a noisy Hopf

bifurcation model. The qualitative features of the EWS using the lag-1 autocorrelation

and the Hurst exponent are captured using the model. Finally, we empirically obtained

a relation between lag-1 autocorrelation and the variance of fluctuations for dynamic

Hopf bifurcation. This hyperexponential scaling is found to be independent of the

functional form of variation of the control parameter.
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CHAPTER 7

Rate-dependent transitions in complex systems

Critical points are often related to bifurcations, wherein the system undergoes a

transition from one state to another upon varying a system parameter past a critical

value (May, 1977; Scheffer et al., 2009). However, in some scenarios, if the parameter

is varied faster than a critical rate, unexpected transitions occur, which are absent for

slow rates and quasi-steady variations. Such transitions are called rate-induced tipping

(R-tipping) (Ashwin et al., 2012). In engineering practice, the stability margins are

usually estimated by varying control parameters either in a quasi-steady manner or

at a very slow rate. However, in reality, the control parameters change continuously

and even exhibit sudden variations. An unexpected R-tipping during a rapid variation

of a parameter would be catastrophic. In this chapter, we demonstrate R-tipping

experimentally in a real-world complex system, namely a turbulent thermoacoustic

system. To investigate the mechanism of R-tipping, we perform experiments by

varying the control parameter at constant rates. Motivated by the experiments, we

use a nonlinear oscillator model exhibiting Hopf bifurcation to illustrate R-tipping and

generalize the mechanism of tipping to complex systems with competing slow and fast

parameters involved.

7.1 INTRODUCTION

Rising carbon dioxide levels in the atmosphere continue to heat our planet, which

is rapidly approaching a critical climate change leading to unanticipated catastrophic

consequences (Lenton et al., 2019; Lovejoy and Nobre, 2019). Climate change can

affect ecosystems and trigger abrupt transitions. Natural systems such as the earth’s

climate, wildlife populations, and ecosystems exhibit sudden changes in their state

(Carpenter et al., 1999; Scheffer et al., 2001). Such transitions include epileptic

seizures, asthma attacks, migraines, algae blooms in lake ecosystems, extinction of



species in ecosystems and desertification (Venegas et al., 2005; Litt et al., 2001; Ortiz

et al., 2020). A sudden transition to a contrasting state due to a gradual change in the

system parameter is generally known as ‘tipping’(Lenton et al., 2008). In real-world

complex systems, these transitions are often ‘not easily reversible’ and have prolonged

consequences or result in the collapse of the entire system. Here, complex systems

refers to systems comprising many interacting subsystems whose interactions can lead

to emergent phenomena. The positive feedback mechanisms in complex systems are

found to be the basic ingredients of tipping (Scheffer et al., 2012; Angeli et al., 2004).

The use of bifurcation theory helped understand the problem of unexpected tipping in

many systems (Kuznetsov et al., 1998; Thompson and Sieber, 2011). Whenever the

tipping is induced by a bifurcation, the stability margin can be identified by estimating

the stability of the equilibrium states. In such cases, the tipping point is nearly the same

as the bifurcation point. However, the tipping point can deviate from the bifurcation

point due to the presence of random fluctuations (noise) in the system or time-dependent

variation of the parameters (Baer et al., 1989; Unni et al., 2019a). The system relaxes

back to the stable equilibrium for small perturbations due to noise. For sufficiently

high noise intensity, there is a possibility of escaping from the basin of attraction,

before reaching the expected tipping point (N-tipping) (Ashwin et al., 2012; Ritchie and

Sieber, 2017; Ditlevsen and Johnsen, 2010). Further, parameters varying continuously

at a finite rate can delay tipping; this is commonly known as rate-delayed tipping or

slow passage through bifurcation (Baer et al., 1989). On the other hand, instances

of advanced tipping are also reported (Suchithra et al., 2020; Manikandan and Sujith,

2020).

Many real-world systems are non-autonomous. In natural systems, the parameters often

vary continuously on their own, whereas we vary them intentionally in engineering

systems. Throttling in aircraft engines is an example of a situation where we change the

parameter continuously. In contrast, parameters in the climate system such as global

temperature or planetary albedo vary on their own. Therefore, one should consider the
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rate at which the parameter varies while studying critical transitions in real systems.

Fast rates of change of parameters introduce interesting effects on tipping, including

unexpected tipping even without having an underlying bifurcation.

Ashwin et al. (2012) classified this category of tipping as rate induced tipping (R-

tipping), where a slow variation of a parameter does not show any tipping. Only fast

variations of the parameter (faster than a critical rate) lead to tipping; such tipping

does not need any change in the stability of equilibrium states. They defined R-tipping

as a condition where the system fails to track the continuously changing quasi-steady

attractors and tips to an alternative stable state. While the quasi-steady or sufficiently

slow variation of parameter does not result in any bifurcation, a continuous variation

at a rate faster than the critical rate results in tipping. In other words, the dynamical

system, ẋ = f(x, a), does not exhibit bifurcation upon varying the parameter a;

however, it can undergo transition upon changing r, where ȧ = r. Recently, a

different mechanism of R-tipping called preconditioned R-tipping was discovered by

Tony et al. (2017) and illustrated in an experimental thermoacoustic system and in a

model exhibiting subcritical Hopf bifurcation. Here, the bifurcation parameter itself is

continuously varied at different rates within a bistable region. They achieved R-tipping

by preconditioning the system with a high initial perturbation and then by variation of

the parameter at a fast rate. The high amplitude initial perturbation alone is not sufficient

to induce tipping. Fast rates of change of parameter above a critical rate results in

tipping; the system directly approaches a stable limit cycle instead of decaying to a

fixed point.

In all the above scenarios, the variation of a system parameter has to exceed a threshold

rate for a runaway change to occur, wherein the system abruptly leaves an attractor.

The resulting change can be reversible as well, as described by Wieczorek et al. (2011).

Their work on excitable slow-fast systems showed the possibility of rate dependency

and a new mechanism of tipping in a climate system model. A reversible type of R-

tipping was observed, where the system can be excited, with a ramped parameter, from
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the existing attractor and return to it repeatedly. They used the climate-carbon cycle

model with global warming to explain a potential climate tipping point known as the

compost-bomb instability (an explosive release of soil carbon into the atmosphere).

