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ABSTRACT

KEYWORDS Combustion; Premixed flames; Thermoacoustic instabilities;

Continuous and abrupt transitions; Intermittency and mixed-mode

oscillations; Explosive synchronization; Open-loop control

Thermoacoustic instabilities observed in turbulent combustion systems have disastrous

consequences and are notoriously challenging to model, predict, and control. Such

instabilities are characterized by self-excited periodic oscillations, resulting from the

constructive coupling between the acoustic pressure fluctuations and the unsteady heat

release rate from the flame(s). In this thesis, we discuss the transitions to thermoacoustic

instabilities in three disparate laboratory-scale combustors and their control by actuating

the swirler.

In our initial study, we show the changes in the nature of bifurcation leading to longitudinal

thermoacoustic instability when equivalence ratio and bulk velocity are systematically

varied in the annular combustor. Depending upon the bulk velocity, we observe different

states of combustor operation when the equivalence ratio is varied. These states include

combustion noise, intermittency, low-amplitude thermoacoustic instability, mixed-mode

oscillations, and high-amplitude thermoacoustic instability. A close inspection of the

global and local flame dynamics reveals significant differences in the flame-flame

interactions and structures across the periodic part of intermittency, low and high

amplitude thermoacoustic instability, and mixed-mode oscillations. We further quantify

the degree of temporal and spatiotemporal synchronization between different flames, and

flames and pressure fluctuations using the Kuramoto order parameter and phase-locking

value. To understand the underlying principle behind the criticalities of bifurcation, we

present two distinct modeling approaches. The first approach is based on modeling the

heat release rate fluctuations as nonlinear functions of the acoustic pressure, while the

second approach is based on considering the flame response as an ensemble of phase

v



oscillators. The first approach successfully explains the temporal dynamics, while the

second approach can reproduce both temporal and spatiotemporal dynamics observed in

the experiments.

In our subsequent study, we alter the annular combustor geometry to excite azimuthal

thermoacoustic instability. Our focus lies in investigating the transition to azimuthal

thermoacoustic instability in the modified setup. We report that the transition from

combustion noise to azimuthal instability occurs through a mode-switching phenomenon

where the combustor switches from longitudinal mode to azimuthal mode as the

equivalence ratio is decreased. Throughout this progression, the combustor exhibits

various dynamical behaviors, including intermittency, dual-mode instability, standing

azimuthal instability, and beating azimuthal instability. These dynamical states are

determined from eight pressure transducers by decomposing the acoustic pressure

fluctuations into clockwise and counterclockwise waves, enabling a reconstruction of

the amplitude of acoustic pressure fluctuations, nature angle, nodal line location, and

spin ratio. The global heat release response is also assessed during different dynamical

states to contrast their behavior at different non-dimensional time steps by computing the

phase-averaged fluctuations of the heat release rate over the acoustic pressure cycle. A

number of differences were observed in the flame behavior depending on the direction

of pressure wave propagation, demonstrating characteristic counterclockwise (CCW)

spinning, standing, and clockwise (CW) spinning heat release patterns. Additionally, we

quantify the flame-flame interaction during the various dynamical states.

In our final study, we present experimental observations and a synchronization model for

the suppression of thermoacoustic instability achieved by rotating the otherwise static

swirler in a lab-scale turbulent combustor. Starting with the state of thermoacoustic

instability in the combustor, we find that a progressive increase in the swirler rotation

rate leads to a transition from the state of limit cycle oscillations to low-amplitude

aperiodic oscillations through a state of intermittency. To model such a transition while



also quantifying the underlying synchronization characteristics, we introduce feedback

between the ensemble of phase oscillators and the acoustic field. The coupling strength

in the model is carefully determined, taking into account the influence of both acoustic

and actuating swirl frequencies. The link between the model and experimental results is

quantitatively established by implementing an optimization algorithm for model parameter

estimation. Remarkably, our model is capable of capturing the bifurcation characteristics,

nonlinear features of the time series, the probability density function, and the amplitude

spectrum of acoustic pressure and heat release rate fluctuations at various dynamical

states observed during the transition to the state of suppression. Most importantly, we

discuss the flame dynamics and demonstrate that the model without any spatial inputs

qualitatively captures the characteristics of the spatiotemporal synchronization between

the local heat release rate fluctuations and the acoustic pressure that underpins a transition

to the state of suppression.
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2.1 (a) Photograph of the annular combustor rig at IIT Madras, Chennai.
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3.7 (a) Time series of acoustic pressure oscillations obtained during
intermittency observed at 𝜙 = 0.47. (b) Aperiodic and (c) periodic part
of intermittency. (d-g) Mean-subtracted instantaneous
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4.2 Frequency distribution 𝑔(𝜔) of 𝑁 = 2 × 103 phase oscillators obtained
from the amplitude spectrum of heat release rate during the state of
combustion noise for the (a) bluff-body stabilized dump combustor, (b)
swirl-stabilized dump combustor and (c) annular combustor. Here, 𝜔 is
distributed relative to the acoustic frequency Ω̃0 and also normalized by
Ω̃0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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4.4 Abrupt secondary bifurcation to limit cycle oscillations in (a) swirl-
stabilized dump combustor and (b) annular combustor. The bifurcation
plots illustrate the comparison of the normalized amplitude 𝑝′rms obtained
from the experiments (□) and the model (–) as a function of equivalence
ratio (𝜙) and the model parameter (𝐾). The forward and reverse transitions
in the experiments are indicated as (□) and (■), while in the model are
indicated as (–) and (–), respectively. In panel (b), heat release rate data
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4.6 Correspondence between the control parameter in the model (𝐾) and
experiments (𝜙) obtained using gradient descent optimisation for the
(a) bluff-body stabilized dump combustor, (b) swirl-stabilized dump
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shown to highlight the appearance of global phase synchronization
during thermoacoustic instability. The experimental conditions for the
bluff-body and annular combustor correspond to the states shown in
figure 4.3 and figure 4.5, respectively. . . . . . . . . . . . . . . . . . . 94
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synchronization transition for the bluff-body stabilized combustor and
(b) abrupt first-order explosive synchronization transition for the annular
combustor. Panels (c-j) depict the instantaneous oscillator distribution in
the ¤𝜃𝑙 − 𝜓𝑙 phase space along with the distribution P( ¤𝜃𝑙) representative
of various dynamical states indicated in panels (a) and (b). Here, ¤𝜃𝑙 is
the normalized frequency of the 𝑙th oscillator, and 𝜓𝑙 is the relative phase
of the oscillator obtained by subtracting the phase of the heat release
rate oscillator by phase of the acoustic pressure. In panels (c-f), the
distribution of oscillators obtained from spatiotemporal imaging of the
combustors is depicted using a pink shade, while the oscillators from the
mean-field model using a blue shade. . . . . . . . . . . . . . . . . . . . 97

xix



4.9 Polar plot in the co-rotating frame showing the variation in the
instantaneous distribution of relative phases (𝜓𝑙) between the phase of
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⟨𝜓m⟩ along with the Kuramoto order parameter (𝑟) showing the level of
synchrony among the oscillators, respectively. The dashed line indicates
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CHAPTER 1

INTRODUCTION

1.1 COMBUSTION TECHNOLOGIES IN MODERN GAS TURBINES

Climate change due to emissions from human activity is one of the paramount challenges

in the twenty-first century. To tackle this urgent problem, stringent emission laws have

been implemented, including restrictions on the emission of both carbon dioxide (CO2)

and nitrogen oxides (NOx). Gas turbines primarily rely on the combustion of fuels such

as methane or natural gas, ethane, ethylene, propane, and butane (Lieuwen and Yang,

2005). Unfortunately, the combustion of these fuels leads to the emission of carbon

monoxide (CO), carbon dioxide (CO2), oxides of nitrogen (NOx), unburned hydrocarbons

(UHC) and particulate matter (PM). The emission levels of these pollutants from gas

turbines are directly linked to their diverse applications. For instance, aircraft gas

turbines face the challenge of maintaining combustion at varying power levels throughout

different stages of flight, necessitating the capability for re-ignition in the event of a flame

blow-out. Similarly, ground-based gas turbines deployed in power plants must adeptly

adjust power output based on energy demand, thereby restricting the choice of operating

parameters such as the air-fuel ratio, pressure, and temperature. These operational

demands inevitably lead to increased emissions of various pollutants at different stages

of gas turbine operation. Therefore, it is of great importance to reduce the emissions

from those sources as much as possible.

One promising strategy to curtail harmful gas emissions that has gained significant

attention in recent years is the rich-quench-lean (RQL) combustion chamber. The RQL

combustor is a type of low-emission combustor that has been shown to avoid favorable

combustion conditions for the formation of thermal NOx (Samuelsen, 2006). This is

achieved by controlling the fuel-air mixture in three distinct zones: a fuel-rich primary



Figure 1.1: Effect of equivalence ratio on NOx production and susceptibility to
thermoacoustic instability. Adapted from Zhao (2023) with permission
from Elsevier.

zone, a quenching zone, and a lean-burn secondary zone (Lefebvre and Ballal, 2010;

Lieuwen and Yang, 2013). However, for aero-engines where weight and space are

crucial, RQL combustors must deliver high power densities. This necessity increases the

risk of combustion or thermoacoustic instabilities, adversely affecting the operational

flexibility (Eckstein et al., 2006; Cai et al., 2010; Renner et al., 2022; March et al., 2023).

Additionally, limitations arise from the ability of the quenching process to rapidly and

uniformly dilute the fuel-rich mixture followed by transport it to the lean zone.

Another highly effective strategy for significantly reducing the production of NOx involves

lowering the temperature of the combustion process (Docquier and Candel, 2002). This

reduction can be achieved by operating in a lean regime, where there is more air than

required for the complete combustion process of the given amount of fuel. To ensure

that the emissions are kept at a minimum, it is crucial to achieve a thorough mixing of
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fuel and air before entering the combustion chamber, thereby reducing the chance of

having zones with rich mixtures where NOx can be more easily produced. Consequently,

there is a preference for operating the combustor in the lean-premixed regime, signifying

a transition from RQL combustion to lean-premixed systems. However, the major

challenge in implementing lean, premixed combustion lies in ensuring the stability of the

combustor operation.

Fully premixed flames are challenging to stabilize and are frequently susceptible to lift-off

at the flame holder, as well as flashbacks upstream of the combustion chamber along

the air-fuel lines. This challenge is exacerbated by the increased risk of autoignition

of the air-fuel mixture before reaching the combustion zone (Lieuwen et al., 2008).

Additionally, premixed flames are prone to extinction and blow-out, posing a threat of

complete power outage in the combustor (Shanbhogue et al., 2009a). Furthermore, the

compact flames and enhanced power density in lean premixed combustors make them

more vulnerable to thermoacoustic instabilities. This susceptibility becomes evident

when pushing the equivalence ratio (𝜙) towards leaner mixtures, as illustrated in Figure

1.1. These instabilities can result in a narrower range of viable operating conditions,

indirectly leading to reduced power or increased emissions under certain conditions

(Candel, 2002). In severe instances, these instabilities can escalate, potentially shortening

the operational lifespan of the engine or compromising its structural integrity.

1.2 THERMOACOUSTIC INSTABILITY PHENOMENON

1.2.1 Thermoacoustic instability and its consequences

The phenomenon of thermoacoustic instability is characterized by self-excited periodic

pressure oscillations, which originate due to the coupling between the acoustic pressure

and unsteady heat release rate from the flame (Lieuwen and Yang, 2005; Sujith and

Pawar, 2021; Zhao, 2023). The unsteady heat release is a potential source, producing

acoustic waves that propagate within the combustor. The acoustic waves after getting
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Figure 1.2: Combustion chamber assembly of the gas turbine engine (a) damaged by
large amplitude thermoacoustic instability and (b) a new burner assembly.
Adapted from Lieuwen and Yang (2005) with permission from AIAA.

reflected from the combustor boundary reach the combustion zone; these reflected waves

now perturb the heat release rate further. The fluctuating heat release rate when in phase

with the acoustic pressure, amplifies the acoustic pressure fluctuations. This positive

feedback loop between the unsteady flame(s) and the combustor acoustic modes can

have devastating consequences. The transition from a stable operation characterized by

broadband combustion noise to thermoacoustic instability occurs when the heat release

rate fluctuations evolve in phase with acoustic pressure oscillations (Rayleigh, 1945), and

the total acoustic energy arising through the nonlinear feedback from the flame is greater

than the net acoustic losses across the boundary of the combustion chamber (Chu, 1965;

Putnam, 1971).

Thermoacoustic instability, which is characterized by large amplitude pressure oscillations,

presents a significant risk of engine damage. As depicted in figure 1.2, these oscillations

can lead to pronounced vibrations within the engine, causing mechanical and thermal

stress that can compromise engine components (McManus et al., 1993; Candel, 2002;

Lieuwen and Yang, 2005; Juniper and Sujith, 2018). The intense growth in pressure

amplitude may cause severe damage to crucial combustor components such as liners, fuel
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injectors, and turbine blades or may degrade their performance (Culick and Kuentzmann,

2006). Moreover, the elevated acoustic pressure levels can escalate heat transfer, which

in turn overwhelms the thermal protection system. Importantly, electronic components

in the control system or the payload can fail due to the high level of acoustic ambience.

Consequently, these oscillations generate intolerably loud noise, causing health risks

for engine operators and making them highly undesirable, both in terms of safety and

comfort.

1.2.2 Mechanism of thermoacoustic instability

The driving mechanism behind thermoacoustic instabilities was first recognized by

Rayleigh (1878). He observed amplification in the amplitude of oscillations when

acoustic pressure and heat release fluctuations were in phase. Figure 1.3 provides

an illustration of the interaction between the acoustic field and the heat release rate

fluctuations. Any fluctuations in the acoustic velocity and pressure field can cause

fluctuations in the heat release rate. Importantly, the energy transfer from the heat release

rate field to the acoustic environment does not always imply that the combustion system

will experience thermoacoustic instability. Only when the rate of energy supplied by

the combustion process to the acoustic field in the combustor exceeds the rate at which

acoustic energy is dissipated within the duct or transmitted across its boundaries, the

system exhibits thermoacoustic oscillations (Zinn and Lieuwen, 2005). The Rayleigh

criteria suggest that the thermoacoustic instability arises from a positive relationship

between heat release rate and pressure fluctuations, which is expressed as:∫
𝑉

∫
𝑇

𝑝′(𝑥, 𝑡) ¤𝑞′(𝑥, 𝑡)𝑑𝑡𝑑𝑉 > 0 (1.1)

where 𝑝′(𝑥, 𝑡) and ¤𝑞′(𝑥, 𝑡) are the acoustic pressure and the heat release rate fluctuations,

respectively. Here, 𝑉 and 𝑇 are the combustor heat release volume and period of the

oscillations. The correlation encapsulated by the 𝑝′ ¤𝑞′ is commonly known as the Rayleigh

index. This condition is widely employed for providing bounds of thermoacoustic stability

with detailed discussions available in works by Lieuwen and Yang (2005), Poinsot (2017)
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Figure 1.3: Schematic of the positive feedback loop formed between the unsteady flame
and the acoustic field within the combustor responsible for driving self-excited
thermoacoustic instabilities.

and Juniper and Sujith (2018).

The fundamental idea is that the propagation of the acoustic waves within the combustor

perturb the flame surface, and influence the compression and expansion of the gas

surrounding the flame. When the heat released by the perturbed flame is consistently

higher during local pressure maxima, the work done by the gas is more during the acoustic

expansion phase than during the acoustic compression phase. If the excess work is not

effectively dissipated, the acoustic energy within the combustor amplifies, leading to an

increase in the amplitude of acoustic pressure oscillations (Rayleigh, 1878; Chu, 1965).

The coupling mechanism between heat release rate and acoustic pressure fluctuations is

strongly dependent on various factors. These factors include combustion mechanisms, the

acoustic modes of the combustor, hydrodynamic instabilities through density gradients

in the flow field, and turbulence levels. For a comprehensive understanding, one can

refer to the reviews by Lieuwen (2012).

It is evident that any fluctuations in the heat release rate, when coupled with acoustic

pressure, can potentially excite thermoacoustic instability. There are a number of physical
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mechanisms which generate heat release rate fluctuations; these include equivalence ratio

fluctuations (Lieuwen et al., 1998; Kim et al., 2010), swirl number fluctuations (Komarek

and Polifke, 2010), flame-vortex interactions (Poinsot et al., 1987; Renard et al., 2000),

and entropy fluctuations (Polifke et al., 2001; Goh and Morgans, 2013). The equivalence

ratio starts fluctuating when the acoustic wave propagates upstream along the fuel and air

supply. These variations in equivalence ratio subsequently trigger fluctuations in the heat

release rate and lead to oscillations in the flame speed (Lieuwen et al., 1998; Lieuwen

and Zinn, 1998; Shreekrishna and Lieuwen, 2010). Lee et al. (2000a) utilized an infrared

absorption technique to measure the equivalence ratio fluctuations and shows that the

equivalence ratio fluctuations are strongly linked to the heat release rate fluctuations

during unstable combustor operation. This relation suggests a substantial influence of

equivalence ratio fluctuations in driving the thermoacoustic instability.

Palies et al. (2010) illustrates the effect of fluctuation in swirl number on the heat

release rate of a swirling flame. The study highlights the rise in the heat release rate

fluctuations resulting from a combination of processes, specifically the vortex roll-up

of the flame and perturbations caused by fluctuations in the swirl number. Notably,

these fluctuations in swirl number arise from the interaction between incoming acoustic

disturbances and the swirler, leading to the generation of both a transmitted acoustic wave

and a convective vorticity wave. Thus, the interplay between the heat release rate and

acoustic pressure oscillations due to fluctuations in swirl number leads to thermoacoustic

instability. Further, Komarek and Polifke (2010) explores how fluctuations in the swirl

number affect the heat release rate of a premixed flame within a combustor equipped with

an adjustable axial swirl generator. Their findings reveal that the position of the swirl

generator notably influences the dynamic response of the flame, despite not significantly

altering the time-averaged heat release distribution. This dynamic response of the flame

after interacting with the acoustic field results in self-excited thermoacoustic oscillations

in the combustor.
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Another potential mechanism for exciting thermoacoustic instability involves the interplay

between the flame and vortex. Flame-vortex interaction can be driven by large-scale

coherent structures in the flow that distort the flame, consequently influencing the heat

release rate (Poinsot et al., 1987; Shanbhogue et al., 2009a). In particular, vortices in the

flow can entrain fresh reactants and cause the flame to roll up, which significantly increases

the flame surface area, thereby enhancing heat release rate fluctuations. This coherent

oscillation in the heat release rate feeds back into the acoustic pressure fluctuations,

establishing a self-sustaining thermoacoustic instability (Renard et al., 2000).

Moreover, the generation of entropy waves within the flame zone acts as a source of

entropy noise and can affect thermoacoustic instability within the combustor. This indirect

combustion noise is excited due to the acceleration of flow with nonuniform entropy

distribution or convective entropy modes, potentially contributing to thermoacoustic

instability. A comprehensive review on this topic can be found in Morgans and Duran

(2016). Additionally, Polifke et al. (2001) highlighted the coupling between the entropy

waves and acoustic waves both constructively and destructively, showcasing their potential

to influence combustion stability.

1.2.3 Origin of nonlinearities in thermoacoustics

Thermoacoustic systems inherently exhibit nonlinear characteristics (Sujith and Pawar,

2021), notably demonstrated by the emergence of limit cycle oscillations during the

onset of thermoacoustic instability within the combustor (Culick, 1994). As the acoustic

driving is greater than the damping, the periodic oscillations grow exponentially in the

system, eventually saturating at constant-amplitude periodic oscillations. This happens

when nonlinearities dominate in the combustor, establishing a balance between acoustic

driving and damping processes. Therefore, understanding the nonlinear nature of

the thermoacoustic system becomes crucial in predicting the amplitude of limit cycle

oscillations. Notably, both the acoustic sub-system and the unsteady flame can display

nonlinear behavior. However, in gas turbine combustors the acoustic pressure fluctuations
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have comparatively low amplitude relative to the mean pressure. Therefore, acoustic

wave propagation is often viewed as a linear process. Conversely, the response of the

flame to acoustic perturbations is highly nonlinear (Dowling, 1997; Sujith and Unni,

2020). Consequently, modeling the acoustic waves is relatively straightforward and well

established. In contrast, modeling the nonlinear response of the flame is exceedingly

challenging.

In order to characterize the response of the flame, Bellows et al. (2006) investigate the

effect of the external acoustic forcing on the flame. They show that at a low value of

the perturbation amplitude, the heat release rate fluctuations are linear and the response

becomes nonlinear only when the forcing amplitude is high. The significance of these

nonlinear effects in heat release rate fluctuations arises when the magnitude of acoustic

velocity fluctuations is of the order of the mean flow velocity (𝜐′𝑧 ∼ �̄�𝑧). Balachandran

et al. (2005) experimentally show the nonlinear response of the flame dominates when

the velocity ratio (𝜐′𝑧/�̄�𝑧) is around 15%. Numerous other sources contribute to system

nonlinearities, including phenomena such as flow-flame interaction (Dowling, 1997;

Emerson and Lieuwen, 2015), equivalence ratio fluctuations (Peracchio and Proscia,

1999; Shreekrishna and Lieuwen, 2010), flame front kinematics (Baillot et al., 1992;

Lieuwen, 2003), burning rate (McIntosh, 1999), flame speed and stretch rate (Kelley

and Law, 2009) have been found in the past. As a result, considering the impact of

nonlinearities on the thermoacoustic system is of fundamental importance which leads to

different kinds of unexpected behaviors of the system dynamics.

1.3 LONGITUDINAL INSTABILITY IN THERMOACOUSTIC SYSTEMS

1.3.1 Bifurcations and transition to thermoacoustic instability

In the previous section, we explored various mechanisms underlying the phenomena of

thermoacoustic instability. Understanding the onset of thermoacoustic instability in the

combustor is of great practical relevance. The transition to thermoacoustic instability

9



Figure 1.4: Normal form of (a) supercritical Hopf,(b) subcritical Hopf, and (c) secondary
bifurcation for a Van der Pol oscillators with nonlinear terms depicting the
change in the nature of a bifurcation as a function of control parameter 𝜇0.
Adapted from Ananthkrishnan et al. (1998) with permission from Elsevier.

from the state of stable operation is achieved when some control parameter is varied. For

instance, thermoacoustic instability is observed in real combustors used in power plants

(or aircrafts) when the equivalence ratio or flow velocity is altered to deal with an increase

or decrease in power demand. Consequently, the focus often lies in transitioning from a

stable state of combustor operation to a state characterized by limit cycle oscillations.

Hopf bifurcations to limit cycle oscillations

Traditionally, the onset of thermoacoustic instability has been viewed as the loss of

stability of the fixed point solution within the linearized system. Once we vary the

critical parameter value past the Hopf point, a pair of complex conjugate eigenvalues

cross the imaginary axis, leading to the emergence of limit cycle oscillations through

a Hopf bifurcation (Lieuwen, 2002; Strogatz, 2018). This transition can occur via

primary supercritical or subcritical bifurcations (Lieuwen, 2002; Laera et al., 2017b) or

through a secondary bifurcation of an initially stable, primary limit cycle oscillations

(Ananthkrishnan et al., 1998; Wang et al., 2021; Bhavi et al., 2023). The exact nature

of the bifurcation depends on the type and order of nonlinearity inherent in the system

(Kuehn and Bick, 2021).

Supercritical Hopf bifurcation is realized when a change in the value of the control

parameter 𝜇 beyond the Hopf point (𝜇𝐻), leads to a gradual increase in the amplitude of
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limit cycle oscillations (see figure 1.4a). In contrast, if the system abruptly jumps from a

stable fixed point to a limit cycle attractor of large amplitude, the bifurcation is referred

to as subcritical Hopf bifurcation (see figure 1.4b). In this case, the system is bistable in

the range 𝜇𝐹 < 𝜇 < 𝜇𝐻 , i.e., the fixed point solution is linearly stable to small-amplitude

perturbations and unstable to perturbations above a threshold value. At 𝜇 = 𝜇𝐻 , the

system jumps from the stable fixed point to a limit cycle attractor with a large amplitude.

To revert to the stable solution, the control parameter must be reversed past the Hopf

point till the fold point (𝜇𝐹) is reached such that 𝜇𝐹 < 𝜇𝐻 . Thus, subcritical transitions

are associated with hysteresis and bistability in the solution (Strogatz, 2018).

Whether the transition occurs through a supercritical or subcritical Hopf bifurcation

depends on the stabilizing or destabilizing nature of the dominant nonlinearities in the

system when a parameter is varied (Etikyala and Sujith, 2017). The dependence of the

nonlinearity on the critical parameter leading to a change in the nature of the bifurcation

is referred to as change in criticality of a Hopf bifurcation (Marsden and McCracken,

2012). In general, the source of nonlinearities in a thermoacoustic system is the acoustic

damping and acoustic driving (Culick and Kuentzmann, 2006). Both of these quantities

depend on the amplitude of acoustic pressure and also the control parameters. Any

variation in these quantities can change the balance between driving and damping and can

lead to the usual case of supercritical or subcritical bifurcation to limit cycle oscillations.

In extraordinary scenarios, higher-order nonlinearities in the system can destabilize the

stable branch of the limit cycle solution generated through a primary Hopf bifurcation,

leading to a secondary fold bifurcation to a high-amplitude limit cycle (Ananthkrishnan

et al., 1998), as shown in figure 1.4(c). An analogous transition to high-amplitude limit

cycle oscillations has been noted in aircraft flight dynamics, specifically in wing rock

phenomena, characterized by high-amplitude oscillatory rolling motion (Ananthkrishnan

and Sudhakar, 1996). In thermoacoustic systems, the theoretical prediction of a

secondary bifurcation to high-amplitude thermoacoustic instability was established
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Figure 1.5: Typical bifurcation diagram showing amplitude of acoustic pressure
fluctuations (𝑝′rms) as a function of the equivalence ratio (𝜙). State (i)
corresponds to the state of combustion noise, (ii-v) intermittency, and (vi)
thermoacoustic instability. The bifurcation and associated dynamical states
are observed in a bluff-body stabilized combustor. Figure is adapted from
George et al. (2018) with permission from Cambridge University Press.

by Ananthkrishnan et al. (2005). The recent publication by Bhavi et al. (2023) is

built upon experimental results on secondary bifurcation reported in this thesis, where

they examine the secondary bifurcation using a low-order stochastic thermoacoustic

model. They seamlessly incorporate findings from other experimental configurations to

corroborate the universality of secondary bifurcation in turbulent combustors. Generally,

the aforementioned distinct bifurcations to limit cycle oscillations have been observed

in many practical combustors (Lieuwen, 2002; Campa and Juniper, 2012; Etikyala and

Sujith, 2017).

Intermittency route to limit cycle oscillations

While the paradigm of Hopf bifurcation is frequently utilized in both experimental and

modeling studies of laminar and turbulent combustors, it encounters inherent challenges

when applied to the discussion of transitions in turbulent thermoacoustic systems.

During the stable operation of the turbulent combustor, the flame generates sound through
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non-steady volumetric expansion and convective entropy modes (Candel et al., 2009;

Dowling and Mahmoudi, 2015). The radiated sound lacks any characteristic time scale,

appears noisy, and possesses a broadband signature (see figure 1.5i). These broadband

fluctuations, rooted in turbulence, thus exhibit scale invariance and multifractal behavior

(Nair and Sujith, 2014; Sujith and Pawar, 2021). The sound generated during combustion

is colloquially referred to as combustion noise (Candel et al., 2009) and is a deterministic

phenomenon (Tony et al., 2015). The mechanism of transition from such a low-amplitude

chaotic state of combustion noise to a high-amplitude periodic state of thermoacoustic

instability is a continuing problem of significant practical relevance and intense theoretical

interest.

Turbulence plays a crucial role in determining how nonlinearities manifest in the dynamics

of the system during the transition to thermoacoustic instability. Upon varying the control

parameters such as equivalence ratio or Reynolds number systematically, the transition

from combustion noise to thermoacoustic instability has often been reported to occur

through the state of intermittency (Nair et al., 2014; Nair and Sujith, 2015; George

et al., 2018; Kheirkhah et al., 2017; Guan et al., 2020). Intermittency is a deterministic

phenomenon rooted in turbulence and refers to a dynamically stable state consisting of

low-amplitude chaotic fluctuations randomly interspersed with high-amplitude periodic

fluctuations (see figure 1.5ii-v). Consequently, the aforementioned characteristics cannot

be well represented by the Hopf bifurcation. The transition to thermoacoustic instability

shows a continuous increase in the amplitude of pressure oscillations as a result of a

progressive increase in the duration of bursts of periodic oscillations until the state

of full-blown thermoacoustic instability is reached (see figure 1.5vi), manifesting in a

continuous “sigmoid” type transition diagram.

Mixed-mode oscillations route to thermoacoustic instability

Besides the intermittency route, the transition to constant amplitude limit cycle oscillations

can take place through a state where pressure oscillations alternate between low-amplitude
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Figure 1.6: Time series of acoustic pressure oscillations 𝑝′ inside the matrix burner
during the state of (a) stable operation, (b) bursting oscillations, (c-e) mixed-
mode oscillations, and (f) thermoacoustic instability. Figure is adapted from
Kasthuri et al. (2019) with permission from the American Institute of Physics.

and high-amplitude periodic oscillations, known as mixed-mode oscillations (Desroches

et al., 2012; Kuehn, 2011). Mixed-mode oscillations appear in systems with characteristic

slow time scales in addition to fast time scales (Kuehn, 2011; Kasthuri et al., 2019).

Kasthuri et al. (2019) observed the transition from stable operation to thermoacoustic

instability through mixed-mode oscillations in a ducted matrix burner (see figure 1.6).

Interestingly, the findings reveal the existence of bursting oscillations followed by mixed-

mode oscillations. Within the bursting oscillations, there is a switching of oscillations

between bursts of periodic oscillations and a nearly quiescent state. During mixed-

mode oscillations, a periodic oscillation switches between two different amplitudes. In

combustion literature, amplitude-modulated limit cycle oscillations are often termed
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Figure 1.7: Illustration of the emergence of global phase synchronization during the
transition from (a) combustion noise, followed by (b) intermittency to (c)
thermoacoustic instability in a bluff-body turbulent combustor. Spatial view
of the combustor showing the instantaneous phase difference (𝜓) between the
acoustic pressure (Φ) and heat release rate (𝜃𝑖) oscillations. Adapted with
permission from Mondal et al. (2017b), courtesy of Cambridge University
Press.

as beats (Weng et al., 2016; Kim et al., 2019; Han et al., 2020). These beats typically

result from the linear superposition of acoustic modes with small frequency differences,

displaying constructive and destructive interference patterns (Kim et al., 2019; Han

et al., 2020). However, the concept of beats is applicable only in linear systems. The

oscillations depicted in figure 1.6(c-e) differ from standard beats due to nonlinearities

and the absence of clear constructive and destructive interference patterns. As a result,

the framework of mixed-mode oscillations seems a more fitting description for these

amplitude-modulated oscillations.

1.3.2 Spatiotemporal dynamics of thermoacoustic systems

The flow field also presents many interesting features when the combustor transitions

from stable operation to thermoacoustic instability. Most of the initial investigations

concentrated solely on the spatiotemporal dynamics during combustion noise and the

onset of thermoacoustic instability. These studies provided valuable insights into the

emergence of large-scale coherent structures at the onset of thermoacoustic instability

and how these flow structures alter the dynamics of the flame (Rogers and Marble, 1956;

Smith, 1985; Poinsot et al., 1987; Schadow and Gutmark, 1992; Coats, 1996; Renard

et al., 2000; Schwing et al., 2011; Emerson et al., 2012).
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Turbulent combustors by nature are spatially extended systems, wherein thermoacoustic

instability results from the nonlinear interaction of various spatially extended subsystems

(Sujith and Unni, 2020; Sujith and Pawar, 2021). These include the turbulent flow

field, reaction field, and chamber acoustics, interacting across diverse temporal and

spatial scales. The oscillations in the CH* chemiluminescence field of the flame are

predominantly governed by a complex interplay of hydrodynamic fluctuations, vortex

formation, equivalence ratio fluctuations, flame stabilization mechanisms, and the

boundaries of the combustor (Lieuwen, 2012). During the transition to thermoacoustic

oscillations through intermittency, the spatial field unveils interesting characteristics.

This gradual emergence of periodic dynamics is associated with the emergence of order

or coherence in the spatial field (Mondal et al., 2017b; George et al., 2018; Hashimoto

et al., 2019; Guan et al., 2019b).

A recent study by Mondal et al. (2017b) computes the instantaneous phase relationship

between acoustic pressure and unsteady heat release rate fluctuations to examine the

phase field across three distinct dynamical states: combustion noise, intermittency, and

thermoacoustic instability. During the occurrence of combustion noise, the phasor field

displays spatial incoherence (refer to figure 1.7a). Conversely, during thermoacoustic

instability, the phasor field shows perfect alignment, indicating a spatially coherent

flame extending across extensive regions (refer to figure 1.7c). However, during the

intermediate state of intermittency, a unique scenario emerges: patches of both incoherent

and coherent phasor fields coexist simultaneously (refer to figure 1.7b), resembling

a chimera state (Abrams and Strogatz, 2004). Moreover, during the occurrence of

combustion noise and during the epochs of aperiodic oscillations within intermittency,

small vortices are shed aperiodically, maintaining spatial incoherence in the heat release

rate field (George et al., 2018). In contrast, during the state of thermoacoustic instability

and the epochs of periodic oscillations in intermittency, vortices are shed periodically

from the backward-facing step of the combustor. These vortices carrying the air and fuel

mixtures develop into large-scale coherent structures, which collide with the bluff-body
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and combustor walls. The collision results in intense mixing zones, leading to regions

with intense heat release rate (George et al., 2018; Premchand et al., 2020). Hence,

both the temporal and spatiotemporal dynamics significantly contribute to the onset of

thermoacoustic instability.

1.4 AZIMUTHAL AND LONGITUDINAL INSTABILITIES IN ANNULAR

COMBUSTOR

Gas turbine combustors in practical applications often adopt an axially shorter design,

ensuring a more uniform turbine inlet temperature profile. They frequently incorporate

multiple swirling flames arranged around an annular chamber. This arrangement gives

rise to both longitudinal and azimuthal acoustic modes, each exhibiting distinct behaviors

in the acoustic field structure and flame responses. Notably, due to the perimeter of

the annular combustor typically being the largest physical dimension in industrial gas

turbines, the occurrence of thermoacoustic oscillations, particularly associated with the

azimuthal acoustic eigenmode, becomes more probable (Krebs et al., 2002). On the

other hand, real engine designs often feature axial lengths that are of a similar order of

magnitude as their perimeters. This proximity in dimensions enhances the potential for

interactions between the longitudinal and azimuthal modes (Mazur et al., 2021).

1.4.1 Self-excited thermoacoustic modes in annular combustor

In order to comprehend the dynamics of both longitudinal and azimuthal modes,

investigating real annular configurations becomes imperative to enhance our understanding

of these modes. While initial data was obtained from experiments conducted on full-scale

commercial gas turbines (see Seume et al., 1998; Krebs et al., 2002; Paschereit et al.,

2006, for a review), these configurations are geometrically very complex and entail

high operational costs. Motivated by these challenges, simplified annular combustion

chambers capable of showcasing self-excited thermoacoustic instabilities were developed

in the past decade (Worth and Dawson, 2013b; Bourgouin et al., 2013). Figure 1.8
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Figure 1.8: First lab-scale atmospheric annular combustors to exhibit self-sustained
azimuthal instabilities at (a) Cambridge University (Worth and Dawson,
2013a,b) and (b) EM2C laboratory. Reproduced from (a) Worth and Dawson
(2013a) and (b) Bourgouin et al. (2013) with permission from Elsevier and
ASME, respectively.

presents an external view of lab-scale annular combustor designed by Worth and Dawson

(2013b) and Bourgouin et al. (2013) that exhibits self-excited thermoacoustic instabilities.

These two annular combustors are independently developed at Cambridge University

and EM2C laboratory.

During the unstable operation of an annular combustor, numerous interactions occur

concurrently: turbulent flow interacts with premixed flames, flames interact with

neighboring flames, and both the flow and flames interact with the acoustic field of the

chamber (Candel et al., 2014; O’Connor et al., 2015). In these combustors, the interaction

among neighboring flames results in intricate three-dimensional flame dynamics. The

structure and behavior of interacting flames undergo substantial changes based on the

distance between them and their flame-holding characteristics. In a study by Worth and
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Dawson (2012), they investigated the impact of separation distance between flames in

a setup with two bluff-body stabilized flames. Their findings highlighted that shorter

distances between burners lead to the merging of flames on a large scale, altering the

mean flame structure and its corresponding thermoacoustic response. Subsequently,

Worth and Dawson (2013b) extended this analysis to a complete annular combustor,

revealing a shift in flame structure from helical to a merged large-scale configuration as

the inter-burner distance decreased. Another study by Bourgouin et al. (2013), focused

on a swirl-stabilized annular combustor, and analysed the modal dynamics related to

heat release rate perturbations during both longitudinal and azimuthal instabilities. Their

observations indicated a certain level of desynchronization in flame dynamics during

longitudinal instability. Together, these studies shed light on how flame-flame interactions

impact thermoacoustic responses across a range of annular combustor configurations.

