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ABSTRACT

KEYWORDS: Combustion instability; thermal-acoustic iraetion; acoustic-
hydrodynamic interaction; method of multiple scales; dyical

system theory; bifurcations; nonlinear instabilities.

Thermo-acoustic instability in combustion chambers h&meted the attention of re-
searchers involved in the design and operation of rockedbra@ind gas turbine engines.
Thermo-acoustic instability has its origin in confined carsifton environment, where
flow processes exchange energy with the heat sources ancaihstia field in the con-
finement. A positive feedback can exist between the heatesand the acoustic field

that results in the growth of acoustic pressure amplitude.

In this thesis, we attempt to study the origin of combustitstability in low Mach
number reacting flows. Towards this purpose, we need to tigats various cou-
pling mechanisms that establish the interaction betwegadbustic and hydrodynamic
fields. To account for multiple time and spatial scales dased with the acoustic and
hydrodynamic fields, we use method of multiple scales (MM Xlie analysis of low
Mach number reacting flows. Through a rigorous mathemadieavation, the govern-
ing equations - continuity, momentum and energy equatidios low Mach number
reacting flows are decomposed into acoustic perturbatioateans for the acoustic and
hydrodynamic field variables. These perturbation equattescribe the evolution of
acoustic field variable on two time scales and two spatidéscéJsing the perturbation
equations, we can explain the influence of various acousticcgs from the reacting
flow field, on the growth of acoustic pressure amplitude. &fwee, these equations can

be used to compute the characteristics of combustion giegesaund.

Further, we use the perturbation equations to explain thatfack mechanism that
exists between the acoustic and hydrodynamic fields. Wedsdselop a convection

reaction diffusion (CRD) system to explain the transitioroscillatory state aided by



the hydrodynamic sources and the coexistence of osciiatate and non-oscillatory
state for the acoustic pressure. Solving for our system oaons, we obtain two
stable solutions for the same control parameter - one atlaiecy state, and another a
non-oscillatory state. Therefore, these equations givetibdescription of hysteresis
observed during acoustic instability. Further, we alsol&xgpthat the transition from
non-oscillatory state to oscillatory state is a conseqeeasfcacoustic-hydrodynamic

interaction.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Thermo-acoustic instability, widely studied because ®&ignificance in the develop-
ment and operation of gas turbine engines and rocket mamislieved to be the
consequence of acoustic - heat release rate interactianus$teady reacting flow that
prevails in a combustion chamber also contributes to theanwustic instability. The
positive feed back between the heat release rate, the ac@iekt and the flow field
results in a self sustained oscillation of acoustic pressdre oscillation can prove

detrimental to the smooth operation of any combustion gsyste

The contributing elements of instability, the fluid flow digbances and resulting
unsteady heat release rate, results in the addition of gertpe acoustic field in the
combustion chamber. Earlier investigations (discussegkictions 1.1.1 and 1.1.2) at-
tempt to study the mechanism of energy transfer betweennbteady heat release
rate and the acoustic field inside the combustor. We redham the shortcomings of
these investigations, the need for incorporating simelarisly multiple time and space
scales in developing a theory to explain thermo-acoussi@bility. This theory, which
we attempt to develop, describes a general mechanism tplatiex the energy transfer
between unsteady heat release rate and acoustic field.efi@nito the test the validity
of any theory, that explains thermo-acoustic instabilgyo see if the linear and non-
linear processes in the system are considered (Zinn anaveigl2006). We attempt to
introduce a new nonlinear mechanism, that arise from chemiacoustic interaction,

as significant in establishing self sustained acoustidlagon.



1.1.1 Unsteady reacting flow

In a combustion system, the fluid flow governs the convectiiffysion, mixing and
reaction of reactive mixtures. The contribution of fluid flamvestablishing the acoustic
- heat release rate interaction, is thus significant in dateng the stability of a thermo-
acoustic system. To be precise, thermo-acoustic indialsla result of the interaction
between the flow, flame and acoustics. In real gas turbinaesgihe study of interac-
tion between the flame and fluid flow fluctuations is an actieaalf research. These
fluctuations can be introduced in a combustion chamber dthetaortices or coherent
structures present in the flow. The generation, propagathattenuation of vortices
are an integral part of combustion system. The favorablér@mwent for unsteady
reacting flow includes mixing layers which are formed at thteriface of fuel and oxi-
dizer while they mix together before reacting. Another aguration where vortices can
be naturally present is a recirculation bubble formed be:kitvackward facing step or
flow behind a bluff body. The swirl stabilized combustorodksature unstable acoustic
modes that arise due to the recirculation region (Steinbead), 2012; Pascheredt al.,
2000). The shear layer instabilities also contribute taeady flow dynamics near a
sudden expansion. A common geometry used in the combu#oatlre is a back-
ward facing step (Ghoniemt al., 2005). Ghonienet al. (2005) considers a backward
facing step featuring the separated shear layer with acrdaiion bubble which is of
importance as far as combustion is considered. The flow fiellde combustor governs
the mixing of fuel and oxidizer and thereby the chemical tieac The recirculation
bubble aids in stabilizing the flame by increasing the regiddeime of the reactants,
allowing them to react. The flame formed as a result of cheméeection is thus gov-
erned by the geometry of the combustor. Flow velocity prefil@ne that is seen in
the mixing layers, and the one associated with the recitiomdubble in a rearward
facing step - are studied for their potential for instapibity Keller et al. (1988). The

underlying mechanisms that lead to these flow instabiléreswidely studied.

The common instabilities that are present in the shear lageedue to 1) velocity
difference in the shear layer causing Kelvin - Helmholtzabgity, and, 2) density
difference caused by the heat release rate from chemiaztioran the mixing layer.

The effect of viscosity in the shear layer usually dampsiiseability. However, at high



Reynolds number, the viscous effects can be neglected anidstabilities are treated
as inviscid instability. In a typical combustion system, iing layer is formed at the
point where the fuel and oxidizer jets meet. The fuel and iaridare supplied into
the combustion chamber at different velocity. The velosttgar in the mixing layer
can then give rise to the above mentioned instabilities. Régnolds number over a
wide range starting fron®(10?) can cause instabilities in the mixing layer (Lessen,
1948). The density difference in the mixing layer is causgdhe temperature rise in
the mixing layer owing to the chemical reaction. An expléato such a phenomenon
is given by Michalke (Michalke, 1984).

From the above discussion, we know that the flow field osmiteits inherent to all
combustor configurations. Flow filed oscillation is sustaiby a mutual interaction
between the flow and the flame. The flow field oscillation leadartsteady heat re-
lease rate. Unsteady heat release rate is one of the sodir@esustic energy. Thus a
theoretical framework to study thermo-acoustic instbghould identify the coupling

mechanism between the flow fluctuations and the flame.

1.1.2 Thermo-acoustic instability

A positive feedback between the unsteady reacting flow amdd¢bustic field in a com-
bustor often leads to thermo-acoustic instability. Theatility, characterized by large
amplitude pressure oscillations, is detrimental to therai@n of propulsion systems
including rocket motors and gas turbines used for propualsiod power generation.
The oscillation in pressure result in the fatigue of turbwealls and eventually lead
to the shutdown of power plants (Zinn and Lieuwen, 2006). prexvention of such
instabilities is achieved by designing control systems #mealyze the growth rate of
instability and identifying the unstable modes in the costbu(Poinsoet al, 1989;
Zinn and Neumeier, 1997; Culick and Palm, 2009).

Originated as an academic problem, with the observatiosinfing flames’ (Jones,
1945), the interest in the study of thermo-acoustic in$itglgrew with the advent of
huge power generation plants (Gunther, 1972). The ocotgrehpressure oscillations,

with amplitude of 100 % of the mean pressure in F1 rocket nsoémnphasize that



thermo-acoustic instability is of serious concern in ragketors (Blomshield, 2001).
Such high amplitudes indicate the possibility that nordinmechanisms can be signif-
icant in the growth of instability (Zinn and Lieuwen, 200&ump combustor config-
urations, often seen in ramjets, are also prone to combustgiability owing to the
unsteady flow field (Culick and Rogers, 1980). This unsteaaly field arises from
the vortex shedding. Aerodynamic or flow instability at thgctors is also a cause of

combustion instability in jet engines (Konratlal,, 1998).

In combustors, the energy available from the unsteady cetidsudrives large am-
plitude pressure oscillations. As the combustion procespands to the changes in
temperature, pressure and density fields, the fluctuatiotizeise fields determine the
amplitude of acoustic pressure fluctuations (Culick, 2008istorically, the study of
unsteady pressure oscillations in liquid rocket motorseisggmed by considering the
contribution from the unsteady processes in subsystentsasimjectors and mixing
chambers. These subsystems can have geometries that catesady base flow. Mix-
ing process in a liquid fueled rocket motors is governed lgyganeration of vortices
which creates an unsteady flow field. Combustion instahititypcket motors are sub-
jected to large amplitude pressure fluctuations. Combugtistability in solid propel-
lants are investigated using a response function. Resgansgon (R,) is a measure
of the extent of modulation in burning rate from the pressluretuations.
m'/m
P'/p

R, = (1.2)
Propellant response can also be measured with respectveltigty fluctuations. Re-
sponse function tells us how an initial disturbance in thespure, velocity or temper-
ature fields is related to the conversion of propellant frandensed state to gaseous
state. This conversion may lead to increased reaction naténaurn an increase in the
heat release rate. The phase between the incoming diste&hand the heat release
rate decides whether the disturbance is destabilizing. féhmeulation of a response
function assumes the burning to be confined to an interfaceamb@stion instability
in solid rocket motors is also influenced by the distributechbustion (Culick, 2006).
Distributed combustion occur away from the propellant mgrsurface. In such cases,

instead of a thin sheet where the burning is assumed to beotrated, the combustion



is completed only inside the chamber away from the surfaceh & combustion has
significant influence in the burning of aluminum and theretfijuences the attenuation

of acoustic wave due to particle damping (Beckstetal., 1984).

The stability of acoustic oscillations are investigatethvalassical acoustic theory
as a starting point. The main reason for this assumptioreisotih Mach number flow
that prevails in a combustion chamber (Culick, 2006; Lieawtal., 2001). However,
the convective effects are to be considered when nonlirfiante become predominant
(Culick, 1997). In terms of perturbation theory, these nwedr effects can be studied
only using ‘higher order’ equations. The classical acausteory is formulated as
‘lower order’ or first order equations. The theoretical s#sddeal with expressing the
growth of acoustic oscillations o e“t as a solution to a linear second order equation,
also called as an 'oscillator model. The nonlinear effeeis be incorporated by adding

a nonlinear term as a source to the second order oscillatdelad by Eq. (1.2).

d277 2

where F;, and Fy represent the linear and nonlinear sources. Using a seaaed o
model, Balasubramanian and Sujith (2008) have studiedftbet ®f non-normality on
the transient growth of acoustic oscillations. Such a séader ordinary differen-
tial equation modeling the premixed flame - acoustic int@vac with a nonlinear heat
release rate source term, is proposed by Subramatiah(2010). Subramanian and
Sujith (2011) have used this model to study the bifurcations Rijke tube resulting

from the acoustic-heat release rate interaction.

The acoustic-heat release rate interaction is theorBtiegpressed as:

d2?7 B an
=T Wi =(y-1) / o »dV (1.3)

where is the spatial distribution of pressuré! is the fluctuation in the heat release
rate. In Eq. (1.3) the acoustic pressure is expressed aspny. The advantage of
using this decomposition is that the spatial harmonic nmoten be decoupled from the
acoustic pressure amplituge Therefore, the governing equation can be expressed as

an ordinary differential equation (ODE). The expressiarhieat release rate depend on



the type of heat source; i.e. electrically heated mesh onixedd flame. Heckl (1990)

constructed a nonlinear model relating the heat releasdluatuation with the acoustic
velocity for a horizontal Rijke tube. She proposed thatéhmyuld be nonlinear effects
when acoustic velocity” > /3, whereu is the mean flow velocity. In experiments,

the mean flow is established using a blower.

When the heat source is a premixed flame, the wrinkling effeah cause flame
surface area change. The fluctuations in flame surface aadadeheat release rate
fluctuation. The flame front need to be tracked to determieéenttat release rate. The
evolution of premixed flame in response to the acoustic fieldomputed using front
tracking algorithm (Kersteiet al,, 1988; Dowling, 1999). Response of the flame front
to acoustic velocity perturbations can then be studied éBayd Quinard, 1990). This
response is studied and proposed in the form of a transfetium(TF) which can be
expressed as:

TF = (1.4)

3/ u'
Q u
The linear and nonlinear processes goverri@nd«’ are determined to understand
the onset of instability. Once the instability criteriondistermined, control algorithms

are developed.