This dangerous sudden tipping may come with no early warning. Most of the generic

early warning signals work by capturing the signatures of the underlying bifurcation

(Carpenter and Brock, 2006; van Nes and Scheffer, 2007). However, R-tipping need

not be accompanied by a change of stability of the system (bifurcation); as a result, the

occurrence of R-tipping is challenging to predict. Therefore, we need to understand the

mechanisms behind them to predict such transitions, especially in real-world complex

systems.

The theoretical studies explaining the mechanism of R-tipping are shown with models

and do not have any experimental evidence. At the same time, experimental

observations of R-tipping as reported by Manikandan and Sujith (2020) lack the

understanding of the underlying mechanism. Due to the limited accessibility to the

system variables in experiments, the existing theories do not explain these results. To

address this issue, we perform experiments in a real-world complex system, a turbulent

thermoacoustic system, by measuring other slow varying parameters to identify the

mechanism. We experimentally show a mechanism of R-tipping in complex systems

with positive feedback. We describe experiments in the following section.

7.2 EXPERIMENTS

Turbulent combustors are used in rockets and aircrafts for propulsion, and power-

producing gas turbines. A turbulent thermoacoustic system is a complex system

that exhibits rich dynamical transitions originating from the nonlinear interactions

between the sound waves, the hydrodynamic field, and the flame inside the combustor.

Under certain operating conditions, the interactions between these subsystems establish

a positive feedback mechanism (Sujith and Unni, 2020). This positive feedback

mechanism drives the system towards a self-organized state known as thermoacoustic
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Fig. 7.1: (A) Schematic of the laboratory-scale turbulent combustor used for this study.
A backward-facing step combustor with a combustion chamber having a cross-
section of 90 mm × 90 mm and a length of 800 mm is used. The air flow
enters through the inlet to the plenum chamber. We vary the Re of the flow
continuously. Time series of pressure oscillations acquired for (B) a slow
variation (dRe/dt = 42 s−1) and (C) a fast variation of Reynolds number
(dRe/dt = 106 s−1). Initially, we observe a state of low amplitude aperiodic
fluctuations for low values of Re in both cases. Then, the system transitions
to a state of periodic oscillations with very high amplitude (∼8000 Pa) for the
fast variation of Re. Even though we are varying Re in the same range, we do
not observe a high amplitude limit cycle for the slow variation of Re.
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instability. Transition to thermoacoustic instability is accompanied by a growth of

ruinously high amplitude pressure oscillations and is a catastrophic critical transition

that is undesirable.

The spontaneous emergence of high amplitude pressure oscillations in gas turbine

engines and rocket motors is a persistent challenge faced by the propulsion and power

industry (Juniper and Sujith, 2018; Sujith and Pawar, 2021). The phenomenon of

thermoacoustic instability can cause catastrophic damage to the system through severe

vibrations leading to structural failure, fatigue, failure of thermal protection systems,

failure of navigation and control systems, and reduced life span of the engine (Lieuwen

and Yang, 2005). The problems of thermoacoustic instability have even led to the failure

of space missions (Fisher and Rahman, 2009). Moreover, rate induced transitions

resulting in the unexpected occurrence of thermoacoustic instability are even more

dangerous as it is hard to detect the transition during quasi-steady experiments. In

this work, we investigate the possibility of rate induced transition to thermoacoustic

instability and elucidate the mechanism of R-tipping in a turbulent combustor.

We explain the experiments briefly here; for a detailed description of the experimental

setup, we refer the reader to George et al. (2018a). The turbulent thermoacoustic system

comprises a backward facing step combustor, a plenum chamber, and a decoupler

(Fig. 7.1A). The combustion chamber is 800 mm long. The air flow enters through the

inlet to the plenum chamber. The fuel (liquefied petroleum gas (LPG): 60% butane and

40% propane) is injected upstream of the combustion chamber. We ignite the partially

premixed reactant mixture using a spark plug. We use a fixed vane swirler of diameter

d = 40 mm for flame holding. The swirler has 8 vanes, with a vane angle of 40◦

with respect to the longitudinal axis. Once the flame is stabilized in the combustor, we

vary the mass flow rate of air, which, in turn, varies the Reynolds number (Re). Re is

considered as the control parameter in this study and is calculated as Re = 4ṁ/πµD0,

where ṁ = ṁa+ṁf is the total mass flow rate of the air-fuel mixture, µ is the dynamic

viscosity of the mixture and D0 is the diameter of the circular duct just before the
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combustion chamber.

In the present study, we vary Re continuously by controlling the mass flow rate of air,

ṁa, as a linearly increasing function of time. The mass flow rate of fuel, ṁf is kept

constant at 0.76 g/s, and ṁa is increased from 7.76 g/s to 13.07 g/s at different rates,

and Re varies from 1.3× 104 to 2.2× 104. The corresponding variation in equivalence

ratio is from 0.99 to 0.59. The equivalence ratio is defined as ϕ =
(ṁf/ṁa)actual

(ṁf/ṁa)stoichiometry
,

where ṁf and ṁa are the mass flow rates of fuel and air, respectively. The flow rates

of air and fuel are controlled using mass flow controllers (Alicat, MCR series) with an

uncertainty of ±(0.8 % of reading + 0.2 % of full scale). The corresponding maximum

uncertainty in Re is ±2.5%. To study the dynamical transitions in the system, we

measure the pressure fluctuations inside the combustor (at a sampling rate of 4 kHz)

using piezoelectric pressure transducer (PCB103B02) mounted at a distance of 360

mm from the swirler. The sensitivity of the transducers is 217.5 mV/kPa, and the

maximum uncertainty is ±0.15 Pa. A K-type thermocouple is used to measure the

wall temperature of the combustion chamber close to the swirler at a distance of 90 mm

from the backward facing step. The pressure signals are acquired using a 16-bit A/D

card (NI-6343), and the temperature data are acquired by a 24-bit A/D card (NI-9211)

at a sampling rate of 4 Hz.