Hence, it is essential to gain a comprehensive understanding of the thermoacoustic

behavior exhibited by annular combustors.

Due to rotational symmetry, thermoacoustic instabilities in annular combustors often

manifest as eigenmodes featuring an azimuthally modulated distribution of acoustic

pressure. The azimuthal modes are classified into three categories: (i) standing modes

characterized by spatial nodes and anti-nodes, exhibiting either a fixed location or slow

drift relative to the speed of sound, (ii) spinning modes propagating in either a clockwise

(CW) or counter-clockwise (CCW) direction, and (iii) mixed modes, representing a

linear combination of spinning and standing modes (Noiray et al., 2011; Ghirardo and

Juniper, 2013; Worth and Dawson, 2013a). Recent observations have unveiled a unique

form of thermoacoustic dynamics known as the “slanted mode”, identified in the annular

combustor by Bourgouin et al. (2015). This mode arises from the concurrent presence of a

standing azimuthal mode and a longitudinal mode, both exhibiting coinciding frequencies.

Subsequent investigation on this dynamic was conducted by Prieur et al. (2017) within

the same experimental framework. Additionally, Moeck et al. (2019) developed a model

depicting this phenomenon as a synchronization between a pure longitudinal mode
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and an azimuthal mode characterized by remarkably close eigenfrequencies. Another

interesting finding by Fang et al. (2021) reported a new dynamic state in the annular

combustor, revealing the coexistence of both longitudinal and azimuthal modes at different

frequencies.

In general, these interesting dynamical state in the combustor arises due to the nonlinear

interaction between the azimuthal eigenmodes. The interplay between the azimuthal

eigenmodes was initially explored by Paschereit et al. (2006), who considered a nominally

axisymmetric system with degenerate eigenmodes. Their investigation focused on the

nonlinear interaction of two orthogonal standing modes of azimuthal instability. They

demonstrated that, under conditions of linear instability, the system evolves into a limit

cycle where both standing modes coexist due to their degeneracy. The combination of two

standing eigenmodes results in a single spinning wave, rotating either in the clockwise or

counter-clockwise direction, solely determined by initial conditions. Building upon this

work, Hummel et al. (2016, 2017) investigated a similar problem, framing it in terms of

two counter-rotating eigenmodes within a nominally axisymmetric system. Unlike the

earlier study, they allowed for non-degeneracy, introducing different frequencies and/or

growth rates for clockwise and counterclockwise eigenmodes. In alignment with the

findings of Paschereit et al. (2006), they confirmed that only spinning waves dominate the

system during limit cycle conditions. However, they further revealed that non-degeneracy

introduces a preference for one spinning wave over the other. To summarize, these studies

collectively emphasize that a nominally axisymmetric system predominantly exhibits

spinning wave behavior at the limit cycle, and does not capture the potential presence of

standing waves.

Of paramount significance, various factors such as non-degeneracy (Bauerheim et al.,

2015), non-uniformity (Noiray et al., 2011), and background noise (Faure-Beaulieu et al.,

2021a) can have considerable influence, capable of altering the direction, orientation,

and characteristics of thermoacoustic modes. Numerous studies have incorporated
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the impact of non-uniformities within their models. These non-uniformities can exist

in geometry, flow dynamics, or flame characteristics, arising from factors such as

azimuthal fluctuations in fuel-air ratio, distinct swirl directions of individual nozzles,

or a discrete arrangement of nozzles distributed azimuthally. For instance, Noiray

et al. (2011) analyzed a non-degenerate combustor system, considering non-uniform

flame-acoustic coupling and mean temperature distributions. They demonstrated that

weak non-uniformities could allow two standing modes to coexist, potentially resulting

in a spinning or mixed wave. However, when non-uniformities were sufficiently high,

only a single standing mode persisted, with the specific mode dependent on the shape of

the non-uniformities. Similarly, a study by Bauerheim et al. (2015) considered a system

with non-degeneracy arising from non-uniformities and azimuthal bulk flow. Their

findings suggested that while non-uniformities tend to promote standing waves, azimuthal

flow tends to promote spinning waves. When both non-uniformities and azimuthal

bulk flow coexisted, a mixed wave emerged as a possibility. Moreover, Ghirardo et al.

(2016) tackled a scenario involving degenerate eigenmodes and identical flames, where

azimuthal variation resulted from discrete nozzles positioned azimuthally. Their study

revealed the potential coexistence of standing and spinning waves, with the relative

strengths of these modes determined by the spacing between the nozzles.

Quite notably, the thermoacoustic behavior of a combustor can exhibit a relatively fixed

modal character or intermittently switch between one wave direction and another (Fang

et al., 2021), or between standing and spinning dominant wave (Indlekofer et al., 2021b).

More importantly, the influence of other factors such as non-degeneracy (Bauerheim

et al., 2015), non-uniformity (Noiray et al., 2011), and background noise (Faure-Beaulieu

et al., 2021a) can change the direction, orientation as well as nature of the thermoacoustic

modes. For example, Krebs et al. (2002) and Worth and Dawson (2013a,b) experimentally

observed standing and spinning modes, as well as switching between them, depending

on the operating conditions or burner arrangements. Another interesting point about

azimuthal modes is the behavior of the nodal line during the limit cycle. In a system
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characterized by rotational symmetry, the nodal line during azimuthal mode oscillations

is not bound to remain fixed, in contrast to axial or radial mode oscillations. For instance,

experimental observations by Vignat et al. (2020) showed the movement of the nodal

line as seemingly erratic. However, the presence of system non-uniformities can anchor

the nodal line at specific azimuthal locations, as demonstrated in experiments (Prieur

et al., 2018) and through reduced-order models (Faure-Beaulieu et al., 2021a; Ghirardo

et al., 2021). On the contrary, the deterministic motion of the nodal line has been

observed in a few scenarios. Experimental investigations by Kim et al. (2021b,a) and

Worth and Dawson (2013a) indicated that the nodal line periodically oscillates around a

fixed azimuthal position on a slow time scale. Therefore, to comprehend the underlying

principles resulting in the onset of azimuthal thermoacoustic instabilities, it becomes

essential to systematically vary control parameters.

1.4.2 Transition to azimuthal instabilities

Studies that capture the dynamical transition to thermoacoustic instability in annular

combustors through smooth variation of parameters remain few. One such notable study is

by Prieur et al. (2017), wherein the authors mapped combustor dynamics on a parametric

plane defined by equivalence ratio and bulk-flow velocity. They observed both longitudinal

and azimuthal instability and noted a hysteresis cycle when the equivalence ratio varied

in the fuel-rich limit. They showed the transitions in the combustor from chugging to

spinning and finally to standing azimuthal modes. Recently, Indlekofer et al. (2021a)

reported the transition from stable operation to self-excited azimuthal thermoacoustic

modes. They showed a fascinating phenomenon wherein the self-oscillating azimuthal

mode periodically alternates between CW and CCW spinning directions through standing

mode. They termed this intricate behavior a beating azimuthal mode. The underlying

deterministic mechanism driving this phenomenon was elucidated by Faure-Beaulieu

et al. (2021b). Additionally, a recent study by Ahn et al. (2022) explored the variations

in the amplitude of self-excited azimuthal instabilities as a function of equivalence

ratio and hydrogen power fraction. Their work examined the heat release rate response
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during self-excited azimuthal thermoacoustic instabilities within a pressurized annular

combustor, specifically investigating hydrogen/methane blended flames.

1.5 SUPPRESSION OF THERMOACOUSTIC INSTABILITIES

In the foregoing discussion, we highlighted the mechanisms behind the development of

thermoacoustic instability and characterized the states that emerge during the transition

to thermoacoustic instability. Now, we briefly review some of the practical approaches

utilized for tackling thermoacoustic instability. Control of thermoacoustic instability

is crucial for enhancing the stable operation of a gas turbine engine. Broadly, we can

mitigate thermoacoustic instability by (1) disrupting the coupling between the unsteady

heat release rate fluctuations and the acoustic field within the combustor, (2) enhancing

damping within the system, (3) employing anti-sound to suppress limit cycle oscillations,

and (4) implementing secondary fuel injection. Traditionally, approaches to mitigate

thermoacoustic instability fall into two categories: active control (McManus et al., 1993;

Zhao et al., 2018) and passive control (Richards et al., 2003; Zhao and Li, 2015).

1.5.1 Active and passive control of thermoacoustic instabilities

Active control involves employing external excitation, such as acoustic forcing and/or fuel

modulation, to control thermoacoustic instability. It relies on three main components:

(1) sensors, (2) controllers, and (3) actuators. There are two primary approaches to

implementing active control, as detailed by Candel (2002): closed-loop and open-loop

control. During closed-loop active control, the state of the combustor is continuously

monitored and control measures are adopted based on the specific state of the system

(Zhao et al., 2018). In contrast, open-loop active control is achieved by forcing the

system using actuators, without any feedback from controllers or sensors monitoring the

dynamics in the combustor (Ćosić et al., 2012). Active control methods often use external

acoustic forcing (Bellows et al., 2008; Balusamy et al., 2015) or fuel-air modulation

(Seume et al., 1998; Uhm and Acharya, 2005) to achieve suppression, relying on the
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forced synchronization of the thermoacoustic system (Balusamy et al., 2015; Guan et al.,

2019a; Roy et al., 2020).

Passive control involves altering specific aspects of the combustor, such as the acoustic

characteristics or the heat release rate dynamics, changed independently of its regular

operation (Zhao and Li, 2015). This alteration can be achieved through various means:

adjusting acoustic characteristics using acoustic damping resonators (Duperé and Dowling,

2005), modifying heat release dynamics via fuel injection strategy (Steele et al., 2000) or

fuel staging (Samarasinghe et al., 2017). Notably passive control strategies are effective

only over a limited range of frequencies, requiring expensive and time-consuming design

adjustments, and may be detrimental to engine performance.

Implementing these techniques poses significant challenges. Acoustic forcing mechanisms

struggle to scale up to match the amplitude levels of the real turbulent combustors. In

addition, ensuring the durability of actuators operating in the harsh environments of

combustors is unreliable over the extremely long lifespan of turbulent combustors (Gang

et al., 2018; Guan et al., 2019a).

1.5.2 Recent strategies for mitigating thermoacoustic instabilities

Modern controlling strategies are expected to deliver effective solutions for mitigating

thermoacoustic instability under diverse operating conditions, considering that gas turbine

engines are designed to function across varying power levels and with different fuels.

The quest for such solutions calls for mitigating methods that are versatile, intelligent,

and cost-effective.

In alignment with this pursuit, Gopakumar et al. (2016) proposed a novel strategy

involving the use of an actuated swirler for altering the coupling between the flame and

the acoustic fluctuations. They found that actuating the static swirler, used for flame

stabilization inside the combustion chamber, even at moderate rotation rates significantly

altered the flow field and the flame structure (Mahesh et al., 2018). This alternation
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in the flow field caused by the actuating swirler was associated with the suppression

of thermoacoustic instability, where low amplitude aperiodic oscillations are observed

through an intermittency route, hinting towards the de-synchronization of the acoustic

pressure and the heat release rate fluctuations during the state of suppression. The

underlying mechanism of suppression was then modeled by Dutta et al. (2019) based on

the synchronization of flame oscillators through the Kuramoto model (Kuramoto, 1975),

which was able to quantitatively capture the heat release rate response observed in the

experiments.

Several other studies have shown that by modifying the spatiotemporal dynamics of

the flame/flow through injection of secondary air/fuel, mitigation of thermoacoustic

instability is possible (Lee et al., 2000b; Altay et al., 2010; Krishnan et al., 2019; Roy

et al., 2021). Many passive control strategies are based on suppressing visible large-scale

patterns such as large-scale coherent structures. Focusing on these large-scale coherent

structures emerges as a possible way of controlling thermoacoustic instability. Thus,

in recent years, a necessity has arisen to investigate thermoacoustic instability through

non-conventional approaches focusing on disrupting the coupling between the acoustic

pressure field and the unsteady heat release rate fluctuations.

1.6 THEORETICAL ANALYSIS OF THERMOACOUSTIC INSTABILITIES

As previously mentioned, the origin of heat release rate fluctuations in a thermoacoustic

system can add energy to the acoustic oscillations if the Rayleigh criterion is satisfied.

This addition of energy to the acoustic pressure or velocity oscillations is known as

acoustic driving. As a result, modeling the source of heat release rate fluctuations plays a

crucial part in developing an accurate model for the thermoacoustic system. This section

focuses on examining prevalent thermoacoustic models extensively utilized to capture

longitudinal thermoacoustic instability.
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1.6.1 Time delay model

The Rayleigh criterion in Eq. (1.1) shows the phase between the acoustic pressure and

heat release rate fluctuations is important to the stability of the system. The most crucial

aspect of modeling thermoacoustic instability is to explain the phase difference between

the unsteady heat release rate fluctuations and the acoustic field. Such a model is the

key to providing closure to the linear system of equations. The seminal work by Crocco

and Cheng (1956) introduced a linearized model that addresses this aspect within a

thermoacoustic system. This model, often termed the n-tau model or the sensitive time

lag hypothesis, offers a simplified expression: ¤𝑞′ = 𝑛[𝑢′(𝑧 𝑓 , 𝑡 − 𝑡𝜏)]. Here, the model

encapsulates the interaction between the unsteady heat release rate and the acoustic field.

According to this model, the fluctuations in the heat release rate are directly linked to the

fluctuation in acoustic velocity at the flame location (𝑧 𝑓 ), albeit delayed by a time lag 𝑡𝜏.

The non-dimensional scaling factor, denoted as 𝑛, signifies the interaction index. The

time lag 𝑡𝜏 amalgamates several components: the time required for fuel to convect from

the injection point to the flame front, the duration for the fuel-air mixture to mix with hot

products, and the ignition delay. This model has found extensive use in investigating

combustion instabilities, initially in liquid propellant rocket motors (Culick, 1988) and

subsequently in gas turbine combustors (Dowling, 1995; Dowling and Stow, 2003).

1.6.2 FTF/FDF approach

One of the most successful approaches in modeling thermoacoustic systems is through the

measurement of flame response decoupled from the acoustic analysis of the combustor.

This approach, when expressed in the frequency domain, is referred to as a flame transfer

and describing functions (FTF/FDF) (Merk, 1957, 1958; Schuller et al., 2020), and

when obtained in the time domain, leads to the concept of impulse response functions

(Polifke, 2020). In FTF/FDF modeling, the flame response is illustrated using Bode

plots discerning the gain and phase of frequency response. This is complemented by a

linear stability analysis of the acoustic network in the frequency domain that reveals the

growth rate of eigenmodes in terms of complex eigenfrequencies (Noiray et al., 2008;
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Schuller et al., 2020). The measurement of the flame impulse response in the method

of time delays, on the other hand, allows for a straightforward interpretation of the

convective processes underlying the thermoacoustic system. When a transition to limit

cycle oscillations is concerned, a bifurcation analysis is usually performed by modeling

the flame response and its feedback on the acoustic fluctuations as a nonlinear oscillator

(Dowling, 1995; Nicoud et al., 2007; Balasubramanian and Sujith, 2008; Subramanian

et al., 2013; Agharkar et al., 2013; Noiray et al., 2011; Ghirardo and Juniper, 2013; Nair

and Sujith, 2015). Insights gained from FTF/FDF and time delay approaches are often

utilized for estimating the dynamical flame models utilized in bifurcation studies (Noiray

and Schuermans, 2013; Laera et al., 2017b; Noiray, 2017; Bonciolini et al., 2021).

1.6.3 Kicked oscillator model

In an alternative approach, Matveev and Culick (2003) formulated a reduced-order model

that captures interactions among vortex shedding, the acoustic field, and combustion

processes within a combustor. They modeled the interaction between the heat release

rate fluctuations and the acoustic field as a kicked oscillator system, where the vortices

that impinge on the bluff body impulsively force the acoustic field. Here, the periodic

formation of coherent vortices induces oscillations in the flame and subsequently drives

the acoustic field. Moreover, the shedding of vortices and their periodic impact on

the combustor walls or flame stabilization mechanisms result in temporally localized

instances of high heat release rates. While their model adeptly captured both stable

and unstable combustor operations, it did not account for intermittency preceding

thermoacoustic instability.

Nair and Sujith (2015) expanded upon this model by introducing turbulence effects as

stochastic fluctuations in velocity that influenced the timing of kicks. This modification

allowed the model to replicate the transition to thermoacoustic instability through

intermittency within a bluff body-stabilized dump combustor. Further investigations by

Nair et al. (2013) and Tony et al. (2015) suggested that aperiodic pressure fluctuations in

27



a combustor during stable operation exhibited deterministic characteristics. However,

the model proposed by Nair and Sujith (2015) integrated stochastic elements to capture

intermittency. Addressing this, Seshadri et al. (2016) introduced an enhanced

deterministic model that eliminates the need for stochastic fluctuations to capture

intermittency. They achieved this by establishing a refined feedback mechanism between

the timing of kicks and the acoustic pressure/heat release rate oscillations. Within this

framework, the thermoacoustic system is modeled as a kicked oscillator. The kicks,

which are in feedback with pressure fluctuations, represent the energy added to the

acoustic oscillator by localized intense heat release events. Adapted modification in the

kicked oscillator model reproduces various synchronization states observed in bluff body

combustors (Pawar et al., 2017) and also exhibits the capability to predict the amplitude

of oscillations during thermoacoustic instability in a turbulent combustor (Seshadri et al.,

2018).

1.6.4 Van der Pol type model with nonlinear terms

In this modeling approach, Ananthkrishnan et al. (1998) employed the Van der Pol

oscillator with higher-order nonlinear terms to explain supercritical, subcritical, and

secondary bifurcation in the system. They show that higher-order nonlinearities in the

system can destabilize the stable branch of the limit cycle solution generated through a

primary Hopf bifurcation, leading to a secondary fold bifurcation to a high-amplitude

limit cycle. Building on this theoretical groundwork, Ananthkrishnan et al. (2005)

proposed the theoretical feasibility of secondary bifurcation leading to thermoacoustic

instability.

Recently, Noiray and Schuermans (2013) employed a noise-driven Van der Pol oscillator

as a model for thermoacoustic oscillations in a turbulent combustor. Their study

established a methodology for identifying the linear growth rates of a system by analyzing

acoustic pressure fluctuations measured during limit cycle oscillations. They approached

the fluctuations in limit cycle amplitudes during thermoacoustic instability as a response
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of an oscillator perturbed by strong stochastic forcing due to turbulence. Notably, they

estimated the linear growth rate of the oscillator from these fluctuating amplitudes in the

limit cycle oscillations. Additionally, this model exhibited intermittency-like behavior,

characterized by intermittent bursts of high-amplitude periodic pressure oscillations

within the region of aperiodic fluctuations.

Although these modeling approaches have been useful in revealing the nature of bifurcation

and the resulting stability characteristics of the limit cycle, they remain specific to the

nature of nonlinearity encoded in the assumed flame model. The explanation for other

types of bifurcation in these models required the inclusion of additional higher-order

nonlinear terms with little physical justification and sometimes scarce experimental

support. Another fundamental drawback of these models is the assumption of a lumped

system where the nonlinear contributions of a spatially-extended convective-diffusive-

reaction system underlying the premixed flame are parameterized temporally using

functions such as quadratic, cubic, quintic function of acoustic perturbations (Laera et al.,

2017b; Noiray, 2017; Bhavi et al., 2023). Consequently, these models cannot explain the

rich spatiotemporal synchronization developing concomitantly during the transition to

limit cycles (Mondal et al., 2017b; Pawar et al., 2019; Guan et al., 2019b). Finally, there

has been no clear resolution on what causes thermoacoustic transitions to be abrupt or

continuous which has necessitated disparate modeling approaches.

1.7 OBJECTIVE OF THE CURRENT WORK

The overall objective of the present thesis is to investigate the thermoacoustic response of

the turbulent combustion systems followed by providing a possible way of suppressing

thermoacoustic instability. However, the detailed objectives are summarised in the

following:

1. Develop a turbulent annular combustor rig incorporating multiple swirl-stabilized

burners that exhibit both longitudinal and azimuthal instabilities.
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2. Systematically conduct experiments to explore the transition from a stable state

to thermoacoustic instability. Quantify various possible dynamics routes to

thermoacoustic instability when the control parameters are varied within the

turbulent annular combustor.

3. Elucidate the mechanism responsible for altering the nature of the bifurcation and

excitation of interesting dynamical states.

4. Quantify flame-flame and flame-acoustic interactions during the transition to

thermoacoustic instabilities (longitudinal and azimuthal modes). This investigation

aims to understand the overall thermoacoustic response of a combustor.

5. Introduce a quaternion-based formalism to comprehend azimuthal modes within

the annular combustor. Then, compare and contrast the effect of the amplitude of

acoustic pressure oscillations on the flames during various azimuthal modes in the

combustor.

6. Develop a theoretical model to capture the dynamics observed in the experiments.

In particular, the modeling approach should explain the temporal as well as

spatiotemporal dynamics, further elucidating the underlying dynamics.

7. Implement an optimisation algorithm for model parameter estimation that allows

us to pinpoint the exact correspondence between the experimental and the model

parameters.

8. Apply insights into the physics underlying thermoacoustic instability gained from

experiments to develop mitigation strategies for practical turbulent combustion

systems prone to thermoacoustic instabilities.
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1.8 OVERVIEW OF THE THESIS

The outline of the rest of the thesis is briefly described as follows. In Chapter 2, we detail

experimental facilities where extensive experiments are carried out. We provide details

of the annular combustor, dump combustor with bluff-body and swirler configuration,

and rotating swirler combustor. We explain the experimental procedure and diagnostic

techniques used for measuring heat release rate and acoustic pressure oscillations.

In Chapter 3, we discuss the change of criticality in a bifurcation due to parametric

variation in the annular combustor. We depict three different routes to longitudinal

thermoacoustic instability. We further discuss the crossover of bifurcation and the

corresponding stability map of the combustor. Later, we discuss the global and local

flame behavior during various dynamical states. In particular, we discuss the flame-flame

and flame-acoustic interactions during the thermoacoustic transitions.

In Chapter 4, we consider the two distinct modeling approaches to explain the criticality

of a bifurcation obtained by varying along a two-parameter family. We derive the model

starting from the acoustic wave equation and expound the thermoacoustic models. This

is followed by an explanation of the numerical solution and the optimisation method for

estimating model parameters from experimental data. We further present the results from

the model and experiments. We then discuss the global phase synchronization during

the different thermoacoustic transitions. In particular, we explain how our modeling

approaches capture the criticality of a bifurcation and explain the temporal as well as

spatiotemporal dynamics observed in the experiments.

In Chapter 5, we introduce the method of characterizing azimuthal modes in the annular

combustor followed by a procedure to obtain the modes from our experimental data.

We further discuss the transition to azimuthal thermoacoustic instability and various

dynamical states observed during this transition. With the help of quaternion-formalism,

we explain the existence of different azimuthal modes in the combustor on varying the
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control parameter. We further discuss the behavior of sixteen flames during different

dynamical states. Finally, quantify flame-flame interactions.

In Chapter 6, we characterize the possible route to the suppression state by actuating a

swirler in the turbulent combustor. We discuss the flame dynamics and spatiotemporal

behavior of the phasor field during the transition to the suppression state. We further

extend the model discussed in Chapter 4 by including the effect of an active swirler. We

then showcase the applicability of the model by exactly capturing the dynamics which

is observed in the experiments. In particular, we discuss the relationship between the

control parameter in the model and experiments.

We conclude our discussion in Chapter 7, where we highlight the key findings and discuss

the context of these findings and their practical implications. We close our discussion by

summarizing many exciting research directions arising out of the present thesis.
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CHAPTER 2

EXPERIMENTAL SETUPS AND DIAGNOSTICS

In this chapter, we discuss the experimental facilities and diagnostics used for conducting

experiments and acquiring data related to the results presented in this thesis. Four

different studies were performed on primarily three different setups:

1. A swirl-stabilized turbulent annular combustor is used to study the change in

criticality of a bifurcation along the two-parameter family.

2. The same annular combustor with certain modifications is used to study the

transition to self-sustained azimuthal instability in the combustor.

3. Longitudinal dump combustor with bluff-body and swirler configurations is used

to study continuous and abrupt transition, respectively1.

4. A rotating swirler combustor is used to investigate the mitigation of thermoacoustic

instability in a turbulent environment2.

2.1 ANNULAR COMBUSTOR FACILITY

We perform experiments on the laboratory-scale annular combustor comprising sixteen

swirl-stabilized burners as shown in figure 2.1(a). The schematic of different parts of the

experimental setup is shown in figure 2.1(b-d). Our combustor is close to the designs

of the Bourgouin et al. (2013) and Worth and Dawson (2013a). This setup consists

of the premixing chamber, settling chamber, burner tubes, and combustion chamber as

1We are thankful to a team consisting of Dr. Induja Pavithran, Dr. Manikandan Raghunathan, Mr.
Midhun P. R., and Prof. R. I. Sujith for generously providing us with the datasets in February 2022.

2We extend our gratitude to Dr. Ankit K. Dutta for performing the experiments and Prof. Swetaprovo
Chaudhuri for graciously providing us with the dataset in August 2021. The experiments were
performed in the Turbulent Combustion and Spray Research Lab at the Indian Institute of Science,
Bangalore, India.



Figure 2.1: (a) Photograph of the annular combustor rig at IIT Madras, Chennai.
Schematic of the (b) cross-section of the combustor, (c) the burner tube,
and (d) the dump plane. The location of the eight pressure transducers is
named as PC1, PC2, .., PC8. The non-premixed pilot flame is used to ignite
the sixteen flames in the combustion chamber. Eight flames are acquired
during the longitudinal instability, while sixteen flames are acquired during
the azimuthal instability.

shown in figure 2.1(b). Dehumidified air from a compressor was mixed with liquefied

petroleum gas (LPG - 40% propane and 60% butane by volume) in a premixing chamber

to produce a technically premixed air-fuel mixture. The mixture then enters the bottom
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of the settling chamber through twelve equispaced inlet ports. Each port has an internal

diameter of 9.5 mm and is mounted perpendicular to the axis of the combustion chamber.

A mixture is then passed through a honeycomb mesh to arrest any transverse velocity

fluctuations, followed by a hemispherical bluff body to improve flow uniformity through

all the burners.

The reactant mixture is now divided into sixteen burner tubes, each burner tube comprises

a flame arrestor at the bottom and a swirler on the top (refer figure 2.1c). Sixteen flame

arrestors are circular disks of 10 mm thickness and 36 mm diameter with 179 holes of

1.5 mm diameter are mounted at the bottom of each burner tube to prevent flashback.

The sixteen swirlers have a central shaft of 15 mm diameter on which six guide vanes are

mounted at an angle of 𝛿𝛼 = 60◦ relative to the shaft axis. The geometric swirl number is

calculated as 𝑆 = 2/3 tan 𝛿𝛼 = 1.15 (Candel et al., 2014). A converging section having a

contraction area ratio of 2, height of 18 mm, and exit diameter 𝑑 = 15 mm connects the

burner tube to the dump plane (see figure 2.1c).

The dump plane consists of sixteen burner inlets, a port for a pilot flame, and eight

pressure measurement ports (see figure 2.1d). A non-premixed pilot flame anchored

between two injectors was used to ignite the premixed flames, which was extinguished

following flame stabilization in the combustor. Finally, the air-fuel mixture enters the

combustor chamber, where the chamber is made up of two concentric ducts of different

lengths. Depending on the type of experiments we perform, we modify the dimensions

of the settling chamber, burner tube, and concentric ducts.

2.1.1 Longitudinal thermoacoustic instability in annular combustor

To excite self-sustain longitudinal thermoacoustic instability in the annular combustor,

the dimensions of the settling chamber, burner tube, and concentric ducts are altered.

The diameter and length of the settling chamber are 400 mm and 440 mm, respectively.

The inner diameter and length of the burner tubes are 30 mm and 150 mm, respectively.
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Moreover, the inner duct has a diameter of 300 mm and a length of 200 mm, while the

outer duct has a diameter and length of 400 mm.

Air ( ¤𝑚𝑎) and fuel ( ¤𝑚 𝑓 ) flow rates are controlled using mass flow controllers (MFC).

Each MFC has an uncertainty of ±0.8% and an additional 0.2% uncertainty of the

full-scale. The equivalence ratio is controlled by keeping ¤𝑚𝑎 at 2.86 × 10−2 kgs−1 fixed

and varying ¤𝑚 𝑓 from 1.2 × 10−3 to 1.4 × 10−3 kgs−1. The equivalence ratio is calculated

as 𝜙 = ( ¤𝑚 𝑓 / ¤𝑚𝑎)actual/( ¤𝑚 𝑓 / ¤𝑚𝑎)stoichiometry. The Reynolds number for the reactive flow is

computed using the expression 𝑅𝑒 = 4 ¤𝑚/𝜋𝜇𝑎𝑑0, where ¤𝑚 = ¤𝑚𝑎 + ¤𝑚 𝑓 is the mass flow

rate of the air–fuel mixture, 𝜇𝑎 is the dynamic viscosity of the air–fuel mixture at the

experimental conditions obtained by following Wilke (1950), and 𝑑0 is the diameter of

the burner. Thus, 𝜙 is varied in the range of 0.44 to 0.53 and 𝑅𝑒 is around 8.6 × 103.

In these experiments, the parameter range is such that only longitudinal instability is

excited, as verified by the negligible phase difference in the acoustic pressure fluctuations

measured by the transducers mounted on the combustor backplane (refer to Appendix A).

A piezoelectric transducer and high-speed camera are used concomitantly to capture

acoustic pressure and heat release rate fluctuations, respectively. The acoustic pressure

fluctuations are recorded using three equispaced piezoelectric transducers (PCB

Piezotronics, PCB103B02, sensitivity - 217.5 mV/KPa, uncertainty - ±0.15 Pa), at

equidistant to each other, are mounted on a waveguide (diameter 4 mm and length 3.2 m)

at a distance of 75 mm from the combustor backplane. The pressure signals were

acquired for 3 s at a sampling frequency of 10 kHz and digitized using a National

Instruments 16-bit PCI 6343 card.

A high-speed CMOS camera (Phantom V 12.1) with CH* filter (bandwidth of 435 ± 10

nm) is used to capture chemiluminescence images of the flames. The camera is operated

at a sampling frequency of 2 kHz and a pixel resolution of 1280 × 800. A combustor

half-plane of size 400 mm × 200 mm consisting of eight flames is visualized with the aid
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of an air-cooled mirror placed overhead of the combustor. The position of eight burners,

as imaged by the camera, has been numbered as 1-8 in figure 2.1(d). The camera was

outfitted with a Nikon AF Nikkor 70-210 mm 𝑓 /4 - 𝑓 /5.6 camera lens. A total number

of 5,563 images were acquired for each state of combustor operation. A pulse generated

from a Tektronix AFG1022 function generator was used to trigger the camera and the

PCI card to acquire measurements simultaneously.

2.1.2 Azimuthal thermoacoustic instability in annular combustor

To excite self-sustain azimuthal thermoacoustic instability in the annular combustor, the

dimensions of the settling chamber, burner tubes, and concentric ducts are altered again.

The diameter and length of the settling chamber are 400 mm and 220 mm, respectively.

The inner diameter and length of the burner tubes are 30 mm and 300 mm, respectively.

Moreover, the inner duct has a diameter of 300 mm and a length of 200 mm, while the

outer duct has a diameter of 400 mm and a length of 510 mm. In these experiments, the

equivalence ratio (𝜙) is controlled by keeping ¤𝑚𝑎 fixed at 3.67 × 10−2 kgs−1 and varying

¤𝑚 𝑓 from 3.28 × 10−3 to 2.42 × 10−3 kgs−1. Here, 𝜙 is varied in the range of 1.38 - 1.02,

and 𝑅𝑒 is around 1.14 × 104. The relevant properties of this combustor configuration are

discussed in table 2.1

We concurrently measure the acoustic pressure fluctuations (𝑝′) and the heat release

rate fluctuations ( ¤𝑞′) using the eight piezoelectric pressure transducers (named PC1,

PC2,.., PC8) and the two high-speed cameras, respectively. Pressure measurements are

performed using a PCB103B02 piezoelectric transducer mounted on the backplane of the

combustor between two burners at eight locations (see figure 2.1d). The sensitivity of all

transducers is 217.5 mV/kPa (uncertainty of ± 0.15 Pa). To measure the fluctuating heat

release rate around the annulus, a Phantom v12.1 CMOS camera and a Phantom VEO

710S CMOS camera equipped with CH∗ filters are used. In order to protect the camera

from the hot exhaust gases, the movies were acquired with the aid of two air-cooled

mirrors placed overhead of the combustor. We used Nikon AF Nikkor 70 − 210 mm
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Feature Annular combustor
Flame holding mechanism Swirler
Type of bifurcation Continuous, Azimuthal
Reynolds number, 𝑅𝑒 1.14 × 104

Equivalence ratio, 𝜙 1.38 - 1.02
Pressure measurement 10 kHz
Photomultiplier tube Not Available
High speed imaging 5 kHz

Table 2.1: Relevant properties of an annular combustor considered in this study for
self-excited azimuthal instability.

𝑓 /4 to 𝑓 /5.6 camera lens in both cameras to focus on the region of interest in the

experiments. The CH∗ filters used in our experiments have a 435 ± 10 nm bandwidth.

The pressure signal was acquired for a duration of 5 s with a sampling rate of 10 kHz, and

the cameras were operated at a frame rate of 5 kHz and a resolution of 1280 × 800 pixels.

A total number of 5,562 and 6,240 images were acquired for each state of combustor

operation using the Phantom v12.1 and Phantom VEO 710S cameras, respectively. A

pulse generated using the Tektronix AFG1022 function generator is used to trigger the

camera and the PCI card to acquire measurements simultaneously.

2.2 TURBULENT DUMP COMBUSTOR

Two configurations of the dump combustor were considered: (1) circular bluff-body and

(2) fixed-vane swirler stabilized flames. These two configurations show distinct routes to

limit cycle oscillation, each exhibiting disparate dominant frequency and amplitude in

the oscillations of acoustic pressure and heat release rate. The combustor comprises a

plenum connected upstream of a burner tube of 40 mm diameter. The burner tube is

connected to the combustion chamber of cross-sectional area 90 × 90 mm (figure 2.2a).

The burner supports a central shaft of diameter 16 mm, which holds the bluff-body or

the swirler in place. Fuel is delivered to the burner tube by four injection holes in the

shaft, each of diameter 1.7 mm, 120 mm upstream of the flame holder. Ignition of the
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Figure 2.2: (a) Schematic of the dump combustor. (b) Schematic of the combustor
cross-section indicating the chemiluminescence field of view. We use two
different flame-holding mechanisms, (c) a bluff-body and (d) swirl, attached
to the burner by a central shaft. The shaded area in (b) is captured using
CH∗ imaging. The box in (b) is the region chosen for synchronization
analysis. The experiments on a bluff-body configuration were conducted
by Dr. Manikandan Raghunathan and a swirl-stabilized configuration by
Dr. Induja Pavithran under the guidance of Prof. R. I. Sujith at IIT Madras,
Chennai.

combustible air-fuel mixture is facilitated by an 11 kV spark plug, flush mounted on

the dump plane. Combustion by-products are exhausted into the atmosphere via an

acoustic decoupler of size 1000 × 500 × 500 mm. The relevant properties of the annular

combustor and two configurations of dump combustor that exhibit longitudinal instability

are discussed in table 2.2.

2.2.1 Bluff-body stabilized configuration

The flame holder is a cylindrical bluff-body (diameter 47 mm and width 10 mm) mounted

on the central shaft, located 45 mm downstream of the dump plane (figure 2.2c). The

combustion chamber is 1100 mm in length. In this configuration, experiments were
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Feature Dump combustor Dump combustor Annular combustor
Flame holding mechanism Bluff-body Swirler Swirler
Type of bifurcation Continuous Secondary, abrupt Secondary, abrupt
Reynolds number, 𝑅𝑒 2.2 × 104-3.2 × 104 1.7 × 104-2.7 × 104 8.6 × 103

Equivalence ratio, 𝜙 0.56 - 0.86 0.53 - 0.81 0.44 - 0.53
Pressure measurement 20 kHz 10 kHz 10 kHz
Photomultiplier tube 20 kHz 10 kHz Not Available
High speed imaging 5 kHz Not Available 2 kHz

Table 2.2: Relevant properties of the turbulent combustors considered in this study for
self-excited longitudinal instability.

performed by maintaining a constant rate of fuel flow ¤𝑚 𝑓 = 8 × 10−4 kgs−1 and varying

the rate of air flow in steps from ¤𝑚𝑎 = 1.0 × 10−2 to 1.6 × 10−2 kgs−1. Consequently, the

equivalence ratio varies from 𝜙 = 0.86 to 0.56 and 𝑅𝑒 from 2.2 × 104 to 3.2 × 104.

A photomultiplier tube (PMT) and pressure transducers are used for measuring the heat

release rate and acoustic pressure oscillations in the combustor at a sampling frequency

of 20 kHz. The PMT is equipped with a CH∗ filter. High-speed CH∗ chemiluminescence

images are also obtained using a CMOS camera capturing 400 mm × 90 mm of the

combustor onto 1200 pixels × 800 pixels of the sensor and a framing rate of 5 kHz.