1.1.2.1 Mechanisms of combustion instability

Efficient implementation of control algorithms require #treowledge of the system un-
der consideration. The coupling mechanism between signifigrocesses, such as the
unsteady flow and the acoustic wave propagation, that gdtierdynamics of therm-
oacoustic system are studied by Byrne (1983). Studies vagréucted in a dump com-
bustor with rearward facing step. The formation and propag®f coherent structures,
a flow feature associated with the dump combustor, is stillagomarea of investiga-
tion. The flow disturbances introduced by these cohereuttstres can influence the
heat release rate fluctuations and also couple with the aicansdes in the combustor
(Schadowet al., 1981). Experimentally, in dump combustors with bluff bdthme
holders, the unsteady combustor flow field is shown to be ammagehanism causing

instability (Kaskan and Noreen, 1955; Smith and Zukosk83)9 The energy addition



to the acoustic field by the unsteady heat release rate,ghrgas expansion, is dic-
tated by the famous Rayliegh criterion (Rayleigh, 1878)yliegh criterion, though
a commonly accepted guideline in the design of control dlgors, is not a sufficient
criterion for the onset of instability. The energy transféo the system should exceed
the loss of energy from the system. This additional constraotivates the search for
a general mechanism governing the transfer of energy battirereacting flow field

and the acoustic field.

The study of flow-flame-acoustic interaction deals with tifeience of unsteadiness
in the heat release rate on the acoustic wave propagatiosteébty heat release rate
can arise from the vortex-flame interaction. There can beinidorm distribution of
heat release rate inside the flame region. Apart from thesadgtflow, equivalence
ratio fluctuations can also contribute to the nonuniformt mekease rate. Equivalence
ratio fluctuation can be a consequence of the interactiooamistic wave with the inlet
fuel flow rate (Lieuwen and Zinn, 1998). The pressure odmites in the combustion
zone reach the fuel and oxidizer inlets. These pressuréaisms causes the velocity
oscillations. Velocity oscillations causes the fluctuasian the mass flow rates of fuel

and oxidizer, thereby causing equivalence ratio fluctmatio

g _mp_m (1.5)

)
In solid propellant rockets, the fluctuation in the mass flavha surface of the pro-
pellant (i) arise from the interaction with the pressure or velocitgiltstions. These
mechanisms are called as pressure coupling and velociflinguespectively. The
acoustic field can be generated because of the vortex shelidin obstacles. Conver-
sion of vorticity mode to the acoustic mode is an active afebemretical investigation
(Noiray et al, 2009). In liquid propellant rockets, mechanism of indigbis asso-
ciated with the droplet evaporation and burning. Contradycevidence exist in this
field of investigation as to whether droplets add energy twstic field or attenuate
the acoustic oscillation. Tong and Sirignano (1986) sugtes droplets evaporation
and burning add energy to the acoustic oscillations. Wo(it®67) shows that droplets
attenuate acoustic oscillations. Experimental and theatenvestigations focus on the

mode of energy transfer between the acoustic field and tlutivedlow field.



1.1.2.2 Experimental

Experiments confirm the interactions between flame, flow ammistics (Smith and
Zukoski, 1985). An experimental study by Poinsbtl. (1987), in a confined combus-
tion chamber, confirms the role of coherent structures ogubke unsteady heat release
rate. This unsteady heat release rate and the acousticrfietdct with each other in a
feedback loop. This process may eventually satisfy thediglylcriterion resulting the
growth of acoustic pressure amplitude. The significanceuad finechanical processes
is evident from their experiment. The role of fluid mechahmacesses is significant
even in unconfined configurations. The heat release ratelfitich as a source of in-
stability is emphasized by Langhorne (1988). Duatxal. (2005) show that the flow
velocity fluctuations result in formation of vortices in tjed shear layer. This, in turn,
modulates the heat release rate. The acoustic pressurerbaked by this process may
set up a feed back loop with the combustion processes (i.rnee ffand fluid mechanical)

resulting in thermo-acoustic instability.

1.1.2.3 Acoustic sources in the reacting flows

Experiments (Smith and Zukoski, 1985; Poinsbal.,, 1987; Duroxet al., 2005) show
that flow field velocity fluctuations have effect on the acauptessure. It is also evi-
dent that heat release rate is another factor influencingtétility of a thermo-acoustic
system. The fluctuating heat release rate, arising from tiseeady flow, may further
contribute to hydrodynamic instabilities. The heat rete@te will cause a dilatation in
the flow. The dilatation modifies the flow field. The dilatatisra source for the pro-
duction of sound (Balaji and Chakravarthy, 2010). The cohwe of heat release rate
fluctuations along the length of the flame should also be adeduor while studying
thermo-acoustic instability. Thus, entropy source beothe third contributing factor
for instability. The entropy mode along with convection reasl found to be a govern-
ing factor in the study of combustion instability. The irstay can thus be thought of
as a mixed mode type (Yet al, 1991).



1.1.2.4 Theoretical

The theoretical attempts aim at understanding the meahanisiderlying the flow -
flame - acoustic interaction. The pioneering research dgi@ubck and his co-workers
(Culick, 2006; Yang and Culick, 1986; Culick, 1968) aim amtifying the sources of
acoustic field in reacting flows. These research employ getion methods to deter-
mine the acoustic sources (Culick, 1997). The perturbatiethods and its variants
such as averaging methods laid the foundation for thealesicalysis of a thermo-
acoustic system. The 'modes’ as reported by Culick (2006stitutes the acoustic,
fluid dynamical and entropy sources present in a reacting flowthe combustion
chamber, these modes undergo fluctuations due to the ugstaade of combustion -
acoustic interaction. To determine the role of these fluaina in the stability of the
thermo-acoustic system, they have to be separated froméhe ralues. This separa-

tion was the motivation behind the use of perturbation metho

In such an analysis, the computation of the mean flow is segghfeom the com-
putation of fluctuating variables. This is the shortcominguch an approach; i.e. the
source terms need to be explicitly modeled to express tla¢ioalwith the base flow
field. The significant coupling mechanisms, such as the aogipketween acoustic field
and ‘DC shift’ that would modify the base flow field are negéztt Later various re-
searchers (Wet al., 2003; Wu, 2005; Mariappan and Sujith, 2011; Subramaeiah,
2013) employed perturbation approach to identify the sesitbat couple the fluctuat-

ing quantities with the mean field variables.

1.1.2.5 Acoustic sources from theoretical analysis

The idea behind the perturbation approaches was to determgher order equations
which represent the flow - flame - acoustic interactions. €&u{R006) show that at
higher order perturbation equations:

op

—— 4+ pV.M' = 1.6
ot + pV S1 (1.6)
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p BN +Vp =5, (1.7)
a /

6—2 FApV.M' = S (1.8)

Equations (1.6, 1.7, 1.8) are evolution equations for flatthg quantities of density,
momentum and energy respectively. They are derived frontetlief conservation of
mass, momentum and energdy., S, andS; constitute entropy, convective and acoustic
sources. These source terms represent 1) the interactieedielinear acoustics with
the mean flow, 2) nonlinear acoustics with the mean flow an@@plking between fluc-
tuating variables. The mechanism by which the base flow idfieddy the fluctuating
field is still absent. Also, the expressions for these s@waere absent in the analysis
of Culick and his coworkers (Culick, 2006). However, theg assumed to contain all
relevant processes in a reacting flow field. This type of aiglfi.e. finding the evo-
lution for fluctuations, eg. acoustic field variables, gowt by the source terms) can
be extended to specific cases such as laminar premixed flagueh an approach is

possible when the source terms relevant to those casestarendesd.

Wu and coworkers (Wet al., 2003; Wu, 2005) follow this approach where they
solve the acoustic wave equation with the sources from fl@dhanical processes. Wu
et al. (2003) try to determine the influence of a premixed flame, lined in a duct,
on the acoustic field set up inside the duct. Here, fluctuajunantities represent the
acoustic field variables. The source terms introduced byptbenixed flame appear
on the right hand side of the acoustic wave equation. Theug&wal of the flame is
described by a variabl€, which gives the location of the flame front. The influence

of localized heat release rate is expressed by a functiofi. offhe discontinuity in

the acoustic velocityu,] = ¢((1+ (VF)?)/2 — 1) also modifies the flow velocity as

[Uo] = q((1 + (VF)?)~Y2 — (1 + (VF)2)1/2). In this manner, the strong heat release

rate can modify both the acoustic and base flow velocitiesbéshing the feedback
loop. In their theoretical analysis, Wu and coworkers (@fual., 2003; Wu, 2005)
found that the source relevant to the mean flow - acoustic iieétaction is the heat

release rate.
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Figure 1.1: Typical length scales in a Rijke tube burngrrepresent the long wave-
length of acoustic wavel, represent the hydrodynamic zone dn@ndis
represent sizes of eddids.is the length scale of reaction zone.

Sources for acoustic field are governed by different timéescal he entropy, con-
vective and acoustic modes act at various time scales. Magre many attempts to
develop perturbation equations for computing the acopséssure from these sources.
Giauque and Pitsch (2009) performed an acoustic - hydradimsplitting to under-
stand how sources from hydrodynamics are responsible éogémeration of acoustic
pressure. However, there is only one time scale considefed time scales, one
representing acoustics and one representing hydrodysaarécnecessary to identify
the different sources. Due to the existence of disparate sicales, the full compress-
ible simulation for computing the acoustic perturbationtsas the one performed by
Birbaud and Pitsch (2008) require huge computational mesesu LES, URANS and
coupled CFD/CAA approaches require the same amount of res®uAn interesting
description of these methods can be found in the book by Seh{#809). An acoustic
perturbation equation which will save computational time at the same time identify

the time scales associated with the flow - flame -acousticaot®n is necessary.

An attempt at incorporating multiple length scales by Mapian and Sujith (2011)
and Kleinet al.(2001) revealed interesting information about the cowgptine to source
terms. Figure 1.1 shows a typical geometry used for themalestudies. The length
scales considered in their analysis consist of a lengtle gepresenting the hydrody-
namic zone and a length scale for incorporating long waygteacoustic wave. These
length scales are related to each othel,as ¢l5, wheree is proportional to the Mach
number. Kleiret al.(2001) found that a term, which is the gradient of acousesgure,

forces the fluid flow in the hydrodynamic zone. Mariappan aujitts(2011) success-
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fully applied this theory to explain thermo-acoustic ifsligy in a Rijke tube. They
found a source termu’/0t, known as global acceleration, that causes flow - acoustic

interaction.

The above discussed theoretical studies are limited tapreilength scales and sin-
gle time scale. The thermo-acoustic instability being thesequence of flow - flame -
acoustic interaction, it is worthwhile to investigate wiat can achieve by incorporat-

ing various time scales associated with these processks theoretical anlayses.

1.2 Perturbation Methods

The flow in a combustor is responsible for sound productidre fheory of determining
the acoustic sources from the flow was introduced by (Lidhtt®54) who pioneered
the idea of sound generation from the flow. The theoreti@h&work involved com-
puting acoustic sources from the flow and using it for the catafion of acoustic field

using a wave equation. The equation derived by Lighthilsi$adlows:

(8_2_ 26_2) _ ¢ 0/ + 0T
o~ 02" T 0t oxi ' oo,

(1.9)
whereT;; is Lighthill’'s stress tensor. For low Mach number flaly; ~ pyv;v;, wherev

is the velocity associated with the eddy motion agds the density of the fluid (Crow,
1970). There are various analytical solutions based orfdimsulation. The analytical
solutions include an expression describing the role ofieityton sound generation.
The Lighthill's stress tensor here expresses vorticityngsdontributing source to the
wave equation (Howe, 2002). Differentiatifi¢j twice lead to

821)@'1)]' 2 1 2
D, V.(vwxv)+V (QU ) (1.10)

wherew = V x v is the vorticity. The ternV.(w x v) is often called Howe’s source

term. The famous Howe's analogy is based on the total entHalp- [ dp/p + 1/2v?,
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in terms of which a wave equation can be formulated as

0 o

The solution to this wave equation, in the farfield|(— oc), givespoH = p — po. All

the analytical expressions are valid only for the farfield.