We perform experiments by varying Re at different rates (from dRe/dt = 35.2 s−1

to 140.8 s−1). We keep all the operating conditions the same, except for the rate

of variation of the control parameter. The rate of change of the Reynolds number,

dRe/dt, is kept constant for a particular experiment. First, we present an analysis

of the data acquired from two trials of experiments with two different values of

dRe/dt. One experiment is performed at a relatively slow rate (dRe/dt = 42 s−1),

and the total duration of the experiment is 200 s (Fig. 7.1B). The system remains in a

state of low amplitude aperiodic fluctuations throughout the entire range of Reynolds

numbers. Next, we present another data for an experiment conducted at a faster rate

(dRe/dt = 106 s−1) where the Reynolds number is varied in the same range, but for a
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duration of 80 s (Fig. 7.1C). Here, as the Reynolds number varies, the system exhibits

a transition from low amplitude aperiodic fluctuations to high amplitude limit cycle

oscillations. We observe a sudden jump from a low amplitude state to a high amplitude

periodic oscillatory state. During the state of low-amplitude fluctuations, the amplitude

spectrum shows a wide band of frequencies, and after the transition it becomes a narrow

peak centered around 190 Hz. I have performed the experiments for this study at IIT

Madras.

7.3 R-TIPPING IN A TURBULENT THERMOACOUSTIC SYSTEM

To analyze the experiments performed at different dRe/dt, the root mean square (rms)

of acoustic pressure fluctuations, calculated for a moving window of 1 s and overlap of

0.9 s, is plotted as a function of Re for different values of dRe/dt (Fig. 7.2). We do not

observe tipping for slow rates of variation of Re (dRe/dt ≤ 60.3 s−1), whereas, fast

rates of variation of Re (dRe/dt > 60.3 s−1) result in a transition to thermoacoustic

instability. We observe two different dynamics at rates lower and higher than a critical

rate, for the same range of control parameter values. dRe/dt ∼ 60.3 s−1 is the

‘experimentally observed’ critical rate in this case. This idea of the critical rate will

be clearer when we discuss the model.

The inset in Fig. 7.2 shows the rate of change of p′rms which helps to identify the

point of maximum growth in the amplitude of pressure fluctuations. Such a point

of maximum change in p′rms is identified as the tipping point (Pavithran and Sujith,

2021). This plot is drawn considering only the cases where there is tipping (i.e., for

rates faster than the critical rate, dRe/dt > 60.3 s−1). An interesting observation is

that there is an advancement in the tipping point with the increase in the rate change

of parameter, contrary to the rate-dependent tipping-delay observed in earlier studies

(Baer et al., 1989; Pavithran and Sujith, 2021; Tandon et al., 2020). The peak in the plot

shifts towards lower values of Re with an increase in the rate of change of parameter;

i.e., the tipping point advances for faster rates. Although advanced tipping has been
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Fig. 7.2: Bifurcation diagram for experiments performed at different dRe/dt. We vary
Re in the same range at different rates, thereby having different duration for
the experiments. For each experiment, we plot the rms of pressure oscillations
as a function of Re. We observe rate-induced tipping to high amplitude limit
cycle oscillations for faster variations of the parameter (dRe/dt > 60.3).
Slower rates of variation below a critical rate do not lead to a jump in p′rms. The
inset figure shows the rate of change of p′rms, wherein the maximum increase
in amplitude appears as a peak. This helps to define a tipping point when
control parameters vary continuously. The advanced onset of thermoacoustic
instability with fast rates of change of parameter can be clearly observed here.

reported earlier in various complex systems (Suchithra et al., 2020; Manikandan and

Sujith, 2020), to date, there is no physical explanation for such advancement of tipping

with fast rates of variation of parameters. To identify when to expect advanced tipping

(contrary to delayed tipping) in non-autonomous systems, we proceed to investigate the

mechanism behind the rate induced tipping observed in this thermoacoustic system and

then generalize it by illustrating it in a mathematical model.

To analyze the experiments performed at different dRe/dt, the root mean square (rms)

of acoustic pressure fluctuations, calculated for a moving window of 1 s and overlap of

0.9 s, is plotted as a function of Re for different values of dRe/dt (Fig. 7.2). We do not

observe tipping for slow rates of variation of Re (dRe/dt ≤ 60.3 s−1), whereas, fast
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rates of variation of Re (dRe/dt > 60.3 s−1) result in a transition to thermoacoustic

instability. We observe two different dynamics at rates lower and higher than a critical

rate, for the same range of control parameter values. dRe/dt ∼ 60.3 s−1 is the

‘experimentally observed’ critical rate in this case. This idea of critical rate will be

more clearer when we discuss the model. The inset figure in Fig. 7.2 shows the rate of

change of p′rms which helps to identify the point of maximum growth in the amplitude

of pressure fluctuations. Such a point of maximum change in p′rms is identified as the

tipping point (Pavithran and Sujith, 2021). This plot is drawn considering only the

cases where there is tipping (rates faster than the critical rate, dRe/dt > 60.3 s−1).

An interesting observation is that there is an advancement in the tipping point with

the increase in the rate change of parameter, contrary to rate-dependent tipping-delay

observed in earlier studies (Baer et al., 1989; Pavithran and Sujith, 2021; Tandon et al.,

2020). The peak in the inset plot of Fig. 7.2 shifts towards lower values of Re with

an increase in the rate of change of parameter, i.e., the tipping point advances for

faster rates. Although advanced tipping has been reported earlier in various systems

(Suchithra et al., 2020; Manikandan and Sujith, 2020), to date, there is no explanation

for such advancement of tipping with fast rates of variation of parameters. To identify

when to expect advanced tipping (contrary to delayed tipping) in non-autonomous

systems, we proceed to investigate the mechanism behind the rate induced tipping

observed in this thermoacoustic system and then generalize it by illustrating it in a

mathematical model.

7.4 THE MECHANISM OF R-TIPPING

We investigate the mechanism behind rate-induced tipping to high amplitude limit cycle

oscillations observed in our thermoacoustic system. We examine the evolution of the

wall temperature of the combustor to understand the dynamics during the transition.

The walls of the combustor get heated up gradually during the experiment, and

therefore the wall temperature varies continuously at a finite rate. Therefore, the wall
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Fig. 7.3: Variation of wall temperature in time as a function of the control parameter.
The dark blue curves, which are increasing up to high temperatures, represent
slow rates. In contrast, the faster variations of Re result in comparatively
lower values of wall temperature at a given value of Re (dark red). Even
though the increase in wall temperature is gradual in time, due to the difference
in the duration of the experiments, we obtain significantly different wall
temperatures for a given Re for experiments at different dRe/dt. Hence,
different paths are obtained in the (Re, T ) parameter plane. Note that each
curve in the figure corresponds to experiments of different duration.

temperature is another variable that varies simultaneously with the control parameter

at a different rate. Thus, we have a non-autonomous dynamical system. Figure 7.3

shows the variation of wall temperature with change in Re. Note that we start all the

experiments at room temperature (25◦C ± 1◦C), then ramp (parameter variation) after

a constant delay after ignition. Each of the curves in Fig. 7.3 corresponds to different

duration of experiments; therefore, higher values of wall temperatures are attained in

the experiments having longer duration corresponding to slow variations in Re. On

the other hand, the increase in wall temperature is relatively small for fast variations in

Re. Thus, the wall temperatures for a given Re are different for slow and fast rates;

it is relatively higher for slower rates of change of Re compared to that of faster rates.