A total number of 7,418 images were acquired for each state of combustor operation.

For this combustor, a rectangular region of size 50 mm × 50 mm after the bluff-body,

as shown by the box in figure 2.2(b), is used for spatiotemporal analysis. All three

measurements were obtained simultaneously.

2.2.2 Swirl-stabilized configuration

The swirler consists of eight guided vanes of 1 mm thickness and is mounted on a central

shaft and positioned at the exit of the burner (figure 2.2d). The guided vanes are inclined

at 40◦ with respect to the injector axis. The swirler has a length of 30 mm and a diameter

of 40 mm. At the outer end of the swirler, a center body of diameter 16 mm and length

30 mm is attached to aid flame stabilization. In these experiments, ¤𝑚 𝑓 is maintained
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Figure 2.3: A schematic of the experimental setup used for suppressing thermoacoustic
instability along with the diagnostic tools. The swirler is actuated using the
stepper motor for mitigation of thermoacoustic instability. The experiments
were performed in the Turbulent Combustion and Spray Research Lab at
IISC, Bangalore.

at 7 × 10−4 kgs−1 and ¤𝑚𝑎 is varied from 0.8 × 10−2 to 1.4 × 10−2 kgs−1. As a result, 𝜙

varies in the range of 0.81 to 0.53, and 𝑅𝑒 varies in the range of 1.7 × 104 to 2.7 × 104.

In this arrangement, only the pressure and the heat release rate fluctuations are measured

using a pressure transducer and PMT at 10 kHz, respectively.

2.3 ROTATING SWIRLER COMBUSTOR

The experiments on the laboratory-scale turbulent combustor at IISC, Bangalore were

used to control thermoacoustic instability by actuating the swirler. The schematic of

the lab-scale premixed turbulent combustor is shown in figure 2.3. The combustor was

characterized in previous work (Gopakumar et al., 2016; Mahesh et al., 2018; Dutta et al.,

2019) in a vertical configuration and is used in the present experiments in a horizontal

configuration to facilitate length variation and imaging. The mitigation of thermoacoustic

instability upto ∼ 20 dB is achieved for the horizontal setup under similar operating

conditions as the vertical one, reported in the earlier works (Dutta et al., 2019; Mahesh
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Feature Rotating swirler combustor
Flame holding mechanism Swirler
Type of bifurcation Continuous
Reynolds number, 𝑅𝑒 6 × 103

Equivalence ratio, 𝜙 0.68
Pressure measurement 10 kHz
Photomultiplier tube Not Available
High speed imaging 2 kHz

Table 2.3: Relevant properties of the turbulent combustor considered in this study for
suppressing thermoacoustic instability.

et al., 2018). This establishes that the overall functioning and observations from the

experimental setup remain unaffected by the change in orientation. A lean mixture (𝜙

= 0.68) consisting of 6.5 SLPM (standard liter per minute) of methane and 90 SLPM

of air (Reynolds number, 𝑅𝑒 = 6 × 103 based on swirler diameter, with an uncertainty

of ±0.8%) is supplied into the settling chamber through four equally spaced inlet ports.

The relevant properties of this combustor configuration for suppressing thermoacoustic

instability are discussed in table 2.3.

The reactant mixture flows into the combustion chamber made of quartz, having a

diameter of 46 mm and a length of 60 mm, where it is ignited. An aluminum duct of

1.5 m in length is mounted over the quartz duct which act as a resonator to generate

self-excited thermoacoustic instability in the combustor. The flame stabilization is

achieved using the swirler having a diameter of 30 mm and consisting of eight straight

vanes inclined at 𝛿𝛼 = 30◦ with the axis mounted on the central shaft of the motor.

The geometric swirl number is obtained as 𝑆 = 2/3 tan 𝛿𝛼 = 0.385. The swirler is

actuated through a stepper motor to a maximum speed of 2100 rpm for the suppression

experiments.

The airflow rate ( ¤𝑚𝑎) and the fuel flow rate ( ¤𝑚 𝑓 ) are controlled using digital mass flow

controllers (Alicat Scientific, MCR series) with a measurement uncertainty of ±(0.8%
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of reading + 0.2% of full-scale). Acoustic signatures from the combustor are acquired

using a Kistler pressure transducer (sensitivity 1.84 V/bar, uncertainty ±0.2 %) mounted

20 mm upstream of the dump plane. The pressure signals are acquired for a duration

of 5 s at a sampling frequency of 10 kHz and digitized using a National Instruments

16-bit PCI 6251 card. A high-speed CMOS camera (Photon SA5) fitted with LaVision

IRO (Intensified Relay Optics) and Tamaron 150-600 mm 𝑓 /5-6.3 telephoto lens is

used to capture the unfiltered chemiluminescence images of the flame. The camera

recorded 60 mm × 60 mm of the combustion chamber onto 480 pixels × 480 pixels of

the sensor at a framing rate of 2 kHz while focused at the 𝑟 − Θ plane at 5 mm height

from the swirler exit. A total number of 10,000 images were acquired at each state of the

combustor operation. The acoustic pressure and imaging measurements were recorded

simultaneously for making quantitative assessments.
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CHAPTER 3

CRITICALITY OF BIFURCATION IN ANNULAR
COMBUSTOR

In this chapter, we quantify various possible dynamical transitions to longitudinal

thermoacoustic instability in the swirl-stabilized annular combustor. The current

configuration of the annular combustor exhibits longitudinal thermoacoustic instability

and is discussed in Section 2.1.1. Our focus is on understanding how varying the bulk

velocity alters the characteristics of the bifurcations leading to thermoacoustic instability

obtained by changing the equivalence ratio alone. We aim to compare and contrast the

response of global flame structure during different dynamical states. We also assess

the local flame response by determining the normalized amplitude and phase of the

heat release rate fluctuations of each burner during each of the dynamical states. The

primary objective is to discuss possible routes to longitudinal thermoacoustic instability

in a natural setting without resorting to external forcing. Additionally, quantify the

flame-flame and flame-acoustic interaction in the annular combustor during the transition

from combustion noise to longitudinal thermoacoustic instability.

3.1 ROUTES TO LONGITUDINAL THERMOACOUSTIC INSTABILITY

To study the dependence of the characteristics of bifurcation transitioning to longitudinal

thermoacoustic instability in the annular combustor, we vary the bulk flow velocity in

The results presented in this chapter are published in the following two papers:

1. Singh, S., Roy, A., Reeja, K. V., Nair, A., Chaudhuri, S., Sujith, R. I. (2021). Intermittency,
Secondary Bifurcation and Mixed-Mode Oscillations in a Swirl-Stabilized Annular Combustor:
Experiments and Modeling. J. Eng. Gas Turbine Power, 143 (5), 051028.

2. Roy, A., Singh, S., Nair, A., Chaudhuri, S., Sujith, R. I. (2021). Flame dynamics during
intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-
stabilized annular combustor. Proc. Combust. Inst., 38 (4), 6221-6230.



Figure 3.1: Transition from combustion noise (CN) to thermoacoustic instability (TAI)
when 𝜙 is increased (□) for 𝜐𝑧 ≈ 6.09 m/s. Region I to III corresponds to the
states of CN, intermittency, TAI.

the range 𝜐𝑧 = 5.5 to 12 m/s (Re = 0.56 − 1.22 × 104). For each value of 𝜐𝑧, we vary 𝜙

in the range of 0.4 − 0.62.

3.1.1 Transition to thermoacoustic instability through continuous bifurcation

Figure 3.1 shows the variation of root-mean-square (rms) value of pressure oscillations

(𝑝′rms) as a function of equivalence ratio (𝜙) corresponding to bulk flow velocity 𝜐𝑧 ≈ 6.09

m/s. For 𝜙 ≤ 0.47 (region I), we observe the state of combustion noise (CN) with

𝑝′rms ∼ 20 Pa. For 𝜙 between 0.47 to 0.49 (region II), we observe intermittency in pressure

oscillations with 𝑝′rms ∼ 60 Pa. For 𝜙 > 0.49, we observe the state of low-amplitude TAI

with 𝑝′rms ∼ 100 Pa. On decreasing 𝜙 from 0.60 to 0.40, hysteresis is seen in the system

dynamics. The amplitude of low-amplitude TAI decreases gradually as 𝜙 is lowered. The

hysteresis and the difference in the amplitude of oscillations in the forward and reverse

path possibly arise due to thermal inertia of the combustor walls (Bonciolini et al., 2019).

For low bulk velocities from 𝜐𝑧 ≈ 6 to 6.5 m/s, the transition from CN to low-amplitude

TAI of the acoustic subsystem takes place through a bifurcation similar to supercritical

Hopf bifurcation (Nair et al., 2014), as illustrated in 3.1. Since the flow is turbulent,
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Figure 3.2: Observed transition from combustion noise (CN) to thermoacoustic instability
(TAI) when 𝜙 is increased (□) and back to CN when 𝜙 is decreased (▼) for
𝜐𝑧 ≈ 8.51 m/s. Region I to V correspond to the states of CN, intermittency,
low-amplitude TAI, high-amplitude TAI and bistable region (hatched region).

the transition is associated with an intermittent state between the state of CN and TAI.

This is different from a conventional supercritical bifurcation where the dynamics are

expected to change smoothly from CN to TAI.

3.1.2 Transition to thermoacoustic instability through abrupt bifurcation

In figure 3.2, we plot the variation of 𝑝′rms as a function of 𝜙 at 𝜐𝑧 ≈ 8.51 m/s. For

𝜙 ≤ 0.47 (region I), the amplitude of pressure fluctuations is very low, indicating the state

of combustion noise (CN). Upon increasing 𝜙 up to 0.50 (region II and III), we first notice

the state of intermittency followed by low-amplitude TAI. On increasing 𝜙 past 0.50

(region IV), we observe an abrupt increase in the amplitude of 𝑝′rms indicating a secondary

bifurcation to high-amplitude TAI. At the fold point (𝜙 = 0.49), the low-amplitude stable

limit cycle loses stability and jumps to a secondary limit cycle, which has a higher

amplitude. The bistable region (hatched region V in figure 3.2) is obtained for 𝜙 = 0.54

to 0.45. The difference of about 400 Pa between the forward and reverse path is possibly

due to different boundary conditions of the combustor as a result of prolonged operations.

In figure 3.3, we plot the time series and the power spectrum of 𝑝′ during different states
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Figure 3.3: Time series and the power spectrum of pressure fluctuations observed
during the states of (a,b) combustion noise (CN), (c,d) intermittency (INT),
(e,f) low-amplitude TAI, and (g,h) high-amplitude TAI for 𝜐𝑧 ≈ 8.51 m/s.
Experimental conditions: (a, b) 𝜙 = 0.44, (c, d) 𝜙 = 0.48, (e, f) 𝜙 = 0.49,
and (g, h) 𝜙 = 0.5.

of combustor operation for 𝜐𝑧 ≈ 8.51 m/s acquired in the forward direction. At 𝜙 = 0.44,

we observe aperiodic oscillations having broadband spectrum, indicating the state of CN

(figures 3.3a,b). At 𝜙 = 0.48, there are intermittent bursts of high-amplitude periodic

pressure oscillations amidst low-amplitude aperiodic pressure fluctuations (see insets),

corresponding to the state of intermittency (figure 3.3c) (Nair et al., 2014). In order to

ensure that the state of intermittency is statistically stable, we show a long time series of

15 s. We also notice that the power spectrum narrows at 𝑓𝑛 ≈ 213 Hz associated with the

48



Figure 3.4: Transition from CN to high-amplitude TAI when 𝜙 is varied for 𝜐𝑧 ≈ 7.3
m/s. The transition from low-amplitude TAI to high-amplitude TAI takes
place through MMO. Region I to V corresponds to CN, intermittency, low-
amplitude TAI, MMO, and high-amplitude TAI.

first longitudinal mode of the combustor with an intensity of 125 dB (figure 3.3d). At 𝜙 =

0.49, 𝑝′ is periodic with a dominant peak at 𝑓𝑛 ≈ 218 Hz and intensity of 141 dB (figures

3.3e,f). The characteristics of low-amplitude TAI are very similar to what was reported in

(Bourgouin et al., 2013). We refer to this state as low-amplitude TAI. Finally, at 𝜙 = 0.50,

𝑝′ is periodic with 𝑝′rms ≈ 1425 Pa corresponding to 𝑓𝑛 ≈ 227 Hz and intensity of 157 dB

(figures 3.3g,h). This state is referred to as high-amplitude TAI. Similar high-amplitude

TAI has also been reported for a standing mode of azimuthal thermoacoustic instability

in a similar configuration (Vignat et al., 2020), further exemplifying the relevance of the

problem.

3.1.3 Transition to thermoacoustic instability through mixed-mode oscillations

As we discussed, for 𝜐𝑧 < 7 m/s, the combustor dynamics exhibit the state of low-

amplitude TAI, while for 𝜐𝑧 > 7.5 m/s there is a secondary fold bifurcation of low-

amplitude TAI to high-amplitude TAI. Figure 3.4 shows 𝑝′rms as a function of 𝜙 for

𝜐𝑧 ≈ 7.3 m/s. As before, we observe the state of CN (region I), intermittency (region II),
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Figure 3.5: (a,b) Time series of 𝑝′ (orange) and ¤𝑞′ (blue), and the corresponding amplitude
spectrum during MMO at 𝜙 = 0.54.

low-amplitude TAI (region III), and high-amplitude TAI (region V). Of special interest

here is the transition from low-amplitude TAI to high-amplitude TAI. The transition

is not abrupt, but takes place smoothly with a monotonic increase in the value of 𝑝′rms

(figure 3.4). Here, the transition from low-amplitude TAI to high-amplitude TAI takes

place through mixed-mode oscillations (see figure 3.5a).

A representative time series of 𝑝′ during the mixed-mode oscillations (MMO) at 𝜙 =

0.54 (region IV) is shown in orange in figure 3.5(a). The associated amplitude spectrum

|𝑝( 𝑓 ) | is shown in figure 3.5(b). The peaks at 𝑓𝑛 = 216 Hz and 𝑓𝑛 + 𝑓𝑠 = 223 Hz are

indicated. The low-frequency modulation calculated from the envelope of 𝑝′ is 𝑓𝑠 = 7 Hz.

Next, we calculate the instantaneous heat release rate ¤𝑞′
𝑘
(𝑡) from the chemiluminescence

images by considering a region circumscribing the 𝑘 th burner and summing over all the

intensity values. An example of such a region for burner 4 is shown in figure 3.7(d). The

fluctuations in the local heat release rate (HRR) oscillations ¤𝑞′4 from burner 4 is shown

in figure 3.5(a) (in blue) and the corresponding amplitude spectrum |𝑞4( 𝑓 ) | in figure

3.5(b) (in blue). We observe a peak at 𝑓𝑛 = 216 Hz and 𝑓𝑠 = 7 Hz and their combination

at 𝑓𝑛 + 𝑓𝑠.

In combustion literature, amplitude-modulated limit cycle oscillations are usually referred

to as beats (Weng et al., 2016; Kim et al., 2019; Han et al., 2020). The phenomenon
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of beats is associated with the linear superposition of acoustic waves with a very

small frequency difference. Beats are characterized by the constructive and destructive

interference pattern, as was observed in (Kim et al., 2019; Han et al., 2020). However,

the applicability of beats is restricted only to linear systems. The amplitude-modulated

oscillations in figure 3.5(a) are different from beats because of two key reasons. First,

the oscillations do not show the well-known constructive and destructive pattern usually

observed for beating (e.g., figure 12a in Han et al. (2020)). Second, the parametric

value (𝜐𝑧 = 7.3 m/s) for which we observe these amplitude-modulated oscillations

separates the region for which we get low-amplitude TAI and secondary bifurcation

from low-amplitude TAI to high-amplitude TAI. Consequently, slow scale ( 𝑓𝑠 = 7 Hz)

oscillations associated with ¤𝑞′ causes the parameter to increase past the bifurcation point

affecting high-amplitude oscillations. When the parameter value decreases due to slow

oscillations, it crosses the bifurcation point, and the system dynamics switch back to

low-amplitude oscillations. The latter is a well-known mechanism associated with MMO

(Kuehn, 2011) and has been discussed in the context of Rijke tube recently (Tandon et al.,

2020). Thus, we refer to these oscillations as MMO.

3.2 THE CROSSOVER OF BIFURCATION

3.2.1 Change of criticality across two-parameter family

We now discuss the change in the nature of the bifurcation along the two control

parameters in the combustor. In particular, we focus on the effect of variation of the

control parameters on the characteristics of the bifurcations to thermoacoustic instability.

In figure 3.6(a), we show the variation in amplitude of acoustic pressure (𝑝′rms) as a

function of equivalence ratio (𝜙) and bulk velocity (𝜐𝑧). For every experiment, depending

upon the bulk velocity, we observe various routes to thermoacoustic instability when the

equivalence ratio is varied. For visual clarity, the bottom surface is plotted only till the

secondary fold point where the oscillations abruptly transition from low-amplitude TAI

to high-amplitude TAI, indicated with the up arrow. The top surface is plotted till the fold
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Figure 3.6: (a) Change in criticalities of bifurcations to the state of TAI when 𝜐𝑧 and 𝜙
are sequentially varied. The forward path is indicated by □ and the backward
path by ▼. (b) Interpolated stability map of the system. △ Hopf point, ×
intermittent dynamics, □ secondary bifurcation point, ▽ fold point. A dashed
line indicates an extrapolated boundary. The frequency of the oscillations
was in the range of 215 − 230 Hz.
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point where the dynamics of pressure oscillations abruptly jump from high-amplitude

TAI to combustion noise (CN) (down arrows).

In the range of low bulk velocities, specifically from 𝜐𝑧 ≈ 6 to 6.5 m/s, the transition from

CN to low-amplitude TAI of the acoustic subsystem takes place through a bifurcation

similar to supercritical Hopf bifurcation (see figure 3.1). For 𝜐𝑧 ≈ 7.3 m/s (see figure 3.4),

there is a transition from CN to high-amplitude TAI through the state of intermittency,

low-amplitude TAI, and MMO. In the range of high bulk velocities, for 𝜐𝑧 > 7.5 m/s, the

transition from CN to high-amplitude TAI takes the following route: CN to low-amplitude

TAI via intermittency followed by a secondary bifurcation from low-amplitude TAI to

high-amplitude TAI (figure 3.2). The variation in the nature of these bifurcations along

the two-parameter family is commonly referred to as the criticality of a bifurcation.

3.2.2 Stability map of the combustor

We now discuss the stability map of the annular combustor obtained by varying the two

control parameters (𝜙, 𝜐𝑧). In figure 3.6(b), we show the interpolated boundary between

different dynamical states in the parametric 𝜙 − 𝜐𝑧 plane. A cubic spline has been used

to interpolate and extrapolate the boundary between different regions. Since we do not

observe secondary bifurcation to high-amplitude TAI below 𝜐𝑧 < 6 m/s, we have limited

the ordinate to 𝜐𝑧 ≥ 6 m/s. The approximate boundary separating regions I and III

marks the transition from CN to low-amplitude TAI. This transition is always associated

with the state of intermittency (indicated with ‘×’ markers in region II highlighted in

yellow). The boundary between III and IV indicates the boundary of the secondary fold

bifurcation to high-amplitude TAI. The small parametric region for which we observe

MMO is also indicated in figure 3.6(b). The bistable region has been hatched, and the

boundary between regions V and I shows the fold point of the system. Several salient

features can be observed from the stability diagram. First, the onset of low-amplitude

TAI and high-amplitude TAI takes place at a progressively lower value of 𝜙 as 𝜐𝑧 is

increased. Second, the range of 𝜙 over which we observe low-amplitude TAI decreases,
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Figure 3.7: (a) Time series of acoustic pressure oscillations obtained during intermittency
observed at 𝜙 = 0.47. (b) Aperiodic and (c) periodic part of intermittency. (d-
g) Mean-subtracted instantaneous chemiluminescence images corresponding
to the indicated points in the aperiodic region in (b). (h,i) Phase-averaged
chemiluminescence image at the pressure maxima (90◦) and minima (270◦)
measured from the points indicated in (c).

and high-amplitude TAI increases on increasing 𝜐𝑧. Finally, there is also an increase in

the width of the bistable region with an increase of 𝜐𝑧.

3.3 FLAME DYNAMICS DURING THE THERMOACOUSTIC TRANSITIONS

In this section, we discuss the flame dynamics observed across various dynamical states

during the thermoacoustic transitions. We discuss global and local flame dynamics

during intermittency, low-amplitude TAI, high-amplitude TAI, and MMO. We then

compare and contrast to highlight the intriguing behaviors exhibited by the flames in

these distinct dynamic states.

During combustion noise (CN), as the flames are only subjected to broadband turbulent

54



velocity fluctuations, the heat release rate (HRR) field largely remains incoherent and the

acoustic pressure fluctuations remain aperiodic and have not been shown here for brevity.

We focus on the flame dynamics observed during the state of intermittency (INT).

The intermittent acoustic pressure oscillations observed when 𝜙 = 0.47 are shown in

figure 3.7(a). In the enlarged portion in figures 3.7(b) and (c), we observe aperiodic

and periodic pressure oscillations. Instantaneous images corresponding to the points

indicated in figure 3.7(b) have been shown below the time signal. For the periodic part of

intermittency, phase-averaged chemiluminescence images at maxima (90◦) and minima

(270◦) determined from the red and green points in figure 3.7(b), have been shown in

figures 3.7(h) and (i). The flames are identified as 1 to 8 going in an anti-clockwise

direction.

Figure 3.7(d) corresponds to the local minima of aperiodic pressure oscillations observed

during intermittency. We observe that flames 5 and 7 show very high heat release rate

fluctuations. However, at the next minima (figure 3.7f), we observe that flames 6 and 8

are at a maximum. Similar observations can be made from the points corresponding to

local pressure maxima (figures 3.7e,g). In other words, the intensity levels are incoherent

across different burners. In contrast, from the phase-averaged image taken at pressure

maxima (figure 3.7h), we distinguish the swirling flame structure. For all the burners, we

observe that the intensity is at maxima along the periphery of the swirling flame. At the

pressure minima, the phase-averaged flame image shows a very low heat release.

It is worth noting that the phase-averaged images (⟨ ¤𝑞′⟩) were calculated from mean-

subtracted chemiluminescence images. As a result, the phase-averaged images at pressure

minima in figure 3.7(i) show negative values. Additionally, we note that ⟨ ¤𝑞′⟩ is not

centered around zero, which could be a consequence of the apparent nonlinear interaction

between heat release rate and acoustic pressure fluctuations.

Now, we analyze the local HRR dynamics during the periodic part of intermittency.
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The local HRR is determined by summing over all the intensity values present in a

rectangular region as shown for the 4th flame in figure 3.7(d). To calculate HRR from

each burner, the rectangular region was chosen instead of the entire burner to avoid

phase cancellation effects from affecting the HRR time series. A similar region is

chosen for all the burners and a time series of local HRR fluctuations is obtained. Since

the local HRR signals contain phase noise, we bandpass the signal centered around

the frequency of dominant oscillations ( 𝑓𝑛) with a width of ± 𝑓𝑛/4. Here, 𝑓𝑛 is the

frequency of limit cycle oscillations which is approximately around 220 ± 50 Hz. We

normalize the HRR signals to compare the amplitude of oscillations and use the Hilbert

transform to obtain the phase of the time signals (Gabor, 1946; Pikovsky et al., 2003).

From the HRR signal for the 𝑘 th burner ¤𝑞′
𝑘
, we construct a complex analytic signal

𝜁 (𝑡) = ¤𝑞′
𝑘
(𝑡) + 𝑖H[ ¤𝑞′

𝑘
(𝑡)] = 𝐴𝑘 (𝑡) exp(𝑖𝜃𝑘 𝑡). Here 𝜃𝑘 (𝑡) is the instantaneous phase and

𝐴𝑘 (𝑡) is the instantaneous amplitude of the analytic signal associated with ¤𝑞′
𝑘
. The

Hilbert transform is defined as:

H[ ¤𝑞′𝑘 (𝑡)] = PV
∫ ∞

−∞

¤𝑞𝑘 (𝜏)
𝑡 − 𝜏 𝑑𝜏, (3.1)

evaluated at the Cauchy principal value (PV). It is important to note that for the

interpretation of the calculated quantity using the Hilbert transform as phase, the

trajectories of the signal in the analytic plane [T (H) − R(H)] should rotate around

a fixed center (Romano et al., 2005). During limit cycle oscillations, the trajectories

of the acoustic pressure signal 𝑝′(𝑡) possess a unique center of rotation in the analytic

plane. However, during combustion noise, the signal trajectories do not revolve around

an origin in the analytic plane. This absence of a distinct center of rotation implies that

the acoustic pressure signal 𝑝′(𝑡) is not strictly analytic during the state of combustion

noise. To determine the phase during the state of combustion noise, Mondal et al. (2017b)

instead evaluated the correlation and used the probability of recurrence to determine

the phase of the pressure and heat release rate oscillations. The resulting phases were

qualitatively similar to the phase obtained through the Hilbert transform, despite the
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Figure 3.8: (a) Periodic part of intermittency observed at 𝜙 = 0.47. Temporal variation of
(b) normalized amplitude and (c) phase difference (in deg) of HRR between
burners and burner pairs.

limitation imposed by the definition of analytic signals. So, we also utilize the phase of

the analytic signal computed using the Hilbert transform in our analysis to visualize the

changes in the phase field during the transition from combustion noise to thermoacoustic

instability. The normalized HRR can then be evaluated as: ¤𝑞′
𝑘
(𝑡)/𝐴𝑘 (𝑡) = sin 𝜃𝑘 .

In figure 3.8(a), we show the periodic part of intermittency in 𝑝′. In figure 3.8(b), we plot

the temporal variation of the amplitude of HRR oscillations for all the burners. This phase

difference between different pairs of burners is shown in figure 3.8(c). We observe some

phase mismatch between the cycles of oscillations among different flames. We notice

that the phase difference of different burners are different. For instance, in the region
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Figure 3.9: (a) Time series of 𝑝′ during low-amplitude TAI at 𝜙 = 0.49. Phase-averaged
CH* images at pressure (b) maxima (90◦), (c) mean (0◦) and (d) minima
(270◦) value. (e) Variation in the normalized amplitude of ¤𝑞′ for each burner
measured from each of the flames. (f) Relative phase (in degrees) evolution
between ¤𝑞′ measured from the indicated pair of burners.

indicated by the black rectangle, burner 1-2 are in-phase, while burner pair 4-5 is 180◦

out-of-phase. However, there are many burner pairs that become out-of-phase (indicated

by the red rectangle). Thus, even though the burners are frequency synchronized, they

have a significant amount of desynchronized behavior. In summary, we observe that

during periodic bursts of intermittency, although the burners have the same frequency,

their phase differences show significant phase slips in time. As a consequence, the flames

are in a state of partial (intermittent phase) synchronization with each other.

Figure 3.9(a) shows the time series of pressure fluctuations obtained during a low
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amplitude limit cycle with an amplitude of around 800 Pa obtained at 𝜙 = 0.49. Phase-

averaged CH* images obtained at the phase of pressure maxima (90◦), mean (0◦) and

minima (270◦) are plotted in figures 3.9(b-d), respectively. From the phase-averaged

CH* images at pressure maxima during low-amplitude TAI (figure 3.9b), we see a

hollow flame structure for every burner along the annulus. This is in contrast to the case

of intermittency where we observed the hollow flame structure for some burners and

distributed flames for others (figure 3.7h). The flame is bounded by the inner and outer

recirculation zone. Consequently, there is a minima in the HRR at the center of each

flame and a large HRR along the flame edges. We can also notice a difference in the heat

release field during the phase of pressure maxima and minima.

Next, we calculate the local HRR from all eight flames and compare their dynamics in the

manner discussed previously. We plot the temporal variation in the amplitude of the HRR

obtained from each of the eight burners in figure 3.9(e). We observe that the burners have

the same frequency, as observed from the temporal match of their normalized amplitudes.

In the temporal variation of the phase difference between neighboring pairs of burners

(figure 3.9f), we find that the phase differences are predominantly close to zero. In other

words, most of the burners are in-phase synchronized with each other. We also see the

random appearance of phase slips between different pairs of burners (indicated by the red

rectangles). Phase slips indicate an increase in phase difference by 180◦. In comparison

to the periodic part of intermittency, there are much fewer phase slips between different

pairs of burners during low-amplitude TAI. We refer to this state where the flames are

not perfectly synchronized as a state of weak synchronization.

Figure 3.10(a) shows high-amplitude TAI obtained at 𝜙 = 0.52. The amplitude of TAI is

around 2 kPa and is about an order of magnitude larger than the low-amplitude TAI. We

plot the phase-averaged CH* images at the phase of pressure maxima (90◦), mean (0◦)

and minima (270◦) in figures 3.10(b-d), respectively. We observe that the flame dynamics

are significantly different from that during low-amplitude TAI. First, during pressure
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Figure 3.10: (a) Time series of 𝑝′ during high-amplitude TAI at 𝜙 = 0.52. Phase-averaged
CH* images at pressure (b) maxima (90◦), (c) mean (0◦), and (d) minima
(270◦) value. (e) Variation in the normalized amplitude of ¤𝑞′ for each burner
measured from each of the flames. (f) Relative phase (in degrees) evolution
between ¤𝑞′ measured from the indicated pair of burners.

maxima, the highest HRR intensity is concentrated at the center of each flame. This

possibly indicates intense heat release in the inner recirculation zone during the pressure

maxima. At 0◦ and 270◦ phase, we can observe that the flame does not propagate along

the inner recirculation zone.

We now analyze the individual flames by evaluating the local HRR for each burner. The

temporal variation in amplitude of the HRR for each of the flames is plotted in figure

3.10(e). We observe that each of the burners attains maxima in the HRR at the same

time instant, indicating in-phase synchronization among each of the burner pairs. This
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Figure 3.11: Phase-averaged CH* chemiluminescence images at (a) pressure maxima
(90◦) and (b) pressure minima (270◦) during epochs of high-amplitude
oscillations in MMO, and (c) pressure maxima (90◦) and (d) pressure
minima (270◦) during epochs of low-amplitude oscillations in MMO. This
experimental investigation was conducted under the condition of 𝜙 = 0.54.

is further corroborated by the temporal evolution of the phase difference between the

pair of burners in figure 3.10(f). We can observe that the burners are always in-phase

synchronized and the phase difference is always below 90◦. Hence, we refer to the flame

interactions between burners during high-amplitude TAI as perfect synchronization.

As previously mentioned, mixed-mode oscillations (MMO) involve the periodic

alternation between high-amplitude and low-amplitude TAI. Figures 3.11(a-d)

correspond to phase-averaged CH* images for pressure maxima (90◦) and minima

(270◦) during epochs of high-amplitude oscillations are shown in figures 3.11(a,b), and

for the low-amplitude oscillations in figures 3.11(c,d). At the pressure maxima during

epochs of high-amplitude oscillations (figure 3.11a), intense HRR oscillations manifest

in the high intensity at the center of each burner in the phase-averaged images. The

intense central region of the burners indicates the presence of a well-developed inner
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Figure 3.12: (a) Enlarged portion of 𝑝′ during MMO at 𝜙 = 0.54. (b) Temporal variation
in the normalized amplitude of heat release rate (sin 𝜃𝑘 ) measured from all
the burners. (c) Temporal variation in the relative phase (in degrees) from
the indicated pair of burners.

recirculation zone. In addition, all of the eight flames have almost the same intensity

with a very similar flame structure. The flame intensity levels are low at the pressure

minima (figure 3.11b). The behavior is remarkably different during the epochs of

low-amplitude fluctuations of MMO. At pressure maxima (figure 3.11c), the intensity is

much lower. The flame structure shows that the flames are stabilized along the central

shear layer separating the inner and outer recirculation zones and indicates the absence

of the vortex bubble at the centerline. At pressure minima (figure 3.11d), we notice very

low intensities for all the flames. The global phase-averaged flame dynamics observed in

figures 3.11(a-d) are qualitatively similar to the phase-averaged flame dynamics

observed during high-amplitude TAI and low-amplitude TAI.
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Next, we discuss the local flame behavior during MMO by analyzing the mutual interaction

of adjacent flames. Figure 3.12(a) shows an enlarged portion of the acoustic pressure

oscillations during the MMO consisting of alternate epochs of high-amplitude and low-

amplitude oscillations. We observe that during the epochs of high-amplitude oscillations

(region I), all of the burners attain maxima and minima in the HRR concurrently with

almost the same amplitude (figure 3.12b). In contrast, during epochs of low-amplitude

oscillations (region II), we observe that all of the burners do not attain maxima and

minima in the HRR at the same time instants. Instead, there is some phase mismatch in

the HRR oscillations associated with the different flames (figure 3.12b). This contrasting

behavior is well captured from the instantaneous relative phase. During high-amplitude

oscillations (region I), the burners are in-phase synchronized, and the phase difference

between various pairs of burners always remains well below 90◦ (figure 3.12c). However,

during low-amplitude oscillations (region II), we observe that some burner pairs are

in-phase while others are out-of-phase. For instance, burners 2-3 are initially in-phase

and, after some time, go 180◦ out-of-phase, while burners 6-7 are 90◦ out-of-phase for

almost the entirety of the duration of low-amplitude oscillations. Similar observations

can be drawn for other pairs of burners.

For a better understanding of the above-mentioned scenario, we further investigate the

instantaneous interactions between burner pairs 2-3 and 6-7 and contrast the synchronous

behavior during low and high-amplitude oscillations over one cycle of oscillations. Figure

3.13(a) shows one cycle of low-amplitude oscillations during MMO. Figures 3.13(b-f)

show the corresponding instantaneous flame image of burner pairs 2-3 and 6-7 at various

points over the cycle. In figure 3.13(b), we observe high-intensity levels for burner 6

while the rest of the burners have lower intensity levels. In addition, burner 6 is 100◦

out-of-phase with burner 7 at the beginning of the cycle and has a mean phase difference

of ⟨Δ𝜃67⟩ = 53◦ over the cycle. In comparison, burner 2 is in-phase with burner 3 for

all the points over the cycle with a mean phase difference of ⟨Δ𝜃23⟩ = 16◦ (figures

3.13b-f). In figure 3.13(g), we show the high-amplitude oscillation during MMO over
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Figure 3.13: (a) Low-amplitude pressure oscillations over one cycle during the state of
MMO. (b-f) Portion of CH* images depicting the flame-flame interaction
between burner pairs 2-3 and 6-7 corresponding to the points marked in (a).
(g) High-amplitude pressure oscillations over one cycle during the state of
MMO and (h-l) the corresponding CH* images.

a cycle along with the instantaneous images of the burner pairs 2-3 and 6-7 in figures

3.13(h-l). Compared to the behavior of burner pairs over a cycle of low-amplitude

pressure oscillation (figures 3.13b-f), the intensity of heat release rate at each of the

burner is almost the same over the cycle of high-amplitude pressure oscillation (figures

3.13h-l). The averaged phase difference over the points of the cycle are ⟨Δ𝜃23⟩ = 13◦

and ⟨Δ𝜃67⟩ = 5◦. The flame structures at each of the burners are also quite similar over

different points in the cycle.

3.4 QUANTIFICATION OF FLAME-FLAME AND FLAME-ACOUSTIC

INTERACTIONS

In this section, we quantify the relative degree of synchronization amongst different pairs

of burners and with the acoustic pressure oscillations. We define the phase-locking value
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(PLV) for any given pair of oscillators 𝑥1 and 𝑥2 as (Pikovsky et al., 2003):

PLV =
1
𝑁𝑝

���� 𝑁𝑝∑︁
𝑗=1

exp
(
𝑖Δ𝜙𝑥1,𝑥2 (𝑡 𝑗 )

) ����, (3.2)

where, the phase difference between the signals at the instant 𝑡 𝑗 is Δ𝜙𝑥1,𝑥2 (𝑡 𝑗 ) =

𝜙𝑥1 (𝑡 𝑗 ) − 𝜙𝑥2 (𝑡 𝑗 ) and 𝑁𝑝 is the length of the time series. The PLV indicates the absolute

value of the mean phase difference between two signals where the instantaneous phase

differences (Δ𝜙) are expressed as complex unit-length vectors, i.e., 𝑒𝑖Δ𝜙 (Mondal et al.,

2017a). The PLV has a value close to 0 for desynchronized signals and close to 1 for

perfectly synchronized signals. For cases with partial synchronization such as intermittent

phase-locking, the PLV lies between 0 and 1.

We also define the Kuramoto order parameter to quantify the synchronous behavior for

the spatially distributed oscillators (the eight burners) as (Mondal et al., 2017b):

𝑅(𝑡) = 1
𝑁𝑏

���� 𝑁𝑏∑︁
𝑘=1

exp(𝑖𝜃𝑘 (𝑡))
���� (3.3)

where, 𝜃𝑘 is the phase of the 𝑘 th burner and 𝑁𝑏 is the total number of burners. At any time

instant, 𝑅 = 0 indicates spatial desynchrony, while 𝑅 = 1 indicates spatial synchrony.