The configuration studied by Mariappan and Suijith (2011uchghat the flow field
is confined to a small length scale compared to the long leschle representing the
acoustic field. This is the consequence of the low Mach nurfiberthat prevail in a
combustion chamber. The flow field with the heat source remtssan inhomogene-
ity in an otherwise homogenous acoustic field. Followinghtigll's approach, we can
compute the acoustic sources from the hydrodynamic zonepply the source term
for the wave equation. This type of problems are called darquerturbation problems.
The Poincare-Lighthill-Kuo (PLK) method is one of thosdteitjues which could solve
the singular perturbation problems. Another approach otwsider the acoustic field
as the compressible part of the incompressible flow fieldhSugiewpoint has an ad-
vantage that acoustics can be taken into account as a parturlio incompressible
fluid flow. Klainerman and Majda (1982) did a pioneering wamksplitting compress-
ible fluid flow into incompressible part and compressible.psliost of the perturbation
methods we use today has its foundation in the work of Klanzer and Majda. Geer
and Pope (1993) and Muret al. (2007) introduced multiple pressure variable as per-
turbations ofO(¢) to find out a solution for acoustic pressuge=€ py + ep; + €2ps).
The leading order pressure variablerepresents the thermodynamic pressure and the
higher order pressure variablesandp, represent the hydrodynamic pressure driving

the incompressible fluid flow and acoustic pressure respgti

Apart from the use of multiple spatial scales, (Balaji andakravarthy, 2010) in-
vestigated the effects of such sources using multiple tim#iple spatial scales. The
leading order equations resemble the incompressible flovd dlquations. The pertur-
bation (or higher order) pressure and velocity variablésfyaacoustic wave equations.
However, their formulation uses the acoustic sources sschlaation as an averaged

guantity over the short length scale fluctuations. Howethes,averaging performed
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over short length scale fluctuations makes any informatiothe fluctuations due to
localized perturbations of the flow unavailable. Also thelation equations for acous-
tic field variables are on the acoustic time scale. The flovetsoale phenomena due
convection and diffusion appear as averaged quantitiegesd phenomena can have
serious consequences on the stability of the system. Fon@eathe heat release rate
in a non-premixed combustion is governed by the diffusioth @nvection (Oran and
Gardner, 1985).

An advantage of perturbation method, which we have emplayedis thesis, is
to decompose various sources responsible for instabillys can be performed using

source filtering.

1.2.1 Source filtering

Extracting the acoustic sources from the compressible flowl equations requires a
physical understanding of what constitutes the acoustid &ird what represents the
flow field. As we have discussed before, the identificatiorhefiinodynamic pressure,
hydrodynamic pressure and acoustic pressure is a partophiyisical understanding.
Theoretically this understanding is obtained from the depaosition of field variables
and to formulate the evolution equations for the decompeseidbles. This decom-
position is made possible by the perturbation method. Esolugon equation thus
obtained represents a physical process (representingdtdeandriven by their respec-

tive sources. These equations are called perturbatiortieqgaa

An interesting account of this procedure is given in therditere. For example,
Noiray et al. (2009) experimentally identifies a mechanism by which atoasd con-
vective modes are generated by an orifice plate inside a @uotan (2008) used the
filtering methods to filter sound waves from compressible toformulate a system of
pseudo-incompressible fluid flow equations. Earlier thithoe was also used in deter-
mining the compressibility corrections for flows in the saland (Zank and Matthaeus,
1991). Once individual processes are identified, the typesurces can be identified
by a method given by Ewert and Schréder (2003), originallsigieed for the study of

aeroacoustic systems. Their method is outlined here.
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. Write the governing equations in the forit/ = G. WhereU is the Fourier and
Laplace transform of perturbed quantitiés= (p2, 11, p2a)T. The Fourier trans
form is done in space and Laplace transform in time as follows

r 1 OO > —i(az+By—wt
Flopw) =g [ ] [ s om - Nazayar

The operatord comes from the use of following properties to the spatiam te

poral operators

(L) = iy

W

(50 = (o]
o0 :

. 1
\S(E) = —wf — %fim‘tial
G consist of source terms.

. Find the eigenvalues and eigenvectors of the matrix epeda These eigenvec
tors correspond to the entropy, convective and acoustiesiod

. Determine the filtering matrix that would eventually detae the sources con
tributing to acoustic and convective modes.

The perturbation method was originally proposed for phesrendescribed by a

single time scale. However, the solutions to the equati@veming the flow - flame

-acoustic interaction are functions of multiple time sead@d multiple spatial scales.

Then the acoustic sources act on different time and spadessda this context, time

and space scales which describe their interaction are shdseearlier attempt using

this approach is by Culick (2006). He applied the method efaging to formulate a

theory to study the interactions on various time scales.

1.2.2 Method of averaging

The method of averaging, as proposed by Culick (2006), isvetet by the fact that the

amplitude of acoustic pressure evolves on a slow time scalgared to the time scale

of acoustic wave propagation. Therefore, he used a two toale sapproach, pioneered
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by Kevorkian and Cole (1996), to determine the averagedtamsa Culick employed

this method to determine the solution for a second order OPfalbws:
iin +winn = pGy (1.12)

where(Gy are the sourcesu is a small parameter. The solution to the above equation
is proposed as a product of a solution varying on the slow soae and a solution

varying on the fast time scale.
ny = A(t)sinwnt + B(t)coswyt (1.13)

Where A and B are the slowly varying parts and the trigonometric partsegaon the
fast time scale.A and B are the amplitudes which vary because of the source terms.
Sources act on a different time scale compared to that ofti@itude. Finally, the

evolution equations for the slowly varying part is found ast

dA t+7
v _ 1 G ncoswyt'dt! (1.14)
dt WNT J,

T can be assumed to be the time period of the fundamental acoustie. The essence
of this method is given by Eqg. (1.14), where the sources azeaged over the fast time
scale to determine the the slow evolution of amplitude. Thhwod of averaging is
promising when multiple scales are involved. However, thegsical interpretation of
these time scales and space scales are necessary to rehat®tthe physical variables

such as thermodynamic pressure, hydrodynamic pressure etc

1.2.3 Method of multiple scales

Describing the physical processes that govern a thermosticesystem requires mul-
tiple length scales along with multiple time scales. In ttoatext, method of multiple
scales (MMS) can be used as a generalized method of averdgM§ is an ideal tool

to incorporate multiple length and time scales into the ymalof thermo-acoustic sys-
tem. Another advantage, which we will explore in this themghat MMS provides a

physical interpretation of the scales included in the asialyA detailed description of
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MMS will be given in Chapter 2.

1.3 Stability of a thermo-acoustic system

Instability in a thermo-acoustic system is characterizgtirbit cycle oscillations. Un-
derstanding the mechanisms that lead to the emergenceibtyiate oscillations is the
first step in predicting the instability. Limit cycle os@tlons occur when the acoustic
pressure amplitude saturates by a nonlinear mechanism &fid Lieuwen, 2006). As
discussed before, the flow - flame - acoustic interactionmidpen the acoustic sources
in the reacting flows. These source can be linear or nonlif@anther, these sources
can also be classified into driving and damping factors afntfleeacoustic oscillations.
The processes of driving and damping are depicted in Fig).(The pointA; - repre-
sent the condition when driving becomes equal to dampingh&deft of A, driving

is more than damping and the operating condition shift toridpet, eventually reach-
ing Arc. To the right of A, -, damping exceeds driving and then operating condition
shifts to left, eventually reaching ;. Thus the pointd, is an equilibrium point. A
theoretical framework to study this phenomena should if{ethte linear and nonlinear

processes as follows:

H(A) = ey A + H,(A) (1.15)
D(A) = €A+ D, (A)

Figure (1.3) shows the feedback loop which acts as a driviegfranism for thermo-
acoustic instability. The unsteady flow can lead to fluchatieat release rate. Heat
release modulation can also occur due to the fluctuationgalaeoustic field. The
heat release rate fluctuation, in turn, modifies the flow fifltiese three factors: 1)
the unsteady flow field, 2) the fluctuating heat release rate3rthe acoustic field,
drives each other to cause the growth in the acoustic pessoplitude. The damping
mechanisms involves the mechanisms which causes the las®osétic energy. These
mechanisms arise in a thermo-acoustic system as one thst t@nsfer of acoustic

energy to other modes such as convective and entropy modesofi 2008). The
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Figure 1.2: The representation of drivid§(A) and dampingD(A) process, adapted
from Zinn and Lieuwen (2006), in a thermo-acoustic systeadileg to limit
cycle oscillations.
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Figure 1.3: The driving mechanisms leading to thermo-atousstability
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base flow may carry the acoustic energy out of the domainicgtise acoustic pressure
amplitude to decay to zero. In addition, there can be thethsaipation that compete

with the driving mechanisms.

1.3.1 Bifurcations

Bifurcation means a qualitative change in the behavior oymacical system in re-
sponse to the change in control parameter. For example, iifgp€ation leads to limit
cycle oscillations from a non-oscillatory state. Bifuioatis a nonlinear phenomenon.
Bifurcation diagrams which show the response of a thernousttc system to various
system parameters help us to identify the stability catéor instability. Significant
advance in this direction is achieved due to the work of Bayrdnd Culick (1996),
Mariappan and Sujith (2011), Ananthkrishnahal. (2005) and Subramaniaet al.
(2013). At present the instability in a thermo-acousticteysis found to be arising

from two types of bifurcations-supercritical and subcatibifurcations.

A

Control paramter /4

Figure 1.4: Subcritical and supercritical bifurcations.heTbranchA (supercritical
branch) is a stable branch with any perturbation eventuaiywerging to
A as the final state. The branéh (subcritical) is an unstable branch with
perturbations above this branch diverging and the pertiaris below the
branch converge to zero amplitude state.

Among the bifurcations, supercritical bifurcation is izatl numerically for the in-
stability in a Rijke tube (Mariappan and Sujith, 2011). Tha&stence of subcritical
bifurcation as shown in Fig. (1.4) is not realizable as themo finite amplitude stable
branch in such a bifurcation. In such bifurcation, the satan to a finite amplitude

limit cycle amplitude is possible through a fold point. Thisenomena is theoretically
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studied by Subramaniagt al. (2013) in the context of a horizontal Rijke tube. Other
oscillatory branches indicating quasiperiodicity andatf@oscillations are found in
experiments (Kabiraj and Sujith, 2012). An efficient nuroarischeme, using matrix-
free continuation, which computes these branches is peojpog (Waugtlet al., 2014).
Researchers, studying the supercritical and subcritiatdations in thermo-acoustic
system (Subramaniagt al., 2013; Clavinet al., 1994), attempt to represent the bifurca-

tions using a simple mathematical equation known as noromnai.f
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Stable |Bistable zong Unstable

Figure 1.5: Subcritical bifurcation shown as dashed lidieweed by a fold point. After
the fold point a stable solution branch (shown as solid liserhieved indi-
cating limit cycle amplituded; . The bistable zone shows the coexistence
of a stable zero amplitude branch and a stable finite ampglibuench. A
small perturbation in the unstable regime results in théesygpproaching
Arc. However, in the bistable zone a large perturbation (ablogdfresh-
old value shown by the dashed line) is needed for the systeaathA, .

In the stable regime perturbation of any magnitude will eévalty die down.

1.3.1.1 Normal form of bifurcations

Equations (1.16) and (1.17) represent the normal form oémsuiical and subcritical
bifurcations respectively. The control parameleis expressed as the coefficient of
linear term. Variation in the control parameter will resulthe bifurcations shown in
Fig. (1.4).

&= \x —2° (1.16)
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&= \x+2° (1.17)

Equations (1.16, 1.17) also show that the bifurcations adimear in nature. The
saturation of the linear growthi (= \z) is caused by the cubic nonlinear term. In
experiments, bifurcation is accompanied by the hyste&abiraj and Sujith, 2012).
The hysteresis is caused by the existence of a bistable eggithe control parameter
space. Origin of this phenomenon is also due to the competitetween driving and

damping mechanisms in a thermo-acoustic system.

1.3.1.2 Bistability

Figure (1.5) shows the coexistence of a limit cycle soluioa control parameter space
along with the stable zero amplitude solution. This stgbdharacteristic of thermo-
acoustic system is called bistability. While operating ibistable zone, the system
can approach a finite amplitude branch from zero amplitudedr for a sufficiently
large perturbation. This phenomenon is known as ‘trigggr{icker et al., 1996).
The system can also approach the finite amplitude branchnfpsnall perturbation
when the control parameter exceeds a critical valug (While the system is in the
state of limit cycle oscillation, even by changing the cohfrarameter below,. will
not cause the decay of limit cycle amplitude. This phenomes&nown as hysteresis

of a thermo-acoustic system.

As discussed earlier, when the driving exceeds dampingdbiéation will start to
grow in amplitude until the finite amplitudé . is achieved. This happens when the
value of control parameter exceedls Therefore, determining the control parameter
for a system helps us to identify the growth mechanism in glyatem. Also in the
bistable zone, a large perturbation can overcome the dannpihe system resulting in
Arc. An understanding of driving and damping sources is inblatan the control of a

thermo-acoustic system (Culick, 2006; Zinn and Lieuwei®8)0

We believe that, determining a mechanism that causes thgiticm from the zero
to finite amplitude branch is an outstanding issue in theysaidtability. In the next

section, we will describe the theoretical approach that swetadopted in developing a
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theory to study the stability in thermo-acoustic systems.