Therefore, in this 2-parameter plot, the system tracks different directions depending
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on the rate of change of Re and reaches a different set of parameters. Thus, different

dynamics can be expected for these cases, as each set of parameters can drive the system

towards different attractors. Note that we do not discuss quasi-static variation in the

experiments; we have to wait asymptotically keeping the parameters constant, which is

not possible in this case as the wall temperature is changing continuously.

Most importantly, the system did not undergo any transition to limit cycle oscillations

for slow rates with relatively high wall temperatures. As tipping is not observed

for higher wall temperatures, we examine the effect of wall temperature on acoustic

damping. Towards this purpose, we measure the decay rate (ζ) of acoustic pressure

oscillations, which is a measure of the acoustic damping, at different wall temperatures.

7.4.1 Measuring damping at high temperatures

To understand the role of wall temperature in R-tipping, we have to determine how a

change in wall temperature contributes to the damping/driving in the system. At room

temperatures, without any inlet flow, we can measure damping by exciting the natural

modes of the combustor duct using an externally driven speaker. A sinusoidal pressure

perturbation is generated, the speaker is abruptly switched off, and the decay rate of

periodic oscillations is estimated. We extract the envelope of amplitude and fit a line

in the semi-logarithmic plot of the envelope to estimate the decay rate. The decay of

amplitude of the signal is fitted with an exponential (e−ζt) function.

It is hard to measure damping at high temperatures by using externally driven speakers,

as done for room temperature measurements. Therefore, we use a different method,

where we establish the system in the state of thermoacoustic instability and abruptly

cut off the fuel supply and stop the combustion. We start the experiments by keeping all

the operating conditions but the wall temperature the same, and then vary Re to reach

the state of thermoacoustic instability. The wall temperature is recorded throughout the

experiment, and the specific value is noted at the instant when the flow of fuel is cut.
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Fig. 7.4: A representative acoustic pressure signal showing the decay of oscillations
when the fuel is cut abruptly. We extract the amplitude envelope of oscillations
and fit a line in the semi-log plot to calculate the decay rate.

7.4.2 The effect of wall temperature on acoustic damping

The plot of the decay rate as a function of the wall temperature (Fig. 7.5) shows

that the the acoustic damping increases with increasing wall temperature depicting

a clear a linear relation between them. Interestingly, this type of a relation

between wall temperature and acoustic damping has not been reported till now in

turbulent thermoacoustic systems to the best of our knowledge, and the physical

mechanisms behind such a dependency of acoustic damping on temperature needs

further investigation. An increase in Re corresponds to an increase in acoustic driving)

in time, and the acoustic damping increases simultaneously at a rate that we do not have

any control over.

Although we are varying a single parameter during the experiment, there is another

“hidden" parameter continuously changing on its own, at a different rate. We vary Re

continuously to drive the system towards thermoacoustic instability. Concurrently, the

continuously increasing wall temperature increases the acoustic damping in the system.

The transition to thermoacoustic instability occurs when the thermoacoustic driving

overcomes the acoustic damping in the system. As the walls of the combustor are

heated only for a shorter duration for experiments corresponding to fast variation of Re,
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Fig. 7.5: To explore the dependency of acoustic damping on the wall temperature, we
measure the decay rate of the envelope of acoustic pressure oscillations, ζ , as
a function of the wall temperature. We conduct a set of experiments wherein
the combustion is stopped abruptly by cutting off the fuel supply during the
state of periodic oscillations. We fit an exponential function to the envelope
of oscillations (Culick and Kuentzmann, 2006; Perry, 1970) to measure the
rate of decay of oscillations at different wall temperatures. We observe that
the decay rate (a measure of acoustic damping) increases with increasing wall
temperature. We fit a straight line to obtain an empirical relation between the
decay rate and the wall temperature.

the wall temperatures attained are relatively lower, leading to lower levels of acoustic

damping. Therefore, it is easy to overcome acoustic damping at a comparatively lower

level of thermoacoustic driving, resulting in an advanced onset of tipping for faster

variations of Re.

The applicability of this mechanism of R-tipping is not restricted to thermoacoustic

systems. In fact, it can be observed in any system where two parameters vary

simultaneously, given that each has the opposite effect on the driving mechanism

of a critical transition. Then, the competition between the two variables determines

whether and when the tipping will occur. For instance, this mechanism can explain the

potential climate tipping point, the ‘compost bomb instability’(Luke and Cox, 2011).

The compost bomb instability occurs above a specific rate of global warning when

heat is generated in the soil faster than it can escape to the atmosphere. This can, in
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turn, significantly accelerate global warming. Wieczorek et al. (2011) have studied R-

tipping to compost bomb instability in an analytical framework and derived conditions

for the critical rate and excitability threshold. However, they have viewed it from

a different perspective of excitable systems. Here, we illustrate the mechanism of

R-tipping discussed and generalize its occurrence to various systems using a system

independent nonlinear oscillator model with two time varying parameters.

7.5 R-TIPPING IN A NOISY HOPF BIFURCATION MODEL

A simple model of a nonlinear oscillator (a Van der Pol oscillator with higher order

terms) exhibits subcritical Hopf bifurcation.

η̈+αη̇+ω2η = η̇
(
β + κη2 − γη4

)
+ξ (5)

Here, α and β are the linear damping and driving terms, respectively. The variations

in α and β can be considered analogous to varying wall temperature and Re in

the experiments. The additive white noise ξ with intensity Γ and autocorrelation

< ξξτ >= Γδ(τ) is added to represent the inherent fluctuations in the system variables.