We show the variation in PLV between the HRR from different pairs of burners in

figure 3.14(a) observed during the state of CN, intermittency, low amplitude TAI, and

high-amplitude TAI. We also show the PLV between each burner with respect to pressure

fluctuations observed during the above-mentioned states in figure 3.14(b) for the different

states of combustor operation. During CN (figures 3.14a,b), the PLV between different

burner pairs and burner and acoustic pressure fluctuations remain close to zero, indicating

desynchronized behavior among them. During intermittency (figures 3.14a,b), the PLV

between different pairs of burners is very low (< 0.5) indicating the desynchronized

nature of their interaction with each other. However, the PLV between different burners

and the acoustic pressure fluctuations are close to 0.4 indicating partial synchronization

between them (figure 3.14b).
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Figure 3.14: Phase-locking value (PLV) between (a) ¤𝑞′ measured from individual burners,
and between (b) ¤𝑞′ from each burner and 𝑝′ during combustion noise (CN),
intermittency (INT) at 𝜙 = 0.47, low amplitude TAI at 𝜙 = 0.49, and high-
amplitude TAI at 𝜙 = 0.52, respectively. (c) Kuramoto order parameter
(𝑅) determined from the eight burners during different states of combustor
operation.

As noted during the discussion following figure 3.9, during low-amplitude TAI, some

oscillators are only weakly synchronized with each other due to phase-slips in their relative

phases. As a consequence, PLV lies between 0.5 and 1, indicating weak synchronization

among different burners (figure 3.14a). We also note that the PLV of different burners

with the acoustic pressure oscillations follows suit and lies between 0.5 and 1 showing

partial synchrony (figure 3.14b). For high-amplitude TAI, the PLV between different

pairs of burners and different burners with pressure lies very close to 1, indicating perfect

synchronization of the burners with each other and with the pressure oscillations (figures

3.14a,b).

Next, the Kuramoto order parameter is plotted as a function of time in figure 3.14(c)

during different dynamical states. The order parameter indicates the different degrees

of spatial coherence of the oscillators over time. During CN, 𝑅 fluctuates around
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Figure 3.15: Temporal variation in the Kuramoto order parameter (𝑅) measured from
the eight flames during mixed-mode oscillations (MMO) at 𝜙 = 0.54.

time-averaged value of �̄� = 0.41. During the periodic and aperiodic part of intermittency,

𝑅 fluctuates around �̄� = 0.49 and �̄� = 0.37. This indicates that spatially, the flames are

intermittently coherent during the periodic part of intermittency and incoherent otherwise.

During low-amplitude TAI, 𝑅 fluctuates around a mean value of �̄� = 0.84. Thus, the

burners are in a state of weak spatial synchronization. And, during high-amplitude TAI,

𝑅 fluctuates around a mean value of �̄� = 0.97, indicating perfect spatial synchronization.

Finally, in figure 3.15, we plot the temporal variation of the Kuramoto order parameter

during the mixed-mode oscillations (MMO). We observe the value of 𝑅 is near 1 for

the epochs of high-amplitude oscillations (region I marked in black). While, during

low-amplitude pressure oscillations, the value of 𝑅 fluctuates between 0.50 and 1 (region

II marked in red). Thus, during the epochs of high-amplitude oscillations, all the flames

get perfectly synchronized, while during epochs of low-amplitude oscillations, they are

weakly synchronized.

3.5 INTERIM SUMMARY

In this chapter, we evaluated the criticality of a bifurcation by systematically varying

the equivalence ratio and bulk flow velocity in the annular combustor. We demonstrate

the effect that change of control parameters has on determining the characteristics of

the bifurcations leading to longitudinal thermoacoustic instability. We observe different

dynamical states depending upon the values of 𝜐𝑧 and 𝜙, namely, combustion noise,
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intermittency, low-amplitude TAI, high-amplitude TAI, and MMO. We then focused

on the flame dynamics during various dynamics states observed in the experiments.

We find that during the periodic part of the intermittency, the phase-averaged flame

structure changes from incoherent to a ring-like structure. During low-amplitude TAI,

we find that the flame exhibits a well-defined ring-like structure anchored along with

the space between the inner and outer recirculation zone. During high-amplitude TAI,

the flame propagates into the inner reaction zone, resulting in intense heat release at the

center of the burner. Remarkably, in the case of MMO, we find that the flame behavior

encompasses features from both low- and high-amplitude oscillations.

Further, we analyze the interactions between neighboring flames along the annulus.

Upon comparing the amplitude and phase of the HRR response of neighboring burners,

we find different degrees of spatiotemporal synchronization during different dynamical

states. We show that even in the case of longitudinal TAI, the flame-flame interactions

are non-trivial. In particular, we find a transition from partially synchronized response

of the burners during INT to weakly synchronized behavior with sporadic phase slips

during low-amplitude TAI, followed by perfect synchronization among the burners

during high-amplitude TAI. During MMO, the flame interaction periodically alternates

between weak and perfect synchronization. We quantify the degree of spatiotemporal

synchronization using the phase-locking value (PLV) and the Kuramoto order parameter

(𝑅). Most importantly, we characterize the nonlinear dependence of the flame response

on the dissimilar amplitude perturbations encountered during the MMO, low-amplitude

TAI, and high-amplitude TAI.
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CHAPTER 4

MODELING CRITICALITY OF BIFURCATION IN
THERMOACOUSTIC SYSTEMS

In our discussion regarding the criticality of bifurcation in Chapter 3, we highlighted

various routes to thermoacoustic instability and the underlying spatiotemporal behavior

of the flame across various dynamical states. However, the differences in the transition

mechanisms make evident the challenge in the development of thermoacoustic models

capable of explaining all these transition scenarios. Here, we present two distinct

thermoacoustic models to explain the criticality of a bifurcation and the underlying

mechanism leading to a change in the nature of the bifurcation. In the first approach, the

phenomenological thermoacoustic model successfully captures the nature of bifurcation

by introducing the nonlinearity that is encoded in the assumed flame model. In the

second approach, we develop a general model of thermoacoustic interactions capable

of capturing the bifurcations and their criticalities, and the rich phase dynamics which

underlie thermoacoustic transitions in disparate combustion systems. Importantly, the

second approach provides an explanation of spatiotemporal synchronization and pattern-

formation underlying the transition to thermoacoustic instability while encapsulating the

statistical properties of desynchronization, chimeras, and global phase synchronization.

The generality of these modeling approaches in capturing different types of transitions

and underlying physics highlights the possibility of extending the present model to a

broad range of fluid-dynamical phenomena beyond thermoacoustics.

The results presented in this chapter are published in the following two papers:

1. Singh, S., Roy, A., Reeja, K. V., Nair, A., Chaudhuri, S., Sujith, R. I. (2021). Intermittency,
Secondary Bifurcation and Mixed-Mode Oscillations in a Swirl-Stabilized Annular Combustor:
Experiments and Modeling. J. Eng. Gas Turbine Power, 143 (5), 051028.

2. Singh, S., Roy, A., Dhadphale, J. M., Chaudhuri, S., and Sujith, R. I.(2024). Continuous and
explosive synchronization transition in turbulent combustors. AIP Advances, 14, 065106.



4.1 GOVERNING EQUATION FOR THE ACOUSTIC FIELD

The examination of longitudinal thermoacoustic instability in the combustor, as discussed

in the previous chapter, allows us to capture its dynamics with a simple one-dimensional

thermoacoustic model. We begin by considering a one-dimensional thermoacoustic

system assuming negligible mean flow and temperature gradient effects. In such a case,

the linearized equations of momentum and energy with a heat source can be expressed as

(Nicoud and Wieczorek, 2009; Balasubramanian and Sujith, 2008):

1
𝜌0

𝜕𝑝′

𝜕𝑧
+ 𝜕�̃�

′

𝜕𝑡
= 0, (4.1a)

𝜕𝑝′

𝜕𝑡
+ 𝛾𝑝0

𝜕�̃�′

𝜕𝑧
= (𝛾 − 1) ¤̃𝑞′𝛿(𝑧 − 𝑧 𝑓 ), (4.1b)

where �̃�′ and 𝑝′ are the velocity and acoustic pressure fluctuations, respectively. Here,

𝛾 is the ratio of specific heat capacities, 𝑡 is the time, 𝑧 is the distance along the axial

direction in the duct, and 𝜌0 and 𝑝0 are the density and pressure at mean flow condition.

We assume that the flame is acoustically compact and concentrated at 𝑧 𝑓 , which is

indicated in (4.1b) with the Dirac delta function 𝛿(𝑧 − 𝑧 𝑓 ).

We use a Galerkin modal expansion to simplify the system of partial differential equations

(Lores and Zinn, 1973). We project Eq. (4.1a) and Eq. (4.1b) onto the Galerkin modes

and reduce the partial differential equations to a set of ordinary differential equations. The

spatially and temporally varying acoustic pressure and velocity signals are decomposed in

terms of spatial basis functions (sine, cosine) satisfying appropriate boundary conditions

along with time-varying coefficients (𝜂, ¤𝜂). Here, we choose the basis as the eigenmodes

of the self-adjoint part of the linearized system. As a result, the acoustic pressure 𝑝′ and

the velocity fluctuations �̃�′ can be expanded as a series of orthogonal basis functions,

which satisfy the boundary conditions associated with the close-open duct (Culick and

Kuentzmann, 2006; Nair and Sujith, 2015):

𝑝′(𝑧, 𝑡) = 𝑝0

𝑛∑︁
𝑗=1

¤𝜂 𝑗 (𝑡)
Ω̃ 𝑗

cos( �̃� 𝑗 𝑧), �̃�′(𝑧, 𝑡) = 𝑝0
𝜌0𝑐0

𝑛∑︁
𝑗=1
𝜂 𝑗 (𝑡) sin( �̃� 𝑗 𝑧). (4.2)
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Here, the time-varying coefficients 𝜂 𝑗 and ¤𝜂 𝑗 are associated with 𝑗 th mode of �̃�′ and 𝑝′.

The wavenumber and the natural frequency of the system are given by: �̃� 𝑗 = (2 𝑗−1)𝜋/2�̃�

and Ω̃ 𝑗 = 𝑐0 �̃� 𝑗 , respectively. By substituting Eq. (4.2) in Eq. (4.1b), we get:

𝑛∑︁
𝑗=1

¥𝜂 𝑗 (𝑡)
Ω̃ 𝑗

cos( �̃� 𝑗 𝑧) +
𝛾𝑝0
𝜌0𝑐0

𝑛∑︁
𝑗=1
𝜂 𝑗 (𝑡) �̃� 𝑗 cos( �̃� 𝑗 𝑧) =

(𝛾 − 1)
𝑝0

¤̃𝑞′𝛿(𝑧 − 𝑧 𝑓 ). (4.3)

We then project the resultant equation along the basis function by multiplying Eq. (4.3)

with cos( �̃� 𝑗 𝑧) and evaluating the inner product over the domain. Thus, we obtain a set of

second-order ordinary differential equations:

¥𝜂 𝑗 (𝑡)
Ω̃ 𝑗

+ 𝑐0 �̃� 𝑗𝜂 𝑗 (𝑡) =
2(𝛾 − 1)
�̃� 𝑝0

∫ �̃�

0
¤̃𝑞′𝛿(𝑧 − 𝑧 𝑓 ) cos( �̃� 𝑗 𝑧)𝑑𝑧, (4.4)

where, 𝑐0 =
√︁
𝛾𝑝0/𝜌0 is the average speed of sound in the duct and

∫ �̃�

0 cos2( �̃� 𝑗 𝑧)𝑑𝑧 =

�̃�/2.

As a first approximation, we assume that the influence of higher modes can be neglected,

and a single-mode analysis captures the thermoacoustic transition reasonably well

(Lieuwen, 2003; Culick and Kuentzmann, 2006; Subramanian et al., 2013). Thus, upon

considering only a single mode for our analysis, we obtain:

¥𝜂(𝑡) + 𝜁 ¤𝜂(𝑡) + Ω̃2
0𝜂(𝑡) =

2(𝛾 − 1)
�̃� 𝑝0

Ω̃0

∫ 𝐿

0
¤̃𝑞′𝛿(𝑧 − 𝑧 𝑓 ) cos( �̃� 𝑧)𝑑𝑧, (4.5)

where following Matveev and Culick (2003), the term 𝜁 ¤𝜂 is introduced to account for

acoustic damping, which plays a crucial role in determining the amplitude of limit cycle

oscillation, 𝜁 being the damping coefficient.

4.2 MODELING HEAT RELEASE RATE USING NONLINEAR FUNCTIONS

Based on the insights gained from the experiments discussed in the previous chapter,

here, we present a minimal nonlinear model that can capture the different criticalities

of bifurcation observed in the turbulent combustor. Since the observed dynamics in

thermoacoustic systems arise from the nonlinear flame-response to acoustic perturbations
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(Noiray and Schuermans, 2013). As a result, the heat release rate response can be

expressed as a nonlinear function of 𝜂 and ¤𝜂, i.e, ¤̃𝑞′ ≡ ¤̃𝑄′(𝜂, ¤𝜂).

By substituting for ¤̃𝑞′ in Eq. (4.5), we obtain the following set of ordinary differential

equations:

¥𝜂(𝑡) + 𝜔2𝜂(𝑡) = 𝑓 (𝜂, ¤𝜂), (4.6)

where 𝜔 = Ω̃0 and 𝑓 (𝜂, ¤𝜂) = ¤̃𝑄′(𝜂, ¤𝜂) − 𝜁 ¤𝜂(𝑡) is the nonlinear driving term. Using a

truncated Taylor series expansion of the source term 𝑓 (𝜂, ¤𝜂) following Ananthkrishnan

et al. (1998), we express Eq. (4.6) as:

¥𝜂(𝑡) +
(
𝜇6𝜂

6(𝑡) + 𝜇4𝜂
4(𝑡) + 𝜇2𝜂

2(𝑡) − 𝜇0

)
¤𝜂(𝑡) + 𝜔2𝜂(𝑡) + 𝜉 (𝑡) = 0, (4.7)

where, 𝜇𝑖 are the coefficients of the nonlinear terms, for 𝑖 = 0, 2, 4, 6 and 𝜉 (𝑡) is Gaussian

white noise. We start by considering 𝜇4 = 𝜇6 = 0 and absence of noise. In such a

case, 𝜇2𝜂
2 makes up the nonlinear damping term while 𝜇0 controls the driving. Setting

𝜇2 = 1 (for convenience), it is easy to see that 𝜇2𝜂
2 positively damps the system and

counteracts the driving induced by 𝜇0 > 0 for large 𝜂. Thus, the system undergoes a

supercritical Hopf bifurcation for 𝜇2 = 1 when 𝜇0 is increased above 0. For 𝜇2 = −1, a

family of unstable limit cycle exists, which can be stablized by introducing fourth-order

nonlinearity. For 𝜇4 > 0, the unstable limit cycle undergoes a fold bifurcation and jumps

to a stable limit cycle solution. Thus, fourth-order nonlinearity is required for subcritical

Hopf bifurcation (Ananthkrishnan et al., 1998). The fold point of the subcritical system

depends on the choice of 𝜇4. Laera et al. (2017a) considered a similar flame model

reducible to Eq. (4.7) for 𝜇6 = 0 to predict supercitical and subcritical bifurcation in

longitudinal and annular combustors.

In order to capture the secondary bifurcation to high-amplitude TAI discussed in the

previous chapter, we need to consider higher-order nonlinearity such that there is a fold

bifurcation on stable low-amplitude limit cycle oscillations (LCO) to high-amplitude LCO.
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This form has been considered by Campa and Juniper (2012) in modeling thermoacoustic

instability (TAI) in a Rijke tube by considering the flame response to depend on the mass

flow rate through sixth-order nonlinearity.

We include delta-correlated Gaussian white noise 𝜉 (𝑡) = 𝜎2𝛿(𝑡) to the governing

equation to account for the noisy behavior associated with the state of combustion noise

(CN) and aperiodic epochs of intermittency. Here, 𝛿(·) is the Dirac-Delta function

and 𝜎2 indicates the strength of white noise. We solve this equation numerically using

stochastic Runge-Kutta method (Gopalakrishnan and Sujith, 2015) for 1000 time steps

with 𝑑𝑡 = 0.01, 𝜎2 = 0.001, 𝜇2 = 1, and 𝜇4 = −1 chosen for convenience from previous

discussion. The frequency of limit cycle oscillations is set as 𝜔 = 2𝜋 𝑓 = 1 rad/s. The

initial conditions for the forward path are: 𝜂(0) = 0.10 and ¤𝜂(0) = 0. For the reverse

path, ¤𝜂(0) = 0 and 𝜂(0) are chosen as the amplitude of limit cycle oscillations of 𝜂(𝑡)

obtained for a given 𝜇0 in the forward path.

Figure 4.1(a) depicts the variation of 𝜂𝑟𝑚𝑠 as a function of 𝜇0 and 𝜇6. As with the

experimental results, the bottom surface is plotted till the secondary fold bifurcation

where the dynamics abruptly transitions from low to high-amplitude LCO, and the top

surface is plotted till the fold point where the dynamics transition from high-amplitude

LCO to a fixed-point solution. For 𝜇6 > 0.25, there is a supercritical-like bifurcation to

low-amplitude LCO through the state of intermittency. For 0.15 < 𝜇6 < 0.25, there is

a transition from the fixed point solution to low-amplitude LCO through intermittency,

followed by secondary bifurcation to high-amplitude LCO. Figure 4.1(b) shows the

stability diagram observed from the model. The different regions are serialized as per

figure 3.6. We observe that figures 4.1(a,b) and 3.6(a,b) are qualitatively similar. We

find the two different final dynamical states. First, there is a transition from a fixed point

to low-amplitude LCO through intermittency. Second, there is a transition from a fixed

point to intermittency to low-amplitude LCO followed by a secondary bifurcation to

high-amplitude LCO. Moreover, the bistable region broadens when 𝜇6 is decreased. The
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Figure 4.1: (a) Change of criticalities of bifurcations observed from the model in Eq.
(4.7) and the corresponding (b) stability diagram.

parameters 𝜇0 and 𝜇6 in the model capture the respective effects of 𝜙 and 𝜐𝑧.

Finally, we note that secondary bifurcation can occur only when stable limit cycle solution

arising from supercritical Hopf bifurcation, arising from a change in leading-order control

𝜇0, loses its stability and give rise to an unstable branch of limit cycle oscillations and
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stable limit cycle solution of significantly higher-amplitude. The loss of stability of

limit cycle oscillations can only be effected when higher-order nonlinearities become

significant (Ananthkrishnan et al., 1998). Thus, we infer that 𝜙 and 𝜐𝑧 influence the

physical processes which affect the higher-order nonlinearities in the system, thereby

leading to a secondary bifurcation. However, we also note the limitations of the model

in predicting the exact nature of the boundaries separating different dynamical states

(figures 3.6b and 4.1b). Also, we observe that the trend of bifurcation captured by 𝜇6 is

the opposite of what we observed when 𝜐𝑧 is changed (see figure 3.6a).

4.3 MEAN-FIELD SYNCHRONIZATION MODEL FOR THERMOACOUSTIC

TRANSITIONS

4.3.1 Phase-oscillator based heat release rate model

To complete the thermoacoustic model discussed in Eq. (4.5), we need to know the

exact form of ¤̃𝑞′. The heat release rate field, say ¤𝑞′(𝑥, 𝑦, 𝑡), of the turbulent flame,

which fluctuates due to turbulent flow regardless of the presence of the acoustic field,

is a continuous field decomposable in terms of amplitude and phase. We approximate

the continuous phase field as a discrete (sufficiently large) set of amplitude-weighted

phase oscillators, which evolve under the influence of acoustic fluctuations. This can be

expressed in terms of a general response function (G) which expresses the evolution of

the phase of the population of oscillators as (Strogatz, 2000; Kuramoto, 2003):

𝑑𝜃𝑙 (𝑡)
𝑑𝑡

= �̃�𝑙 + G
[
�̂�(𝑡),Φ(𝑡), 𝜃𝑙 (𝑡)

]
, (4.8)

where �̃�𝑙 is the mean subtracted frequency of the 𝑙th oscillator, where 𝑙 = 1, ..., 𝑁 , and G

is a function of the phase of the oscillators (𝜃𝑙), normalized amplitude (�̂�) and phase

(Φ) of the acoustic pressure or veloicty. The frequencies of the oscillators are distributed

according to the probability density 𝑔(�̃�) centered around the acoustic frequency Ω̃0.

The relation between Φ and 𝜃𝑙 can be obtained by assuming that G shifts 𝜃𝑙 closer or away
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from Φ: G is positive when 𝜃𝑙 lags Φ, and G is negative when 𝜃𝑙 leadsΦ. It is evident that

the simplest periodic function that satisfies these requirements leads to: G ∝ sin(Φ − 𝜃𝑙)

(Kuramoto, 1975). We further assume that G ∝ �̂� implies that the influence of the

pressure oscillations becomes stronger as the amplitude of the pressure oscillations on the

phase oscillators increases. This amplitude dependence of G determines the maximum

rate of phase shift for a given amplitude of pressure oscillations and so determines the

sensitivity of an oscillator to the amplitude of acoustic perturbation. Thus, the modified

expression for the evolution of the phase oscillator is:

𝑑𝜃𝑙 (𝑡)
𝑑𝑡

= �̃�𝑙 + �̃� �̂�(𝑡) sin [Φ(𝑡) − 𝜃𝑙 (𝑡)] , (4.9)

where the interaction amongst the oscillators is weighted equally using the coupling

strength �̃�. In the absence of acoustic feedback, �̃� determines the level of interaction

among the oscillators and hence, controls the degree of coherence and synchrony among

the oscillators. Thus, the term �̃� �̂� makes up the effective coupling strength due to

intra-oscillator coupling and acoustic feedback. The distribution of frequency of the

oscillators 𝑔(�̃�) is estimated from the amplitude spectrum of heat release rate fluctuations

during the occurrence of combustion noise. Hence, the nonlinear flame response due to

turbulence, acoustic feedback, etc., are indirectly accounted through the initial distribution

𝑔(�̃�) and the mean-field interactions of the oscillators.

Finally, the individual contribution from each of the phase oscillators can be added to

obtain the overall heat release rate fluctuations (Dutta et al., 2019), as shown below:

¤̃𝑞′ = 𝑞0

𝑁∑︁
𝑖=1

sin
[
Ω̃0𝑡 + 𝜃𝑙 (𝑡)

]
, (4.10)

where 𝑞0 (N/m·s) is introduced to keep the dimensions consistent. It is important to

highlight that 𝑞0 remains constant and does not contribute to heat release rate fluctuations.

On a fundamental level, the summation in Eq. (4.10) is a model-reduction of the spatially

distributed heat release rate field in terms of interacting phase oscillators. The overall

heat release rate fluctuations in Eq. (4.10) is thus high when oscillators are in synchrony
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and low otherwise, as has been corroborated in multiple studies (Mondal et al., 2017b;

Pawar et al., 2019).

4.3.2 Flame-acoustic coupling

Now we combine the mean-field model of the heat source with the oscillator equation for

the temporal dynamics of the acoustic mode. Substituting (4.10) into (4.5), we obtain:

¥𝜂(𝑡) + 𝜁 ¤𝜂(𝑡) + Ω̃2
0𝜂(𝑡) = 𝛽Ω̃0 cos( �̃� 𝑧 𝑓 )

𝑁∑︁
𝑖=1

sin
[
Ω̃0𝑡 + 𝜃𝑙 (𝑡)

]
, (4.11)

where 𝛽 = 2(𝛾 − 1)𝑞0/�̃� 𝑝0. We non-dimensionalize Eqs. (4.11) and (4.9) using the

following transformations:

𝑧 =
𝑧

�̃�
; 𝑡 = Ω̃0𝑡; 𝑘 = �̃� �̃�; 𝜁 =

𝜁

Ω̃0
; 𝜔𝑙 =

�̃�𝑙

Ω̃0
; 𝛽 =

𝛽

Ω̃0
; 𝐾 =

�̃�

Ω̃0
. (4.12)

Using the above non-dimensionalization in Eq. (4.9) and Eq. (4.11), we obtain:

¥𝜂(𝑡) + 𝜁 ¤𝜂(𝑡) + 𝜂(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

sin [𝑡 + 𝜃𝑙 (𝑡)] , (4.13a)

¤𝜃𝑙 (𝑡) = 𝜔𝑙 + 𝐾�̂�(𝑡) sin [Φ(𝑡) − 𝜃𝑙 (𝑡)] . (4.13b)

Thus, Eq. (4.13a) and Eq. (4.13b) denote the set of (𝑁 + 1) coupled ordinary differential

equations making up the thermoacoustic mean-field model. It is easy to observe that

an increase in the effective coupling strength through an increase in 𝐾 or amplitude of

acoustic pressure �̂� would lead to phase synchronization of the phase oscillators to a

common phase. The synchronized state would, in turn, produce the largest driving to

the damped harmonic oscillator equation governing the acoustic fluctuations through

the summation in Eq. (4.13a), consequently leading to the state of thermoacoustic limit

cycle oscillations.

4.3.3 Slow flow amplitude and phase representation of the mean-field model

We now seek the limit cycle solution for the set of equations given by Eq. (4.13) which

will then be used for obtaining the feedback of acoustic fluctuations (�̂�, Φ) on the phase
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oscillators. We begin by assuming that the acoustic fluctuations are quasi-harmonic such

that 𝜂(𝑡) can be decomposed as (Krylov and Bogolyubov, 1947):

𝜂(𝑡) = −𝑅(𝑡) cos [𝑡 +Φ(𝑡)] , (4.14)

where 𝑅(𝑡) is the envelope amplitude and Φ(𝑡) is the phase of the ensuing limit cycle

and varies much slower than the fast time scale 2𝜋/Ω0. Thus, the autonomous equation

describing the evolution of pressure fluctuations in Eq. (4.13a) can be decomposed

further in terms of slow variables (𝑅 and Φ). We next calculate ¤𝜂(𝑡) and ¥𝜂(𝑡) by

differentiating Eq. (4.14) with respect to 𝑡 and get:

¤𝜂(𝑡) = − ¤𝑅(𝑡) cos [𝑡 +Φ(𝑡)] + 𝑅(𝑡) sin [𝑡 +Φ(𝑡)] + 𝑅(𝑡) ¤Φ(𝑡) sin [𝑡 +Φ(𝑡)] . (4.15)

By representing the solution in the form of Eq. (4.14), we express 𝜂(𝑡) as a function

of 𝑅(𝑡) and Φ(𝑡), which introduces additional ambiguity in the equation. To remove

the introduced ambiguity, we have to prescribe one arbitrary relationship between these

quantities, which we take as (Balanov et al., 2008):

− ¤𝑅(𝑡) cos [𝑡 +Φ(𝑡)] + 𝑅(𝑡) ¤Φ(𝑡) sin [𝑡 +Φ(𝑡)] = 0. (4.16)

Therefore, the derivative of 𝜂(𝑡) is a simple expression of the form:

¤𝜂(𝑡) = 𝑅(𝑡) sin [𝑡 +Φ(𝑡)] . (4.17)

We follow Balanov et al. (2008) for expressing 𝜂(𝑡), ¤𝜂(𝑡) and ¥𝜂(𝑡) in terms of exponents

of complex arguments. We start by reformulating the solution for 𝜂(𝑡) as:

𝜂(𝑡) = −1
2
(
𝑅(𝑡)𝑒𝑖Φ(𝑡)𝑒𝑖𝑡 + 𝑅(𝑡)𝑒−𝑖Φ(𝑡)𝑒−𝑖𝑡

)
= −1

2
(
𝑎𝑒𝑖𝑡 + 𝑎∗𝑒−𝑖𝑡

)
. (4.18)

We introduce a complex function of time 𝑎, such that 𝑎 = 𝑅(𝑡)𝑒𝑖Φ(𝑡) and 𝑎∗ = 𝑅(𝑡)𝑒−𝑖Φ(𝑡) ,

where the asterisk denotes the complex conjugate. Next, reformulating ¤𝜂(𝑡), we get:

¤𝜂(𝑡) = 1
2𝑖
𝑅(𝑡)𝑒𝑖(𝑡+Φ(𝑡)) − 𝑒−𝑖(𝑡+Φ(𝑡)) = − 𝑖

2
(
𝑎𝑒𝑖𝑡 − 𝑎∗𝑒−𝑖𝑡

)
. (4.19)
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Finally, reformulating ¥𝜂(𝑡) in terms of exponent of complex arguments, we obtain:

¥𝜂(𝑡) = − 𝑖
2
(
¤𝑎𝑒𝑖𝑡 − ¤𝑎∗𝑒−𝑖𝑡

)
+ 1

2
(
𝑎𝑒𝑖𝑡 + 𝑎𝑒−𝑖𝑡

)
. (4.20)

We now substitute 𝜂(𝑡), ¤𝜂(𝑡) and ¥𝜂(𝑡) ( Eqs. (4.18), (4.19) and (4.20), respectively) into

Eq. (4.13a) and we get:

−𝑖
(
¤𝑎𝑒𝑖𝑡 − ¤𝑎∗𝑒−𝑖𝑡

)
+

(
𝑎𝑒𝑖𝑡 + 𝑎𝑒−𝑖𝑡

)
− 𝑖𝜁

(
𝑎𝑒𝑖𝑡 − 𝑎∗𝑒−𝑖𝑡

)
−

(
𝑎𝑒𝑖𝑡 + 𝑎∗𝑒−𝑖𝑡

)
= −𝑖𝛽 cos(𝑘𝑧 𝑓 )

𝑁∑︁
𝑖=1

(
𝑒𝑖(𝑡+𝜃𝑙 (𝑡)) − 𝑒−𝑖(𝑡+𝜃𝑙 (𝑡))

)
.

(4.21)

By canceling the second and fourth terms in the above equation and then multiplying the

whole equation by 𝑒−𝑖𝑡 , we obtain:

(
¤𝑎 − ¤𝑎∗𝑒−2𝑖𝑡 ) + 𝜁 (𝑎 − 𝑎∗𝑒−2𝑖𝑡 ) = 𝛽 cos(𝑘𝑧 𝑓 )

𝑁∑︁
𝑖=1

(
𝑒𝑖𝜃𝑙 (𝑡) − 𝑒−2𝑖𝑡𝑒−𝑖𝜃𝑙 (𝑡))

)
. (4.22)

We now note that 𝑎, ¤𝑎 and their complex conjugates are slow functions of time as

compared to the functions 𝑒±𝑛𝑖𝑡 , where 𝑛 is an integer. This means that the slow flow

variables do not change much during one period of fast oscillations. If we average the

whole equation over one period of fast oscillations, i.e., 𝑇 = 2𝜋, we can eliminate the fast

terms, and only the slow terms remain. The time average 𝑓 of a smooth function 𝑓 (𝑡)

over the time interval 𝑇 is defined as 𝑓 = 1
𝑇

∫ 2𝜋
0 𝑓 (𝑡)𝑑𝑡. It is easy to see that all the terms

containing 𝑒−2𝑖𝑡 would integrate to zero over the time oscillation period 𝑇 . Therefore, we

apply time averaging on Eq. (4.22) and obtain:

¤𝑎 + 𝜁𝑎 = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

𝑒𝑖𝜃𝑙 (𝑡) . (4.23)

Recalling that 𝑎 = 𝑅(𝑡)𝑒𝑖Φ(𝑡) and substituting it in the above equation, we get:

¤𝑅(𝑡)𝑒𝑖Φ(𝑡) + 𝑖𝑅(𝑡) ¤Φ(𝑡)𝑒𝑖Φ(𝑡) + 𝜁𝑅(𝑡)𝑒𝑖Φ(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

𝑒𝑖𝜃𝑙 (𝑡) . (4.24)

We multiply Eq. (4.24) by 𝑒−𝑖Φ(𝑡) and then equate the real and imaginary parts of the

equation. This gives us the evolution equations for the slowly varying amplitude and
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phase variables as:

¤𝑅(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

cos [𝜃𝑙 (𝑡) −Φ(𝑡)] − 𝜁𝑅(𝑡), (4.25a)

¤Φ(𝑡) = 𝛽

𝑅(𝑡) cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

sin [𝜃𝑙 (𝑡) −Φ(𝑡)] . (4.25b)

These equations are the truncated equations (Balanov et al., 2008) for the evolution of

𝑅(𝑡) and Φ(𝑡). Similarly, applying the method of averaging on Eq. (4.13b), we observe

that the equation is associated with only the slow flow variables, i.e., 𝑅, Φ, and 𝜃𝑙 , and

hence, remains unchanged.

4.3.4 Limit cycle solution

From Eq. (4.25a), it is straightforward that the limit cycle solution is given by ¤𝑅(𝑡) = 0,

i.e., when the rate of change of envelope of acoustic pressure tends to zero. Although

Eqs. (4.25a) and (4.25b) appear compact, their analysis is quite involved as it is difficult

to separate the amplitude and phase variables. To make further progress, we recast

them from polar to Descartes coordinates through the following variable transformation:

𝐴(𝑡) = 𝑅(𝑡) cosΦ(𝑡) and 𝐵(𝑡) = 𝑅(𝑡) sinΦ(𝑡). The time derivatives of the new variables

(𝐴 and 𝐵) can be expressed through 𝑅 and Φ as:

¤𝐴(𝑡) = ¤𝑅(𝑡) cosΦ(𝑡) − 𝑅(𝑡) ¤Φ(𝑡) sinΦ(𝑡), (4.26a)

¤𝐵(𝑡) = ¤𝑅(𝑡) sinΦ(𝑡) + 𝑅(𝑡) ¤Φ cosΦ(𝑡). (4.26b)

On substituting Eq. (4.26) into Eqs. (4.25a) and (4.25b), we obtain the truncated

equations in Descartes coordinates:

¤𝐴(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

[cos (𝜃𝑙 (𝑡) −Φ(𝑡)) cosΦ(𝑡) − sin (𝜃𝑙 (𝑡) −Φ(𝑡)) sinΦ(𝑡)] − 𝜁 𝐴(𝑡),

(4.27a)

¤𝐵(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

[cos (𝜃𝑙 (𝑡) −Φ(𝑡)) sinΦ(𝑡) − sin (𝜃𝑙 (𝑡) −Φ(𝑡)) cosΦ(𝑡)] − 𝜁𝐵(𝑡),

(4.27b)
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On simplifying the above equation (Eq. (4.27)), we obtain:

¤𝐴(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

cos 𝜃𝑙 (𝑡) − 𝜁 𝐴(𝑡), (4.28a)

¤𝐵(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )
𝑁∑︁
𝑖=1

sin 𝜃𝑙 (𝑡) − 𝜁𝐵(𝑡). (4.28b)

Imposing the condition for limit cycle oscillations, viz., ¤𝐴(𝑡) = 0, ¤𝐵(𝑡) = 0 in the above

equation, the resultant amplitude of limit cycle oscillations is obtained as:

𝑅LCO(𝑡) = 𝛽 cos(𝑘𝑧 𝑓 )𝑁𝑟 (𝑡)/𝜁, (4.29)

where 𝑟 (𝑡), the order parameter, is defined as (Strogatz, 2000):

𝑟 (𝑡) = 1
𝑁

√√√√(
𝑁∑︁
𝑖=1

sin 𝜃𝑙 (𝑡)
)2

+
(
𝑁∑︁
𝑖=1

cos 𝜃𝑙 (𝑡)
)2

. (4.30)

We know that during limit cycle oscillations, all the oscillators are perfectly synchronized,

resulting in 𝑟 (𝑡) ≈ 1. Thus, the amplitude of the limit cycle oscillations is expressed as

𝑅LCO = 𝛽 cos(𝑘𝑧 𝑓 )𝑁/𝜁 . This is used for normalizing the amplitude of oscillations as

�̂� = 𝑅/𝑅LCO

To compare with experimental observations, we normalize the model Eq. (4.13) with the

amplitude of limit cycle oscillation (𝑅LCO). Consequently, we obtain:

¥̂𝜂(𝑡) + 𝜁 ¤̂𝜂(𝑡) + 𝜂(𝑡) = 𝜁 1
𝑁

𝑁∑︁
𝑖=1

sin[𝑡 + 𝜃𝑙 (𝑡)], (4.31a)

¤𝜃𝑙 (𝑡) = 𝜔𝑙 + 𝐾
{ ¤̂𝜂(𝑡) cos [𝑡 + 𝜃𝑙 (𝑡)] + 𝜂(𝑡) sin [𝑡 + 𝜃𝑙 (𝑡)]

}
, (4.31b)

where 𝜂(𝑡) = 𝜂(𝑡)/𝑅LCO. Similarly, 𝑅 and Φ in Eq. (4.13b) are rewritten in terms of 𝜂

and ¤𝜂 using Eq. (4.14).

4.4 NUMERICAL SIMULATION FOR THE MEAN-FIELD MODEL

In this section, we give details about the numerical setup and parameter initialization for

solving the model Eq. (4.31). We also discuss the procedure for estimating the model
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parameters from experimental data.

4.4.1 Initialization and bifurcation analysis

The initial phase distribution is determined as 𝜃𝑙 (0) = 𝜃𝑚 + 𝜖 , where 𝜃𝑚 represents the

mean of the distribution of 𝜃 and 𝜖 is normally distributed as 𝜖 ∽ N(0, 𝜎2). The initial

frequency distribution 𝑔(𝜔) is obtained by uniformly distributing oscillators proportional

to the amplitude of the heat release rate spectrum during the state of combustion noise.