1.4 Objective and overview of thesis

This thesis primarily aims at developing a theoretical fearark for the study of flow -
flame - acoustic interaction that leads to thermo-acoussi@bility. Towards this pur-
pose, we have employed method of multiple scales (MMS) torparate various time
scales and length scales involved in a thermo-acoustiersysthe governing equations
for compressible reacting flows are decomposed into pextiotto equations governing
the individual (flow, flame and acoustic) physical proces¥és show the dependence
of these processes on the time scales and length scalesichibgntually, through a
rigorous mathematical derivation from compressible flumvfequation, we have de-
veloped a new theory to study the stability of a thermo-atowystem. This theory
formulated in the form of a set of convection - reaction - usfbn (CRD) equations
explains the stability characteristics such as limit cyaseillations and bistability of a

thermo-acoustic system.

In Chapter 2, a detailed description and demonstration@MMS is given. The
methods discussed in Chapter 2 is the basis of the formualafithe theoretical frame-
work. The detailed derivation of CRD equations, in the londdaumber limit, is given
in Chapter 3. These equations are introduced for the firgt itinthermo-acoustics. Pre-
viously, reaction - diffusion equations were used to studgambustion research to
track passive scalars such as temperature (Schvab - Zeltdeguation). However, the
CRD equations developed in this thesis describe the ewolati acoustic pressure and
thermal fluctuation. The advantage of CRD equations is they have inherent sta-
bility characteristics such as bistability. The fact tHagte equations are derived from
the governing equations for reacting flow makes it evideat the thermal - acoustic

interaction and resultant instability are inherent to tecting flows.

We have shown in this thesis how the physical processes sugtsteady fluid flow,
heat release rate, DC shift compete with each other to dridedamp the instability.
The study of this competing behavior, as we have discussttiBection (1.3), starts

with the identification of linear and nonlinear processes we have discussed in Sec-
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tion (1.3.1.1), the bifurcation is a consequence of a lirggal a nonlinear mechanism.
The CRD equations model this mechanism. The CRD equatioms $te relation
between the convection, heat release rate and thermapaliesi. In Chapter 4, the
presence of various sources and their respective timessasediscussed. In Chapter
5, we show that the nonlinearity inherent to all low Mach nemieacting flows arise
from the chemical - acoustic interaction. The linear groattacoustic pressure am-
plitude is shown to be the result of heat release rate, D@ ahd thermal dissipation.
In Chapter 6, we show that during the thermal-acoustic awtgsn, acoustic pressure
amplitude grows in time due to the interaction between tleaisiic and hydrodynamic
fields, leading to high amplitude sustained oscillatiortsisTransfer of energy is shown
to be the cause of bistability in a thermo-acoustic systamally, in Chapter 7 we dis-
cuss the conclusions from the present work and the posgiplecation of the present

theory to other interesting phenomena in thermo-acougsiems
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CHAPTER 2

Method of multiple scales

The method of multiple scales (MMS) is a perturbation metHodhe past, perturba-
tion methods aided many advancements in fluid dynamics. ample, in boundary
layer theory, the thin layer where viscous forces are dontiimaroduces a length scale
that is small compared with the length scale of the domainravtiee inviscid flow
prevails (Kevorkian and Cole, 1996). Determining a uniftyrwalid solution for the

boundary layer and the domain of inviscid flow motivated tee af perturbation meth-

ods in boundary layer theory.

2.1 Boundary layer theory

If Navier Stokes equations governing the fluid flow is written

ou ou ou  Op
fo— 4+ £ = + 2.1
ot Y ox v oy Ox (thaa + Uy (1)

ov ov ov  Op

§+u%+v8_y+0_y = (Vg + Uyy)
o
or Oy

then the inviscid fluid flow is governed by Euler equations.

ou ou ou Jp

ov ov ov  Op

I

o "or T Vay oy
o o
or 0Oy

The equations governing the fluid flow inside the boundargidare formulated by

scalingu = U(X,Y,T),v = nV(X,Y,T),p = P(X,Y,T), X =2,V = y/§ and



T =t. Variables/, V, P, X, Y andT are used to describe the flow inside the boundary

layer. Upon these scaling, we obtain the Navier Stokes emsas follows

oU U . .U OP ;
- - 4y lyZ= 22 — 2.
8T +U6X + 5V6Y+6X EUxx+52Uyy ( 3)
ov ov. nm* 0V 10P €n
8—T+U3—X+FV8—Y+50—Y = €T}VXX—F§VYY (2'4)
ou noVv
a—X—Fga—Y =0 (2.5)

The inner solution (solution inside the boundary layeruiezs the dependent variables
inside the boundary layer to match the inviscid solutiort¢ogolution). The transverse
gradient terms decide the variation of dependent variabsde the boundary layer. If
we writen = § andd = /e, then the transverse gradient terms in Eq_. (2%3/)3% and
szUyy) andin Eq. (2.4)%21/2—; andg Vyy) will be of the same order. Upon using this

scaling ¢ = ¢ andd = /¢), we obtain at leading orde¢"):

ou ou ou 0P

oP _,
oy

o oV _
ox oy

Equations (2.2) and (2.6) (Note that both these equationtast the leading order
terms) give the outer and inner solution respectively. @ledists a region of overlap
where the inner and outer solutions match. For the flow oveatgfate {{ = 0 rep-
resenting the solid boundary), #s— oo the inner solutior/ (X, Y, T") should match

u(z,y,t)asy — 0.

2.2 Example problems for demonstrating secular and

layer type problems

A review of model problems representing fluid flow phenomeargiven by Lagerstrom
and Casten (1972). These type of problems which involvgsadide length scales are

known as ‘layer type’ problems. There is another kind of pgobwhere the disparity
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is in the time scales. Such a problem is called ‘secular tppeblems. Solutions to
secular type and layer type problems are carried out in thieges; 1) Determine the
domains of interest, 2) construct solutions valid to eactmaa and 3) match these
solutions at the region of overlap of domains. An example sé@ular type problem is
given below.

d*yq dya

2 Jd 4 9RTId ey = () 2.7
mdt§+ﬁdtd+ Ya (2.7)

Equation (2.7) is the governing equation for a spring - mgsges. The nondimension-
alization is carried out by choosing= v,/ L for the dependent variable (amplitudé).
is the reference amplitude. There are two time scales. Oolatésned ag’ = \/m/k
and the othefl;, = §/k. Therefore, time can be nondimensionalized with respect to
any of these time scales. For example, when nondimensioena),/ T}

d*y | dy

@4_26%4_3/:0 (28)

wheree = /vmk = Ty/T;. For small damping/f << vmk. An approximate
solution can be found for the following equation.

— ty =0 (2.9)

with initial conditiony(0) = 0 and|dy,/dt|;,—o = 0. Solution to Eq. (2.9) can then be
written as

Yo = sint (2.10)

where,y, is the leading order approximation to the full solutipnThe full solution can

be written as

y~ Y () (2.11)
k=0
On the substitution of the solution (2.11) to the governigg .8), we obtained fay;
d*y
Tz + y1 = —2cost (2.12)

with y,(0) = 0 and|dy, /dt|.—o = 0. The solution fory; can then be expressed as

Yy = —tsint (2.13)

26



The next step is to see how good is the approximate solutidi)2The error in ap-

proximation can be expressed as
y— (yo +eyr) = O(%) (2.14)

Towards this purpose, we look for the validity of the solatia a time interval0 7.
When the timer is of O(1) the convergence criterion given by (2.14) is satisfied. How-
ever, if 7 is of O(1/¢) the solution ofy, diverges and the convergence criterion is vi-
olated. Then, we do not have a good approximation for thetisoly. To ensure the

convergence of the solution expansion, we should therelorenate the secular terms.

The layer type problems will violate the convergence daterdue to ‘singularity
condition’. This is explained in the following example. Whihe mass is smaller than

the damping/uk << 5%) the spring - mass equation can be represented as

Py dy
A e AP 2.15
N5+ 2y =0 (2.15)

with initial conditionsy (0) = A and|dy/ds|,—o = B, wheres = tsk /(. n = km/[> =

1/€* = T? /T is the small parameter. A solution expansion of the form
y~ > 0y (2.16)
k=0
can be constructed in terms@f The leading order equation is obtained as
2—= 4y =0 (2.17)
ds
A solution to the leading order equation is of the form

Yo = Ae /2 (2.18)

However, in the spatial intervdl) s|, whens = 0, the velocitydy/ds gives the wrong
value; i.e. the initial condition is violated. Thereforesiagularity exists ak = 0.

However, the exact solution to Eg. (2.15) (Lagerstrom ansté€g 1972) shows that
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when a correction of)(n) (see Eqg. (2.19)) is added to the leading order term
1
Yy~ Ae™/? — Z(A + 2B)e 2/ (2.19)

the velocity boundary condition is satisfiedsat= 0. Here, the factok/n is another

time scale; /T3, whereT; = m/f.

In the above discussion, we see that to determine a unifovallg solution; i.e.
solution valid neas = 0 (the singular region) and everywhere else, we need at lgast t
time scales (in secular type problems) and two length s¢aldayer type problems).
In layer type problems each domain is analyzed separatelyitsiown length scale.
However, in secular type problems both time scales are usedtaneously. In the next
section we will discuss the procedure underlying the sotutif secular and layer type

problems.

2.2.1 Method

The method of multiple scales requires an initial solutigpansion. Often, this solution
expansion is known as asymptotic expansion. Construcfitre@asymptotic expansion
follows certain conditions. These conditions are elalzntan the books by Kevorkian
and Cole (1996), Nayfeh (2008) and in a review by Lagerstracth@asten (1972). A

brief outline of these conditions are given in the followsgrtion.

2.2.1.1 Asymptotic expansion

Asymptotic expansion is an approximate solution constditd satisfy the governing
equations of a physical problem. This procedure is requirdeen the problem is layer
type or secular type, as an exact solution is unavailable agymptotic expansion is

expressed as follows;

y=>_ ¢y (2.20)
i=0

wherey is an approximation to the actual solution. Each term in fhgreximation

(¢'y1, ¢*y»..) should be smaller than the preceding term. This is edsoyechoosing
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suitable asymptotic sequencg'( ¢2..). The behavior of a asymptotic sequenge)

and the asymptotic expansigni.e. the convergence and divergence, as the limit ap-
proachesd — 0) is expressed using Landau symbols (Bigand smallo). Landau
symbols indicate the relative order of magnitude of eaci terthe expansion. In the

next section, using simple examples we will explain the ddeaodau symbols.

2.2.1.2 Landau symbols

For a domainD (a physical domain where we try to find the solution in termsde-

pendent variable) and in the interval : 0 < € < ¢,

y(r;e) = O(v(x;e)) (2.21)

implies that

y(r;e) < K(z)(v(z;€)) (2.22)

wherev is a gauge function. Gauge functions are used to measureadhhgrate of
asymptotic sequence (Nayfeh, 2008). Bigmplies that|y/v| is bounded by (x). If
the condition (2.22) is true, then the solution given/ag uniformly valid in the domain

D throughout the interval. As an example,

z+e=0(1) (2.23)

is uniformly valid in the domairD : 0 < x < lintheintervall : 0 < € < ¢; < 1.

However, the expression
1

x + €

—0(1) (2.24)

is not uniformly valid as we cannot determine a finite cons(aate that here the con-
stant does not vary as i.e. constant is 1) which satisfy the above expression when

r — 0.

The other Landau constant states that

y(@;€) = o(v(z;e)) (2.25)
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which implies that for any domaif and intervall : 0 < ¢ < ¢; we have
y(z;€) = do(v(z; €)) (2.26)

Expression (2.26) implies thgt<< v ase — 0 or in other wordsy is bounded. Hence
the expression (2.26) implies (2.22). An asymptotic expansan be constructed if we

choose suitable asymptotic sequente) such that

¢ = o(¢") (2.27)

Such an asymptotic sequence will result in an asymptotiaesion:

m=n—1

y= Y, "()ym+O0[¢"(e)] (2.28)

m=0

An example for such an asymptotic sequencg s) = ¢/, wherei = 1,2, 3, ..