The values of the parameters ω, γ, κ and Γ are kept constant (ω = 2π× 120 rad/s, β =

50 rad/s, γ = 0.7, κ = 9, Γ = 105), following Noiray (2017). The linear damping (α)

and driving (β) are varied. Whenever the damping (α) is greater than driving (β), any

perturbations decay to the fixed point state (η = 0) and for β > α the system exhibits

limit cycle oscillations. The fixed point state appears as low-amplitude oscillations in η

due the presence of noise. The transition from the state of low-amplitude fluctuations

to high amplitude limit cycle oscillations occurs when the value of β exceeds α. The

deterministic bifurcation curve is shown for α = 60 and β as the control parameter.

The nonlinear oscillator discussed in above exhibits a subcritical Hopf bifurcation

from a state of low amplitude aperiodic fluctuations to a high amplitude limit cycle

oscillations when the linear driving and damping are equal (β = α). Generally, the
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Fig. 7.6: Deterministic bifurcation diagram showing stable and unstable attractors.

effective driving, i.e., β − α, is considered as the control parameter in such models.

However, in reality, various processes contribute to driving and damping, and those

processes occur independently at different rates. Hence, we consider such a scenario

where β and α vary at different rates.

β = β0 + β̇t (7.1)

α = α0 + α̇t. (7.2)

Here, we choose α as a monotonically increasing function of time, varying at a constant

rate (α̇) and β is our control parameter. We vary β at different rates (β̇) - slower and

faster compared to the rate of variation of α. Figure 7.7 shows two cases with faster and

slower rates of β compared to α. When β is varied at a rate faster than α̇, the transition

to limit cycle is observed for β > α (Fig. 7.7A). In the second case, wherein β is varied

at a relatively slower rate, the driving never exceeds damping, and the system does not

transition to limit cycle oscillations (Fig. 7.7B).

For the driving to match the damping, the variation of α and β must intersect at some

point, as shown in Fig. 7.7A. This happens only when β varies faster than α, as we start

the system from a state of α > β (noisy fixed point state). When α is varying in time

starting from a high value, β has to vary at a rate faster than α, for tipping to occur in
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Fig. 7.7: Time series of η obtained by solving the model with continuously varying α
and β. We vary α at a constant rate and β at different rates: (A) fast (β̇ = 1)
and (B) slow (β̇ = 0.1) rates. Here, a constant variation of α corresponds
to a linearly increasing damping. Whenever the rate of change of driving is
faster that the rate of variation of α, we observe tipping (β̇ > α̇). The high
amplitude limit cycle oscillations occur when driving exceeds damping (A).
Driving never exceeds damping for β̇ < α̇ (B).

the system (β̇ > α̇). When β̇ = α̇, the trajectories of α and β do not intersect. If β̇ > α̇

and they meet in a finite time within the duration of experiments, tipping occurs. Thus,

there exists a critical rate of change of β above which tipping occurs. However, it is

difficult to find out such critical rate in experiments where β̇ = α̇. For β̇ slightly greater

than α̇, the driving intersects damping at very high value of driving (at a very large t),

thereby making it hard to detect the correct critical rate in experiments.

Next, we examine the dynamics for two different rates of change of β, i.e., β̇ > α̇. One

important aspect to remember here is the rate-dependent tipping delay, well studied in

the literature. Baer et al. (1989) have discovered bifurcation delay when the control

parameter is swept through the bifurcation point, and the same has been confirmed later

by many others (Bonciolini et al., 2018; Park et al., 2011; Berglund, 2000; Majumdar

et al., 2013). Such rate-dependent delay due to memory effects is commonly observed

and is more prominent for fast rates. Hence tipping gets delayed from the bifurcation
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Fig. 7.8: Time series of η and the corresponding variation of α and β are shown for two
different rates change of β. In both the cases, β̇ > α̇, i.e., β is faster than α.
The onset of tipping is when driving crosses damping. However, as damping
varies in time, we need more driving to overcome damping for slow variation
of driving.

point for fast rates. However, we do not observe rate-dependent delay; in contrast,

we observe advanced tipping for faster rates of variation of the control parameter (β).

Figure 7.8 shows the dynamics corresponding to β̇ = 1 and β̇ = 0.4. For β̇ = 1,

the variation of β is fast enough to cross α earlier before it grows to high magnitudes,

whereas β crosses α at a large value (analogous to higher Re in experiments) for the

slow rate (β̇ = 0.4). Thus, we observe tipping at lower values of β as we vary β faster.

The Hopf bifurcation model discussed here is a representative case where competing

parameters vary continuously at finite rates.

7.6 SUMMARY

In this work, we show the possibility of rate-induced tipping in a turbulent

thermoacoustic system. When we vary the Reynolds number continuously at a slow
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rate, the system remains in the same dynamical state and does not exhibit any tipping.

In contrast, if the Reynolds number is varied fast enough, we observe a transition to a

state of thermoacoustic instability with high amplitude limit cycle oscillations. In order

to understand the mechanism behind this rate induced tipping in the context of transition

to thermoacoustic instability, we explore the variations of other system parameters such

as the wall temperature and damping.

We discover that the wall temperature varies continuously at a slow rate. In other words,

another parameter, which is not in our control, varies simultaneously at a different rate.

Experiments conducted at faster rates of change of Re last for shorter duration and

the increase in wall temperature is smaller. In contrast, the wall temperature increases

gradually to very high values for experiments conducted at slower rates of change of

Re, which last for a longer duration. Then, we measure the acoustic damping rate by

estimating the decay rate of oscillations in the system for different wall temperatures

and discover that the damping increases linearly with increasing temperature. Thus,

we infer that the fast variation of parameters could take the system to a different set of

parameters where the damping is very low and can be excited to a high amplitude limit

cycle that was otherwise inaccessible.

The increase in Re drives the system towards thermoacoustic instability, whereas

the increasing wall temperature increases damping and, in turn, reduces the effective

driving. Here, we find a mechanism of R-tipping, where two parameters that have

the opposite effect on tipping compete to determine the dynamics. Motivated from

the experimental observations, we use a simple system-independent model of Hopf

bifurcation to illustrate this phenomenon. When we vary a control parameter which

drives the system towards tipping and there exists another parameter that has negative

effect on transitions, the control parameter has to be varied at very high rates to

achieve tipping. This mechanism and explanation for R-tipping is very general and

system independent. To date, such a type of R-tipping has not been explained in any

experimental systems. As R-tipping in real-world systems is extremely dangerous,
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understanding the mechanism of R-tipping would enable better predictions of R-

tipping.
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CHAPTER 8

Conclusions and future prospects

In this thesis, we explore the dynamics during critical transitions in diverse physical

systems. Specifically, in the first part of the thesis, we focus on finding universal

features of critical transitions in disparate systems. Then, early warning signals and

amplitude prediction methods are developed based on the obtained universal features

close to critical transitions. In the last two chapters, we study critical transitions in

non-autonomous systems with control parameters varying at different rates. The main

findings of the thesis are summarized here.