The procedure for numerically sampling the frequency is detailed in Appendix B. The

number of oscillators 𝑁 determines how well the spectrum ¤̂𝑞( 𝑓 ) is resolved by 𝑔(𝜔). We

fix 𝑁 = 2× 103 oscillators for which 𝑔(𝜔) resolves ¤̂𝑞( 𝑓 ) sufficiently well. The procedure

for optimisation of 𝑁 is included in Appendix C. The initial frequency distribution of

the oscillators so obtained from the heat release rate spectrum during the occurrence of

combustion noise for the three combustors (bluff-body stabilized, swirl-stabilized and

annular combustor) is shown in figure 4.2.

With these inputs, the transition is obtained by sequentially changing 𝐾 and numerically

solving Eqs. (4.31a) and (4.31b) using the adaptive fourth-order Runge-Kutta method

(Zheng and Zhang, 2017). We first verify the transition predicted by the model with

that observed in experiments. Upon verification, we perform a parameter estimation

to identify the correspondence between the control parameters in the model and our

experiments, as discussed next.

4.4.2 Parametric identification

Many techniques have been used for identifying parameters while modeling

thermoacoustic instabilities. For instance, system identification has been used for

estimating parameters in models involving transfer functions or impulse response

functions (Polifke, 2014; Bonciolini et al., 2017) and coupled oscillator models (Lee

et al., 2020, 2021). Similarly, uncertainty quantification has been used for estimating

parameters in level-set flame models (Yu et al., 2019, 2021). Here, we implement an

82



Figure 4.2: Frequency distribution 𝑔(𝜔) of 𝑁 = 2 × 103 phase oscillators obtained from
the amplitude spectrum of heat release rate during the state of combustion
noise for the (a) bluff-body stabilized dump combustor, (b) swirl-stabilized
dump combustor and (c) annular combustor. Here, 𝜔 is distributed relative
to the acoustic frequency Ω̃0 and also normalized by Ω̃0.

optimisation algorithm that identifies model parameters by minimizing the error between

experimental data and model predictions.

We optimise the model parameters (𝜁 and 𝐾) along with the initial conditions 𝜂(0),

¤𝜂(0) and 𝜃𝑙 (0). The initial conditions are included in the optimisation to accurately

reproduce experimental features during the state of intermittency featuring the presence

of random bursts of periodic oscillations. When initial conditions are instead randomised

and not included in the optimisation, statistical features (such as PDF, spectrum, etc.) are

reproduced by the model during all the states. However, the location of periodic bursts is

not accurately predicted (see Appendix D). Therefore, we estimate the parameter vector,

P = [𝜁 , 𝐾 , 𝜂(0), ¤𝜂(0), 𝜃𝑚, 𝜎].

Constructing the vector Y = [𝜂, ¤𝜂, 𝜃𝑙]𝑇 and re-writing the nonlinear set of equations in

Eq. (4.31) as:

¤Y = 𝑓 (P,Y). (4.32)

Starting from an initial state Y0 at 𝑡0, the state of the system at time 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡 can be

obtained from the model as:

Ym(P; 𝑡𝑛) =
∫ 𝑡𝑛

𝑡0

𝑓 (P,Y)𝑑𝑡 + Y0. (4.33)
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The fourth-order Runge-Kutta scheme is used for numerically integrating the above

equations with a time step of Δ𝑡. Using Eqs. (4.2) and (4.10), we obtain:

𝑝′m = ¤̂𝜂(𝑡); ¤𝑞′m =
1
𝑁

𝑁∑︁
𝑖=1

sin [𝑡 + 𝜃𝑙 (𝑡)] . (4.34)

Thus, from the model we obtain: Xm(P; 𝑡𝑛)= [𝑝′m, ¤𝑞′m].

Next, from the experimental data, we construct the vector Xexp(𝜙; 𝑡𝑛)= [𝑝′, ¤𝑞′]𝑇 , where

𝜙 is the equivalence ratio or the control parameter in the experiments, 𝑝′ and ¤𝑞′ are the

normalized acoustic pressure and global heat release rate fluctuations, respectively. Thus,

we can obtain the parameter values that minimize the error between the model Xm and

the experiments Xexp. This minimisation of the error can be done by constructing the

loss function (L) based on the mean square error:

L(P) = 1
𝑁

𝑁∑︁
𝑛=1



Xm(P; 𝑡𝑛) − Xexp(𝜙; 𝑡𝑛)


2

2 . (4.35)

Finally, the parameter estimation can be cast in terms of a minimisation problem subject

to the parameter vector P. The minimisation is performed using the gradient descent

method (Boyd et al., 2004):

P𝑖+1 = P𝑖 − 𝛼𝑙∇PL, (4.36)

where 𝛼𝑙 is the learning rate which gives the rate at which the parameter updates per unit

gradient of the loss function with respect to the parameter. We used a learning rate of

𝛼𝑙 = 1 × 10−3 to optimise the parameter estimates. We use the automatic differentiation

method to evaluate the gradient of L with respect to P (Baydin et al., 2018). Kindly see

Appendix E.1 for more details about convergence and loss minimisation.

It is worth noting that randomizing initial conditions does not have any reasonable effect

on the 𝐾 − 𝜙 relation that is obtained following the optimisation procedure, as shown in

Appendix D.
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4.5 MODEL PREDICTION OF TRANSITIONS TO THERMOACOUSTIC

INSTABILITY

The model is numerically implemented by choosing the frequency distribution of

oscillators 𝑔(𝜔) from the amplitude spectrum ¤̂𝑞( 𝑓 ) of the heat release rate fluctuations

obtained during the state of combustion noise from different combustors. The damping

coefficient (𝜁) is obtained from the experimental data during the state of combustion

noise using parameter optimisation Eq. (4.36) and is subsequently fixed for determining

other states during the transition. Using these inputs, the transition to the state of the

limit cycle is obtained by increasing the coupling strength 𝐾. Once the transition is

qualitatively verified with the experiments by systematically varying the coupling strength

𝐾 and randomly choosing the initial conditions, parameter optimisation of the vector

P is performed according to Eq. (4.36) and shown in Appendix I.1. The parameter

optimisation technique is applied on all the experimentally observed states to identify the

relationship between the coupling strength 𝐾 and the control parameter observed in the

experiments 𝜙. The 𝐾 − 𝜙 relationship enables us to map the bifurcation obtained from

experiments onto the bifurcation plot obtained from the model.

Let us now compare how our model fares in predicting continuous and abrupt transitions

observed in turbulent thermoacoustic systems.

4.5.1 Continuous transition to thermoacoustic instability

The bluff-body stabilized combustor, shown in figure 2.2(a,c), exhibits a continuous

transition to the state of thermoacoustic instability through intermittency when the

equivalence ratio 𝜙 is decreased. Figure 4.3(a) shows the variation in the amplitude

of acoustic pressure fluctuations (𝑝′rms) as a function of the equivalence ratio (𝜙) and

coupling strength (𝐾). The amplitude is normalized with the amplitude of limit cycle

oscillations to aid the comparison of the observed transition with that predicted by the

model Eq. (4.31). Figure 4.3(b-d) shows the characteristics of pressure (𝑝′) and heat

release rate ( ¤𝑞′) fluctuations during the state of combustion noise, intermittency and
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thermoacoustic instability, as marked in the bifurcation diagram.

At 𝜙 = 0.86 (𝐾 = 0.23), we observe the occurrence of combustion noise (figure 4.3b)

where the fluctuations (𝑝′, ¤𝑞′) are visibly aperiodic. These fluctuations are associated with

an unimodal distribution and possess broadband spectra. As 𝜙 is decreased (𝜙 = 0.72,

𝐾 = 0.75), we observe intermittency where periodic fluctuations appear amidst aperiodic

fluctuations (figure 4.3c). A further decrease in 𝜙 leads to an increase in the frequency of

occurrence and the amplitude of these periodic bursts. The appearance of these periodic

bursts leads to a sharp, albeit low-amplitude, peak in the spectrum |𝑝( 𝑓 ) | and | ¤̂𝑞( 𝑓 ) |.

Further decrease in the value of 𝜙 leads to a gradual increase in the amplitude and the

number of occurrences of these bursts and manifests as a continuous increase in the

value of 𝑝′rms observed in figure 4.3(a). The transition has a “sigmoid” shape which

is a characteristic feature of such continuous transitions (Nair et al., 2014). Finally,

at 𝜙 = 0.56 (𝐾 = 2), we observe limit cycle oscillations associated with the state of

thermoacoustic instability. The fluctuations possess a bimodal distribution and are

periodic with narrowband amplitude spectra at a frequency of 146.5 Hz (figure 4.3d).

The transition predicted by the model (continuous line) is also shown in figure 4.3(a). To

aid the comparison of specific states depicted by the model, the envelopes of the time

series obtained from the model (in darker shade) are overlaid on top of each of the time

series obtained from experiments (in lighter shade) in figure 4.3(b-d). Similarly, the

PDF and the spectra indicated in the darker shade are the predictions of the model. The

broadband spectrum | ¤̂𝑞( 𝑓 ) | during the occurrence of combustion noise shown in figure

4.3(b) is used for obtaining the distribution 𝑔(𝜔) shown in figure 4.2(a).

We notice that the model captures many features of the experimental data. Foremost,

we observe that the model predicts the transition observed in the experiments very well.

The continuous, sigmoid-type transition to the state of limit cycle oscillation is well

captured (figure 4.3a). Quite notably, the prediction from this model shows a qualitative

86



Figure 4.3: Continuous transition to thermoacoustic instability through the state
of intermittency observed in the bluff-body stabilized combustor. (a)
Comparison of the normalized amplitude 𝑝′rms obtained from the experiments
(□) and model (–) as a function of the equivalence ratio (𝜙) and the model
parameter (𝐾). The time series (𝑝′, ¤𝑞′), probability distribution function
[P(𝑝′),P( ¤𝑞′)] and amplitude spectrum [|𝑝( 𝑓 ) |, | ¤̂𝑞( 𝑓 ) |] are shown during
the states of (b) combustion noise (𝜙 = 0.86, 𝐾 = 0.23), (c) intermittency
(𝜙 = 0.72, 𝐾 = 0.75) and (d) thermoacoustic instability (𝜙 = 0.56, 𝐾 = 2).
In panels (b-d) the experimental data are shown using a lighter shade, while
the model result is shown using a darker shade. Only the envelope of the
time series from the model is shown for clarity.

match with the time series of pressure fluctuations obtained from experiments. The

model captures various features of the time series of pressure fluctuations. For instance,

the distribution P(𝑝′) and spectrum |𝑝( 𝑓 ) | during the state of combustion noise and

intermittency are well approximated. Similarly, the envelope of the limit cycle obtained

from the model is a good estimate of the limit cycle amplitude observed in figure 4.3(d).

Finally, the spectrum |𝑝( 𝑓 ) | from the model shows a close match with that observed in

experiments.
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Figure 4.4: Abrupt secondary bifurcation to limit cycle oscillations in (a) swirl-stabilized
dump combustor and (b) annular combustor. The bifurcation plots illustrate
the comparison of the normalized amplitude 𝑝′rms obtained from the
experiments (□) and the model (–) as a function of equivalence ratio (𝜙)
and the model parameter (𝐾). The forward and reverse transitions in the
experiments are indicated as (□) and (■), while in the model are indicated
as (–) and (–), respectively. In panel (b), heat release rate data is available
only at the four points indicated by (□). For the remaining points (depicted
by ■) only pressure data is available, we interpolated these points from the
optimisation at the four points shown in figure 4.6.

4.5.2 Secondary bifurcation to high-amplitude thermoacoustic instability

Both swirl-stabilized dump combustor (figure 2.2a, d) and annular combustor (figure 2.1)

undergo abrupt secondary bifurcation to the state of thermoacoustic instability on varying

the control parameter (𝜙) systematically (see figure 4.4). For the former, the transition is

observed when 𝜙 is decreased from 0.81 to 0.53, while for the latter, the transition is

observed upon increasing 𝜙 from 0.44 to 0.53. The transition for both the combustors

are shown in figure 4.4 where the normalized root mean square of the acoustic pressure

(𝑝′rms) is plotted as a function of the equivalence ratio (𝜙) and the model parameter 𝐾.

For the annular combustor (figure 4.4b), chemiluminescence data was acquired only at

four locations marked by □. For the remaining states, pressure data alone was acquired.

The dynamical states corresponding to the four points representative of the secondary

bifurcation in the annular combustor are shown in figure 4.5.
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The annular combustor is in a state of combustion noise close to 𝜙 = 0.44 (figure 4.5a).

Both pressure and heat release rate fluctuations exhibit noisy behavior, possessing an

unimodal PDF and broadband amplitude spectrum. When 𝜙 is increased, we observe

intermittent periodic oscillations (figure 4.5b). The appearance of intermittent bursts is

associated with a continuous increase in the amplitude of oscillations (see figure 4.4b

for 𝜙 = 0.47 and 𝐾 = 1.37). In addition, the peak of the distribution P(𝑝′) and P( ¤𝑞′)

widens. A narrowband starts to appear in the amplitude-spectrum at 𝑓 = 218 Hz (figure

4.5b). Upon further increase to 𝜙 = 0.49 (𝐾 = 1.55), we observe low-amplitude limit

cycle oscillations along with a bimodal distribution P(𝑝′) possessing additional peaks

at |𝑝′| ≠ 0 (figure 4.5c). During the state of low-amplitude limit cycle oscillations, we

observe 𝑝′rms ≈ 0.3 kPa. The distribution P( ¤𝑞′) depicts a distinct bimodal shape along

with a narrowband peak in the amplitude-spectrum at 𝑓 = 223 Hz. Finally, there is

an abrupt secondary fold bifurcation from low-amplitude to very high-amplitude limit

cycle oscillations beyond 𝜙 = 0.49 (𝐾 = 1.55 in figure 4.4b). The amplitude of pressure

fluctuations at this state is 𝑝′rms ≈ 2 kPa. The distribution remains bimodal with the

distribution peaks appearing at large values of 𝑝′ (figure 4.5d). Accordingly, the spectrum

shows a dominant peak at 𝑓 = 227 Hz.

A similar transition is also observed in the swirl-stabilized dump combustor (see figure

4.4a) when 𝜙 is decreased from 0.81 to 0.53. There is a secondary bifurcation from

low-amplitude (𝑝′ ≈ 1.5 kPa) limit cycle to very high-amplitude (𝑝′ ≈ 5.6 kPa). The

frequency of limit cycle oscillations is 𝑓 = 201 Hz. The dynamical states during the

secondary bifurcation are similar to those observed for the annular combustor that is

depicted in figure 4.5.

Secondary bifurcation predicted by the model for each of the two combustors is also

shown in figure 4.4. We notice that the model, numerically simulated by considering

the spectrum | ¤̂𝑞( 𝑓 ) | during the state of combustion noise for obtaining 𝑔(𝜔) (see figure

4.5a), predicts the secondary bifurcation very well. The normalized limit cycle amplitude
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Figure 4.5: Representative states observed during secondary bifurcation in the annular
combustor. The time series (𝑝′, ¤𝑞′), probability distribution function
[P(𝑝′),P( ¤𝑞′)] and amplitude spectrum [|𝑝( 𝑓 ) |, | ¤̂𝑞( 𝑓 ) |] are shown during
the states of (a) combustion noise (𝜙 = 0.44, 𝐾 = 1.09), (b) intermittency
(𝜙 = 0.47, 𝐾 = 1.37), (c) low-amplitude thermoacoustic instability
(𝜙 = 0.49, 𝐾 = 1.55) and (d) high-amplitude thermoacoustic instability
(𝜙 = 0.52, 𝐾 = 1.71). The experimental data are shown using a lighter shade,
while the model result is shown using darker shade.

following the secondary fold bifurcation is well approximated. The dynamics of pressure

and heat release fluctuations obtained from the model are also shown in figure 4.5.

We observe that the model captures the amplitude of pressure and heat release rate

oscillations associated with the different states of combustor operation. In addition, the

probability density functions and amplitude spectrum of the pressure and the heat release

rate fluctuations are well estimated by the model. Furthermore, our model simulation

confirms the presence of type-II intermittency in both continuous and abrupt transitions,

which is consistent with the findings from the experiments corresponding to both the

bluff-body stabilized combustor and annular combustor. Please refer to Appendix F for

more details.
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Figure 4.6: Correspondence between the control parameter in the model (𝐾) and
experiments (𝜙) obtained using gradient descent optimisation for the (a) bluff-
body stabilized dump combustor, (b) swirl-stabilized dump combustor, and
(c) annular combustor. For all the cases, we obtain a linear relation between
𝜙 and 𝐾 where the fits are: (a) 𝐾 = −5.35𝜙 + 4.68, (b) 𝐾 = −4.85𝜙 + 4.28
and (c) 𝐾 = 8.59𝜙 − 2.66. The goodness-of-fit corresponding to different
combustors is 0.95, 0.94, and 0.96, respectively. The arrows in each panel
indicate the direction in which 𝜙 was varied in experiments. In panel (c),
heat release rate data were obtained only at four points. The remaining points
were interpolated. Error bars correspond to the standard deviation in the
estimation of 𝐾 by sliding the window used during optimisation (Appendix
E.1).

4.5.3 Relation between the control parameters in experiments and model

The correspondence between the control parameters in experiments and the parameters of

the model is quite important. Knowing how parameters observed in the experiments are

related to the model allows for the interpretation of experimental observations in terms of

the physics embodied in the model. Thus, we perform parameter optimisation as explained

in Section 4.4 to obtain the relation between the experimentally controlled equivalence

ratio 𝜙 and model parameter 𝐾. The relationship between 𝐾 and 𝜙 estimated using

parameter optimisation for the three combustors are shown in figure 4.6. The indicated

error in the relation is determined from a distribution of 𝐾 obtained by estimating 𝐾

from Xexp for a window of size 𝑡w = 0.5 s and sliding the window across the entire time

series. The choice of window size is explained in Appendix E.1. These 𝐾 − 𝜙 relations

were used for constructing the bifurcation diagram in terms of 𝐾 in figures 4.3(a) and

4.4. Note that for the annular combustor, optimisation was performed only at four data

points for which heat release rate data was available.
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For the bluff-body and swirl-stabilized dump combustors, the transition is attained by

decreasing 𝜙. For each of these cases, 𝜙 is a linearly decreasing function of 𝐾. In

contrast, the transition is attained by increasing 𝜙 in the annular combustor, and we

obtain a linearly increasing relationship between 𝜙 and 𝐾 . For all these cases, note that

the linear relation between 𝜙 and 𝐾 is such that (increasing/decreasing) change in the

control parameter 𝜙 is translated to an increase in 𝐾 . This linear dependence makes the

model highly interpretable: a change in the control parameter leads to an increase in the

coupling strength of the phase oscillators, promoting global phase synchronization and

hence, limit cycle oscillations.

Here, we reiterate that the excellent agreement between the experiments and model is

not a result of parameter optimisation. The parameter optimisation only determines the

specific mapping from 𝐾 to 𝜙 once the transition in the model has been determined for a

given parameter input. The accuracy of prediction and optimisation depends upon how

well the model represents the behavior of the system. Our results show that the model

captures the combustor dynamics very well, lending support to our methodology.

On the flip-side however, the model does not capture some experimentally observed

features. For instance, we observe that the higher order modes appearing in the spectrum

|𝑝( 𝑓 ) | (cf. figures 4.3 and 4.5) are not captured, as only the fundamental mode was

considered in the formulation of the model Eq. (4.5). The results can be improved by

incorporating the higher modes in the current model. Further, the presence of highly

turbulent flow in the experiments introduces phase-jitter in the heat release rate signal

(Shanbhogue et al., 2009b; Shin and Lieuwen, 2013). This is manifested in terms of

highly turbulent fluctuations in the time series of ¤𝑞′ and asymmetric PDF during the

transition to thermoacoustic instability (cf. figures 4.3 and 4.5). Bonciolini et al. (2021)

reported a similar asymmetry in the PDF during limit cycle oscillations, and were able

to model it through the use of a Van der Pol type model with quadratic nonlinearity

and stochastic forcing. Hence, model estimates of ¤𝑞′ can potentially be improved by
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introducing stochastic terms in Eq. (4.13) (see Appendix G).

Finally, we notice that the annular combustor depicts hysteresis along with secondary

bifurcation (figure 4.4b). While, the model also shows a hysteresis, the width of the

region of hysteresis is not consistent with experiments. This discrepancy can be attributed

to variations in gas/wall temperatures during the reverse path (Bonciolini et al., 2019).

Modeling the width of hysteresis correctly requires precise knowledge of the nonlinear

damping effects arising from temperature changes introduce nonlinear damping effects.

For the present discussion in the context of modeling and prediction of thermoacoustic

transitions along with the underlying synchronization behavior, the above mentioned

dissimilarities are ignored in view of simplicity and parsimony.

To understand the reason for the observation of continuous and abrupt transitions across

disparate combustion systems under seemingly identical operating conditions, we next

consider the characteristics of synchronization in more detail.

4.6 CONTINUOUS AND EXPLOSIVE SYNCHRONIZATION TRANSITION TO

THERMOACOUSTIC INSTABILITY

Let us now consider the characteristics of synchronization which underlies the two

different kinds of transitions in more detail. To make this connection substantive, we

compare the behavior of phase oscillators in the mean-field model devoid of any spatial

inputs with the phase dynamics of spatially distributed heat release rate oscillations

obtained through chemiluminescence imaging in our experiments.

Figure 4.7 shows the instantaneous spatial distribution of phasors (𝜓𝑙 = 𝜃𝑙 − Φ) for

the bluff-body stabilized combustor and the annular combustor, where 𝜃𝑙 and Φ are

the instantaneous phase of ¤𝑞′(𝑥, 𝑦, 𝑡) and 𝑝′(𝑡). The phase difference is related to the

correlation over a small time window of the time series (Sethares, 2007; Balasubramanian
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Figure 4.7: Emergence of global phase synchronization during the transition to
thermoacoustic instability in a bluff-body combustor (a-c) and annular
combustor (d-f). Spatial view of the combustor showing the instantaneous
(phasors,𝜓𝑙) and time-averaged (colormap, ⟨𝜓𝑙⟩) phase difference between the
acoustic pressure (Φ) and heat release rate (𝜃𝑙) oscillations. Phasors have been
colored as blue if |𝜓 | < 𝜋/2 (Rayleigh criteria) and red otherwise to delineate
local acoustic power sources from sinks. The phase of pressure oscillations
remains spatially uniform as the cases correspond to the longitudinal instability.
The probability distribution of the relative phase P(𝜓𝑙) for each state has
also been shown to highlight the appearance of global phase synchronization
during thermoacoustic instability. The experimental conditions for the bluff-
body and annular combustor correspond to the states shown in figure 4.3 and
figure 4.5, respectively.

and Sujith, 2008):

cos𝜓𝑙 =
∫ 𝑡

0
𝑝′(𝑡′) ¤𝑞′(𝑥, 𝑦, 𝑡′)𝑑𝑡′

/ [∫ 𝑡

0
(𝑝′(𝑡′))2

𝑑𝑡′
∫ 𝑡

0
( ¤𝑞′(𝑥, 𝑦, 𝑡′))2

𝑑𝑡′
]1/2

, (4.37)

which is the local Rayleigh index and is related to the acoustic power added to the

acoustic field due to the flame fluctuations. Here, we measure the phase of heat

release rate fluctuations from arbitrary pixels in chemiluminescence images and pressure

fluctuations using the Hilbert transform. To reduce the effect of noisy fluctuations, the

chemiluminescence images obtained from the bluff-body and annular combustor are
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coarse-grained over 8×8 pixels and 6×6 pixels, respectively. While the signals 𝑝′(𝑡) and

¤𝑞′(𝑥, 𝑦, 𝑡) at various conditions are not always strictly analytic, the Hilbert transform can

still be used for the purposes of visualization. Indeed, Mondal et al. (2017b) explicitly

evaluated the correlation Eq. (4.37) as well as used the probability of recurrence to

determine the phase of the heat release rate field. The resulting phases were qualitatively

similar to the phase obtained through the Hilbert transform. Hence, we adopt the same

in the following.

In addition, we also ensured that there were no acoustic phase delay effects in our

experimental measurements. To this end, the pressure oscillations are measured at

25 mm from the dump plane in the bluff-body combustor and remain nearly constant

across the domain of spatial measurements (cf. figure 2.2b). In the case of the annular

combustor, the acoustic pressure is measured on the combustor backplane such that there

is no acoustic phase delay (cf. figure 2.1d). We also mask out the regions between the

swirling flames in the annular combustor and do not consider their contribution in our

calculations. This is done because heat release rate fluctuations from the inter-flame

region are not significant and remain noisy for all the dynamical states (cf. figure 4.7d-f).

Figure 4.7 illustrates the distinct patterns in the phase-field obtained from experiments.

During the occurrence of combustion noise, the phase-field is randomly oriented and

incoherent (cf. figure 4.7 a,d). This state is more generally referred to as phase turbulence

(Shraiman, 1986; Shraiman et al., 1992). In the present context, the phase-turbulent

state indicates that the heat release rate response of the flame is dominated only by the

highly turbulent flow, leading to an incoherent and desynchronized field of the phase

difference between the pressure and the heat release rate fluctuations. As the phasors are

distributed 𝜓𝑙 > |𝜋/2|, the acoustic power production remains very low as shown in Eq.

(4.37), resulting in low-amplitude aperiodic fluctuations. In contrast, during the state of

thermoacoustic instability, the phasors are aligned in a coherent manner, highlighting the

global phase synchronization (cf. figure 4.7 c,f). The phasors distributed in 𝜓𝑙 < |𝜋/2|,
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affect substantially high acoustic power production driving thermoacoustic instability in

the two combustors.

While there are similarities in the characteristics of phase turbulence and phase

synchronization during the occurrence of combustion noise and thermoacoustic

instability, the manner in which synchronization is attained is quite different. For the

bluff-body stabilized and annular combustor, the emergence of a globally synchronized

state takes place through the state of intermittency where the phase-field shows both

phase turbulence and phase synchronization, as can be observed in figure 4.7(b,e). Thus,

clusters of synchronized regions appear amidst phase turbulence. The states of

co-existence of clusters of phase turbulence and synchronization are referred to as

chimeras (Kuramoto and Battogtokh, 2002; Abrams and Strogatz, 2004). Additionally,

for the annular combustor, the transition takes place through the state of intermittency

and low-amplitude instability. The phase-field is shown for the state of intermittency in

figure 4.7(e).

To quantify the characteristics of synchronization, we define the Kuramoto order

parameter:

𝑟 =

〈���� 1
𝑁

𝑁∑︁
𝑖=1

exp (𝑖𝜃𝑙 (𝑡))
����〉
𝑡

, 𝑟 ∈ [0, 1], (4.38)

where ⟨·⟩𝑡 implies time average and 𝜃𝑙 is the phase at 𝑙-th oscillator. The order parameter

quantifies the degree of synchrony among the oscillators as the bifurcation parameter

varies. Kuramoto order parameter is close to zero for desynchronized states and is close

to one for synchronized states.

Figure 4.8(a,b) illustrates the variation of the order parameter when the coupling strength

𝐾 is varied. The order parameter is determined according to Eq. (4.38) from the model

in Eq. (4.31). The procedure for obtaining 𝑟 from chemiluminescence images is detailed

in Appendix H. The oscillator distributions on the ¤𝜃𝑙 − 𝜓𝑙 plane for different states are

shown in figure 4.8(c-j). Characteristics of oscillators from spatiotemporal images are
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Figure 4.8: The variation of time-averaged Kuramoto order parameter 𝑟 in Eq. (4.38) as
a function of coupling strength 𝐾 shows (a) a continuous second-order
synchronization transition for the bluff-body stabilized combustor and
(b) abrupt first-order explosive synchronization transition for the annular
combustor. Panels (c-j) depict the instantaneous oscillator distribution in the
¤𝜃𝑙−𝜓𝑙 phase space along with the distribution P( ¤𝜃𝑙) representative of various
dynamical states indicated in panels (a) and (b). Here, ¤𝜃𝑙 is the normalized
frequency of the 𝑙th oscillator, and 𝜓𝑙 is the relative phase of the oscillator
obtained by subtracting the phase of the heat release rate oscillator by phase of
the acoustic pressure. In panels (c-f), the distribution of oscillators obtained
from spatiotemporal imaging of the combustors is depicted using a pink
shade, while the oscillators from the mean-field model using a blue shade.
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depicted using pink shade markers, while that from the model are illustrated using blue

shade markers. As the heat release rate oscillators in experiments evolve in physical

space, a comparison of oscillator properties in the phase space ¤𝜃𝑙 − 𝜓𝑙 allows us to

gauge how closely the spatiotemporal synchronization of oscillators are captured by

the low-dimensional dynamical mean-field model. Note that during the occurrence of

combustion noise, the initial mean subtracted frequency distribution is ¤𝜃𝑙 = 𝜔𝑙 , where

𝜔𝑙 = �̃�𝑙/Ω̃0 according to Eq. (4.12), and �̃�𝑙 = 2𝜋 𝑓𝑙 − Ω̃0. Here, Ω̃0 is the frequency of

the acoustic pressure during thermoacoustic instability. Thus, the lower bound of the

oscillators is given by 𝑓𝑙 = 0, which leads to ¤𝜃𝑙 = −1.

For the bluff-body dump combustor, which shows a continuous transition to

thermoacoustic instability through intermittency, the order parameter also shows a

continuous and monotonous increase as 𝐾 is varied (figure 4.8a). For 𝐾 < 0.75

corresponding to the state of combustion noise (figure 4.3b), we observe the oscillators

to have a broad distribution of ¤𝜃𝑙 = 𝜔𝑙 and 𝜓𝑙 (figure 4.8c). As the oscillators are

desynchronized, 𝑟 is close to zero. As 𝐾 is increased past 0.75, intermittency appears in

the system dynamics (figure 4.8d). This results in the appearance of the

phase-synchronized cluster, which is small at first but grows in size with increasing 𝐾.

At 𝐾 = 0.95, we notice that the frequency of oscillators is no longer broadly distributed

and instead have a narrowband distribution around the mean frequency Ω̃0 (figure 4.8e).

Due to a higher degree of synchronization among oscillators, 𝑟 increases monotonously

and continuously till the state of thermoacoustic instability. This can be observed at

𝐾 = 2, at which ¤𝜃𝑙 is close to zero, and all the oscillators fluctuate at the mean acoustic

frequency, as can be observed from the sharp peak in P( ¤𝜃𝑙) (figure 4.8f). Further, we

notice that the oscillators are phase-locked with distribution in 𝜓𝑙 < |𝜋/2|. Accordingly,

the order parameter is 𝑟 = 0.88, implying global phase synchronization among the

oscillators.

In the case of the annular combustor, which undergoes a secondary bifurcation to
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thermoacoustic instability, 𝑟 shows a discontinuous transition as 𝐾 is increased (figure

4.8b). As noted earlier, during the occurrence of combustion noise (𝐾 < 1.3), the

oscillators show broad frequency and phase distributions (figure 4.8g). The frequency

distribution narrows close to zero during the state of intermittency (figure 4.8h). As 𝐾 is

increased further, the state of low-amplitude limit cycle is reached, we observe a bimodal

frequency distribution with a peak close to zero and another peak at ¤𝜃𝑙 ≈ −0.6 (figure

4.8i). Upon increasing 𝐾 > 1.6, there is an abrupt jump in the value of 𝑟 as the state

of phase synchronization is reached, as confirmed from the sharp peak in P( ¤𝜃𝑙) (figure

4.8j). This is associated with the state of high-amplitude thermoacoustic instability in

the annular combustor.

It is worth noting here that some phase oscillators remain desynchronized even during

the state of thermoacoustic instability (figure 4.8f,j). Such a distribution is expected due

to various reasons such as phase-jitter in the heat release rate signal due to turbulence.

Such a source of noise can induce random phase-slips in certain oscillators. In addition,

some oscillators are not synchronized to the main cluster because their initial frequency

difference was too large to be synchronized by the mean-field coupling(Kuramoto, 2003).

To clarify the picture of synchronization, it is instructive to plot the distribution of relative

phases 𝜓𝑙 = 𝜃𝑙 −Φ in polar coordinates. Since, by definition, the frequency of oscillators

is centered around the acoustic frequency (Ω̃0), the frame of reference of the oscillators

is co-rotating with respect to Ω̃0. Figure 4.9 shows the instantaneous distribution of

𝜓𝑙 corresponding to four representative states observed in the annular combustor (cf.

figure 4.8b). The experimental data are shown using a pink shade, while the model

results are shown using a blue shade. The instantaneous averaged relative phase obtained

from the model ⟨𝜓m⟩ and the experiments ⟨𝜓e⟩ are also shown along with the respective

Kuramoto order parameter (𝑟) obtained using Eq. (4.38) and Eq. (H.1) (in Appendix

H). The plot shows a drastic change where initially asynchronous oscillators during the

state of combustion noise become synchronous during high-amplitude thermoacoustic
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Figure 4.9: Polar plot in the co-rotating frame showing the variation in the instantaneous
distribution of relative phases (𝜓𝑙) between the phase of the oscillators (𝜃𝑙) and
acoustic pressure (Φ) obtained from the experiments (dark shade) and model
(light shade) during (g) combustion noise, (h) intermittency, (i) low-amplitude
and (j) high-amplitude thermoacoustic instability. The representative states
correspond to the points indicated in figure 4.8b observed during the abrupt
first-order explosive synchronization in the annular combustor. Averaged
relative phase from the experiments and the model are indicated using ⟨𝜓e⟩
and ⟨𝜓m⟩ along with the Kuramoto order parameter (𝑟) showing the level of
synchrony among the oscillators, respectively. The dashed line indicates the
reference phase of the acoustic pressure oscillations (Φ).

instability.

In figure 4.9, during the occurrence of combustion noise, the oscillators are uniformly

distributed. The average phase also drifts with respect to Φ, indicating desynchronization

amongst the oscillators. During the transition to thermoacoustic instability, we observe a

clear shift from a uniform broadband distribution to a narrowband distribution, implying

the emergence of synchronization among oscillators. The average phase remains locked

to Φ, and the exact phase difference never exceeds ±𝜋/2. In summary, we see that this

behavior is very well approximated by the model.

The stark contrast in the bifurcation behavior of the order parameter 𝑟 shown in figure

4.8(a,b) highlights the difference in the characteristics of synchronization underlying

the two bifurcations. Indeed, the continuous change in 𝑟 exemplifies a second-order

synchronization phase-transition. On the other hand, the abrupt bifurcation in 𝑟

embodies a first-order phase transition and is more appropriately referred to as explosive
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synchronization (Strogatz, 2000; Pazó, 2005; Leyva et al., 2013; Kuehn and Bick, 2021).

Whether the synchronization transition will be continuous or explosive is crucially

contingent on the initial frequency distribution. It is well-known that the second-order

continuous transitions appear in the standard Kuramoto model whenever the frequency

distribution of phase oscillators is symmetric and unimodal (Kuramoto, 1975; Strogatz,

2000). This is due to the presence of a clear peak in the distribution, which ensures that

upon increasing coupling strength, a large cluster of oscillators gets synchronized around

the peak in the distribution. Further increase in coupling strength leads to entrainment of

drifting oscillators to the large cluster resulting in the gradual increase in the size of the

coherent cluster (Strogatz, 2000; Basnarkov and Urumov, 2007).

The picture becomes complicated when the frequency distribution undergoes symmetry

breaking to non-unimodal and asymmetric distribution in non-standard extensions of the

Kuramoto model (Zhou et al., 2015; Terada et al., 2017; de Oliveira and Abud, 2020).

For instance, in the case of bimodal distribution, the appearance of two frequency peaks

means that an increase in the coupling strength leads to the entrainment of oscillators

distributed around the two frequency peaks. When the coupling strength becomes

too large, these peaks and the two clusters coalesce abruptly, leading to non-standard,

first-order explosive synchronization (Terada et al., 2017; Zhang et al., 2020). Similar

observation has been made when the frequency distribution is flat (Basnarkov and

Urumov, 2007; Pietras et al., 2018) or asymmetric unimodal (Zhou et al., 2015; de

Oliveira and Abud, 2020). While the above-mentioned studies are important steps in

understanding second-order and first-order transitions, a clear resolution is still missing.

Here also, the key to discerning the reason behind second-order and first-order transitions

lies in the characteristics of the frequency distribution. Evidently, the distributions

𝑔(𝜔) obtained from the three experiments are non-standard and asymmetric, as can be

observed in figure 4.2. The distributions are more clearly shown in figure 4.8(c,g). Now,
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the observation of such a non-standard initial distribution (figure 4.2) makes it difficult

to relate the present results to the observed theoretical results in the existing literature.

However, the observed first and second-order transitions can still be reconciled by

observing the behavior of the distributions during the intermediate states of intermittency

and low-amplitude thermoacoustic instability.

The distribution 𝑔(𝜔) for the bluff-body stabilized combustor is multimodal, where the

peaks are centered very close to the frequency of acoustic oscillations (see figure 4.8c).