2.3 Example problem with MMS - two time scales

As the first example we will discuss a problem with two timelssayoverned by an
ODE. The physical problem described here is that of an aseillwith small damping.
The contribution of the small damping term is negligible be toscillatory process.
However, over long time, these negligible contributionséha cumulative effect on
the physical system. These problems are often encounteneatiire. The motion of
satellite around the earth is influenced by the thin atmasplygavity of the moon etc.
over a long time. Similarly, the small damping can lead todbeay in the amplitude
of oscillations. This ‘invisible’ time scale over which giahanges occur to the system
has to incorporated in the analysis. A description of sudblems can be found in
the book by Kevorkian and Cole (1996). The following exampladapted from the
book on perturbation methods by Nayfeh (2008). A linear desngpscillator can be
represented as

P+ a=—2ei (2.29)
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An asymptotic expansion is chosen with an asymptotic sezpignterms ot.

T =20+ exs + a9 + .. (2.30)

The asymptotic expansion is substituted into Eq. (2.29)taio at various orders af

O(®) = Fg+mo=0 (2.31)
O(El) — 21 +1 = 21 (232)
0(62) = Tg+ Ty = —21 (233)

Substituting solution to Eq. (2.31), whichig = cogt + ¢), in Eq. (2.32) we obtain
the solution tox; asz; = —at cogt + ¢). Similarly, solution tox, is obtained as
zy = (1/2)at*codt + ¢) + (1/2)at sint + ¢). A close look at these solution shows
that whent = O(e!), z; andz, becomes secular terms; i.e;, 7o — oo ast — oo.
The higher order variables, andx, should be smaller than the leading order term for

a converged solution. An exact solution to Eq. (2.29) is
x = ae “cos[V1 — 2t + ¢ (2.34)

In the above expression there are two time scales involvedilgs to the example in
Section 2.1, where we used multiple space scales to remevsirigularity, we may
need an additional time scale to remove the secular terms.n&ht step is to choose
suitable time scales for this purpose.
2.3.1 Choosing the time scales
Upon Taylor series expansion, we obtain
—et 1 242
e :1—et+§et + .. (2.35)

and

1 1 1
cos[V1 — €2t + ¢| = cos(t — §€2t + ¢)ge4t5in(t — §€2t +¢)+ .. (2.36)
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In the expansion (2.35), the terms ©f¢) and O(€?) are secular terms whenis of
O(1/¢). The error in approximation will only grow as we add more tetmthe Taylor
series expansion. The variableandt are grouped together and a new time scale
T, = et is introduced to keep the error within the limit. Similarfgyr the expansion

in (2.36) to converge, time scalds = ¢t = O(1) andT, = ¢t = O(1) are to be

introduced.

2.3.2 Incorporating the time scales into the analysis

The time scales are incorporated into the analysis as fellow

R B
g Z O (€) T (2.37)

n=0

Substituting the asymptotic expansion and time scale esiparinto Eq. (2.29), we

obtain at various orders ef

82x0

o7 + 29 =0 (2.38)
8;—7? ta = —zg—iz - ;;0”37‘11 (2.39)
AR i s S
The leading order solution is obtained as
zo = Ag(Th, To)e™® + Ag(Ty, Ty)e ™ (2.41)
Substituting this solution into the second order equatigpbtain
T = Al(Tl,Tg)eiT“+Zl(T1,Tg)e_iTO—(AoJrg—?f)ToeiTO—(ZOJrg—?f)Toe_iTo (2.42)

Ty isO(1) as long ag is O(1). However, whert is O(e~!), the above solution contains
secular terms (the third and fourth terms), implying tha&t $elution is not uniformly
valid for all ¢. In the next section, we will demonstrate the how to ensuraifoum

valid solution, thereby also ensuring the convergenceetigymptotic expansion.
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2.3.3 Ensuring convergence of the solution

To remove the secular condition, we impose the following.

04,
Ag+—=0 2.43
0o+ o7, ( )
ThenAy = ape™t andz, = A, (T}, Ty)e'™ + A (Ty, Ty)e~*™. Similar condition are
revealed while solving for,. Finally a solution which is guaranteed to converge is

obtained (see (Nayfeh, 2008) for detailed derivation).
—e€t 1 2
x = ae “cos(t — 3¢ t+ ¢) (2.44)

In the next section, we will discuss problem with multiplesal scales. The purpose
of the next section is to demonstrate, using a simple exartipeole of spatial inho-
mogeneity. The spatial inhomogeneity can arise naturaliyhe boundary layers and
the need for incorporating the spatial scales to resolitiiomogeneity is already
discussed in the beginning of this chapter. In the nextsectie introduce ‘fast’ and
‘slow’ variation of spatial variable describing the vaigat of physical quantities such

as velocity and pressure, when there is a spatial inhomdagene

2.4 Example problems with MMS - two spatial scales

The following example is adapted from the book by Kevorkiad &€ole (1996). We
show in this example how the variation in the fast scale isayed to provide an asymp-
totic approximation to the original equation. Such an eiguas called a homogenized
equation (Kevorkian and Bosley, 1998). An application fomwogenization, used in
the context of combustion instability can be found in a maapy by Culick (2006).
Culick derived equations for acoustic field variables onaavel time scale. However,
here we illustrate the method of homogenization using a lemapd easy to follow

example of heat conduction. Homogenized equation govgrome dimensional heat
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conduction, on a slower space scale, can be derived frongtregien:

%:0 0 x dT

I = %( (z, E)%) (2.45)

The variabler describes the space scale for slow variation ahé- z /e is the space
scale for describing the fast variation in the region of imogeneity. The boundary
conditions arel’(0) = 7, and7'(1) = 0. An asymptotic expansion fof' can be

formulated as
T(x;€) = To(x, %) + €Ty (z, 2%) + €Ty (2, 27) + ... (2.46)

The spatial operator can be expressed as

d 1 0 0
dr € Ox* + oz (2.47)

Substituting (2.47), (2.46) into Eq. (2.45) gives at vasauders

ai* (k( ,x*)gﬁ) =0 (2.48)
(k)9 = L (ka2 ) (2.49)
9 (ka2 90)
(k") 92) = L (k") 1) (2.50)
k(a9 = ({2 )
From Eq. (2.48), we obtain )
aﬁ = kj(B:E,(i’)‘) (2.51)

Now, sincez* is rapidly varying with respect to, we need to impos®&, = 0. Other-
wise, due to the linear growth @, the asymptotic expansion will not converge (see the
discussion in Section (2.2.1.1)). Théh = 0y(x), whered, is the integration constant.

Eq. (2.50) is substituted with the above expression to obtai

— = —k(z, x*)% + B (x) (2.52)
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On integration,

00 = d
Ty(e,2%) = 0" 00 4 By (a) / k(—g@ by () (2.53)

To avoid the linear growth df in z* we impose:

1 dby
By (z) = W% (2.54)

where

_ e L[ de
<k (z) >= hmmwgfo o0 (2.55)

Similarly, for Eqg. (2.51), we have the condition

d 1 db,

e k=1 (x) S0 (2.56)

wherel/ < k~'(z) > is the effective thermal conductivity. The resultant ecprats a

homogenized equation and provides a good approximatidretesxact solution.

db,

- (2.57)

Gr = —keps(2)

The main idea demonstrated by the examples is that to engw@deapproximation
to the exact solution, the linear growth in the fast scale is¢ avoided. The conditions
prescribed to ensure a good approximation are called stityaionditions. The meth-
ods described in the preceding sections form the basis lohigges used in the field of
aerodynamics sound generation (Crow, 1970; Lighthill,4;95eer and Pope, 1993),

which we will discuss in the next section.

2.5 Aerodynamic sound generation

Crow (1970), for a very small Mach numbeY/( << 1), provides a theoretical frame-
work to study the aerodynamic sound generation from edtlesegards such a prob-
lem as a singular perturbation problem. The motivationeising singular perturba-

tion method in the study of aerodynamically generated saitiek presence of multiple
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length scales. The length scale representing the eddlesd the length scale for acous-
tic wave (\) form a ratiol/\ << 1. The existence of localized eddy embedded in an
acoustic field motivates one to decompose the velocity figiol & rotational field and
an acoustic field.

u=V xv+Ve¢ (2.58)

The source territ;; in the Lighthill’s equation (1.9) can then be expressed assgmp-
totic expansion

Ty; =T+ M°T} + .. (2.59)

The leading ordef;; decays rapidly outside the eddy zone. However, the higluarsr
are made to consist of both rotational and acoustic comgendine uniformly valid

solution is obtained by matching the solution inside theyaglith the solution for acous-
tic field that exist outside the eddy zone. An adaptation ©f tethod is also used in
thermo-acoustics when multiple length scales are encoeth{i®lariappan and Suijith,
2011). A similar application of Crow’s approach is used byGand Pope (1993) while
studying the sound from vibrating bodies. They used mudtiphgth scales, = = and

x; = M'x, wherei = 1,2, ... The variable are expanded as

o0

p=> pM (2.60)
7=0
and
u= Zuij (2.61)
=0

and the spatial derivative is expressed as

V =Vy+MV+ MVy+. (2.62)

Geer and Pope (1993) applied the technique of singularibation theory to determine
higher order perturbation equations governing the soundymtion and propagation.
They found out, in addition to the linear wave equationshbrgorder nonlinear equa-

tions that predict the nonlinear features such as wave etasg.

The method of multiple scales as described in this chagtbgugh useful in treat-
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ing the singular and secular type problems, is “problem dédest‘. The discussion
in this chapter serves as a guideline in dealing with diffeghysical problems. The
asymptotic expansion, the procedure for ensuring the egaemee and the choice of
small parameter depends on the physical nature of the pnobléhe asymptotic se-
guence have to be carefully chosen if the higher order espumare to be meaningful.
In the context of thermo-acoustics, the method employedatiield of aerodynamically
generated sound is worth exploring. However, the methoddhe extensively mod-
ified to incorporate multiple time and space scales simattasly. We will introduce

such a methodology in Chapter 3.
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CHAPTER 3

A theoretical framework to study flow - flame - acoustic

interaction

3.1 Acoustic - flow interaction viewed as wave - mean

flow interaction

The development of a theoretical framework to study flow - #anacoustic interac-
tion that leads to thermo-acoustic instability, involvé®asing physically meaningful
length scales and time scales. These scales include thestiales associated with
physical processes such as convection, acoustic wavegatpa and the length scales
describing the flow, acoustic wave and the flame. These ti@lesand length scales
are disparate and often arise from the inhomogeneity asealwvith the physical prob-
lem. Such an inhomogeneity, for a low Mach number flow, is teakwompressibility
due to an acoustic field imposed over the incompressible flovd Such a flow fits
the description of a ‘nearly incompressible flow’ (Zank andtMaeus, 1990). Similar
phenomenon that occur in magnetohydrodynamic (MHD) flows stadied by Zank
and Matthaeus (1990). They found the influence of weak cossfygity on modifying
the fluid flow using the method of multiple scales (MMS).

Apart from MHD flows, in atmospheric flows, where density earivith altitude,
also feature such inhomogeneity (Bthler, 2009). In theednif atmospheric flows,
Buhler (2009) formulated a theory to describe wave - mean fideraction. In his
theory, compressibility is represented as a ‘wave’ on tleenmpressible ‘mean flow'.
Such a system is similar to the nearly incompressible fluid. fBuhler has successfully
employed perturbation method, with the inclusion of mugipcales, to formulate his
theory. As an extension to the theory by Zank and Matthae®3Q)l Hunanaet al.

(2006) attempted including large scale density inhomoiggn&his density variation



introduces volume expansion in the fluid flow. Thereforehwtite large scale density

variation, the nearly incompressible flows resemble ragdow Mach number flows.

Classifying the reacting low Mach number flow as a nearly mpcessible flow or
MHD flow has advantages. Now, we only have to find the mechanigsponsible
for the wave - mean flow interaction in a reacting low Mach nemttow. The ex-
isting tools, originally introduced by (Zank and Matthaeli890), can be modified to
study these mechanisms. The mutual coupling between thaetaydrodynamic tur-
bulence and the acoustic field is responsible for wave - meanifiteraction in nearly
incompressible flows (Dastgeer and Zank, 2006). The voluxparesion, due to the
density inhomogeneity is the factor influencing atmosphiows (Buhler, 2009). In a
reacting flow, the volume expansion due to the heat releasdroan chemical reaction
influences the wave - mean flow interaction. The heat reles®ecan be fluctuat-
ing in a thermo-acoustic system due to unsteady flow. In thépter, we will show
that this volume expansion can be a significant coupling rmeisim that lead to wave
- mean flow interaction. This interaction is shown to be aatlé representation of
acoustic - hydrodynamic interaction in a thermo-acoustgtesn. In such systems, a
positive feedback loop between the acoustic sources indimgaflow and acoustic
pressure can lead to self sustained acoustic oscillatPomgotet al., 1987; Culick,
1968, 1976, b, 1997, 2006; Zinn, 1968; Yang and Culick, 1986; Poiretodl., 1987,
Candelet al,, 2009; Kelleret al., 1982; Duroxet al., 2005; McIntosh, 2007; Duchaine
et al, 2009; Wuet al,, 2003; Wu, 2005; Subramaniat al, 2013; Mariappan and Su-
jith, 2011).