Firstly, experiments were performed in three different fluid mechanical systems to study

the critical transition to oscillatory instabilities. From the analysis of time series of

fluctuating system variables, the oscillatory instabilities in turbulent flows are found to

emerge following a universal route. The amplitude of the dominant mode of oscillations

scales as inverse power law with the Hurst exponent of the time series of the appropriate

state variable. The scaling exponent is invariant across the three systems considered,

namely aeroacoustic, aeroelastic and thermoacoustic systems. Here, we report the

experimental observation of an inverse square law (A ∝ H−2) for a class of non-

equilibrium systems. In literature, such power law scaling have been discovered for

various critical transitions.

Then, we extend our search of universal features during critical transitions to various

systems such as optical and electronic systems (a random laser and a Chua’s circuit).

A much more general behaviour during the self-organization to ordered dynamics in

fluid mechanical, optical or electronic systems is discovered. We observed spectral

condensation in the power spectrum of the appropriate system variables (in the emission

spectrum in the case of the optical system), where the energy distributed in broadband

of frequencies gets condensed into a dominant mode. A set of spectral measures

are defined to compare and quantify spectral condensation in different systems.



Quantifying the sharpening of the peak in the power spectrum revealed a universal route

through which spectral condensation occurs in fluid mechanical, optical and electronic

systems. The dominant peak in the power spectrum sharpens with an increase in peak

power following inverse power law relations with the spectral measures. Such an

inverse power law scaling is observed for all the systems studied, and, interestingly,

the scaling exponents are within a small range across the systems.

The discovery of these unique scaling relations has an immediate practical application;

it enables a priori estimation of the amplitude of oscillations at the onset of oscillatory

instability. This information of the amplitude can be critical in devising counter-

measures needed to limit the possible damages from oscillatory instabilities. We present

two different methods, based on the two scaling relations, to predict the amplitude

during oscillatory instability using time series data well before the critical transition.

Using the universal scaling relations between the amplitude of the dominant mode

of pressure oscillations and both the Hurst exponent and spectral measure, we show

that the amplitude of limit cycle oscillations during thermoacoustic instability can

be predicted. We demonstrate that this method can accurately predict the amplitude

in practical systems by applying this procedure to data from different combustors.

Manufacturers of industrial gas turbines can use both these methods to estimate the

amplitude during thermoacoustic instability, even without approaching anywhere close

to it. In other words, the amplitude can be estimated without endangering the combustor

by exposing it to large amplitudes.

In the last two chapters, critical transitions in non-autonomous systems are studied.

Delayed transitions are observed for continuous variation of the control parameter. The

delay increases with the rate of change of parameters for the experiments performed

in a laminar thermoacoustic system. By analyzing the performance of various early

warning signals, the lag-1 autocorrelation and the Hurst exponent are found to predict

the transition well before the onset. Here, we find that the warning time reduces with

the rate of change of parameter following an inverse power law relation. Then, we
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empirically obtained a hyperexponential relation between lag-1 autocorrelation and the

variance of fluctuations for dynamic Hopf bifurcation, which is found to be independent

of the functional form of the variation of the control parameter. All these results are

captured and illustrated using a Hopf bifurcation model.

Finally, a possibility of rate induced tipping for fast variations of control parameters

in complex systems is experimentally demonstrated in a thermoacoustic system. Such

rate induced tipping can occur unexpectedly, which will not be identified during the

stability analysis by quasi-steady experiments. Slow variations of control parameter did

not exhibit any critical transitions, whereas fast enough variation of parameter cause

transition to high amplitude thermoacoustic instability. We explore the mechanism

behind this rate induced tipping and discover that another parameter, which is not in

our control, varies continuously at a slow rate. This mechanism of critical transition is

not restricted to a thermoacoustic system, but it can occur in any other system where

two competing parameters vary simultaneously. We demonstrate this phenomenon in a

simple system-independent model of Hopf bifurcation.

Scope for future work

As an extension to the works on universality during critical transitions, an analytical

investigation to explain the empirically obtained scaling relations can be done.

The well-developed framework of equilibrium phase transitions can be extended to

understand the physical reasons behind the power law scaling observed during the

critical transitions. Further analysis can be performed to find the corresponding

universality classes using the much studied concepts such as percolation. Further,

the transition to oscillatory instabilities in turbulent systems is found to follow an

intermittency route. The known types of intermittencies in the literature do not follow

the scaling relations presented in this thesis. Therefore, the specific route of the

emergence of oscillatory instabilities might have a different type of intermittency. More

detailed work is needed to identify the type of intermittency. We have mainly focused
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on universality during the emergence of oscillatory phenomena or Hopf bifurcation.

Extending the analysis to other types of bifurcations is a possible direction in the future.

Apart from understanding the physics behind the universal features of critical

transitions, we can also extend the research on early warning signals and the amplitude

predictions methods based on the generic features close to the transition. In the future,

we would most probably see artificial intelligence (AI) based methods or a combination

of AI with physics-based methods such as that presented in this thesis to forewarn

impending critical transitions and predict the amplitude of oscillatory instabilities. AI

based models are currently heavily used for the purpose of forecasting, especially

for financial and weather data. Such methods, when applied to engineering systems,

in combination with physics based approaches, offer the promise of giving us more

powerful tools to predict the amplitude of catastrophic critical transitions to oscillatory

instabilities.

Further, in the current work, we have analysed the effect of continuous variation of

system parameters on early warning signals. Experimental studies considering the

continuous variation of system parameters during the critical transitions are limited. We

have performed these experiments on a laminar thermoacoustic system where inherent

flow fluctuations are not significant compared to turbulent systems. This is done to

study the effect of rate on critical transitions independently, keeping the effects of noise

apart. However, in reality, the presence of different levels of noise is unavoidable.