Now, as the coupling strength increases, oscillators at these frequencies get entrained, and

a single peak is established in the frequency distribution (cf. figure 4.8e). Further increase

in the coupling strength leads to a gradual increase in the size of the largest entrained

cluster. Hence, we observe a continuous, second-order synchronization transition. In

contrast, for the annular combustor, the distribution 𝑔(𝜔) is initially asymmetric with

a peak that is comparatively farther away from the frequency of acoustic fluctuations

(cf. figure 4.8g). Now, as the coupling strength is increased, a secondary peak becomes

clearly visible (cf. figure 4.8i). Thus, oscillators are entrained around two different

clusters associated with the two peaks. An increase in 𝐾 beyond a critical value leads

to an abrupt coalescence of these two clusters, resulting in the first-order explosive

synchronization.

To summarize, we have seen that although the model is dynamical with no spatial input,

it captures the characteristics of spatiotemporal synchronization patterns observed in

experiments very well while also predicting the nature of bifurcation to limit cycle

oscillations–a feature that has yet to be captured in other thermoacoustic models. Thus,

the above results strongly suggest the usefulness of the proposed mean-field model for

analyzing the thermoacoustic transitions in turbulent combustion systems.

It is worth mentioning here that explosive synchronization has been reported in power-

grids (Motter et al., 2013), neurological activity (Kim et al., 2016), chemical reactions
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(Kumar et al., 2015; Călugăru et al., 2020). Our study is the first experimental evidence

of explosive synchronization in a strongly-coupled fluid dynamical system.

4.7 INTERIM SUMMARY

In this chapter, we presented two distinct thermoacoustic models to study the change in

nature of the bifurcation observed in the turbulent combustors. In the first model based

on the nonlinear function, we vary the nonlinear terms to reproduce the crossover of

the bifurcation and the stability map observed in the annular combustor. In the second

model, we assume that the turbulent flame comprises an ensemble of phase oscillators

evolving under the influence of mean-field interactions and acoustic feedback. These

interactions encode the nonlinearities in the flame response subjected to acoustic and

turbulent fluctuations.

We showed that the mean-field model captures continuous and abrupt transitions

observed in three distinct (bluff-body stabilized, swirl-stabilized, and annular) combustor

configurations. These transitions are captured by the model by taking the heat release rate

spectrum during the stable operation as the only input. Further, the model captures the

characteristics such as time series, PDF, and spectrum of the different states – combustion

noise, intermittency, limit cycle oscillations – en route to the state of thermoacoustic

instability in these systems. We then estimated the relationship between experimental

and model parameters using a gradient descent algorithm. In all three combustors, we

find that the coupling strength is a linear function of the equivalence ratio, indicating that

a change in the control parameter leads to an increase in the coupling strength of the

phase oscillators.

Importantly, we show that our second modeling approach naturally provides an

explanation of spatiotemporal synchronization and pattern formation observed in

turbulent thermoacoustic systems. We showed that the model closely captures the

statistical behavior of spatial desynchronization, chimera, and global phase

103



synchronization underlying the transitions. Our results strongly indicate that continuous

and abrupt thermoacoustic transitions are associated with synchronization transition of

second-order and first-order, respectively. This observation of disparate phase transitions

is further rationalized based on the frequency spectrum of the phase oscillators. We

observe the appearance of an unimodal peak around which all the oscillators get

entrained, giving rise to a second-order transition. On the other hand, the first-order

explosive transition is associated with the appearance of a bimodal distribution where

two synchronized clusters of oscillators get entrained. An increase in the coupling

strength beyond a critical point results in a sudden, abrupt coalescence into one large

synchronized cluster.
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CHAPTER 5

INTERMITTENCY TRANSITION TO AZIMUTHAL
INSTABILITIES IN ANNULAR COMBUSTOR

In this chapter, we study the transition to azimuthal instabilities in the annular combustor.

The current combustor is introduced to resemble the main features of modern aero

and land-based gas turbine combustors and enable the study of azimuthal combustion

instabilities in a well-controlled and accessible environment. The lab-scale annular

combustor used for azimuthal thermoacoustic instability experiments is comprehensively

described in Section 2.1.2. The primary motivation of this chapter is to understand

the nature of the azimuthal modes using temporal and spatiotemporal measurements.

Specifically, our attention is directed towards the nonlinear flame response during different

dynamical states as a function of the equivalence ratio.

5.1 CHARACTERIZATION OF AZIMUTHAL MODES

To understand the nature of the azimuthal mode in the annular combustor, we apply the

quaternion-based formalism on the azimuthal pressure fluctuation. Recently, Ghirardo

and Bothien (2018) proposed a new approach for describing the azimuthal pressure

eigenmodes in annular combustors by utilizing the quaternions ansatz. The quaternion

formulation defines the system using state space variables that directly characterize the

The results presented in this chapter are showcased at the conference and published in the journal paper:

1. Singh, S., Bhavi R., P. R. Midhun, Bhaskaran A., Mishra P., Chaudhuri S., and Sujith R.I.,
Intermittency transition to azimuthal instability in a turbulent annular combustor. Symposium
on Thermoacoustics in Combustion: Industry meets Academia, ETH Zurich, Switzerland,
(2023).

2. Singh, S., Bhavi R., Midhun P. R., Bhaskaran A., Mishra P., Chaudhuri S., and Sujith R. I.
(2024). Intermittency transition to azimuthal instability in a turbulent annular combustor. Int.
J. Spray Combust. Dyn., 16 (3), 119-136.



nature of the mode. This approach is particularly of interest to experimentalists seeking

a clear and insightful understanding of the system dynamics in complicated combustion

systems. Utilizing acoustic pressure data acquired from eight distinct locations, as

illustrated in figure 2.1, we employ the quaternion-based ansatz to decompose the

azimuthal pressure fluctuations (𝑝′) as:

𝑝′(Θ, 𝑡) =𝐴 cos(Θ − 𝜃) cos(𝜒) cos(Ω𝑡 +Φ) + 𝐴 sin(Θ − 𝜃) sin(𝜒) sin(Ω𝑡 +Φ), (5.1)

where Ω is the acoustic frequency, 𝑡 is the time, and Θ is the azimuthal coordinate.

A set of four state variables, namely 𝐴, 𝜒, 𝜃, and Φ, is then extracted from the time

series of acoustic pressure. These variables vary slowly with respect to the fast acoustic

timescale 𝑇 = 2𝜋/Ω, and provide a well-defined description of the state of an azimuthal

thermoacoustic mode. The slow variation in the angles 𝜃 and 𝜒 describes the position

of the antinodal line and the nature of the azimuthal eigenmode (standing wave, pure

CW or CCW spinning wave, or a mix of both), respectively. Additionally, the angle Φ

represents the slow temporal phase drift. We can express the pressure field in the form:

𝑝′(Θ, 𝑡) = 𝐴

2
(cos 𝜒 − sin 𝜒) cos(Θ − 𝜃 +Ω𝑡 +Φ)

+𝐴
2
(cos 𝜒 + sin 𝜒) cos(Θ − 𝜃 −Ω𝑡 −Φ). (5.2)

These two traveling waves yield:

𝐴+ = (𝐴/2) (cos 𝜒 + sin 𝜒), (5.3)

𝐴− = (𝐴/2) (cos 𝜒 − sin 𝜒), (5.4)

and

𝜃 = (Φ− −Φ+)/2, Φ = (Φ− +Φ+)/2, (5.5)

where 𝐴+ and 𝐴− denotes the slowly varying amplitudes of the two counter-rotating

spinning waves. Further, the slowly varying amplitude 𝐴 represents the amplitude of
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acoustic pressure oscillations in Eq. (5.1) can be deduced from Eqs. (5.3) and (5.4) as:

𝐴
√

2
=

√︁
|𝐴+ |2 + |𝐴− |2, (5.6)

The relation of the two amplitudes defines whether the mode is standing (|𝐴+ | = |𝐴− |) or

spinning in clockwise (CW) (|𝐴+ | = 0) or counter-clockwise (CCW) (|𝐴− | = 0) direction.

In addition to the slowly varying variables, we introduce the spin ratio to characterize the

nature of the azimuthal mode (Bourgouin et al., 2013). This convenient indicator for

the nature of the mode is based on the projection on two spinning waves and defined as

𝑆𝑅 = ( |𝐴+ | − |𝐴− |)/(|𝐴+ | + |𝐴− |). The relation between the spin ratio 𝑆𝑅 and the nature

angle 𝜒 is described by the equation as:

𝜒 = arctan(𝑆𝑅) = arctan
(
|𝐴+ | − |𝐴− |
|𝐴+ | + |𝐴− |

)
. (5.7)

Since the characteristic features of a given azimuthal mode are the amplitude 𝐴, the

nature angle 𝜒 and the orientation angle 𝜃, it is natural to describe a given mode as a

point on a Poincaré-Bloch sphere (Ghirardo and Bothien, 2018) (see figure 5.1). The

amplitude 𝐴 determines the distance from the point to the origin of the sphere. The

orientation angle 𝜃 is the angle in the equatorial plane relative to the reference angle of the

coordinate system and varies between −𝜋 and 𝜋. Twice the nature angle (2𝜒) determines

the angle between the equatorial plane and the point representing the thermoacoustic

mode. Here, 𝜒 indicates whether the azimuthal eigenmode is a standing wave (𝜒 = 0),

a pure clockwise or counterclockwise spinning wave (𝜒 = ±𝜋/4) or a mix of both for

0 < |𝜒 | < 𝜋/4. Taken together, these slow-flow variables and spin ratio provide a

comprehensive description of the acoustic field 𝑝′ as a function of time and azimuthal

position.

5.2 DETERMINATION OF AZIMUTHAL MODE FROM OUR EXPERIMENTS

In this section, we outline the process of deriving the slow flow variables within the

quaternion framework from experimental measurements. We begin with azimuthally
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Figure 5.1: Poincaré-Bloch sphere representation of the azimuthal mode in the quaternion
formalism. The amplitude 𝐴 corresponds to the radius, 2𝜒 the latitude and
𝜃 the longitude. Thermoacoustic states at the poles correspond to spinning
modes, standing modes are located near the equator and mixed modes at
intermediate latitudes.

distributed pressure signals, denoted as 𝑝′(Θ, 𝑡), which provide time series data for

acoustic pressure at specific azimuthal locations represented by Θ𝑘 . To capture the

acoustic pressure signals, we have installed eight pressure transducers, each designated

as PC1, PC2, .. PC8, positioned at intervals of 45◦ from one another on the backplane of

the combustor (see figure 2.1d). To identify the dominant mode and its corresponding

frequency, we employ a Fast Fourier Transformation (FFT) on the pressure signals. We

apply a bandpass filter on each pressure time series to improve the quality of the data by

removing the unwanted noise and harmonic components. This filter has a bandwidth of

Δ 𝑓 = 50 Hz centered around the peak frequency 𝑓𝑝 associated with each transducer. The

framework takes a starting point in the description of the acoustic field by two orthogonal

eigenmodes:

𝑝′(Θ, 𝑡) = 𝜉1(𝑡) cos(𝑛Θ) + 𝜉2(𝑡) sin(𝑛Θ), (5.8)

where 𝑛 is the order of the azimuthal mode having value 𝑛 = 1 in our case, and cos(𝑛Θ)

and sin(𝑛Θ) are the two orthogonal modes. The projected signals 𝜉1 and 𝜉2 are obtained
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from the filtered pressure transducer timetraces by inverting the system:

𝑝0

𝑝1
...

𝑝𝑘


=



cos(𝑛Θ0) sin(𝑛Θ0)

cos(𝑛Θ1) sin(𝑛Θ1)
...

...

cos(𝑛Θ𝑘 ) sin(𝑛Θ𝑘 )



𝜉1

𝜉2,

 (5.9)

where 𝑘 describes the number of the pressure signals which are acquired at specific

azimuthal positions Θ𝑘 . The corresponding complex analytic signals of 𝜉1 and 𝜉2 are

defined as:

𝜉𝑎,1(𝑡) = 𝜉1(𝑡) + 𝑗H(𝜉1(𝑡)); 𝜉𝑎,2(𝑡) = 𝜉2(𝑡) + 𝑗H(𝜉2(𝑡)), (5.10)

where H is the Hilbert transform and 𝑗 is the second quaternion imaginary unit. The

quaternion analytic signal of 𝜉 (𝑡) is defined as 𝜉𝑎 (𝑡) = 𝜉𝑎,1(𝑡) + 𝑖𝜉𝑎,2 which turn out as:

𝜉𝑎 (𝑡) = 𝜉1(𝑡) + 𝑗H(𝜉1(𝑡)) + 𝑖𝜉2(𝑡) + 𝑘H(𝜉2(𝑡)), (5.11)

with 𝑖, 𝑗 , 𝑘 as the quaternion imaginary units. From this point, the slow-flow variables

𝐴, 𝜒, 𝜃, 𝜙 are extracted from 𝜉𝑎 with the step by step description presented rigorously in

the appendix of Ghirardo and Bothien (2018).

5.3 ROUTE TO AZIMUTHAL THERMOACOUSTIC INSTABILITY

In this section, we discuss the transition from a stable state to azimuthal thermoacoustic

instability in the annular combustor, as shown in figure 5.2. For the frequency analysis of

the acoustic pressure (𝑝′) signal, we employed the fast Fourier transform algorithm (FFT).

The datasets were sampled at 10 kHz to accurately capture the limit cycle signal. We

have utilized 1 second duration of data for the current analysis, resulting in approximately

10000 data points. To avoid any spectral leakage, we have implemented the FFT with

a frequency resolution of 0.3 Hz per bin, spanning a total of 8193 bins. Figure 5.2(a)

illustrates the variation in the amplitude of acoustic pressure (𝐴), calculated using
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Figure 5.2: Observed transition from a state of combustion noise to azimuthal
thermoacoustic instability in a turbulent annular combustor. (a) The variation
of 𝐴 and (b) the frequency of 𝑝′ from position PC2 as a function of equivalence
ratio (𝜙). Time traces and the sound pressure level of the acoustic pressure
fluctuations (𝑝′) from eight equispaced pressure sensors during (c) combustion
noise, (d) intermittency, (e) dual-mode instability, (f) standing azimuthal
instability, and (g) beating azimuthal instability. The transition involves a
frequency shift – from a low frequency associated with the longitudinal mode
to a higher frequency associated with the azimuthal mode. Experimental
conditions: (c) 𝜙 = 1.38, (d) 𝜙 = 1.32, (e) 𝜙 = 1.28, (f) 𝜙 = 1.20, and (g)
𝜙 = 1.14.
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equation (5.6), as a function of the equivalence ratio (𝜙). Figure 5.2(b) highlights the

change in the dominant frequency of the acoustic pressure at position PC2 (Figure

2.1d). Each 𝜙 value corresponds to a specific dominant frequency, which shifts from the

low-frequency range of approximately 270±30 Hz to the high-frequency range of around

810 ± 30 Hz. The frequency variation of ± 30 Hz is obtained through visual inspection

from figure 5.2(b). As we vary the equivalence ratio, we observed a continuous increase

in 𝐴 (Figure 5.2a), and a notable shift in frequency from a lower to a higher range in

figure 5.2(b). This shift in the frequency of the acoustic pressure signifies the transition

from longitudinal to azimuthal thermoacoustic instability.

In figure 5.2(c-g), we show the time series and sound pressure level of 𝑝′ from all eight

locations during different states of combustor operations in a sequence as marked in figure

5.2(a). At 𝜙 = 1.38, in figure 5.2(c), we observe aperiodic pressure fluctuations in the time

series of 𝑝′ (see insets) and broadband spectrum in the sound pressure level, indicating

the state of combustion noise. As we decrease 𝜙 to 1.32, in figure 5.2(d), we notice

intermittent bursts of longitudinal periodic oscillations amidst aperiodic fluctuations (see

insets), indicating the occurrence of intermittency (Nair et al., 2014). We confirmed

that the epochs of the periodic fluctuations during the current state are predominantly

longitudinal in nature, given the negligible phase difference observed among all eight

pressure signals (not shown here). Notably, the sound pressure level corresponding to

this state starts narrowing around 260 Hz, which corresponds to the longitudinal mode of

the combustor. Upon further decreasing 𝜙 to 1.28, figure 5.2(e) displays a coexistence

of both azimuthal mode and longitudinal mode with distinct frequencies in the time

series of 𝑝′. For a closer look at the time series of 𝑝′, refer to the zoomed-in view

provided in figure 5.4(a). The coexistence of two modes strongly indicates the presence

of dual-mode instability, first observed by Fang et al. (2021) in their experimental study.

Interestingly, the corresponding sound pressure level shows almost equal amplitudes

for the longitudinal and azimuthal modes. The dominant frequency for the longitudinal

mode has shifted from 261 Hz to 300 Hz, while the azimuthal thermoacoustic mode is
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around 785 Hz. Upon closer examination, we observed two peaks in the low frequency

range, where one peak is located around 260 Hz, and the other is around 300 Hz. Recent

studies have shown that combustors can exhibit multiple acoustic modes, which can either

coexist or compete, depending on nonlinear interactions [Noiray et al. (2008); Moeck and

Paschereit (2012); Lieuwen (2021)]. The presence of these two closely-spaced modes

in our combustor corresponds to longitudinal modes, as confirmed in figure 5.4. Given

that the sharp peak at 300 Hz exhibits a higher amplitude compared to the broader peak

around 260 Hz, we consider the peak at 300 Hz as indicative of the longitudinal mode.

The combined longitudinal and azimuthal modes exhibit specific time-varying modal

dynamics during their occurrence, necessitating further analysis discussed in the next

section.

In figure 5.2(f), we observe standing azimuthal oscillations with a slow rotation of the

nodal line when 𝜙 reaches 1.20 (also refer to figure 5.6a for a zoomed-in view). In the

corresponding spectral plot, we identify two prominent peaks: one at approximately

256 Hz, indicating the presence of the longitudinal mode, and another at around 805

Hz, indicating the azimuthal mode. Remarkably, we notice the amplitude of the peak

at 805 Hz is significantly higher than that of the peak at 256 Hz. Recent experimental

studies have reported the rotation of the nodal line in a random (Vignat et al., 2020)

and deterministic fashion (Worth and Dawson, 2017; Kim et al., 2021b). In our case,

the motion of the nodal line appears to oscillate periodically in a deterministic fashion

discussed in figure 5.6(d). With further decrease in 𝜙, we observe a complex sequence of

dynamical states between spinning and standing azimuthal modes along with amplitude

modulation in figure 5.2(g) (at 𝜙 = 1.14). Please also refer to figure 5.7(a) for a zoomed-in

view. The combustor exhibits a CCW spinning mode, followed by standing mode, CW

spinning mode, and again standing mode. The dominating peak frequency associated

with the azimuthal thermoacoustic mode displays two peaks: one at approximately 820

Hz and the other at 𝑓1 = 820 + 𝑓0. Upon closer inspection of the spectrum, we notice

two peaks separated by approximately 𝑓0 = 7 Hz, which corresponds to the frequency
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Figure 5.3: The variation in the distribution of spin ratio (𝑆𝑅) as a function of equivalence
ratio (𝜙) indicates the change in the azimuthal mode dynamics during the
thermoacoustic transition.

of beating. This dynamical state is referred to as the beating azimuthal instability in

literature (Indlekofer et al., 2021a; Faure-Beaulieu et al., 2021a). This dynamical state

can arise due to tiny non-uniformities in the geometry, impedance variations of the cavity

walls, or flow irregularities.

5.4 AZIMUTHAL MODAL DYNAMICS DURING THE THERMOACOUSTIC

TRANSITION

Using the mode indicator discussed in Eq. 5.7, we investigate the change in the azimuthal

modal dynamics as a function of 𝜙. We assess the modal dynamics by examining the

distribution of spin ratio (𝑆𝑅) across different 𝜙 values, as shown through the probability

density function of spin ratio P(𝑆𝑅) distributions. In figure 5.3, we show the distribution

in 𝑆𝑅 as a function of 𝜙. For the value of 𝜙 between 1.4 and 1.3, we observed the state

of combustion noise and intermittency, denoted by ‘(c)’ and ‘(d)’ in figure 5.2.

Given our emphasis on azimuthal modal dynamics, we neglect these states and commence

analysis from 𝜙 = 1.3 onwards. Detailed explanations of these two dynamic states,
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namely combustion noise and intermittency, are provided in Chapter 3. We first apply a

bandpass filter to each pressure time series with a bandwidth of Δ 𝑓 = 50 Hz, centered

around the peak frequency to calculate 𝑆𝑅. At 𝜙 = 1.3, we observe 𝑆𝑅 ≈ 0, indicating

a standing azimuthal mode as |𝐴+ | = |𝐴− |. The spread in the P(𝑆𝑅) suggests the

time-varying spin ratio between -0.5 and 0.5 with the maximum probability of forming

standing azimuthal mode. This state is denoted as ‘(e)’ in figure 5.2(a) and referred

to as the dual-mode instability. As 𝜙 is decreased, we notice a sharp peak in P(𝑆𝑅)

distribution. Specifically, at 𝜙 = 1.2, 𝑆𝑅 is very close to zero, indicating pure standing

azimuthal mode. This state is denoted as ‘(f)’ in figure 5.2(a). As the value of 𝜙 past

1.2, we observe a spread in 𝑆𝑅 between -1 and 1, indicating the beating phenomenon in

the combustor. For instance, at 𝜙 = 1.14, we observe that the probability of 𝑆𝑅 remains

between -1 to 1 with the highest probability around 0. Here, P(𝑆𝑅) indicates that the

azimuthal mode switching between CCW and CW spinning waves is always through the

standing wave. On further decreasing 𝜙, we notice irregular switching between CCW

and CW spinning mode through the standing mode.

5.5 CHARACTERIZING DYNAMICAL STATES DURING THE TRANSITION

TO AZIMUTHAL THERMOACOUSTIC INSTABILITY

In order to further understand each dynamical state observed in the annular combustor

during the transition to azimuthal thermoacoustic instability, we examine the temporal

behavior of different dynamical states. For brevity, we have not shown the temporal

and flame dynamics during the state of combustion noise and intermittency as they are

discussed in Chapter 3.

Figure 5.4 shows the portion of the original time series and scalogram of 𝑝′, filtered time

series of 𝑝′ associated with the longitudinal and azimuthal modes, and the corresponding

probability density function (P(ΔΨ)) of the phase difference (ΔΨ) during the dual-mode

instability discussed in figure 5.2(e). To improve clarity, the time series from four

114



Figure 5.4: (a,b) Evolution of time series and scalogram of the acoustic pressure
oscillations during the dual-mode instability at 𝜙 = 1.28. (c) and (d)
Selected windows in the pressure time series are bandpass filtered in the
range [250, 350] Hz and [734, 834] Hz, respectively. (e) and (f) Probability
density function of the phase difference (P(ΔΨ)) of all pressure signals with
respect to the signal in PC2.

pressure transducers (PC2, PC4, PC6, and PC8) located 90◦ apart are displayed, and the

scalogram plot for PC2 is shown. In figure 5.4(a), the periodic amplitude modulation of

𝑝′ is associated with dual tonal peaks before applying any spectral filtering. Specifically,

the 𝑝′ signal corresponding to azimuthal mode modulates at the frequency of longitudinal

mode. The scalogram displaying two tonal peaks around 251 Hz and 785 Hz is shown in

figure 5.4(b). The tonal peaks are of almost equal strength, where 251 Hz is associated

with the longitudinal mode and 785 Hz is associated with the azimuthal mode. We apply

a bandpass filter on the time series of 𝑝′ to decouple the two modes, which simplifies our

analysis.
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Figure 5.5: Evolution of (a) amplitude (𝐴), (b) nature angle (𝜒), (c) orientation angle (𝜃),
and (d) spin ratio (𝑆𝑅) exacted using time series of 𝑝′ during the azimuthal
mode of dual-mode instability.

Figure 5.4(c) shows the time series of 𝑝′ associated with the longitudinal mode when

bandpass filtered in the range [250, 350] Hz, while figure 5.4(d) shows the same time

series but now associated with the azimuthal mode when bandpass filtered in the range

[727, 834] Hz. Figure 5.4(c) depicts the signals from all four pressure transducers

are in-phase during the longitudinal mode, while in figure 5.4(d) PC2 and PC4 are

out-of-phase to PC6 and PC8, further confirms standing azimuthal mode in the combustor.

Moreover, P(ΔΨ) associated with the longitudinal mode shows the phase difference

of PC4, PC6, and PC8 with respect to PC2 is negligible (see figure 5.4e). In contrast,

P(ΔΨ) associated with the azimuthal mode shows the phase difference of PC4 with

respect to PC2 is negligible, and the phase difference of PC6 and PC8 with respect to

PC2 is |𝜋 | (see figure 5.4f).

To better understand the azimuthal thermoacoustic mode during the dual-mode instability
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shown in figure 5.4(d), we adopt the quaternion-based formalism elucidated in Section 5.1.

We decompose the acoustic pressure oscillations (𝑝′) into clockwise and counterclockwise

waves using slow flow variables obtained from the eight pressure transducers (PC1,

PC2, .., PC8), allowing a reconstruction of the pressure amplitude (𝐴), nature angle (𝜒),

orientation angle (𝜃), and spin ratio (𝑆𝑅). In figure 5.5, panel (a) depicts the evolution

of the amplitude of the azimuthal mode (𝐴). Panel (b) shows the evolution of 𝜒, which

oscillates around 0 and corresponds to a mode near the equator in the Bloch sphere.

This behavior indicates the presence of the standing azimuthal mode in the combustor

(Ghirardo and Bothien, 2018; Ghirardo and Gant, 2021; Kim et al., 2021b). Panel (c)

represents the evolution of the orientation angle 𝜃, which determines the location of the

pressure antinodes of the standing azimuthal wave. It is worth noting that the angle 𝜃 for

the dual-mode instability exhibits oscillations around 𝜋/2, which strongly suggests that

the position of the nodal line is almost constant in time. Finally, panel (d) displays the

temporal variation of the spin ratio (𝑆𝑅), which exhibits oscillations centered around

zero. This variation of 𝑆𝑅 around zero provides further evidence for the existence of a

standing azimuthal mode in the combustor when decoupled from the longitudinal mode.

We next discuss the temporal dynamics of the pure standing azimuthal mode with a

moving nodal line, which corresponds to marker ‘(f)’ in figure 5.2(a). In figure 5.6,

panel (a) illustrates the time series of 𝑝′ along with the zoomed-in views at two distinct

windows in the same time series. These two time series windows reveal the modulation

in amplitude and phase difference of 𝑝′ from the eight pressure transducers (shown four

here) around the annulus. Panel (a) also depicts the evolution of the amplitude of the

standing azimuthal instability (𝐴) indicated in red color. Panel (b) presents the evolution

of the frequency from four transducers (PC2, PC4, PC6, and PC8), demonstrating the

modulation in the amplitude of 𝑝′ in the scalogram plots. For instance, at around 𝑡 =

0.85 s, all four scalogram plots distinctly exhibit a nearly identical amplitude of 𝑝′,

while at around 𝑡 = 1.1 s, a noticeable disparity emerges: PC2 and PC4 manifest higher

amplitudes of 𝑝′, whereas PC1 and PC3 display a minimized amplitudes. Therefore, we
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Figure 5.6: (a) Time series of the acoustic pressure along with the slowly varying
amplitude (𝐴) and (b) corresponding scalogram during the pure standing
azimuthal instability at 𝜙 = 1.20. (c-e) Evolution of nature angle (𝜒),
orientation angle (𝜃), and spin ratio (𝑆𝑅) defining the dynamical state of the
azimuthal thermoacoustic mode.

can be certain of the transitional switching of standing azimuthal mode and the nodal line

position in the combustor. Panel (c) shows the evolution of 𝜒, which oscillates around 0,
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indicating the standing azimuthal mode as the mode is oscillating near the equator in

the Bloch sphere. Panel (d) represents the evolution of the orientation angle 𝜃, which

determines the location of the pressure antinodes of the standing azimuthal wave. It is

worth noting that the angle 𝜃 exhibits oscillations between 𝜋/4 and 3𝜋/4, which strongly

suggests that the nodal line is moving in seemingly periodic motion. Lastly, panel (e)

displays the temporal variation of the spin ratio (𝑆𝑅), which exhibits oscillations centered

around zero, implying that the amplitudes of the counterclockwise (CCW) and clockwise

(CW) waves are nearly equal in strength.

In figure 5.7, we show the temporal dynamics of the beating azimuthal instability

corresponding to marker ‘(g)’ in figure 5.2(a). Here, panel (a) depicts the time series

of 𝑝′, complemented by the concurrently varying amplitude (𝐴) highlighted in red.

Additionally, zoomed-in views are presented in three distinct temporal windows within

the same time series. Moving from left to right, we can clearly identify the presence of a

CCW spinning mode, a standing mode, and a CW spinning mode. Panel (b) displays the

scalogram of the acoustic pressure obtained from PC2, PC4, PC6, and PC8 locations.

The scalogram shows the CCW and CW spinning mode at the extreme left and right of

the panel, where all four-time series exhibit nearly equivalent amplitudes of 𝑝′. However,

at 𝑡 = 0.07 s, in the middle of the time series of 𝑝′, we observe the narrowband spectrums

in PC2 and PC6 due to periodic oscillations in 𝑝′, while PC4 and PC8 exhibit broadband

spectrum due to aperiodic fluctuations. This arrangement of the scalograms from four

pressure transducers at 90◦ to each other indicates the existence of the standing azimuthal

mode. Panel (c) illustrates the oscillation in 𝜒 is between −𝜋/4 to 𝜋/4 (known as poles

in Ghirardo and Bothien (2018)), indicating the switching from CCW spinning to CW

spinning through the standing mode (𝜒 ≈ 0). Panel (d) shows that the location of the

pressure antinode (𝜃) remains constant during the standing azimuthal mode, indicating a

fixed nodal line at 𝜃 ≈ 3𝜋/4. Finally, in panel (e), we observe that the spin ratio (𝑆𝑅)

oscillates between 1 and -1 at the extremes and remains at 0 in the middle, indicating the

switching from CCW spinning mode (𝑆𝑅 = 1) to CW spinning mode (𝑆𝑅 = −1) through
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Figure 5.7: (a) Time series of the acoustic pressure along with the slowly varying
amplitude (𝐴) and (b) corresponding scalogram during the beating azimuthal
instability at 𝜙 = 1.14. (c-e) Evolution of nature angle (𝜒), orientation
angle (𝜃), and spin ratio (𝑆𝑅) defining the dynamical state of the azimuthal
thermoacoustic mode.

the standing mode (𝑆𝑅 = 0).
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Figure 5.8: Phase-averaged global heat release rate viewed from above the annulus in two
distinct scenarios: (a-b) during the pressure maxima and minima associated
with the longitudinal mode of the dual-mode instability, and (c-d) 𝜓 = 1/6
and 𝜓 = 2/3 in the acoustic cycle associated with the azimuthal mode of
the dual-mode instability. The white line represents the nodal line. This
experimental investigation was conducted under the condition of 𝜙 = 1.28.

5.6 FLAME DYNAMICS DURING THE TRANSITION TO AZIMUTHAL

THERMOACOUSTIC INSTABILITY

In this section, we investigate the flame dynamics through the phase-average heat release

distribution along the annulus associated with the different dynamical states discussed

in the previous section. We show the normalized phase-averaged value of the heat

release rate from the mean-subtracted chemiluminescence images at non-dimensional

time steps of the acoustic pressure cycle. Here, the phase-averaged heat release rate field

is indicative of the evolution of the flame structure at different points in the acoustic cycle.
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We highlight the large-scale features of the global flame dynamics by calculating the

phase-averaged contours of ¤𝑞′ − ¤̄𝑄/⟨ ¤̄𝑄⟩, first introduced by Worth and Dawson (2013b).

Here, ¤̄𝑄 represents the time-averaged mean heat release rate, while ⟨ ¤̄𝑄⟩ indicates its

spatially averaged heat release rate fluctuations. This approach of phase averaging is

particularly relevant as the dominant oscillations in the present combustion chamber is

primarily governed by oscillations centered around a single frequency. For our study,

we divide the data into six non-dimensional time steps (𝜓) in the acoustic cycle during

the azimuthal mode and nineteen 𝜓 in the acoustic cycle during the longitudinal mode.

During the azimuthal mode, the non-dimensional time steps are considered as follows:

𝜓 = 0, 𝜓 = 1/6, 𝜓 = 1/3, 𝜓 = 1/2, 𝜓 = 2/3, and 𝜓 = 5/6 of the acoustic pressure cycle.

During the longitudinal mode of the dual-mode instability (figure 5.4c), we illustrate the

phase-averaged chemiluminescence image corresponding to the maxima and minima of

𝑝′ in figure 5.8(a-b). The phase-averaged heat release rate field is shown at the pressure

maxima and minima to facilitate a clear differentiation of the global swirling flame

structures within flames. Across the majority of the sixteen burners, we observe the

intensity is maximum along the periphery of the swirling flames during the pressure

maxima (see figure 5.8a). These flames are bounded by the inner and outer shear layer

with little recirculation, corroborating our earlier findings within the context of the

low-amplitude longitudinal instability state discussed in Chapter 3. . Since the two

modes (longitudinal and azimuthal modes) are coupled, we notice certain burners such

as burner 14, 15, 16 as per figure 2.1(c), exhibit weak responses to the azimuthal mode.

In contrast, during instances of pressure minima, the phase-averaged heat release rate

field shows significantly diminished intensity along the periphery of the flame (see figure

5.8b).

During the azimuthal mode of the dual-mode instability (figure 5.4c,d), we show the

phase-averaged heat release rate field corresponding to two non-dimensional time-steps

of the acoustic pressure cycle, specifically at 𝜓 = 1/6 and 𝜓 = 2/3. In figure 5.8(c-d),
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Figure 5.9: Phase-averaged chemiluminescence images at six normalized time steps (𝜓)
in the acoustic cycle during the pure standing azimuthal instability. Phase
averaging is conducted across the time trace of acoustic pressure fluctuations
in the interval from 1.05 s to 1.15 s. The white line represents the nodal
line. This experimental investigation was conducted under the condition of
𝜙 = 1.20.

close to the pressure anti-node (90◦ from the nodal line indicated in white), the flame

response appears to be largely symmetric, which is associated with large axial and low

transverse velocity fluctuations. In comparison, close to the pressure nodes (near the

nodal line), a more asymmetric heat release distribution is observed, corresponding to

negligible axial but strong transverse velocity fluctuations. Further, we notice the effect

of the longitudinal mode on burners 14 and 15 in figure 5.8(c) and burners 1 and 7 in

figure 5.8(d). The two coupled modes (longitudinal and azimuthal) clearly demonstrate

the influence on the flame dynamics during the dual-instability mode.

Next, we discuss the flame dynamics during the pure standing azimuthal instability,

whose corresponding time series of 𝑝′ is earlier discussed in figure 5.6(a). In figure 5.9,
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the pressure node regions are near the center of the flame image, indicated with a white

line, while the pressure antinode regions are on the top and bottom. The non-dimensional

time-steps 𝜓 = 1/6 and 𝜓 = 2/3 correspond to the instants in the cycle where the

pressure oscillations are respectively maximum and minimum in the pressure signal

from PC3. During these two non-dimensional time steps (𝜓), we observe the largest

fluctuations in heat release rate appear close to the outer ring-like flame structures, which

spans almost half the annulus. These flame structures in the previous studies have been

understood as the formation of coherent vortical structures responding to the acoustic

pressure fluctuations (Dawson and Worth, 2014). Specifically, these structures in the

swirling flames are correlated to the roll-up of vortex structures on the shear layers,

which rotate locally around every burner when advected downstream. We further notice

these ring-like flame structures are clearly symmetric in terms of width and oscillation

magnitude where the pressure is maximum in the combustor. Nevertheless, these flame

structures are no longer continuous in the region of the combustor where the acoustic

pressure reaches its minimum level.

Finally, we discuss the flame dynamics during the beating azimuthal instability (refer

figure 5.7a), where the temporal analysis shows the spin ratio (𝑆𝑅) oscillating between

1 and -1. From top to bottom, figure 5.10(I-III) consists of the time series of acoustic

pressure (a) and the flame dynamics (b-g) over the acoustic cycle at six normalized

positions during the epochs of CCW spinning (𝑆𝑅 ≈ 1), standing (𝑆𝑅 ≈ 0), and CW

spinning (𝑆𝑅 ≈ −1) mode, respectively. In panel (I), four pressure signals show sinusoidal

oscillations of similar amplitudes and with phase shifts of 90◦ between them. The order

of the time traces indicates a CCW spinning direction. Figures 5.10(I)(b-g) illustrates the

phase-averaged images of the fluctuating component of the heat release rate for a CCW

spinning mode at six normalized time steps (𝜓). At 𝜓 = 0, we notice a high intensity

of heat release rate fluctuations in the top right-hand quadrant and low intensity of heat

release rate fluctuations at diametrically opposite. We observe that this flame structure

rotates around the annulus in the counterclockwise direction over the duration of the
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acoustic pressure cycle as shown in Figure 5.10(I)(c-g). These ring-like fluctuating flame

structures are clearly symmetric in terms of width and oscillation magnitude near the

pressure maxima. Moreover, larger oscillations in the heat release rate are present on

the sides of the flame aligned in the CCW azimuthal direction away from the pressure

maxima.