Fluctuations in the heat release rate also result from tdaastic oscillation. Vortex
shedding (Poinsagt al, 1987) characterizing the unsteady reacting flow or inicins
instabilities of flame (Searby, 1992) also cause localiz=t helease rate fluctuations.
One of the reasons for the spatial inhomogeneity is due g8padty in the spatial scales
corresponding to these fluctuations and the length scatzides) the long wavelength
acoustic wave. In this chapter, we will attempt to incorperdne influence of heat

release rate fluctuations on the interaction between flaowe dhd the acoustic field.
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3.1.1 Coupling mechanisms

The mechanisms responsible for the coupling of the acofistitwith the heat release
rate are to be investigated. Such a mechanism, proposed g 1950), shows
that the thermal fluctuations or acoustic pressure fluadnatin a reacting flow can
influence the reaction rate. Earlier theoretical studidayi@ et al., 1990, 1994; Pelce
and Rochwerger, 1992), also point towards this type of dogpIThey used the terms

‘temperature coupling’ and ‘pressure coupling’ to desetifis mechanism.

Velocity coupling mechanism introduced by (Markstein, @9 describing the heat
release rate fluctuation due to the gas flow velocity arouadli#me, is also a possible
coupling mechanism. The modified flow field near the flame &rrtauses the heat
release rate fluctuation. We show that the aforementioneglicy mechanisms result

in the nonlinear evolution of acoustic pressure amplitude.

The nonlinear evolution of acoustic field variables has libeoretically studied by
various researchers (\\t al, 2003; Clavinet al., 1990, 1994; Pelce and Rochwerger,
1992). From their investigations, the need for determinimgcharacteristic time scale
for the evolution of the acoustic field is evident. The twodistales - one for describing
the acoustic wave propagation and another for describmg\hblution of acoustic pres-
sure amplitude - were included in the theoretical analysisermo-acoustic instability

(Wu, 2005; Claviret al,, 1990, 1994; Pelce and Rochwerger, 1992).

The coupling mechanisms between the acoustic field and thedynamic field
are studied analytically when the reaction zone is compazt; length scale of the
reaction zone is much less than the acoustic wavelengthgivel, 2003; Wu, 2005;
Matalon and Matkowsky, 1982). Then the reaction zone ptesediscontinuity. The
acoustic velocity across this discontinuity can be rel&g&ankine-Hugoniot relation
(Wu et al, 2003; Wu, 2005). The heat release rate and the acousticiriglegnce
each other through velocity coupling (Matalon and Matkoyy4©82; Wuet al., 2003;
Wu, 2005). However, when the heat release rate is distdbfice example, in a well
stirred reactor), the flame is not a discontinuity. The atioygessure varies across the
flame. Pressure coupling and temperature coupling domsuate cases (Claviet al.,,

1990, 1994). We believe that the contribution from the flattans (order of magni-
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tudes of the acoustic velocity, acoustic pressure and theitacttuations) determines
the coupling mechanism. (Clavigt al, 1990) studied these contributions. We will
show in this chapter that the orders of magnitudes of the i@idbles also determines

the higher order nonlinear equations.

3.1.2 Nonlinear mechanisms

A study by Clavinet al. (1994), showed that the heat release rate fluctuation due to
turbulence determined the nonlinear evolution of the atopsessure amplitude. This
nonlinear behavior caused the transition of thermo-a@oagstem to instability or self
sustained oscillations. The nonlinear effects can alsgedrom the ‘gas dynamic non-
linearity’ (Culick, 197@, b) for compressible flows. Such nonlinearities arise from
sources such as.Vu' andp'Vyp', wherew’ andp’ are the acoustic velocity and pres-
sure respectively. For weak compressibility; i. e., for IMach number flows, these

terms are negligible.

From the aforementioned discussions, we know that weak oessibility can in-
fluence the nonlinear behavior of a thermo-acoustic systéhe nonlinear behavior
causing the transition to instability arises from the cougpimechanisms between the
acoustic field and the hydrodynamic field. In this chapter,wileshow that such a
coupling mechanism arises from the dilatation term due emgbal reaction. The vol-
ume dilatation is one of the acoustic sources in the readimes. First we will derive,
from the governing equations for compressible fluid flow, teo$@coustic perturbation
equations describing the acoustic sources in reacting fldluen the coupling mech-
anisms will be determined from the sources. We show thatdbigpling mechanism
is described by coupled convection reaction diffusion (FR8uations. The influence
of physical parameters, such as heat release rate, on thityiaf a thermo-acoustic
system is described by these equations. CRD equations aliaesr and hence predict

the nonlinear evolution of acoustic pressure amplitude.
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3.2 Derivation of nonlinear equations from compress-

ible fluid flow equations

3.2.1 Governing equations

The governing equations are given as follows.

dp
(i) — 1
pr + V.(pu) =0 (3.2)

dpu 1 1
P LV (puiti -V 2
5 —l—V(puu)—l—fyMQVp ReVT (3.2)
1 Dp g - : 1 2
—= = i+ HD T 3.3
(y—1) Dt (7—1)pvu+ CLQ+R6PTV (3:3)
0Yi G Vit = — Y pDVY: + Daus (3.4)
ot P = Rege P ' ek '

These equations are nondimensionalized by their refereasdoes (Kleinet al., 2001).
For a compressible fluid flow, Egs. (3.1-3.4) represent theicoity, momentum, en-
ergy and species conservation equations respectiwefyand are density, pressure
and temperature respectively.is the velocity vector. Arrhenius law governs the re-
action ratewy,. In Eq. (3.3),Da, H and () are the Damkohler number, heat release

parameter and heat release rate respectively.

3.2.2 Method of multiple scales

An asymptotic expansion is constructed following the pdage outlined in Chapter
2. For a physically meaningful expansion, we use earlieorétecal studies (Clavin
etal, 1990, 1994; Pelce and Rochwerger, 1992) as guidelineseltadies by Clavin
et al. (1990), and Pelce and Rochwerger (1992) suggest the ortienagnitude for
the field variables in the context of combustion instahilltyith the acoustic pressure

and thermal fluctuations of the same order (Clagiral., 1990) and the acoustic ve-
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locity perturbationO(1/M) times the acoustic pressure perturbation, the pertumbatio

variables are incorporated into the asymptotic expansdolbws:

p=po+ep (3.5)
@ = iy + €l (3.6)
p = po + € (pan + P2a) (3.7)
T =T, + Ty (3.8)

In Egs. (3.5-3.8)¢ is the small number used for preparing the asymptotic sexpuen
Here, ¢ is proportional to the Mach numbee & ,/yM). The singularity is seen
directly from Eq. (3.2). The coefficient/(yM?) of the pressure gradient term in
Eq. (3.2) causes the solution to divergeMdds— 0. To eliminate the singularity, the
hydrodynamic pressure variahlg, is chosen to be of second ordet)(in the solution
expansion (3.7) (Kleiret al, 2001). For the construction of solution for heat release
rate, we follow the suggestion by (Clavin al., 1990). The mean heat release r@ig
and the heat release rate fluctuation (due to the acoustie)@éare expressed to be of

the same order.
Q=0Qo+Q (3.9)

All the mean flow field variables (here, the hydrodynamic fiedgiables) are written
with subscript). The only exception is for the hydrodynamic presspyie which is
expressed as a second order term. Acoustic pressure isedeloyptthe higher order
field variableps,. Acoustic velocity isi;. The second order density represents the
density fluctuation and?, represents the second order thermal fluctuation. The heat
release raté), arises from the influence of hydrodynamics alone (due tottrasdy and
unsteady part of the flow). The influence of the acoustic wawvéhe heat release rate
(') is represented at the same order of the mean heat releasd het next step is to

incorporate multiple scales into the governing equations.
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3.2.3 Incorporating multiple time and space scales

The low Mach number flow is characterized by two time scalestam length scales
ast = 7'/e andn = ¢/e, whereT and 7’ are the acoustic and the convective time
scales respectivelyy and ¢ are the spatial scales representing the flow and the long
wavelength acoustic wave respectively. The temporal dpecan be then expressed as
0/0t = (1/€)0/0T+0/07'. The spatial operator is expresseda8x = ¢0/90&+0/0n
(Zank and Matthaeus, 1990).

3.2.4 Obtaining equations at various orders

The asymptotic expansion and operators are substitutedhetgoverning equations
(3.1-3.4). At leading order; i.€)(¢%), we obtain:
dpo

potig
or’

1
—V, 7 =0 (3.11)

+ V- (pototg) + Vypa, — Toe

1 9 - } C 1
CEN) % BRCES)) _WU [poVy - i) + HDa(Qo + Q) + -V, To  (3.12)

IpoYi . 1 _
[(;OTI =+ V00 Yiotiy = EV-PODVY@'O + Dawy, (3.13)
po = poTo (3.14)

Egs. (3.10-3.13) imply that the unsteady hydrodynamicsienthfluence on heat re-

lease rate are described by the short length sgalel the convective time scaté

Following (Zank and Matthaeus, 1990), the evolutionipfon the fast time scale
is obtained by collecting terms 6i(¢) from Eq. (3.2) after the substitution of solution
expansion.

Dpotiy
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The evolution equation for second order density is obtaai€d ¢) as follows:

8 — —
% + Vi (potir) + Ve.(pon) = 0 (3.16)

Equation (3.16) involves two spatial operators - one déxigavith respect to the short
length scale and another derivative with respect to the length scale. This may
lead to an unbounded solutioW{ = 1/eV,) ase — 0. This is the consequence
of the dilatation termV.uy. The dilatation term is the consequence of the volume
expansion from heat release rate. Zank and Matthaeus,iraffigoach, has neglected
this term to ensure convergence. In combustion, dilatatammot be ignored as itis one
of the acoustic sources. To ensure convergence, we folloiffeaetht approach with
averaging. Averaging over the short length scale, the éeolwequation forp, in the
acoustic time scale is obtained.

o7 _

5, —Ve.poto (3.17)

Integration inr yields,
pr = 7[=Ve.potiy) (3.18)

Po, ug andTy (the hydrodynamic field variables) are independent of tluisiic time
scale. Therp, — oo ase — 0 which is the case since = 7'/e. To guarantee the
validity of asymptotic expansion, we impose the solvapiibndition asV.pyuy = 0.
In other words, we have shown that the hydrodynamic fieldabédes are independent of
the long length scale. The fast time scale evolution eqndtiothe density perturbation
po IS obtained as:

Opa

At O(e), the evolution equation for acoustic pressure on the aimtiiste scale is ob-

tained.

8]? 2a
or

_, v
+ ’ypovnul = —’ypOV5uo + ﬁ[vnVéro + V§V17T0] (320)

45



Integration with respect to leads to

D2g [ ’yp0V5uo  E— [V VgTO + V§V T()H — YPo / vnﬁl +C (321)

R

whereC' is C(t,n,&). We know that the acoustic velocity is a function ofr. The
above expression shows that the terms with coefficientll grow linearly ase — 0.
Therefore, another solvability condition imposed to erdine validity of asymptotic

expansion is as follows:
—7p0V5u0 + = R [V V§T0 + V§V TO] (322)

Then, from Eqg. (3.21), the evolution equation for acoust&spuren,, on the acoustic

time scale is obtained as
6an
or

+ypoVytip =0 (3.23)

From Egs. (3.15) and (3.23), the linear wave equationg{@ndp,, are obtained as

02 Paa
a—fi — V.V poa = 0 (3.24)

2 —
%TUQ — &V2i, =0 (3.25)

wherec is the speed of sound. Then, we will assume a solutigm, £, 7')e™7 for

the perturbation field variables, whe#fg = (s, {?1,152,1, Tg) ande™ is the part of the
solution which satisfies Eqgs. (3.24) and (3.25). These @qsatmply that whenever
there is a non-zero amplitudg, the acoustic pressure and velocity field variables admit

an oscillatory solution.

The momentum equation éi(¢), the continuity equation ab(e?) and the energy
equation ab(¢?) yield the evolution equations fat;, p, andp,, on the convective time
scale. The solution formt;(n, £, 7/)e™T is substituted in the equations fay, p, and

paa. Applying the solvability conditions and collecting termvith coefficiente™™, a set
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of weakly nonlinear equations are obtained for the convedime scale.