Hence, we should study the interplay of noise and rate of change of parameter on early

warning signals together, perhaps in turbulent systems, which are closer to the scenario

in practical systems. Another possible idea is to derive the hyperexponential relation

between autocorrelation and variance presented in Chapter 6 for Hopf bifurcation and

other types of bifurcations.

Explanation of the mechanism of R-tipping in real-world systems was lacking, and

we found a possible mechanism in a complex system where two parameters vary

continuously. Such an attempt can be made for other systems as well, where unexpected
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transitions could be dangerous. Understanding the mechanism of R-tipping can help

devise control strategies. As of now, there exist no early warning signals for R-tipping.

Developing early warning signals for R-tipping and a combination of rate and noise

induced tipping will be of great practical relevance since such transitions are dangerous

and observed very common.
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APPENDIX A

Test for scaling during transitions from chaos to limit cycle via

other types of intermittency

We discuss the results obtained from mathematical models that show the transition from

chaos to periodic oscillations via different types of intermittency.

A.1 TYPE I INTERMITTENCY

To study the transition from chaos to periodic oscillations through type I intermittency,

we consider the example of a three-dimensional Lorenz system Manneville and Pomeau

(1979). The system is described as,

ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy (A.1)

We choose σ = 10, β = 83 and ρ as the control parameter which is varied from 175

to 165 in steps of 0.05. In these range of values of the control parameter, the system

shows a gradual transition from a chaotic state to a state with finite intervals of regular

oscillations amidst intermittent bursts of irregular oscillations and finally to a periodic

attractor. The oscillations in the state z are shown in Fig. A1. There is no particular

scaling relation observed when we plot the amplitude corresponding to the dominant

frequency versus Hurst exponent in a logarithmic scale (Fig. A2a).

We use another example of a generalized Lorenz model Macek and Strumik (2014) to



Fig. A1: The oscillations in the state z for selected values of ρ of the Lorenz system.
The top figure corresponds to the state of periodic oscillations at ρ = 165.
We observe type I intermittency (middle figure) around ρ = 166.5. The fully
chaotic state (ρ = 172) is shown in the bottom figure.

confirm the results for type I intermittency.

Ẋ = σ(Y −X)− ω0W

Ẏ = rX − Y −XZ

Ż = −bZ +XY

Ẇ = ω0 − σmW (A.2)

This model shows Type I intermittency Macek and Strumik (2014) for the following set

of parameters: r = 256, σ = 10, σm = 1, b = 8/3. Here ω0 is the control parameter

and is varied between 3.65 and 3.85 in steps of 0.005. The variation of amplitude with

Hurst exponent is plotted in Fig. A2b. No particular scaling behaviour is observed

during the transition in both Fig. A2a & b.

A.2 TYPE II INTERMITTENCY

The model used to obtain the transition from chaos to limit cycle with type II

intermittency is a periodically driven third-order nonlinear oscillator Richetti et al.
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Fig. A2: Variation of the amplitude of the dominant mode with Hurst exponent is
plotted in a logarithmic scale for the data generated from models showing
type I intermittency. (a), (b) correspond the three dimensional Lorenz model
and the generalized Lorenz model respectively. There is no particular scaling
observed during the transition in both a & b.

(1986). The following ODE describes the system.

...
x + ηẍ+ νẋ+ µx+ k1x

2 + k2ẋ
2 + k3xẋ+ k4xẍ

+k5x
2ẍ = Fcos(ωt) (A.3)

Figure A3 represents the results after solving the equation (Eq. A.3) for the parameter

values F = 0.5, ω = 15, η = 1, ν = 1.2, k1 = -100, k2 = 120, k3 = 0, k4 = -20 and

k5 = 100. Richetti et al. Richetti et al. (1986) reported this model results showing

type II intermittency. They stated that there have been no examples identifying type-II

intermittency in either real experiments or in simulation studies. Later, an experimental

observation of type II intermittency in a coupled nonlinear oscillator has been reported

Huang and Kim (1987). So, we show only one example for this case.

The parameter is varied to observe the transition from a periodic signal (µ = 1.1) to

chaos (µ = 1.22). Further, we observe type II intermittency (µ = 1.16). The amplitude of

the dominant mode is plotted with Hurst exponent and shown in Fig. A4. No particular

scaling behaviour is observed during the transition via Type II intermittency.
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Fig. A3: Time series obtained from a model that shows type II intermittency. The top
figure represents periodic oscillations corresponds to µ = 1.1. We observe
intermittent transitions to chaos at µ = 1.16 and to a fully chaotic state around
µ = 1.22.

A.3 TYPE III INTERMITTENCY

We study the transition from periodic to chaos through type III intermittency,

following the work done by Malasoma et al. Malasoma et al. (1994), considering the

parametrically excited nonlinear system.

ẍ(t) + cẋ(t) + (ω2
0 + fcos(ωt))x(t) + ax2(t)

+bx3(t) = 0 (A.4)

where, c is the damping coefficient, a and b are quadratic and cubic nonlinearity

coefficients, and ω0 is the natural frequency of the system. Here, f and ω are the

amplitude and the frequency of the sinusoidal parametric excitation. The system is

solved for the parameters c = 0.2, ω0 = 1, a = 1.5, b = 0.5 and F = 0.85. We observe

periodic oscillations, intermittency and chaos (Fig. A5) at 1.6886, 1.7086 and 1.1682

values of ω respectively.

Type III intermittency can also be seen in the generalized Lorenz model Macek and
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Fig. A4: Variation of the amplitude of the dominant mode with Hurst exponent is
plotted in a logarithmic scale for the data generated from model showing type
II intermittency. There is no particular scaling observed during the transition.

Strumik (2014) which is described earlier in the case of type I intermittency. The

same model for the following set of values show type III intermittency: r = 28, σ =

10, σm = 1, b = 8/3. Here ω0 is the control parameter and is varied between 2.8 and

5.8 in steps of 0.1. Figure A6 shows the corresponding variation of the amplitude with

Hurst exponent for the two models with type III intermittency. We observe that there is

no particular scaling relation.

In summary, the models discussed here which exhibit transition from chaos to limit

cycle through type I, II & III intermittencies do not seem to follow the scaling behavior

observed in the experiments reported in this paper. We note that in general, turbulence

may not fit into universality classes.
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Fig. A5: Time series obtained from a model of a parametrically excited nonlinear
system that shows type III intermittency. The figure represents periodic
oscillations (top figure) intermittency (middle figure) and a fully chaotic
state (bottom figure). We observe a bifurcation happening from periodic
oscillations to chaos through type III intermittency.