In panel (II), we show four acoustic pressure signals oscillating in phase or anti-phase, but

with different amplitudes indicating the standing azimuthal mode in the combustor (figure

5.10IIa). Figure 5.10(II)(b-g) illustrates the phase-averaged images of the fluctuating

component of the heat release rate for a standing azimuthal mode at six different 𝜓. In

all six phase-averaged images, the amplitude of the acoustic pressure obtained from

PC4 and PC8 is low, indicating the nodal line should be positioned near to the PC4 and

PC8. We notice a symmetric flame response close to the pressure anti-node located

near PC2 and PC6. The flame response near anti-nodal locations appears to be largely

symmetric, which is associated with large axial and low transverse velocity fluctuations.

In comparison, close to the pressure nodes locations, we notice a more asymmetric

heat release distribution, corresponding to negligible axial but strong transverse velocity

fluctuations.

In panel (III), again all the pressure signals show sinusoidal oscillations of similar

amplitudes and with phase shifts of 90◦ between them. However, the order of the time

traces now indicates a CW spinning direction (figure 5.10IIIa). Figure 5.10(III)(b-g)

illustrates the phase-averaged images of the fluctuating component of the heat release rate

for a CW spinning azimuthal mode at six different 𝜓. At 𝜓 = 0, we notice high intensity

of heat release rate fluctuations in the bottom right-hand quadrant and low intensity of

heat release rate fluctuations at the diametrically opposite position. We observe that this

flame structure rotates around the annulus in the clockwise direction over the duration

of the acoustic pressure cycle as shown in Figure 5.10(III)(c-g). These ring-like flame

structures are clearly symmetric in terms of width and oscillation magnitude near the
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Figure 5.10: Time traces of acoustic pressure oscillations and associated phase-averaged
chemiluminescence images at six normalized positions in the acoustic
pressure cycle (𝜓) during the epochs of (I) counterclockwise spinning mode
(SR = 1), (II) standing azimuthal mode (SR = 0), and (III) clockwise
spinning mode (SR = −1) in the beating azimuthal instability. This
experimental investigation was conducted with 𝜙 = 1.14.
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Figure 5.11: Distribution of the normalized phase difference of heat release rate
fluctuations from flames is examined as a function of burner number
during the (a) longitudinal and (b) azimuthal modes of the dual-mode
instability.

pressure maxima. During the CW spinning azimuthal mode, the larger oscillations in

the phase-averaged heat release rate fluctuations are observed on the sides of the flames

aligned in the CW azimuthal direction when away from the pressure maxima. Thus, the

global flame behavior offers the details of the overall thermoacoustic response of the

annular combustor across various azimuthal modes.

5.7 QUANTIFY FLAME-FLAME INTERACTIONS DURING DIFFERENT

DYNAMICAL STATES

To quantify the flame-flame interaction across various dynamical states observed during

the thermoacoustic transition, we present the distribution of phase differences in heat

release rate fluctuations (ΔΦ) with respect to the burner number. The calculation of

ΔΦ involves subtracting the phase of heat release rate fluctuations from each flame,

positioned from 2 to 16 by the phase of heat release rate fluctuations from the flame at

position 1. The arrangement of the burners is depicted in figure 2.1.

In Figure 5.11(a-b), we show the distribution of normalized ΔΦ as a function of burner

number during the dual-mode instability, associated with longitudinal and azimuthal
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Figure 5.12: Distribution of the normalized phase difference of heat release rate
fluctuations from all the flames in the annular combustor is examined
across burners during the pure standing azimuthal instability.

mode separately (marked as ‘(e)’ in Figure 5.2). During the occurrence of the longitudinal

mode, Figure 5.11(a) shows the distribution of normalized ΔΦ is near zero for almost all

the burners with a few burners near −𝜋 and 𝜋. This suggests that most of the flames are

oscillating in-phase during this mode with a few flames exhibiting slight out-of-phase

behavior. In contrast, during the azimuthal mode of the dual-mode instability, as shown

in Figure 5.11(b), flames positioned from 2 to 8 exhibit in-phase behavior, while flames

at positions 9 to 16 are out-of-phase. Notably, flames 1 to 8 are located on one side of

the nodal line, whereas the remaining eight flames are positioned on the opposite side, as

illustrated in Figure 5.8(c-d). The spread observed in the distribution of normalized ΔΦ

for certain burner numbers could be due to the coupling between the two modes.

In Figure 5.12, we show the distribution of normalized ΔΦ across the burner numbers

during the state of pure standing azimuthal instability, denoted as ‘(f)’ in Figure 5.2.

We observe the flames positioned from 2 to 8 exhibit the distribution in ΔΦ around

zero, indicating their in-phase behavior. Conversely, flames located at positions 9 to 16

predominantly show the distribution in ΔΦ near 𝜋 and −𝜋, representing their out-of-phase
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characteristics. As before, flames 1 to 8 are situated on one side of the nodal line, while

the remaining eight flames are positioned on the opposite side, as illustrated in Figure

5.9. Remarkably, the pattern in the distribution of relative phase during the pure standing

azimuthal instability appears more distinct compared to the pattern observed during the

azimuthal mode of the dual-mode instability.

Finally, in Figure 5.13(a-c), we show the distribution of normalized ΔΦ across the

burners during the beating azimuthal instability, marked as ‘(g)’ in Figure 5.2a. In

particular, Figure 5.13(a) corresponds to the epochs of the CCW spinning wave, (b)

corresponds to the epochs of the standing wave, and (c) corresponds to the epochs of the

CW spinning wave. To maintain continuity in the observed pattern, we have rearranged

the burner sequence, positioning burner 11 at the start and burner 10 at the end. In

Figure 5.13(a), we notice the phase of heat release rate fluctuations from the flame at

position 11 is entirely out-of-phase with respect to the fluctuations of the flame at position

1. The phase difference between flames at positions 12 to 16, relative to the flame at

position 1, decreases and eventually reaches zero. As the burner number increases from

2 onwards, we observe the phase difference (ΔΦ) starts to increase, reaching a maximum

near burner 10. The observed pattern in the distribution of ΔΦ indicates that the wave is

propagating from burner number 11 to 10 through burner 1, implying a spinning wave in

the counterclockwise direction.

In Figure 5.13(b), the flames positioned from 11 to 2 exhibit the distribution in ΔΦ

around zero, while flames located at positions 3 to 10 predominantly show the distribution

in ΔΦ near 𝜋 and −𝜋. This flame behavior exhibits the standing wave pattern in the

combustor. In Figure 5.13(c), we notice that the relative phase between the heat release

rate fluctuations obtained from the flame at position 11 with the flame at position 1, is

out-of-phase and has a value of 𝜋. As we approach the flame positioned closer to flame

2, there is a gradual reduction in the ΔΦ value. The value of ΔΦ is approximately zero

when we reach the flame at position 2. Moreover, as we move from flame 2 towards flame
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Figure 5.13: Distribution of the normalized phase difference of heat release rate
fluctuations from all the flames is examined across burners during the
epochs of (a) CCW spinning wave, (b) standing wave, and (c) CW spinning
wave.

10, we observe that the value of ΔΦ reaches approximately −𝜋. This smooth change in

the distribution of ΔΦ from burner 11 to 10 through burner 1, indicates the presence of a

clockwise spinning wave within the combustor.

5.8 INTERIM SUMMARY

In this chapter, we investigated the dynamics of the annular combustor to understand

the transition from stable operation to azimuthal thermoacoustic instability. As we

varied the equivalence ratio, we discovered a new route to azimuthal thermoacoustic

instability through intermittency in the annular combustor. Employing a quaternion-based

formalism to characterize the thermoacoustic modes within the combustor provided

a concrete understanding of the system in terms of slow flow variables. Our finding
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highlighted that the transition to azimuthal instability occurs through a frequency shift

– from a low frequency corresponding to the longitudinal mode to a high frequency

corresponding to the azimuthal mode.

Subsequently, we contrast the global flame behavior during the different dynamical

states. During dual-mode instability, we illustrated how the coexistence of longitudinal

and azimuthal modes influences the flame response. When it comes to pure standing

azimuthal instability, we observe flames exhibiting a standing wave pattern. We show the

maximum heat release rate fluctuations occur at pressure anti-nodes and the minimum

fluctuations take place at pressure nodes. Moreover, during the beating azimuthal

instability, we note distinct flame behaviors during epochs of counterclockwise (CCW)

spinning, standing, and clockwise (CW) spinning modes.

Finally, we quantified the flame-flame interaction during various dynamical states by

closely examining the distribution of relative phases among all burners with respect

to one burner. During the azimuthal mode of the dual-mode instability, we observed

that the phase differences among the eight consecutive flames, relative to the flame

at position 1, remained in-phase. Conversely, the remaining eight flames exhibited

out-of-phase behavior in relation to the flame at position 1. These observations pointed

to the presence of a standing wave pattern within the combustor during this mode. A

similar standing wave pattern was noted during the state of pure standing azimuthal

instability. Intriguingly, during the beating azimuthal instability, we observed shifts in

the pattern of the distribution of phase difference across burners during the epochs of

counterclockwise (CCW) spinning, standing, and clockwise (CW) spinning modes. This

quantification highlighted distinct patterns of relative phase during different azimuthal

modes, emphasizing the significant role of flame-flame interaction in the observed

behavior of the annular combustor.
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CHAPTER 6

SUPPRESSING THERMOACOUSTIC INSTABILITY
BY ACTUATING SWIRLER

From the investigation of the complex interaction between the unsteady heat release rate

from the flame(s) and the acoustic pressure fluctuations in the previous chapters, it is

evident that the coupling between these processes plays a vital role in the occurrence as

well as controlling thermoacoustic instabilities in combustors. In this chapter, we discuss

the experimental observations and a synchronization model for the suppression of

thermoacoustic instability achieved by rotating the otherwise static swirler in a turbulent

combustor. The experimental setup used to investigate the transition to the suppression

state is discussed in Section 2.3 and the dataset is provided by Prof. Swetaprovo

Chaudhuri’s group. To understand the physical mechanism behind suppressing

thermoacoustic instability using an actuating swirler, we extend the mean-field model of

thermoacoustic transitions introduced in Chapter 4. We incorporate the effect of the

active swirler in the model, to account for the time scale of the swirler rotation. The

primary objective of the current work is to provide a possible way of suppressing

notorious thermoacoustic instability and a model to explain the underlying principles

behind suppression in self-excited thermoacoustic instability.

6.1 CHARACTERIZING THE ROTATING SWIRLER COMBUSTOR

In figure 6.1(a), we illustrate the variation of acoustic pressure amplitude of the first

dominant mode as a function of the swirler rotation rate obtained from the rotating

swirler turbulent combustor (see figure 2.3). The error bars in the plot show the variation

The results presented in this chapter are published in Singh, S., Kumar D., A., Dhadphale, J. M., Roy,
A., Sujith, R. I., & Chaudhuri, S. (2023), Mean-field model of synchronization for open-loop, swirl
controlled thermoacoustic system, Chaos, 33(4).



Figure 6.1: (a) Variation of the acoustic pressure amplitude of the first dominant mode
as a function of the swirler rotation rate, depicting the suppression of
thermoacoustic instability. (b) The frequency corresponding to the acoustic
mode as a function of the swirler rotation rate. The error bar in (a) is
associated with the variation of the amplitudes across three experimental
runs.

between the amplitudes across three experimental runs. Figure 6.1(b) shows the change in

the dominant frequency of the acoustic pressure during a transition from thermoacoustic

instability to the state of suppression. The combustor remains at thermoacoustic instability

for 0 rpm with a first mode amplitude of 153 dB and frequency of 76.9 Hz. At 1800

rpm, the amplitude reduces to about 130 dB and frequency of 94.2 Hz as intermittent

oscillations emerge in the combustor. Finally, the system transitions to the state of

suppression at 2100 rpm, where broadband sound replaces the dominant acoustic mode.

Consequently, we observe a suppression of approximately 30 dB on varying the swirler

rotation rate from 0 to 2100 rpm.
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6.2 FLAME DYNAMICS DURING THE TRANSITION TO SUPPRESSION

STATE

To understand the flame dynamics during the transition to the state of suppression,

we illustrate the flame images obtained from the experiments. Figure 6.2 shows the

phase-averaged unfiltered chemiluminescence images at pressure maxima (left column)

and minima (right column) during the three dynamical states. The maxima and minima

locations correspond to 90◦ and 270◦ phase, which are found from the instantaneous

phase values of 𝑝′ data using the Hilbert transform (Pikovsky et al., 2002). During

thermoacoustic instability, at pressure maxima (figure 6.2a), the mean-subtracted flame

image depicts a well-defined circular shape with very high intensity, which reaches a

negative value at pressure minima (figure 6.2b). Thus, the flame fluctuations are strongly

correlated with the pressure fluctuations. Moreover, the flame structure shows flame

stabilization along the central shear layer separating the inner and outer recirculation

zones (Mahesh et al., 2018).

Next, we consider the flame dynamics during the periodic part of intermittency (figures

6.2c-d). The phase-averaged flame image during maxima and minima still depict

high and low-intensity values, respectively, albeit with lower intensity as compared

to thermoacoustic instability. While the flame structure is similar to that observed

during thermoacoustic instability, the distribution is diffused during both maxima and

minima. This implies that some parts of the flame may not be attaining pressure maxima

and minima at the instant of pressure maxima and pressure minima. Thus, the flame

fluctuations are weakly correlated with the pressure fluctuations. Finally, figures 6.2 (e-f)

correspond to the state of suppression. The phase-averaged chemiluminescence images

corresponding to the pressure peaks (see figure 6.2e) and troughs (see figure 6.2f) are

similar to each other. We observe incoherent and non-uniform flame structures with

low intensity in comparison to the periodic part of intermittency and thermoacoustic

instability. Moreover, the distributions of intensity between pressure maxima and minima

are virtually indistinguishable, implying no correlation between flame fluctuations and
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Figure 6.2: Mean-subtracted phase-averaged flame images at pressure maxima (left) and
minima (right) during the dynamical states: (a-b) thermoacoustic instability,
(c-d) periodic epochs of intermittency, and (e-f) suppression state. The flame
image depicting a well-defined circular shape with very high intensity during
thermoacoustic instability transitions to non-uniform flame structures with
low intensity during the state of suppression.

acoustic fluctuations.

We are aware that any fluctuation in the flame results in an unsteady heat release rate

which, in turn, causes acoustic disturbances in the combustion chamber and affects the

flame when reflected from an appropriate acoustic boundary. The strength of the periodic
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fluctuations in pressure and heat release rate starts increasing as the feedback between

the acoustic field and heat release rate fluctuations increases. In figure 6.2, we notice the

difference in the flame intensities when the swirler rotation rate is systematically varied.

As a result, by varying the swirler rotation rate, we are disrupting the strength of a feedback

loop to bring the sustained high-intensity oscillations in the flame at thermoacoustic

instability to the low-intensity flame fluctuations at the state of suppression.

6.3 SPATIOTEMPORAL BEHAVIOR DURING THE TRANSITION TO

SUPPRESSION STATE

Next, we investigate the spatiotemporal dynamics during the transition from

thermoacoustic instability to the state of suppression. To that end, we analyze the

characteristics of synchronization in a spatially extended thermoacoustic system by

investigating the coupled behavior of the acoustic pressure 𝑝′(𝑡) and the local heat

release rate fluctuations ¤𝑞′(𝑥, 𝑦, 𝑡). The local heat release rate fluctuations are extracted

from the intensity variation observed at each pixel of the time-resolved

chemiluminescence images. The flame images are coarse-grained over 6 × 6 pixels to

minimize the effect of noisy fluctuations in them. We install the pressure transducer near

to the location of the flame imaging, to avoid acoustic phase delay effects in our

experimental measurements. Figure 6.3 depicts the spatial distribution of instantaneous

phase (𝜓𝑙) during a transition from thermoacoustic instability to the state of suppression

through the state of intermittency when the swirler rotation rate (Ω̃𝑟) is increased. The

instantaneous phasor field (𝜓𝑙) is obtained by subtracting the phase of the acoustic

pressure (Φ) from the phase of the local heat release rate fluctuations (𝜃𝑙). The

instantaneous phase of the local heat release rate fluctuations is obtained using Hilbert

transformation.

In figure 6.3(a), when the swirler is static (Ω̃𝑟 = 0 rpm), the acoustic pressure and heat

release rate oscillate in phase, leading to a coherent field of the phasors. In the probability
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Figure 6.3: Disruption of order on varying the swirler rotation rate (Ω̃𝑟) from 0 to
2100 rpm in the turbulent combustor. A typical snapshot of the spatially
distributed phasors (𝜓𝑙) is obtained by taking the phase difference between
the local heat release rate (𝜃𝑙) and acoustic oscillations (Φ) during the state
of (a) thermoacoustic instability, (b) intermittency, and (c) suppression. To
delineate regions of acoustic power sources and sinks, phasors have been
colored blue if |𝜓𝑙 | < 𝜋/2 and red otherwise.

density function of 𝜓𝑙 , we notice that the phase values are mostly 𝜓𝑙 < |𝜋/2| radians,

leading to enhanced acoustic driving during the occurrence of thermoacoustic instability

in the combustor and hence satisfying the Rayleigh criterion. We notice that the spatial

synchrony in the phase plot starts reducing with an increase in Ω̃𝑟 . For instance, during

the state of intermittency at Ω̃𝑟 = 1800 rpm, the phase-field shows both coherent and

incoherent fields of phasors shown in figure 6.3(b). The probability density function

of 𝜓𝑙 associated with intermittency is broadening in comparison with the probability

density function of 𝜓𝑙 obtained during thermoacoustic instability. In this state, there is

the coexistence of clusters of both spatial synchrony and asynchrony in the phase field,

referred to as a chimera state (Sujith and Unni, 2020). Further, increasing Ω̃𝑟 to 2100

rpm, we observe that the phase field is randomly oriented and incoherent (see figure

6.3c). In this state, the heat release rate fluctuations are dominated only by the turbulent

flow, which results in a de-synchronized field of the phasors and a broadband distribution

of P(𝜓𝑙). This asynchronous behavior of the local heat release rate fluctuations during

the state of suppression prevents the pressure oscillations from increasing in amplitude,
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which leads to low-amplitude aperiodic fluctuations in the temporal dynamics of both

acoustic pressure (𝑝′) and global heat release rate fluctuations ( ¤𝑞′).

6.4 THEORETICAL MODEL FOR SUPPRESSION OF THERMOACOUSTIC

INSTABILITY

To understand the method of suppressing thermoacoustic instability, we provide a

thermoacoustic model that not only captures temporal dynamics but also reproduces the

features of the spatiotemporal synchronization during the transition to the suppression

state.

We use the coupled non-dimensionalized flame-acoustic model discussed in Chapter 4 in

Eq. (4.31) and reproduced here as:

𝑑𝜂 𝑗 (𝑡)
𝑑𝑡

= ¤̂𝜂 𝑗 (𝑡),

𝑑 ¤̂𝜂 𝑗 (𝑡)
𝑑𝑡

=
𝜁

𝑁

𝑁∑︁
𝑖=1

sin [𝑡 + 𝜃𝑙 (𝑡)] − 𝜁 ¤̂𝜂(𝑡) − 𝜂(𝑡), (6.1)

𝑑𝜃𝑙 (𝑡)
𝑑𝑡

= 𝜔𝑙 + 𝐾
[ ¤̂𝜂(𝑡) cos (𝑡 + 𝜃𝑙 (𝑡)) + 𝜂(𝑡) sin (𝑡 + 𝜃𝑙 (𝑡))

]
,

where 𝜂 and ¤̂𝜂 are the acoustic variables and normalized as 𝜂(𝑡) = 𝜂(𝑡)/𝑅LCO. Here,

𝑅LCO is the maximum amplitude of acoustic pressure during thermoacoustic instability,

and the expression is derived in Eq. 4.29. And, 𝜃𝑙 is the phase of the 𝑙th heat release rate

oscillator, 𝑁 is the number of phase oscillators, and 𝜁 is the non-dimensionalized damping

coefficient. Additionally, 𝜔𝑙 is the non-dimensionalized and normalized frequency of the

𝑙th phase oscillator.

In addition to the acoustic feedback, the swirler plays a crucial role in determining the

flame response (Candel et al., 2014). The swirler imparts a tangential velocity to the

incoming flow through its geometry and actuation. The effect of swirl due to the geometry

is quantified through the angular frequency of the geometric swirl Ω̃𝑠, while the actuation

is quantified through the frequency of shaft rotation Ω̃𝑟 . These two effects together make
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Figure 6.4: Oscillator frequency distribution 𝑔(𝜔) as a function of 𝜔 obtained from the
heat release rate spectrum during a state of suppression. 𝜔 is the normalized
frequency centered around the acoustic frequency.

up the characteristic frequency of the swirler: Ω̃𝑐 = Ω̃𝑠 + Ω̃𝑟 . Thus, accounting for the

competition in the acoustic (Ω̃0) and swirler (Ω̃𝑐) frequencies, the coupling strength (�̃�)

can be expressed as:

�̃� = 𝐶
[
Ω̃0 − (Ω̃𝑠 + Ω̃𝑟)

]
/Ω̃0, (6.2)

where 𝐶 is a model constant. The angular velocity (Ω̃𝑠) of a swirling flow is defined as

Ω̃𝑠 = 𝑉 sin 𝛿𝛼/𝑟 assuming solid body rotation of the fluid element (Dutta et al., 2019).

For incoming flow velocity 𝑉 = 3 m/s, swirler radius 𝑟 = 11 mm, and swirler blade angle

𝛿𝛼 = 30◦, the angular velocity imparted by the static swirler is Ω̃𝑠 = 137 rad/s. We now

normalized Ω̃0, Ω̃𝑟 , and Ω̃𝑠 by Ω̃0.

6.5 MODEL PREDICTION OF TRANSITION TO SUPPRESSION STATE

We use the fourth-order Runge-Kutta method to solve Eq. (6.1). The damping coefficient

(𝛼) is estimated using the gradient descent method algorithm for parameter optimization

during the state of suppression and is subsequently fixed for determining other states

during a transition. We fix 𝑁 ≈ 3×103 phase oscillators for which frequency distribution
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Figure 6.5: Comparison of the bifurcation diagrams obtained from the model (–) and
experiments (□). The plot depicts the variation of the normalized 𝑝′rms as a
function of the non-dimensional swirler rotation rate (Ω𝑟).

(see figure 6.4) effectively resolves the heat release rate spectrum during the state of

suppression and where a change in 𝑁 has no effect on the simulation results. Using these

inputs in the model, decreasing the coupling strength (𝐾) results in a transition to the

state of suppression. We begin by confirming that a transition produced by the model

is qualitatively similar to a transition obtained from the experiments. The relationship

between the coupling strength (𝐾) and the swirler rotation rate (Ω𝑟) used in experiments

is then determined by applying parameter optimization to each state observed in the

experiments, which are tabulated in Appendix I.2.

Let us now compare the results from this model with the experimental observations.

6.5.1 Bifurcation diagram during the transition to suppression

Figure 6.5 illustrates the variation of the amplitude of the acoustic pressure (𝑝′rms) as

a function of the non-dimensional swirler rotation rate (Ω𝑟). In this figure, we show

the comparison between the bifurcation diagram obtained from the model (–) with that
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obtained from experiments (□). To compare the transition observed in the experiments

with that obtained by the model (shown in Eq.(6.1)), we normalize each state with the

amplitude of limit cycle oscillations. Initially, when the swirler is static (Ω𝑟 = 0), the

combustor exhibits thermoacoustic instability with limit cycle amplitude 𝑝′rms = 0.62,

at a frequency of 𝑓0 = 76.9 Hz as shown in figure 6.6(a). As Ω𝑟 increases, we notice a

continuous decrease in 𝑝′rms. At the highest Ω𝑟 value (0.455), we observe suppression,

as the acoustic pressure fluctuations become low amplitude aperiodic with a broadband

amplitude spectrum and low 𝑝′rms value (see figure 6.6c).

A transition to the state of suppression occurs through the state of intermittency. This

behavior can be observed at Ω𝑟 = 0.39, where bursts of the periodic pressure oscillations

appear randomly amidst low amplitude aperiodic pressure fluctuations (see figure 6.6b).

In figure 6.5, we notice that the model predicts a transition from thermoacoustic instability

to the state of suppression as observed in the experiments. The monotonic decrease in

𝑝′rms with increasing Ω𝑟 shows that the continuous, sigmoid-type transition observed in

the experiments is well captured by the model.

6.5.2 Characterizing various dynamical states

Next, we contrast the dynamics obtained from the model with the dynamical states

observed during experiments at three representative states. These states correspond to

thermoacoustic instability, intermittency, and suppression state at three swirler rotation

rates marked (a-c) in figure 6.5. We plot the time series, probability density function,

and amplitude spectrum of 𝑝′ in figure 6.6 and ¤𝑞′ in figure 6.7.

Figures 6.6(a) and 6.7(a) correspond to the state of thermoacoustic instability with Ω𝑟

= 0. We observe large-amplitude periodic oscillations in 𝑝′ and ¤𝑞′, and the probability

density function of 𝑝′ and ¤𝑞′ is characterized by a well-defined bimodal distribution. The

amplitude spectrum corresponding to the same state indicates a sharp peak at 𝑓0 = 76.9
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Figure 6.6: Comparison of the time trace, probability density function and amplitude
spectrum of 𝑝′ obtained from experiments (lighter shade) and that obtained
from our model (darker shade) during the states of (a) thermoacoustic
instability, (b) intermittency, and (c) suppression. (a-c) corresponds to the
markers shown in figure 6.5. The envelope of the time series from the model
is shown in the first column for clarity.

Hz. Figures 6.6(b) and 6.7(b) correspond toΩ𝑟 = 0.39, and depict intermittent oscillations

in both 𝑝′ and ¤𝑞′. These intermittent oscillations lead to a change from a bimodal to an

unimodal distribution in the probability density function of 𝑝′ and ¤𝑞′. We note that the

model accurately depicts the location of epochs of periodic and aperiodic oscillations

in both the time series (𝑝′ and ¤𝑞′) while also depicting almost identical probability

distribution function of both the time series. We also observe a good agreement between

the amplitude spectrums of 𝑝′ and ¤𝑞′ obtained from the experiments and the model, each

showing a dominant peak at 94.2 Hz during the state of intermittency. Finally, during

the state of suppression at Ω𝑟 = 0.455, we observe low-amplitude aperiodic pressure

fluctuations with a well-defined unimodal probability density function (figure 6.6c and
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Figure 6.7: Comparison of the time trace, probability density function and amplitude
spectrum of ¤𝑞′ obtained from experiments (lighter shade) and that obtained
from our model (darker shade) during the states of (a) thermoacoustic
instability, (b) intermittency, and (c) suppression. (a-c) corresponds to the
markers shown in figure 6.5. Only the envelope of the time series from the
model is shown.

6.7c). The amplitude spectrum of 𝑝′ is broadband with a peak at 91 Hz. Again, the

match between the experiments and the model is quite evident.

Quite notably, the model yields a good match in the characteristics of the time series

of the pressure and heat release rate fluctuations during various dynamical states and

only requires the heat release rate spectrum during the state of suppression as an input

from the experiments for obtaining 𝑔(𝜔). Additionally, the amplitude spectrums and

probability density functions of 𝑝′ and ¤𝑞′ for the various states of combustor operation

are well approximated. Our findings demonstrate that the model accurately represents

the combustor dynamics, supporting our modeling approach.
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Figure 6.8: Mapping between the swirler rotation rate (Ω𝑟) and coupling strength (𝐾)
during a transition to the state of suppression. The relation between Ω𝑟 and
𝐾 is: 𝐾 = 4.1(0.71 − Ω𝑟) with the goodness-of-fit as 0.99. The error bars
represent the standard deviation in estimating 𝐾 by sliding the window of the
time series used during optimization (Appendix E.2).

6.5.3 Relation between the coupling strength and swirler rotation rate

In figure 6.8, we show the mapping between the swirler rotation rate (Ω𝑟) and the coupling

strength (𝐾), obtained by the gradient descent method using Eq. (4.36). The error bars

in the figure are determined from a distribution of 𝐾 for a window width of 𝑡win = 0.7 s

using Eq. (4.36) and then sliding the window across the time series of Yexp and Ymod.

Please refer to Appendix E.2 for a description of the window width selection process.

The correspondence between the control parameters in the model and experiments will

allow us to explain the experimental observations in terms of the physics embodied in

the model. The estimated values strongly imply a linear relationship between the control

parameter in our experiments (Ω𝑟) and the model (𝐾). The coupling strength linearly

decreases according to the relation, 𝐾 = 4.1(0.71 − Ω𝑟), thus providing a posteriori

justification for assuming a linear relationship between 𝐾 and Ω𝑟 in Eq. (6.2). The linear

relation between the Ω𝑟 and 𝐾 implies that when Ω𝑟 = 0, then coupling strength among
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the phase oscillators is maximum, encouraging phase synchronization and leading to

limit cycle oscillations. Increasing the value of Ω𝑟 leads to a decrease in the coupling

strength (𝐾) among the phase oscillators, promoting phase de-synchronization and hence,

the state of suppression. Thus, the model is easily interpretable in terms of experimentally

relevant control parameters.

6.6 SYNCHRONIZATION TRANSITION TO SUPPRESSION STATE

We quantify the characteristics of synchronization through a measure called the Kuramoto

order parameter described in Chapter 4 in Eq. (4.38) and reproduced here as:

𝑟 =
1
𝑁

〈���� 𝑁∑︁
𝑙=1

exp (𝑖𝜃𝑙 (𝑡))
����〉
𝑡

, (6.3)

where 𝜃𝑙 is the phase of the 𝑙th phase oscillator and ⟨·⟩𝑡 implies time average. The order

parameter is defined as the degree of synchrony among the oscillators and it varies

between [0, 1]. A value of 𝑟 close to zero indicates de-synchronized states, whereas a

value of 𝑟 close to one indicates synchronized states.

Figure 6.9 depicts the variation of the order parameter as a function of the non-dimensional

swirler rotation rate (Ω𝑟). The time-averaged order parameter (𝑟) from the model is

determined using Eq. (6.3), while 𝑟 from the experiments is determined according to

Eq. (H.1) in Appendix H. The gradual decrease in the order parameter (𝑟) indicates a

transition from an ordered state where the heat release rate oscillators are in synchrony

to a disordered state where the oscillators are in asynchrony. Note, that the minor

deviation in the order parameter (𝑟) from the model and experiment is due to the effect

of background turbulent flow on the flame during the transition to the suppression state.

For instance, figures 6.6 and 6.7 show the heat release rate spectrums are noisier than

the acoustic pressure spectrums, indicating the phase jitter (Shanbhogue et al., 2009b;

Shin and Lieuwen, 2013) due to the turbulence is always stronger in the heat release

rate signal than in the acoustic pressure signal. Furthermore, in figure 6.3(a), during
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Figure 6.9: The synchronization bifurcation diagram depicts the variation of time-
averaged order parameter (𝑟) as a function of non-dimensional swirler
rotation rate (Ω𝑟)

the state of thermoacoustic instability, the majority of the phasors are aligned in one

direction except for a few randomly distributed pockets in the center. A mean-field model

of synchronization, on the other hand, does not account for the turbulence, resulting in

a minor disagreement in the value of 𝑟. These effects can potentially be incorporated

through stochastic modeling, which will be taken up in the future.

To compare the synchronization observed in the spatial field of the experiments (figure 6.3)

and from the model shown in Eq. (6.1), we plot the characteristics of the oscillators in the

¤𝜃𝑙 −𝜓𝑙 phase space. Here, ¤𝜃𝑙 is the instantaneous frequency and 𝜓𝑙 is the phase difference

between 𝜃𝑙 and Φ. Figure 6.10(a-c) shows the instantaneous oscillator distribution on

the ¤𝜃𝑙 − 𝜓𝑙 plane during different dynamical states (first column). These plots also

include the distribution of instantaneous frequency P( ¤𝜃𝑙) in the middle column and the

distribution of the instantaneous relative phase P(𝜓𝑙) along with the order parameter (𝑟)

in the last column. The distribution of 𝜓𝑙 is shown in polar coordinates (last column),
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Figure 6.10: The typical instantaneous oscillator distribution in the ¤𝜃𝑙 − 𝜓𝑙 plane, as well
as the distribution of P( ¤𝜃𝑙) and P(𝜓𝑙) during the state of (a) thermoacoustic
instability, (b) intermittency, and (c) suppression for experimental (lighter
marker) and modeling (darker marker) dataset. The Kuramoto order
parameter (𝑟) from the experiments and model (–) is shown in the last
column.

and the frame of reference of the oscillators is co-rotating with the frequency of the

acoustic pressure (Ω0). The oscillators obtained from the spatiotemporal measurements

are shown in lighter shades of marker, while those obtained from the model are shown in
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darker shades of marker. Since the heat release rate fluctuations from the experiments

are spatially distributed, comparing the characteristics of oscillators in the ¤𝜃𝑙 − 𝜓𝑙 plane

allows us to evaluate how well the low-dimensional mean-field synchronization model

captures the characteristics of the spatiotemporal synchronization.

In figure 6.10(a), when the swirler is static (Ω𝑟 = 0) corresponding to thermoacoustic

instability (see figure 6.6a), we observe that the oscillators are entrained at the acoustic

frequency and are phase-locked with the distribution of 𝜓𝑙 mostly between −𝜋/2 and

𝜋/2 radians (first column). In the last two columns, we notice a sharp peak, narrowband

distribution of frequency P( ¤𝜃𝑙) and relative phase P(𝜓𝑙). The value of order parameter

𝑟 is 0.8, implying global phase synchronization among the phase oscillators. In figure

6.10(b), when the swirler rotation rate is Ω𝑟 = 0.39 corresponding to the state of

intermittency (see figure 6.6b), we notice the larger regions of phase-synchronized

clusters where 𝜓𝑙 < |𝜋/2| at some spatial locations and 𝜓𝑙 > |𝜋/2| at other locations, and

comparatively less narrowband distribution of P( ¤𝜃𝑙) and P(𝜓𝑙). The order parameter is

𝑟 = 0.13 during the state of intermittency. Finally, in figure 6.10(c), when the swirler

rotation rate is Ω𝑟 = 0.455 corresponding to the state of suppression (see figure 6.6c),

the oscillators are distributed in 𝜓𝑙 > |𝜋/2|, implying the phase de-synchronized among

the oscillators. We also observe a broadband distribution in the distribution of P( ¤𝜃𝑙)

and P(𝜓𝑙) and a value of 𝑟 close to zero. Thus, the gradual disappearance of the order

among the oscillators, which is associated with the continuous shrinking of the size of

the cluster of oscillators, leads to a continuous de-synchronized transition.

6.7 CHARACTERIZATION OF THE NONLINEAR TIME SERIES

In order to further demonstrate the ability of the model, we compare the dynamical

features of the acoustic pressure fluctuations obtained from the experiments and the

model.

We compute the permutation entropy (𝐻𝑝), which is an invariant measure of the
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complexity of dynamics (Bandt and Pompe, 2002). Permutation entropy is often

used to quantify the complexity of combustion (Gotoda et al., 2012) and flame front

dynamics (Gotoda et al., 2010). Following Kobayashi et al. (2017), we first consider

all 𝐷! possible permutations of successive data points in a time series consisting of

p(𝑡) = {𝑝′(𝑡), 𝑝′(𝑡 + 𝜏), 𝑝′(𝑡 + 2𝜏), ..., 𝑝′(𝑡 + (𝐷 − 1)𝜏)}, where 𝑝′(𝑡) are the pressure

fluctuations which is partitioned into subsets of length 𝐷 (embedding dimension), with

its elements being separated by a delay 𝜏. After obtaining the probability distribution

of each permutation pattern 𝑝(𝜋𝑙) where 𝑖 = 1, 2, . . . , 𝐷!, we estimate the permutation

entropy 𝐻𝑝 normalized by the maximum permutation entropy log2 𝐷! as:

𝐻𝑝 = −
∑𝐷!
𝑖=1 𝑝(𝜋𝑙) log2 𝑝(𝜋𝑙)

log2 𝐷!
, (6.4)

where the lower bound of 𝐻𝑝 = 0 corresponds to a deterministic process, while the upper

bound 𝐻𝑝 = 1 corresponds to an entirely random process.

Figure 6.11(a) shows the variation of permutation entropy (𝐻𝑝) as a function of the swirler

rotation rate (Ω𝑟) obtained from the model (–) and experiments (□). We under-sampled

the data to 2 kHz and took into account the embedding dimension 𝐷 = 3 with its elements

separated by a delay 𝜏 = 1 s. The under-sampling is used to reduce the computational

cost involved in obtaining 𝐻𝑝. During the state of thermoacoustic instability, we obtain

the value of 𝐻𝑝 from the experiments and model around 0.3. The value of 𝐻𝑝 begins to

rise during the intermittency state and reaches 0.65 during the suppression state. We can

see that 𝐻𝑝 from the model closely approximates 𝐻𝑝 from the experiments.

The recurrence rate (𝑅𝑅) is another nonlinear measure calculated following Nair et al.