3; + %tha = — up.-Vyur — 1.V, (3.26)
1 .
Vi
" polte nt

0P i o 3.2

o poVets = —V,.(patip) (3.27)

Oz h= — 0.V — VP2V 3.28

o7 +ypoVets = — up.Vypaa — VP24 Viy-Uo (3.28)
v 94
— VT
* RePrv" 2

The equation of state &(¢) is obtained as follows:

Pan + P2a = pola + p2To (3.29)

Egs. (3.26-3.28) have two spatial derivatives with respetwo length scales)(and¢).
Assuminguy, — 0 as¢ — oo (far away from the heat source), the evolution equations

for long wavelength acoustic wave can be obtained as:

ou,  1_ . 1 _,
— = —V:iu 3.30
67_/ + pOVﬁan Revnul ( )
dp2 -,
o + pngul =0 (331)
aﬁ2a + ”ypoV5u1 i 2 2 (332)
or’ RePr "

From Egs. (3.30-3.32), we see that the evolution of long Vesgth acoustic waves
is also governed by the dissipative forces. These dissgtirces are not found in pre-
vious analyses (Wat al,, 2003; Wu, 2005). In flows such as low to moderate Reynolds
number flows, the dissipative forces cannot be neglectecgudh flows our analysis
gives a better picture of flow - acoustic interaction. The deng of the long wave-

length acoustic wave can result from the dissipative farces
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The evolution of acoustic field quantities on a short lengthles by assuming a

solution of the formA(n, 7/)e™“, is obtained as follows:

1

~

0ty

- + . Nty + 10V iy = —mvgﬁl (3.33)
dp .
a[,i? + Y, (patio) = 0 (3.34)
2\ o DAV S S v 3.35
or' + UO-Vnp2a + 7p2avn-u0 - an 2 ( . )

Equations (3.33-3.35) describe the acoustic - hydrodyoawmupling. As discussed
earlier, we have now obtained the coupling equations thatridee the wave - mean
flow interaction. For the physical phenomenon we study, wiobd the wave and
mean flow variables as pressure and velocity corresponditigetacoustic and hydro-
dynamic fields respectively. The terrﬁs.vnﬁo and ﬁo.vn{a in Eq. (3.33) and the
termsp,, V.1 andiy.V,pa, in Eq. (3.35) represent the mutual interaction of wave

and mean flow.

The modification of the field around the flame arises from tHatation V, 1.
The modified flow velocity is coupled with the acoustic vet;acthroughﬁl.vnuﬁ and
up.Vyu; terms in Eq. (3.33). These are Reynolds forces, which dest¢hie mutual
interaction between the acoustic field and the hydrodyndielit (Dastgeer and Zank,
2006). These terms are also known as convectiya4,,) and lift-up terms@l.vnu“o)
in the study of destabilization of parallel flows which mayetually lead to turbulence
(Marquetet al., 2009). Here, we show that similar mechanism dominatesdabplmng
of flow field near the flame with the acoustic field. The Reynédase form a significant

source term for acoustic field.

3.3 Concluding remarks

Perturbation equations are derived in this chapter, dasgrihe flow - flame - acoustic

interaction, using the method of multiple scales. We recdlke linear wave equa-
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tions for the acoustic field on the acoustic time scale. Oncthevective time scale,
we derived perturbation equations describing wave - meawifiteraction. Through
these perturbation equations, we show that the volumeatidatwhich arise from com-
bustion can influence the acoustic velocity and pressutenpations. A new mecha-
nism, representing the velocity coupling, is representeckdnvective and lift up mech-
anisms. The sources of sound generation, obtained fromstcqerturbation equa-
tions, include dilatation due to heat release, convectifexes of hydrodynamic field
and thermal dissipation. The influence of unsteady flow fisldaptured using the
termspy, V.10 and .V, pa, in EQ. (3.35). These terms are the sources to be com-
puted from the incompressible flow field. The perturbatios.E§.33-3.35) show that
the interaction between the hydrodynamic and acousticsfislaveakly nonlinear; i.e.
the coupling terms are the product of a mean flow term (leadidgr) and a perturba-
tion quantity (small compared to the leading order term) iFheraction is revealed on
the hydrodynamic length scale where the convective an@gyisources are present.
As discussed in chapter 1, we now can identify various s@uircen the perturbation

equations derived.
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CHAPTER 4

ldentifying sources from acoustic perturbation

equations

The combustion generated sound derives its energy frorouatypes of sources. For
example, heat release acts as an acoustic pressure souaeig®t al, 2005). Since
flow field affects the heat release rate during combustiomy fgnamics also influ-
ence the enhancement of acoustic pressure. Among these lilemomena, widely
seen in combustor geometries is the presence of vortex giereiand the shedding
of vortices. These vortices trap and carries with them thHsutmed gases, creating a
non-uniform distribution of fuel in the combustor. The camtbon, therefore happens
non-uniformly, resulting in the non-uniform heat releaater These hot spots of gas
transported by the vortices travel at convective speed riibxiet al, 2005; Poinsot
et al, 1987). Therefore, the source of sound is a convective -simtype (Zinn and
Lieuwen, 2006; Shanbhoget al., 2009).

The convective - acoustic nature of the sources becomesisag in a low Mach
number combustion. In low Mach number reacting flows, theveotive processes and
the acoustic processes act on different time scales. Syutwrefore act on multiple
time scales. The behavior of acoustic field can be companttof a wave (see Chap-
ter 11 Zinn and Lieuwen, 2006), that propagates on the aicdirse scale. However,
the entropy and convective ‘waves’ are transported at timeestive velocity on the
convective time scale (see Chapter 11 Zinn and Lieuwen, )20Digerefore, for each
field variable; i.e. the density, velocity, pressure andgerature, there is a component
that is transported on the acoustic time scale and a comptnaasported at the con-
vective time scale. In this chapter, we attempt to undedsthe relevance of each of
these components (acoustic, entropy and convective ssjurcexciting the acoustic
field.



4.1 How sources are modeled in theoretical analysis?

The entropy, acoustic and convective sources in a combusygtem are related to heat
release rate arising from chemical reaction. The effecteat lnelease rate on the fluid

flow field is through volumetric expansioW(u).
Vi=—=-—=> o (4.1)

wherek = 1,2,..n represents the reactants. The volumetric expansion is Dtie o
sources influencing the acoustic pressure. Volumetricresipa also forms one of the

sources for the vorticity in a combustor.

DO
D 09— v ¢ PXVP

= p (4.2)

Therefore, investigations that focus on acoustic-voftame interaction incorporate the
influence of volumetric expansion to study the coupling naecém between the acous-
tic field, flame and the flow field. However, the length scalethefflow, flame and the

acoustic wave are different.

4.1.1 Time scales and length scales

The length scale of acoustic wave may range fram? to 10° (Lieuwen, 2003). The
length scale for the vortices range frarfi—® to 10~!. For acoustic - flame - vortex
interaction to take place, their length scales should hawevarlap (Zinn and Lieuwen,
2006, Chapter 11). Whenever there is an overlap in the lescale the transfer of

energy between the acoustic and hydrodynamic fields isipessi

The coupling between the hydrodynamic field and the heatseleate is due to
the presence of a thin reaction zone, with length scale coabfeato the small scale
eddies in the turbulent flows (Kim and Menon, 2000). Howewer laminar flow,
this overlap is absent. When the flow is laminar, the oventajinie scales causes the
acoustic - hydrodynamic interaction (Claretal, 1999). Use of the method of multi-

ple scales (MMS) to derive the perturbation equations isathgeous in this context.
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Using MMS, perturbation equations can be obtained for difietime and space scales.
In this chapter, from the perturbation equations derive@hiapter 3, we show that the
overlapping time and space scales can be represented bgrhective time scale and
the short length scale (representing incompressible floid firocesses) respectively.
The perturbation equations, obtained in Chapter 3, can reexmined for the pres-

ence of the acoustic, entropy and convective sources.

Equations (3.15, 3.19, 3.23) are the evolution equationadoustic fluctuations on
the acoustic time scale and Eq. (3.33, 3.34, 3.35) are ewnlagjuations for acoustic
amplitude on the convective time scale. The asymptotic msipas (3.5, 3.6, 3.7,3.8)
contains the mean flow and fluctuating quantities. The finalisitc perturbation equa-
tions are the acoustic time scale Egs. (3.15, 3.19, 3.23}fndonvective time scale
Egs. (3.33, 3.34, 3.35). These equations describe thetewolf both acoustic modes
and convective modes due to the convective (due to flow), samand entropy (due
to the propagation of heat release rate fluctuations) ssuiidee identification of these
modes and their corresponding sources is done using a metbpdsed by Ewert and
Schrdder (2003). Towards this purpose, the equations foiutidions are written in the

form AU = G. Each element i/ is expressed as:

U= (p~2(t7 T, 77)7 uy (tv T, 77)7 UNl(t? T, 77)7 péa(ta T, 77)) (4.3)

U is a combined Fourier and Laplace transform of the depengei#bles. The com-

bined Fourier - Laplace transform is expressed as:

N 1 [e’e] [e'e] [e'e] )
o(a, B,w) = Ok /0 /_ N /_ . o(z,y,t)e TP dydydt (4.4)

G = (S, S,, S5, S4)T represents the source vector. Applying the transformatiotthe
evolution equations for density fluctuation (Eq. (3.199)puastic velocity and pressure
field variables (Eqg. (3.15) and Eq. (3.23) respectively),fiwd the first element of the

source vectob, = —i(u1 Vypo) (arising from the source term for Eq. (3.19)).

The first elemens; representing the density gradient due to heat releasdsate,
entropy source. Also, we now know that the entropy source @ctthe acoustic time

scale. However, we still have to examine the contributioardfopy source on exciting

52



the acoustic modes. For the entropy source to have an efigdbeccoustic time scale,
we need to have a heat source that have modulation on thetiedous scale. However,
in this thesis we have assumed the mean heat release rateeanddulated heat release
rate of the same order. We made that assumption based oniaysetudy of the
pressure coupling mechanism (Clawhal, 1990). As a consequence, we may not
expect the entropy source to have an influence on the aconstles. We will prove so

using an acoustic filtering approach.

The second, third and fourth element corresponds to thelimibnditions ofu,
v, andp,, respectively, obtained as a result of Laplace transformesé&lcorrespond
to the acoustic field that is established without the coatrdm from any sources in
the reacting fluid flow. When there is no driving mechanisnt testains the initially
established acoustic field, the amplitude of the field védemp,, andu; dies down.
Therefore, our intention is to extract the sources thatediiie acoustic field from the
fluid flow field. We now know the sources. The next step is to meitee the modes
that are being driven by the above sources. Towards thiparpve construct a matrix
A that yields the eigenvalues for acoustic time scale equsittidhe eigenvalues are as

follows:
A =w—co(a?+ B2 A = w, As = w, A = w + ¢5(a® + 52)11? (4.5)

The eigenvectors are

N

T = ( cir a/pocs(a®+ BHY? B/pocs(a® 4+ B2 1 ) (4.6)
:(:2:(1 000>T (4.7)
T
$3=(0ﬁ—a 0) (4.8)
si= (e —a/melt+ B2 Blmela ey 1) 49)

wherec; is the speed of sound.

The first and the fourth eigenvectors correspond to the sicousdes. These modes
correspond to the waves traveling at the speed of soundr presgence is expected as

we are analyzing the equations on the acoustic time scake s&tond eigenvector has
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only the first element non-zero and corresponds to the ctiomeaf density. Therefore,
the second eigenvector is an entropy mode. The entropy miaies drom the density
gradient source or the entropy sourtie The second eigenvector does not correspond
to the mode propagation at sound spegdTherefore, second mode is not excited by

the acoustic time scale sources.