Fig. A6: Variation of the amplitude of the dominant mode with Hurst exponent is
plotted in a logarithmic scale for the data generated from models showing type
III intermittency. (a) plot of A vs. H for a parametrically excited nonlinear
system. (b) plot ofA vs. H for generalized Lorenz model with particular
values of the parameter. There is no power law scaling observed during the
transition in both the cases.
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APPENDIX B

Selection of threshold for Hurst exponent and spectral measures

B.1 LOWER LIMIT FOR THE MEASURES

By definition, both H and the spectral measure [µ2µ0] reduce towards zero as we

approach TAI. However, H and [µ2µ0] will never attain the value of zero because of the

discrete representation of the analog signal. To estimate the lower limit of H and [µ2µ0]

in practical scenarios, we construct a unit amplitude sinusoidal signal with the same

frequency as the natural frequency of the system and with the same sampling frequency

as that of the experimental data. Such a constant amplitude sine wave is representative

of the maximally “clean" periodic dynamics possible during thermoacoustic instability.

The H and spectral measure for this sinusoidal signal are considered as limit A in

Fig. 5.7. Thus, the estimated amplitude corresponding to limit A is the maximum

possible amplitude for a given system configuration.

Fig. B.1: (a) A typical time series representing pressure fluctuations acquired from
experiments during TAI and (b) a synthetic sine wave signal. The zoomed
view shows the periodic nature of the signal.

Figure B.1(a)-(b) shows the time series of pressure fluctuations acquired from the

experiments during TAI and a synthetic sine wave signal with the same frequency,

respectively. In contrast to the regularity in a clean sinusoidal signal, experimental data

of pressure fluctuations during TAI have inter-cycle variability in the amplitude. The



values of H and [µ2µ0] for a clean sine wave will be close to zero, and the estimated

amplitude will be higher than practically attainable amplitudes in highly turbulent

systems exhibiting smooth transition via intermittency.

B.2 UPPER LIMIT FOR THE MEASURES

To avoid such an over-estimation of amplitude using limit A, we construct a sine wave

with amplitude modulations to define limit B. We do not add any noise to get the

envelope fluctuations; rather we use characteristics of time series data during stable

operation. We extract the envelope (E) of the pressure fluctuations during CN using

the Hilbert transform. Then, we construct a unit amplitude sine wave (sin ωt) and

multiply it with (1 + Enormalized) as follows, x(t) = (1 + Enormalized)sin ωt. Here,

Enormalized = (E˘mean(E))/max(E).

Figure B.2(a) shows three representative time series (I, II & III) acquired from the

experiments (before the onset of TAI). The extracted envelope (E) is shown with a

violet color. These envelopes are normalized as mentioned before and used to modify

the sine waves. The time series in each row I, II, & III of Fig. B.2(b) corresponds to the

sine waves multiplied with the extracted envelopes from Fig. B.2(a). The zoomed plot

(Fig. B.2(c)) shows that the signal is sinusoidal with amplitude modulations.

In Fig. B.2(a), the time series I & II represents CN, and III corresponds to INT. From

Fig. B.2(b)I-III, we observe that the signal’s envelope becomes less noisy (see the black

curves indicating the envelopes of the sine waves). The signal in III b resembles the

experimental data more than I b. The values of H and [µ2µ0] for the sine waves with

the envelope extracted from the three representative time series I, II & III are shown in

Fig. B.2(d). As expected, the values of H and [µ2µ0] for the sine wave with the envelope

of INT (Fig. B.2(b)-III) are slightly lower than that of the case with combustion noise.

Using the signal with the lower H and [µ2µ0] shifts the limit B towards limit A (i.e.,

the difference between the two limits is reduced). Hence, we can narrow the range of

estimated amplitudes (between A and B) by using the data for intermittency instead of
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Fig. B.2: (a) Time series showing acoustic pressure signals during the states of stable
operation. Three representative signals I, II & III are shown along with the
extracted amplitude envelope. (b) Amplitude modulated sinusoidal signals
with the envelope of experimental data shown in (a). The time series I - III
are acquired during the transition towards TAI; I & II represent CN, and III
corresponds to INT. From I - III (b), we observe that the envelope of the signal
becomes less noisy. The zoomed plot (c) shows that the signal is sinusoidal
with slight amplitude variations. The limit B evaluated for H and [µ2µ0] for
the signals in (b) are shown in (d).

combustion noise to extract the amplitude envelope.
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APPENDIX C

Robustness of EWS with the threshold and test for false warnings

C.1 ROBUSTNESS OF EWS WITH THE THRESHOLD

We observe that the inverse power law scaling between the warning time and rate of

change of parameter is consistent with almost the same exponents for different values

of thresholds of EWS as shown in Fig. C.1.

Fig. C.1: The inverse power law scaling between the warning time and rate of change
of parameter is plotted for different values of thresholds for (a) AC and (b) H .

C.2 ANALYSIS TO CHECK FALSE WARNINGS

To check for false warnings, we calculate EWS for data for cases where transition to

thermoacoustic instability does not occur. Here, we have the time series data acquired

for constant values of voltage (quasi-static experiments). Figure C.2 shows one such

data and the corresponding variation of all the EWS. This is a representative case of

data for voltage = 1.6 V and heater power = 253.7 W, and we have confirmed these

observations by analysing many data sets which are taken for quasi-static experiments.

We wait at a particular value of control parameter far below the Hopf point, and there

is no transition to limit cycle oscillations as expected. All the EWS calculated for a

moving window show constant values indicative of a low amplitude aperiodic state, for



Fig. C.2: Acoustic pressure fluctuations (p′) acquired for a constant value of control
parameter (voltage = 1.6 V and heater power = 253.7 W), lower than the Hopf
point. The time series contains only low amplitude aperiodic fluctuations,
and there is no transition to limit cycle oscillations. The rms of pressure
fluctuations is plotted along with the signal in the top plot. The corresponding
variation of all the EWS is shown as subplots. We calculate the EWS for a
moving window of 1 s with an overlap of 0.98 s. p′rms, AC, VAR, SKEW, K
and H stay nearly constant for the total duration of the experiment, and we do
not observe any significant change in the values of EWS.

the entire length of the data. Hence, we do not observe any false warnings for these

EWS.
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