(2014) from the acoustic pressure time series. Many other experimental studies (Kabiraj

and Sujith, 2012; Gotoda et al., 2014; Baba et al., 2023) have also elucidated the dynamic

characteristics of acoustic pressure fluctuations during the state of stable operation and

thermoacoustic instability through recurrence rate. The recurrence rate (𝑅𝑅) is one of

the statistical measures constructed through a recurrence quantification analysis and
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Figure 6.11: Comparison of the (a) permutation entropy (𝐻𝑝) and (b) recurrence rate
(𝑅𝑅) of dynamics as a function of swirler rotation rate (Ω𝑟) obtained from
the model (–) and experiments (□) during the transition to suppression state
in the rotating swirler combustor.

is a useful quantifier for measuring randomness in the signal (Marwan et al., 2007).

Recurrences in the phase space can be expressed as a matrix 𝑅𝑖 𝑗 = Θ(𝜖 − ||𝑋𝑖 − 𝑋 𝑗 | |),

where 𝑖, 𝑗 = 1, 2, ..., 𝑛 and 𝑋𝑖, 𝑋 𝑗 represent the state vectors of the system at time 𝑡𝑖 and

𝑡 𝑗 , respectively. Here, Θ is the Heaviside step function and 𝜖 is the size of the small

neighborhood area considered around each point in the phase space. When the trajectory

returns to the area within the threshold, 𝑅𝑖 𝑗 is marked as 1 and 0 in the recurrence matrix

to represent the white and black points in the recurrence plot, respectively. The density

of black points in a recurrence plot represents the recurrence rate (𝑅𝑅) in the dynamics
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of the system and can be obtained as:

𝑅𝑅 =
1

(𝑁0 − 𝑇)2

𝑁0−𝑇∑︁
𝑖, 𝑗=1

𝑅𝑖 𝑗 , (6.5)

where 𝑇 = 𝑑0𝜏𝑜𝑝𝑡𝐹𝑠 having value for 𝑑0 = 10, 𝜏𝑜𝑝𝑡 = 0.5 ms, 𝐹𝑠 = 2 kHz. The threshold

for the recurrence plot was chosen to be 𝜖 = 0.2 and signal was sampled at 𝐹𝑠 of 2 kHz

for 5 s to get 𝑁0 = 10000. We obtained 𝜏𝑜𝑝𝑡 (optimum time delay) and 𝑑0 (minimum

embedding dimension) using Average mutual information (AMI) and Averaged false

nearest neighbor (AFNN) in Hernandez-Rivera et al. (2019).

Figure 6.11(b) demonstrates the variation of recurrence rate (𝑅𝑅) of the dynamical state

as a function of Ω𝑟 . On approaching thermoacoustic instability, the density of points in

the recurrence plot decreases. This is expected because the number of black points in the

recurrence plot would come down as the thermoacoustic instability is reached because

the pairwise distances now exceed the threshold more often. We can notice the value of

𝑅𝑅 is around 0 during the state of thermoacoustic instability, 0.7 during intermittency,

and 1 during the suppression state both from the model and experiments. This measure

obtained from the experiments is also very well approximated by the model.

The close match of the measures (𝐻𝑝 and 𝑅𝑅) for the experiments and the model indicates

that the nonlinear features of experiments are very well captured by the synchronization

model presented here.

Although the model does well in capturing the bifurcation characteristics and aspects of

synchronization, it does not capture the higher modes of the spectrum (see figures 6.6

and 6.7). This is by construction of the model as we did not consider higher modes in Eq.

(6.1), to keep the analysis simple. Additionally, the prediction of dynamical states on

further increase in swirler rotation rate beyond the state of suppression from the model is

left for future studies.
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6.8 INTERIM SUMMARY

In this paper, we report experiments and modeling of open-loop control of thermoacoustic

instability in a turbulent combustion system using an actuated swirler. A systematic

increase in the rotation rate of the swirler leads to the suppression of limit cycle oscillations

as the dynamics of the combustor transitions to low-amplitude aperiodic oscillations

through an intermediate state of intermittency. We extend a mean-field synchronization

model for the flame response comprising an ensemble of non-identical phase oscillators

evolving collectively under the effect of acoustic pressure discussed in Chapter 4. The

effect of the active swirler is incorporated naturally into the model in terms of the relative

time scales of swirler rotation and acoustic frequency. We further implement a parameter

identification technique to obtain exact correspondence between the model parameter

values and experimental observations. We find that the mapping between the swirler

rotation rate in the experiments and the coupling strength in the model manifests as a

linear relationship between them.

Through a comparison of the bifurcation diagram, time series, probability density

functions and amplitude spectrums, we show that the model replicates the experimentally

observed 𝑝′ and ¤𝑞′ fluctuations very well. Further, we show that the model captures

the characteristics of spatiotemporal synchronization underlying a transition to the

state of suppression while depicting states such as synchronization, chimera, and de-

synchronization. In particular, we find that the phase oscillators are synchronized during

thermoacoustic instability, partially synchronized during intermittency, and undergo

progressive de-synchronization during the suppression. Therefore, we notice a sigmoid-

type transition to the suppression state happens through the underlying synchronization.

As a consequence, using the mean-field thermoacoustic model, we establish that the active

swirler suppresses thermoacoustic oscillations through a de-synchronization transition.
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CHAPTER 7

CONCLUSION AND OUTLOOK

Our study offers a fresh perspective concerning the connection between synchronization

theory and thermoacoustic transitions in turbulent combustors. In the broader context

of nonlinear dynamics, our results provide valuable experimental evidence of both

continuous and explosive synchronization in turbulent combustors. These findings

contribute to a deeper understanding of the fundamental principles governing the

emergence of different types of thermoacoustic transitions and states of pattern formation

in spatially extended systems.

In the present thesis, our exploration began by examining how the nature of thermoacoustic

transition changes systematically with variations in equivalence ratio and bulk flow

velocity within the annular combustor. Through a comprehensive analysis of flame-flame

and flame-acoustic interactions across various routes to longitudinal thermoacoustic

instability, we identified distinct levels of synchronization. Comparisons of heat release

rate responses among neighboring burners unveiled varying degrees of synchronization

between the heat release rate and acoustic pressure fluctuations during different dynamical

states. These differences underscore that thermoacoustic transitions can manifest

gradually or abruptly, influenced by spatiotemporal synchronization. Significantly, even

in cases of longitudinal thermoacoustic instability, our study reveals the non-trivial nature

of flame-flame interactions.

Subsequently, we introduced a model to explain the spatiotemporal interactions giving

rise to rich dynamical phenomena in turbulent combustors. This model is based on

the assumption that the turbulent flame comprises an ensemble of phase oscillators

evolving under the influence of mean-field interactions and acoustic feedback. These



interactions encode the nonlinearities in the flame response subjected to acoustic and

turbulent fluctuations. The model successfully produces both continuous and abrupt

transitions observed in three distinct combustor configurations (bluff-body stabilized,

swirl-stabilized, and annular). Significantly, our modeling approach naturally provides

an explanation of spatiotemporal synchronization and pattern formation observed in

turbulent thermoacoustic systems – a feature that has yet to be captured in other

thermoacoustic models. We showed that our model closely replicates the statistical

behavior of spatial desynchronization, chimera, and global phase synchronization

underlying the thermoacoustic transitions. Our findings strongly suggest that continuous

and abrupt thermoacoustic transitions are associated with synchronization transition of

second-order and first-order, respectively. Moreover, our model not only explains distinct

types of bifurcation to limit cycle oscillations in disparate systems but also does so in a

consistent manner based on the paradigm of synchronization, eliminating the need for

disparate modeling approaches.

We proceeded to modify the annular combustor geometry to excite azimuthal

thermoacoustic instability. The dynamics of the annular combustor is studied to

understand the transition from stable operation to azimuthal thermoacoustic instability.

As we varied the equivalence ratio, we discovered a new route to azimuthal

thermoacoustic instability through intermittency in the annular combustor. Employing a

quaternion-based formalism to characterize the thermoacoustic modes within the

combustor provided a concrete understanding of the system in terms of slow flow

variables. Our finding highlighted that the transition to azimuthal instability occurs

through a frequency shift – from a low frequency corresponding to the longitudinal

mode to a high frequency corresponding to the azimuthal mode. Furthermore, we

quantified the flame-flame interaction during various dynamical states by closely

examining the distribution of relative phases among all burners with respect to one

burner. This quantification highlighted distinct patterns of relative phase during different

azimuthal modes, emphasizing the significant role of flame-flame interaction in the
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observed behavior.

Finally, we focused on the practical aspect of controlling thermoacoustic instability

in a turbulent combustor by introducing an active swirler. Upon examining the flame

dynamics and spatiotemporal behavior during the transition to the suppression state,

we confirmed that the actuation of the swirler disrupts the strength of the feedback

loop and effectively suppresses thermoacoustic instability. To understand the method

of suppression, we extended the earlier proposed thermoacoustic model for studying

thermoacoustic transitions by incorporating the effect of the active swirler and acoustics

in the control parameter. Through a comparison of the statistical properties of the acoustic

pressure and heat release rate fluctuations between the model and experimental data, we

demonstrated that our model accurately reproduces the dynamics observed in experimental

setups. Moreover, our model showcased its ability to capture the characteristics of

spatiotemporal synchronization underlying a transition to the state of suppression while

depicting states such as synchronization, chimera, and desynchronization.

The findings presented in this thesis offer potential solutions for resolving the issues

surrounding the resolution of second-order and first-order synchronization in non-standard

Kuramoto models. Moreover, our approach paves the way for exploring additional avenues

in modeling related to fluid dynamical systems, particularly those involving aeroacoustic

and flow-structure interactions, where complex spatiotemporal interactions give rise to

diverse and rich dynamical phenomena.

7.0.1 Future directions

The thesis opens doors to compelling future prospects. One direction involves enhancing

the existing annular combustor by tilting the burner axes, thereby implementing a helical

arrangement of flames (Ariatabar et al., 2016). Implementing such an arrangement

offers several potential benefits. It can promote more efficient mixing of fuel and

air, enhance flame stability, and optimize combustion characteristics. Moreover, this
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configuration can mitigate issues like flashback (where the flame propagates back into

the fuel supply system) and reduce the susceptibility to thermoacoustic instabilities,

ultimately contributing to better combustion performance and reduced emissions.

An alternative avenue for future exploration entails operating the annular combustor

using blends of LPG and hydrogen to investigate the transition to thermoacoustic

instabilities. Examining the impact of hydrogen fuel on flame behavior during the

thermoacoustic transition stands as a crucial pursuit for the gas turbine community.

Therefore, conducting comprehensive experiments to explain the response of the flames

under various operational conditions can pave the way for utilizing existing aero and

land-based combustors with the goal of achieving zero-carbon operation. This research

direction holds the potential to contribute significantly to the development of eco-friendly

and sustainable combustion technologies.

Moreover, it would be interesting to look into the critical regions within the annular

combustor during thermoacoustic instabilities. Utilizing spatiotemporal data gathered

from sixteen burners, we can assess the spatial distribution of turbulent velocity amplitudes

at the acoustic frequency, time-averaged vorticity, time-averaged heat release rate, and

Rayleigh index. By identifying and characterizing these significant regions, we can

aim to implement a passive control strategy (Roy et al., 2021). This involves directing

a steady injection of secondary micro-jets of air to optimize injection locations and

pinpoint the critical region. This approach seeks to develop a potential mitigation strategy

for suppressing azimuthal instabilities in the annular combustor.

Furthermore, a fascinating avenue involves modifying the mean-field thermoacoustic

model discussed in the thesis to incorporate the influence of turbulence. This modification

aims to investigate how accurately the model can replicate the fractal nature of the heat

release rate. If the adapted model successfully captures the observed loss of multifractality

and scaling laws observed in the experiments, it could become a valuable tool for predicting
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amplitudes, aligning with the findings of Pavithran et al. (2020).
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APPENDIX A

VERIFYING LONGITUDINAL INSTABILITY IN THE
ANNULAR COMBUSTOR

In the annular combustor, during the transition to thermoacoustic instability, we observe

the dominant frequency remains at 𝑓𝑎= 220 ± 10 Hz (see figure A.1a). We identified

a dominant mode with a frequency of approximately 218 Hz during low-amplitude

thermoacoustic instability and 227 Hz during high-amplitude thermoacoustic instability.

To confirm the nature of the mode, we compare the pressure fluctuations during low-

amplitude and high-amplitude thermoacoustic instability obtained from three pressure

transducers mounted at equidistant positions on the back-plane of the chamber, as shown

in figure A.1(b,c).

The overlay of the time traces of pressure fluctuations from the three transducers on the top

left and right panel of figure A.1(b,c) clearly indicates that there is a negligible difference

Figure A.1: Observed dominant frequency in the annular combustor as a function of the
equivalence ratio and correspond to the condition reported in figure 4.4(b).
Comparison of (b, c) time series, (d, e) phase difference obtained from three
pressure transducers on the combustor backplane during low-amplitude and
high-amplitude TAI.



in their phase, which is further confirmed by the plot of relative phase difference, which

remains constant and near zero (see figure A.1d,e). From these observations, we conclude

that the mode under consideration here is a longitudinal mode and not the azimuthal

mode.
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APPENDIX B

NUMERICAL PROCEDURE FOR SAMPLING
OSCILLATOR FREQUENCY DISTRIBUTION FROM

EXPERIMENTAL DATA

The density of oscillators in frequency domain 𝑔(𝜔) is obtained from ¤̂𝑞(𝜔), i.e., Fourier

transform of the time series of ¤𝑞′(𝑡) during the occurrence of combustion noise. The ¤̂𝑞(𝜔)

is available for discrete frequencies, {𝜔1, 𝜔2, ..., 𝜔𝑁𝐹
}, where 𝜔1 = 0 and 𝜔𝑁𝐹

is the

maximum frequency. The ¤̂𝑞(𝜔) is normalized to obtain 𝑔(𝜔) = | ¤̂𝑞(𝜔) |/
∫ 𝜔𝑁𝐹

0 | ¤̂𝑞(𝜔′) |𝑑𝜔′.

The normalization ensures
∫ 𝜔𝑁𝐹

0 𝑔(𝜔)𝑑𝜔 = 1. The integration is performed numerically

with the trapezoidal rule. This procedure gives 𝑔(𝜔) at discrete frequencies, which is

used for sampling the frequency for each of the 𝑁 phase oscillators.

To obtain samples from arbitrary discrete distribution 𝑔(𝜔), we use the uniform

distribution 𝑈 (𝑥) with support over 𝑥 ∈ [0, 𝐶𝑁𝐹
], where 𝐶𝑘 =

∑𝑘
𝑙=1 𝑔(𝜔𝑘 ), i.e. for

𝑘 = 𝑁𝐹 we get 𝐶𝑁𝐹
as cumulative sum over all the discrete 𝑔(𝜔) values. The 𝑁 data

points {𝑥1, 𝑥2, ..., 𝑥𝑁 } are sampled from 𝑈. The frequency of 𝑙th oscillator is then

obtained as

𝜔𝑠,𝑙 = (1 − 𝛼)𝜔𝑘 + 𝛼𝜔𝑘+1, (B.1)

where,

𝛼 = (𝑥𝑙 − 𝐶𝑘 )/(𝐶𝑘+1 − 𝐶𝑘 ),

and 𝑘 satisfies 𝐶𝑘 ≤ 𝑥𝑖 < 𝐶𝑘+1. This procedure samples the frequency of 𝑁 phase

oscillators according to the normalized distribution 𝑔(𝜔) obtained from the experimental

data.





APPENDIX C

CHOOSING OPTIMAL NUMBER OF PHASE
OSCILLATORS

The optimal number of oscillators should be high enough so that it is able to reproduce

the initial frequency distribution (figure 4.2) without requiring heavy computation cost.

This is done by verifying the convergence of our results with respect to the number of

phase oscillators. We plot the standard deviation (𝜈) of the acoustic pressure amplitude

as a function of the number of oscillators (Fig. C.1). For each case, we performed 20

iterations using random initial conditions (𝜂(0), ¤𝜂(0), 𝜃𝑙 (0)) and examined the standard

deviation of oscillations obtained from these iterations.

This procedure was repeated during the states of combustion noise (CN) and

thermoacoustic instability (TAI) for the bluff-body stabilized dump combustor. Our

analysis revealed that the results reached convergence beyond 𝑁 = 2 × 103 phase

Figure C.1: Test for convergence of dynamics when the number of phase oscillators is
varied. The standard deviation 𝜈 is obtained from 20 simulations for each 𝑁 .



oscillators. Consequently, we chose 𝑁 = 2 × 103 for all simulations in our paper. It is

crucial to note that our findings clearly demonstrate the dependence of results on the

number of oscillators, as fewer oscillators would be insufficient to resolve the heat

release rate spectrum [ ¤̂𝑞( 𝑓 )] obtained from experiments.
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APPENDIX D

PARAMETER OPTIMISATION WITH RANDOM
INITIAL CONDITIONS

Parameter optimising is used to relate the control parameter in experiments with the

model coupling strength. The initial conditions are included in the parameter optimisation

to obtain a close match during the state of intermittency, which features periodic bursts

randomly amidst aperiodic oscillations.

Figure D.1: Comparison of time series, probability density function, amplitude spectrum
of 𝑝′ obtained from model (b-d) with the experimental observations (a)
during the state of intermittency in the bluff-body stabilized combustor. In
the model, (b) is obtained by optimising the parameter vector (P), and (c-d)
are obtained for randomly chosen initial conditions, with the optimised value
of 𝐾 and 𝜁 as 0.75 and 0.6, respectively. In (c), the initial conditions are
𝜂(0) = 0.22, ¤𝜂(0) = 0.09 and 𝜃𝑙 (0) = 0.5 + N(0, 0.1) and in (d) the initial
conditions are 𝜂(0) = 0.1, ¤𝜂(0) = 0.12 and 𝜃𝑙 (0) = 0.5 + N(0, 0.1).



Figure D.2: The bifurcation plot illustrates the comparison of the amplitude of acoustic
pressure obtained from the model and experiments as a function of the control
parameter (𝐾, 𝜙). For each 𝐾 , 10 iterations are performed with different sets
of initial conditions. The evaluation indicates the initial conditions do not
exert any influence on the dynamical states.

Consider the state of intermittency in the bluff-body stabilized combustor as shown

in figure D.1(a). Figure D.1(b) shows the intermittency from the model when initial

conditions are optimised. Figure D.1(c-d) shows the intermittency obtained from the

model when random initial conditions are used. We notice that the probability density

function (PDF) of the simulated states (b-d) matches with the PDF of the experimental

state (a). However, the time series have noticeable differences in (c-d). While we notice

the time series for the state where the initial conditions were optimised (b) matches much

more closely to the experimentally observed state.

To investigate the impact of initial conditions on each state, we analyse the bifurcation plot

obtained from the model without any optimisation and compare with the experimental

results. To initiate the simulations, we randomly choose the initial conditions for 𝜂(0) and

¤𝜂(0) from the uniform distribution. Similarly, the initial values of the phase oscillators

(𝜃𝑙 (0)) are chosen from a normal distribution with a standard deviation of 0.1. Figure
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Figure D.3: Comparison of the 𝐾 − 𝜙 relationship obtained through the optimisation of
only the coupling strength (𝐾) with the optimisation of both 𝐾 and initial
conditions (𝜂(0), ¤𝜂(0), 𝜃𝑙 (0)).

D.2 presents the relationship between the amplitude of acoustic pressure fluctuations and

the coupling strength (𝐾). The coupling strength 𝐾 is systematically varied from 0.2 to 2

in increments of 0.05, while 𝜁 is optimised during combustion noise and subsequently

kept constant across all dynamical states. We perform 10 simulations with distinct

sets of random initial conditions. The standard deviation of the amplitude of acoustic

pressure at each 𝐾 value is then employed to derive the error bar. Remarkably, the error

bars observed are nearly negligible, indicating that the dynamics states remain largely

unaffected by the initial conditions. Now, to map the bifurcation plot obtained from the

experiments onto the bifurcation plot obtained from the model, we utilize the (𝐾 − 𝜙)

relationship depicted in Figure D.3. We notice a good match between the modeling and

experimental results, without any estimation of parameters.

Further, to understand if the optimisation of the initial conditions affects the relationship

between 𝐾 and 𝜙, we consider random initial conditions (𝜂(0), ¤𝜂(0), 𝜃𝑙 (0)). The control

parameter 𝐾 is plotted as a function of 𝜙 in figure D.3 and compared with the results

169



presented in figure 4.6(a) for the bluff-body stabilized combustor case. We notice that

the relationship between 𝐾 and 𝜙 remains almost linear and does not differ from the

case where the initial conditions are optimised. It is worth reiterating that the exact

relationship between 𝐾 and 𝜙 is relatively unimportant, so long as the interpretation is

consistent: A change in the control parameter (in this case 𝜙) leading to thermoacoustic

instability is always associated with an increase in the coupling strength and, hence,

the synchronization of pressure and heat release rate oscillations. We have found the

interpretation to be consistent across four different combustor configurations, three of

which are presented in figure 4.6 and one case related to the control of instability is

presented in figure 6.8.
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APPENDIX E

SENSITIVITY ANALYSIS OF PARAMETER
ESTIMATION

E.1 PARAMETER SENSITIVITY DURING THE TRANSITION TO

THERMOACOUSTIC INSTABILITY

Estimating the parameter P by minimizing the error in Xm and Xexp is numerically

expensive. So, only a portion (𝑡w) of the entire time series Xexp is used for parameter

optimisation. To ensure convergence in the estimate of the model parameter, we vary the

length of the time series 𝑡w used for optimisation. For each window size, the optimisation

is performed for 1000 iterations to determine the value of 𝐾 . Then the window is moved

across the entire length of the time series to obtain a distribution of 𝐾. The standard

deviation of this distribution is then used to obtain the error bar.

Figure E.1: Convergence of parameter optimisation algorithm. Panel (a) shows the
variation in the estimated coupling strength (𝐾) as a function of the size
of the time window (𝑡w) used for optimising the loss function L(P) for a
fixed number of 1000 iterations. (b) Realisation of the minimisation scheme
showing a change in the difference L𝑖+1 − L𝑖 when the optimisation is
performed with an initial value of 𝐾 = 0.25 over 1000 iterations during the
state of combustion noise in bluff-body stabilized combustor.



Figure E.1(a) shows the convergence of the model control parameter (𝐾) as a function

of the time window (𝑡w) used for performing optimisation according to Eq. (4.36). We

find that the error in estimation 𝐾 is quite low. We notice that the value of 𝐾 reaches a

constant value after a window of size 𝑡𝑤 ≈ 0.25 s. Thus, we use 𝑡𝑤 = 0.5 s for optimising

parameter across all data-sets.

Figure E.1(b) shows a typical realisation of an optimisation performed with the initial

guess of 𝐾 = 0.25 and time window of size 𝑡𝑤 = 0.4 s. The minimisation is performed

over 1000 iterations. The plot shows the manner in which L𝑖+1 − L𝑖 reduces with an

increasing number of iterations. The difference in the value of the loss function is of the

order of 10−7. The optimised value of 𝐾 corresponds to a minima in L𝑖+1 − L𝑖.

E.2 PARAMETER SENSITIVITY DURING THE TRANSITION TO

SUPPRESSION STATE

In order to estimate the model parameters and the initial condition, expressed as P, we

minimize the error between Ymodel and Yexp. We take the portion of the time series of

Figure E.2: Panel (a) depicts the convergence of the coupling strength (𝐾) as a function
of the time window width (𝑡win) of the time series of Ymodel and Yexp over 500
iterations using the parameter optimization algorithm. The initial value of 𝐾
used is 1.2 and 𝑡win is varied from 0.05 to 1 s. Panel (b) shows optimization
of 𝐾 by minimizing the loss function (L𝑖) over 500 iterations by taking
difference between L𝑖+1 and L𝑖. The sensitivity analysis on parameter
estimation shown here is carried out during the state of suppression.
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both Ymodel and Yexp for estimating P. We first find out what portion of the time series of

Ymodel and Yexp is enough for convergence of the model parameters. The window width

of the time series 𝑡win is varied from 0.05 to 1 s for obtaining P over 500 iterations. In

figure E.2(a), we show only the convergence of the coupling strength (𝐾) as a function of

𝑡win during the suppression state. We observe that the value of 𝐾 remains constant after

𝑡win = 0.6 s. Thus, we use 𝑡win = 0.7 s for estimating parameters across all the datasets.

The width of the time window is then fixed, and the window is moved across the entire

time series of Ymodel and Yexp to determine the range of 𝐾 variation at each dynamical

state. Figure E.2(b) shows the realization of a minimization scheme used to obtain

optimized 𝐾 . The plot shows the reduction of the difference in L𝑖+1 and L𝑖 with change

in iterations started with an initial guess of 𝐾 = 1.2. Hence, the estimated parameter

used in the model are properly optimized and verified using the above technique.
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APPENDIX F

IDENTIFYING THE TYPE OF INTERMITTENCY IN
OUR COMBUSTORS

In our investigation into the type of intermittency within our combustion systems, we

adopted the methodology outlined by Pawar et al. (2016) for analysis of intermittency.

Figure F.1 depicts regions of low-amplitude aperiodic behavior interspersed between

consecutive periodic bursts, termed turbulent phases, alongside regions of

high-amplitude periodic oscillations referred to as laminar phases. To characterize the

type of intermittency observed, we ascertain the length of the turbulent phases (𝑇) in the

acoustic pressure signal.

We employed a method proposed by Hammer et al. (1994) to calculate the length of the

turbulent phase (𝑇). This method utilizes an amplitude threshold expressed as a fraction

of the maximum pressure, where the threshold is defined as max(𝑃)/(2𝑛) and 𝑃 represents

the maximum amplitude of the acoustic pressure signal with 𝑛 ranging between 1 and

6. Here, we present results corresponding to 𝑛 = 2, equating to a normalized acoustic

pressure amplitude threshold of 0.25.

The duration within the acoustic pressure signal, characterized by an amplitude below

the selected threshold (i.e., the signal length between consecutive bursts), defines the

length of the turbulent phase, as shown in figure F.1. The turbulent phase initiates when

the last waveform of the periodic burst falls below the threshold and terminates when the

first waveform of the subsequent burst surpasses the threshold. These turbulent lengths

are aggregated into bins to calculate their probability distribution using a histogram

during the state of intermittency. In figure F.2(a), we observe an exponential decrease in

the probability distribution of the turbulent phase length, consistent with the findings



Figure F.1: Illustration of the acoustic pressure signal during the state of intermittency
consisting of low-amplitude aperiodic fluctuations (turbulent phases)
interspersed between high-amplitude periodic oscillations (laminar phases).
A threshold marks the delineation between the two phases, distinguishing high-
amplitude periodic oscillations from low-amplitude aperiodic fluctuations.

of Pawar et al. (2016). Figures F.2(b) and (c) depict a similar exponential decrease

in the probability distribution of 𝑇 observed in experiments and the mean-field model

corresponding to bluff-body stabilized combustors and annular combustors, respectively.

These distributions align with type-II intermittency behavior, where 𝑃 ∼ 𝑇 ∧ (−1) (Pawar

et al., 2016), thus confirming the presence of type-II intermittency in our combustion

systems.

To further validate the efficacy of our model in capturing the specific type of intermittency,

we examine the power-law scaling of the probability of turbulent time scales as a function

of the control parameter. Figure F.3 illustrates the relationship between the average

length of turbulent phases and the normalized control parameter. Precisely, figure F.3(a)

corresponds to the findings discussed by Pawar et al. (2016), while figures F.3(b,c) depict

the scaling law observed from experiments and the mean-field model corresponding to the

bluff-body stabilized combustor, respectively. Given the apparently random appearance
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Figure F.2: Probability distribution of the length of turbulent phases observed in (a)
Pawar et al. (2016), (b) experiments and mean-field model corresponding
to the bluff-body stabilized combustor, and (c) experiments and mean-field
model corresponding to the annular combustor. The distributions exhibit an
exponential tail characteristic of type-II intermittency.

of bursts during intermittency, we utilize the average length of turbulent phases (⟨𝑇⟩) as

a representative measure of the total turbulent phase durations within the corresponding

pressure signal. The plot of the mean duration of turbulent phases against the control

parameter on a log-log scale reveals a power-law behavior. The variation of ⟨𝑇⟩ as a

function of a control parameter in the experiments (𝜙) and model (𝐾) exhibits a linear

relationship with slopes of -1.14 and -1.01, respectively. These values closely approximate

the theoretical prediction for type-II intermittency, i.e., ⟨𝑇⟩ ∼ 𝐾 ∧ (−1) (Pawar et al.,

2016; Pomeau and Manneville, 1980). Discrepancies between the theoretical slope (-1),

and the experimental (-1.14) and model (-1.01) slopes may arise from factors such as the

finite length of experimental signals, inherent noise in experiments and measurements,

and challenges associated with accurately detecting the lengths of turbulent phases.
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Figure F.3: A log–log plot of the average length of turbulent phases (⟨𝑇⟩) plotted against
the control parameter, demonstrating the scaling law behavior characteristic
of type-II intermittency in (a) Pawar et al. (2016), and (b) experimental data
(bluff-body stabilized combustor) and (c) model simulations.
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APPENDIX G

MEAN-FIELD SYNCHRONIZATION MODEL WITH
STOCHASTIC FORCING

The mean-field synchronization model, in its current form, does not explicitly account

for the effects of turbulence. One way to do this would be to incorporate a stochastic

term into the second order acoustic equation, which could simulate the effect of turbulent

fluctuations on the acoustic pressure and heat release rate signal.

Figure G.1: Comparison of time series, probability distribution function and amplitude
spectrum of 𝑝′ and ¤𝑞′ obtained from model with stochastic noise term with
the experimental observations. The comparison is shown during the states
of (a) combustion noise (𝐾 ≈ 0.21), (b) intermittency (𝐾 ≈ 0.73), and (c)
thermoacoustic instability (𝐾 ≈ 1.94). The value of damping coefficient
(𝜁) is 0.6 obtained using parameter optimisation during combustion noise
and the initial conditions (𝜂(0), ¤𝜂(0), 𝜃𝑙 (0)) are chosen randomly and noise
intensity as 0.1.



Following Bonciolini et al. (Bonciolini et al., 2021), we define a stochastically forced

mean-field model as:

¥̂𝜂(𝑡) + 𝜁 ¤̂𝜂(𝑡) + 𝜂(𝑡) = 𝜁

𝑁

𝑁∑︁
𝑙=1

sin[𝑡 + 𝜃𝑙 (𝑡)] + 𝜉 (𝑡), (G.1a)

¤𝜃 (𝑡) = 𝜔𝑙 + 𝐾�̂�(𝑡) sin[Φ(𝑡) − 𝜃𝑙 (𝑡)] . (G.1b)

Here, 𝜉 (𝑡) is the Gaussian noise and is characterized by ⟨𝜉 (𝑡)⟩ = 0 and ⟨𝜉 (𝑡)𝜉 (𝑡)′⟩ =

2𝐷𝛿(𝑡 − 𝑡′) with 𝐷′ being the noise strength. We run the simulation with modified

Eq.(G.1) at 𝐷′ = 0.1 and present the results for three representative states observed in the

bluff-body stabilized dump combustor. We notice asymmetry in the time series of the

heat release rate fluctuations in figure G.1. As seen above, we can possibly improve the

statistics of heat release rate fluctuations by including stochastic forcing. However, as a

first-of-a-kind model, we would like to limit our present discussions to the aspects of

bifurcation and the underlying synchronization. We aim to pursue this topic in the future

more quantitatively by considering the effect of stochastic forcing on the results.
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APPENDIX H

EXTRACTING ORDER PARAMETER FROM
SPATIOTEMPORAL EXPERIMENTAL DATA

To reduce the noise and improve the quality of the signal, We first use a two-dimensional

spatial median filter with a window of size 3×3 pixels. The filtering operation sorts

the pixels in the given window, determines the median value, and replaces the pixel in

the middle of the given window with this median value (Khoukhi et al., 2020). The

median filter denoises the data and improves the signal quality. We then coarse-grain

the chemiluminescence images over 8×8 and 6×6 pixels for the bluff-body stabilized

combustor and annular combustor. This step helps reduce the noise further and

significantly reduces the computation effort.

Now, to extract the order parameter from a spatiotemporal data, we normalize the time

series of ¤𝑞′(𝑥, 𝑦, 𝑡) during various states of operation by the amplitude ¤𝑞′ during limit

cycle oscillations. The resulting signal at each coarse-grained location depicts a transition

from a low amplitude chaotic state to limit cycle oscillations of amplitude when the

control parameter is varied.

Popovych et al. (2005) and Bick et al. (2011) showed that the collective behavior of

oscillators with distributed frequencies yields chaotic behavior. Following the same

approach, we assume that the heat release rate fluctuations measured at each coarse-

grained location are a result of a set of limit-cycle oscillators. In other words, we assume

that 𝑘 th pixel comprises 𝑛𝑘 number of limit cycle oscillators. To simplify calculations,

we assume that 𝑛𝑘 = 𝑛 for all the pixels. Let the phase for 𝑗 th oscillator at 𝑘 th pixel is 𝜑𝑘 𝑗 ,

where 𝑗 = 1, .., 𝑛. Therefore, the complex order parameter for 𝑘 th pixel is expressed as:

𝑟𝑘𝑒
𝑖𝜃𝑘 = 1/𝑛∑𝑛

𝑗=1 𝑒
𝑖𝜑𝑘 𝑗 (Strogatz, 2000), where 𝑟𝑘 (𝑡) and 𝜓𝑘 (𝑡) can be simply obtained



from the absolute value and argument of the Hilbert transform of ¤𝑞′
𝑘
(𝑡). Here, we define

𝜑𝑘 𝑗 as the phase of 𝑗 th oscillator in the 𝑘 th pixel of the image and 𝜓𝑘 is the mean-phase of

the image. We obtained the 𝜓𝑘 by considering each imaged has 𝑁𝑝 number of pixels and

each pixel is made of 𝑛 oscillators. Consequently, the order parameter can be defined as:

𝑟𝑒𝑖⟨𝜃⟩ =

〈
1
𝑁𝑝

𝑁𝑝∑︁
𝑘=1

𝑟𝑘𝑒
𝑖𝜓𝑘

〉
𝑡

, (H.1)

where successive averaging operations were taken over 𝑁𝑝 in each image and the total

number of chemiluminescence images in the time series. The value of 𝑟 so determined is

then used in figures 4.8(a,b) and 6.9.

182



APPENDIX I

ESTIMATED MODEL PARAMETERS FROM
EXPERIMENTS

I.1 ESTIMATED PARAMETER VALUES DURING THERMOACOUSTIC

TRANSITION

The estimated model parameters are shown in the tables I.1, I.2 and I.3 corresponding

to the bluff-body stabilized, swirl-stabilized, and annular combustor, respectively. The

damping coefficient (𝜁) is obtained using parameter optimisation Eq. (4.36) and is

subsequently fixed for determining other states during the transition. The value of 𝜁

during the state of combustion noise is obtained as 0.6, 0.4, and 0.3 for the bluff-body

stabilized, swirl-stabilized, and annular combustor, respectively.

Table I.1: Parameter estimated for states observed in the bluff-body combustor and
marked as b-d in figure 4.3.

States 𝐾 𝜂(0) ¤𝜂(0) 𝜃𝑚 𝜎 𝐿

Combustion noise 0.230 0.011 0.001 0.499 0.100 0.004

Intermittency 0.752 0.015 0.009 0.497 0.101 0.009

LCO 1.997 0.009 0.007 0.499 0.100 0.900

Table I.2: Parameter estimated for states observed in the swirl-stabilized combustor.

States 𝐾 𝜂(0) ¤𝜂(0) 𝜃𝑚 𝜎 𝐿

Combustion noise 0.506 0.108 -0.003 0.368 0.150 0.005

Intermittency 0.920 0.098 -0.009 0.366 0.130 0.055

Low-amplitude LCO 1.240 -0.040 -0.030 0.500 0.098 0.130

High-amplitude LCO 1.542 -0.116 0.180 1.390 0.094 1.100



Table I.3: Parameter estimated for different states observed in the annular combustor and
marked as a-d in figure 4.5.

States 𝐾 𝜂(0) ¤𝜂(0) 𝜃𝑚 𝜎 𝐿

Combustion noise 1.091 0.085 -0.015 0.428 0.121 0.003

Intermittency 1.367 0.036 -0.001 0.494 0.101 0.005

Low-amplitude LCO 1.550 0.022 0.009 0.498 0.101 0.040

High-amplitude LCO 1.710 -0.258 0.689 0.199 0.102 0.319

I.2 ESTIMATED PARAMETER VALUES DURING THE TRANSITION TO

SUPPRESSION STATE

The estimated model parameters during thermoacoustic instability, intermittency and

suppression state are shown in table I.4. The damping coefficient (𝜁) is obtained by the

gradient descent method during the state of suppression and has a value of 0.27.

Table I.4: Estimated parameter values in the rotating swirler combustor for different
states marked as a-c in figure 6.5.

States 𝐾 𝜂(0) ¤𝜂(0) 𝜃𝑚 𝜎 𝐿

LCO 2.88 0.36 -0.18 0.54 0.11 1.15

Intermittency 1.14 0.05 -0.01 0.49 0.10 0.05

Suppression state 0.95 0.02 -0.03 0.49 0.10 0.01
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