The third one corresponds to the vortical mode that arisestduhe presence of
acoustic velocity components (i.e.; andwv;). Such a mode will be present only if
two dimensional or higher dimensional acoustic fields areswtered (because afand
[ appearing together). In a one dimensional or longitudicalatic field, the third
eigenvector will represent a convective mode. Now, to deitee the sources that excite
specific modes, a filtering matrix is constructed. For an sttounode, the filtering
matrix is7? = z(x7") + z4(z; ). Similarly, the filtering matrix for the entropy mode
T¢ = xoxy I and the filtering matrix for the vortical mode&® = T3Ty L are constructed
from the eigenvectors obtained. The sum of these matricegddbe an identity matrix
(.,e. T*+ T+ T¥ = 1), confirming that the filtering matrices for all modes are

accounted. Acoustic sources are obtained as

~ - T

Gr=1CG= (5 s5 55 s¢) (4.10)
where,

Sil - pza(initial)cs_Q/Qﬂ- (411)
Sy = ui(initial)a2/2ﬂ-(a2 + 6%) + Uik(initial)aﬁ/2ﬂ-<a2 + 6%)
Sy = Uf(z‘mtmz)aﬁ/QW(az + %) + Ur(initial)62/2ﬂ-<a2 + %)

SZ = p;a(initial) /27T

The source vectorS¢, wherei = 1,2, 3, 4, consist of contribution from the initial con-

ditions of acoustic field variables (.85, ,ia)» Wi (initiar) ANV} (niriary)- The Fourier
componentgy and 5 are constants. Our approach has helped to decompose acousti
vortical and entropy modes from the governing equationsteNlwat we have not as-
sumed the nature (acoustic, vortical or entropy) of the fididables at the beginning

of our derivation. The nature of field variables are obtaiimed straightforward man-
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ner through our derivation. In the previous studies on catibo generated sound, the
acoustic, vortical and entropy modes are accounted fogusidelmholtz decomposi-
tion of field variables (Noiragt al,, 2009). In such an approach, the decomposition of
acoustic, vortical and entropy modes are made in the beggrofithe analysis. There-
fore, each field variable represents only one mode. Howewesn there are two time
scales present, the field variables evolve on different sceses. Then, each of the
field variables is excited by different type of sources. UEMMS is advantageous
in this context. The decomposition of field variables intoi@as modes is helpful in
describing the acoustic-flame-vortex interaction (Mer0%). In this manner, the
contribution from each mode - acoustic, vortical and theagay fluctuations due to
unsteady combustion - in driving the combustion instapid&n be analyzed. For ex-
ample, in the case of evolution equations on the acoustie sicale, we now know that
there are three modes - acoustic, vortical and entropy. Aatgt fiariable can be now
decomposed ag = ¢° + ¢ + ¢°, where¢p = [p, i1, ps,]. We can also analyze the
equations on different time scales and length scales. Fonpbe, on the acoustic time
scale, we can now say that for a vanishing initial conditibwere are no sources that
drive the acoustic field. As discussed previously, from theree vectoiG*, we now
know that the entropy sourc&(p,) arising from heat release rate has no contribution
to the acoustic mode in the acoustic time scale. Now, whaharsources that drives the
entropy modes?. For the flame-acoustic-vortical intevadib occur, there should be a
feedback from various sources to the entropy mode. Thergfoe extract the entropy

source vectot:© from the general source vectét, by applying the transformation:

G¢ = TG (4.12)
wheresS; are obtained as:
Sle = _ﬁl'vﬁpo + p;(initml)/QTr (413)
S5=0
Ss=0
S§=—D3 (z’m‘tz’al)/27T o
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Here we note that for vanishing acoustic initial conditiotie entropy source arises
only from the density gradient. The density gradient arfs@® non-uniform combus-
tion. In unsteady combustion, the local fluctuation in thening rate created by the
propagating coherent structures causes a local change detisity. This local change
in propagated by the convection due to acoustic velogity This process drives the
entropy mode as indicated by the souf§e There are no entropy sources that drive
the acoustic field as the sourcg&sand.S; are zeros. Also, the entropy sources are not

driven the acoustic pressure fieldgs— 0.

For vortical sources, the transformation
G =T"G (4.14)
is applied to obtained; as

Sy =0 (4.15)
Sy = (ﬁQ/(sz + 62))“T(z‘m'tz‘al)/27r - (aﬁ/(oﬂ + 62))U>1k(initial)/27r
Sg = (—Oéﬁ/(OéQ + 62))ui(initia1)/2ﬂ- + (042/(042 + ﬁ2>>vr(im‘tia1)/2ﬂ-

Sz = _p;a(initml)/Zﬂ- * Cs_2

The sources indicate the contribution of vortical souroadriving the acoustic velocity
field. S7 = 0 indicate that the vortical sources do not causes densityufitions.
However, for vanishing initial conditionSy, S35 and.S} also vanishes and driving of the

acoustic velocity and pressure fields is absent.

From the above discussion of sources on the acoustic tinte, sicahe absence of
any initial acoustic field, the only possible driving mecisam is through the entropy
source. However, when the entropy source causes the secdeddensity fluctua-
tions, the second order density is related to the acoustgspre perturbation through
the equation of state obtained@te?) i.e. Eq. (3.29). Therefore, the relation between
the acoustic pressure and velocity fields is not evident tft@vacoustic time scale equa-
tions. However, the relation between the heat source thates the density fluctuation

and the acoustic velocity components is revealed througthidgher order equations;
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i.e. equations describing the evolution of acoustic fieldr@nconvective time scale.

Applying the transformations (4.4) to the convective tincals Eqs. (3.33, 3.34,
3.35), we obtain the sources that act on convective time s€ajuations (3.33), (3.34)
and (3.35) are examined for sources that drives the fluctuaimplitudes. The eigen-
values are obtained as = A\, = \3 = w. The corresponding eigenvectors ake=
(1 0 0 O)T,@:(O 10 O>T,$3=(O 0 1 0>T903=(0 0 0 1>T.
We see from the eigenvectors that the convective time scaiat®ns govern the evo-

lution of convection modes. The sources that drives the iimagls are found to be

St =py )21 —iS(p2 V) (4.16)
1
S5 =i )21 — iS(ur Vyaip) + iS(—=Viug) — S(up. Vyus)
poRe
1
Sz =wy, )21 — i (v V,y.100) + 1S( Vivi) — S(tp.Vyor)
poRe
x : Sy 1 .
SX = p2ainitmz/27r — z%(pgavn.uo) + Z%(Rep'r’ V%Tg) — %(UQ.Vnpza)

The common factor in each of these source terms is the ddategrm that arise from
the heat release rat&{.i,) and the diffusion terms. The dilatation term couples the
amplitudes of acoustic pressure, velocity and the densittuations. Therefore, the
dilatation term serves to couple the heat release rate finenctiemical reaction to the
acoustic velocity field. The nature of this coupling is trghuhe mutual transportation
of the acoustic and hydrodynamic velocity fields. This mutxeasportation is through

a weak nonlinear coupling of the acoustic and hydrodynareiddi

The weak nonlinear interaction between the acoustic antblydamic fields act as
a driving mechanism for the acoustic pressure amplitudés Adnlinear interaction is
a major driving mechanism considered in the study of hydnadyic instability (Mar-
guetet al,, 2009) and magnetohydrodynamic instability (Dastgeerzank, 2004). In
Eq. (3.33),u0.V,u;, andu,.V,ug represent the nonlinear interaction. These terms are
also known as Reynolds forces (Dastgeer and Zank, 2004 ndRis/forcessiy.V, iy
and ,.V,uj, govern the mutual transportation for acoustic and hydnadyic field
quantities. In the context of instabilities that causesditgon to turbulencey;.V, 4,

andu,.V,ug are also called convective and lift-up terms respectivelgrquetet al.,
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2009). These mechanisms have not been discussed beforestutty of combustion-
acoustic coupling. The gas expansion around the flame célus@sodification of the
flow field around the flame. The modified flow field causes chandbe acoustic ve-
locity amplitude through convection (i.ey.V,;). Then, fromS$ and .S we know

that the nonlinear sources such as Reynolds forces ardisagniin the evolution of

amplitudes of acoustic field variables.

4.2 Concluding remarks

Acoustic perturbation equations, derived using the metsfadultiple scales, reveals
sources at various time and space scales. The significaneptmipy, vortical and

acoustic modes in the evolution of acoustic field is studi€de convective-acoustic
nature of the sources is investigated. However, we see lieaac¢oustic sources are
present only on the acoustic time scale. The convectivecsesuare present on the
convective time scale. Therefore, a mechanism that cotipéegrocesses on two time
scales is needed for the combustion-acoustic interadiienobserve that the dilatation
arising from heat release rate is a possible candidate ifontachanism. The dilatation
can cause changes in density at leading order, which in earbes the entropy source

V,po On the acoustic time scale.

The separation of sources according to the time scale irhth&y act is an outcome
of applying the method of multiple scales (MMS). We also g that the assumed
order of heat release rate fluctuation is significant in deit@ng the significance of
each of the sources. We consider that an investigationsrdiheéction will prove to be
an improvement to the Helmholtz decomposition. In the asialgf a thermo-acoustic
system, we have assumed the magnitude of heat release catefion to be of)(1).
Therefore, the sources that drive the acoustic pressurditadgappear on convec-
tive time scale. As a consequence, we show that the voluragatidn which arises
from combustion can influence the acoustic velocity andsunesperturbations. This
interaction is represented by convective and lift up memas. The sources of sound
generation, obtained from acoustic perturbation equatiociude dilatation due to heat

release, convective effects of hydrodynamic field and tlaédissipation.
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The convection of hot spots and the influence of unsteady fleld fs captured
using the termg,,V,.u, and .V, ps, in EqQ. (3.35). These terms are the sources
to be computed from the incompressible flow field. The typesanirces - acoustic,
entropy and convective - are obtained from the perturbatprations. The perturbation
Egs.(3.33-3.35) show that the interaction between theddyaramic and acoustic fields
is weakly nonlinear. The interaction is revealed on the bglgnamic length scale where

the convective and entropy sources are present.
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CHAPTER 5

Nonlinear convection reaction diffusion equations

In this chapter, we describe the stability of a thermo-atolsy/stem by deriving a
set of nonlinear equations. Our nonlinear equations betonipe class of reaction
diffusion (RD) systems. RD system are well known to desctifeebistable nature of
many chemical reacting systems, Turing’s work on morphegmsnbeing one among
them (Turing, 1952). RD systems are widely studied in theedrof pattern forming

instabilities (Hoyle, 2006). Bistable solutions are an artpnt characteristic of RD

systems (Ebeling and Malchow, 1979).

The reaction diffusion equations are classified accordiegibnlinear terms present
in these equations. Fisher's equation has a quadraticreanlty, whereas Newell-
Whitehead-Segel equation used in the field of Rayleigh-Becanvection has a cubic
nonlinearity (Gilding and Kersner, 2004). Zeldovich egoiat with cubic nonlinearity,
exhibiting a traveling wave solution is popular in combastliterature (Buckmaster,
1985). The traveling wave connects (form an interface betyée region of burnt and
unburnt gases in a combustion process. The important deasdic of RD system is
that, due to the presence of a diffusion term, a local distack can spread throughout
the entire domain. Therefore, as proposed by Turing, alipsthble solution may

become unstable.

RD system have a nonlinear reaction term and diffusion tefime diffusion co-
efficient is specific to the physical situation; i.e. the wiéiibn coefficient in the RD
system corresponding to the chemically reacting systenmsasure of the diffusion of
mass concentration. In a system without the effects of floid,fthe diffusion governs
the transport of small but finite amplitude disturbancest(pbation in the concen-
tration). However, in a thermo-acoustic system, the infbeeof fluid flow cannot be
neglected. Therefore, a simple RD system will not sufficegscdbe the unstable phe-
nomena caused by localized small pressure disturbancesedBan our perturbation

equations Eqgs. (3.33-3.35) governing the wave-mean flogvantion, we are going to



derive nonlinear convection reaction diffusion equatitmdescribe the instabilities in
a thermo-acoustic system. Here, we also include the infienduid flow through a

convection term.

The combustion resulting from the chemical reaction infagsnthe flow field in
a thermo-acoustic system. In this chapter, we derive a dassnlinear convection
reaction diffusion (CRD) equations which incorporate thituence of convection. In
the CRD system, the chemical reaction source that causediétWvmodification is
represented by a nonlinear reaction term. This nonlineantie@n term is obtained from
the dilatation term. Therefore, we show that the dilatattwat arise from combustion

causes the flow field modification. From Eq. (3.12),

1 ) ) -1 10
T HDa(O + Q') + — 2 Po

YV, - = - -
n vypoRePr " ypy 07

(5.1)
The influence of) andQ’ (heat release rate fluctuation) on the acoustic pressure

field is seen from the dilatation term. Expression (5.1) fitatdtion is substituted in

Eqg. (3.35) to obtain:

N N . . ’y _—

. a a HD Nt ———V Ty — — 5.2
5 T Uo Vop2a + VD2 - a(Qo+ Q') + vpoRePrv” . 67’] (5.2)

Y 27

= T
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Assuming a single step chemical reactigfi can be expressed as:

Q' = Bp2XYe Pa/RT (5.3)

where B is the preexponential factor and the density fluctuagigis a function ofr
and7’. However,Q = Q, + Q' appears in Eq. (3.12) as well as in Eq. (5.2). From
the derivation of perturbation equations in Chapter 3, wavkthat the leading order
variables are independent of the acoustic time scale. Swecmdition was necessary
to ensure the convergence of asymptotic expansjgnis the leading order pressure
variables. Therefore, to prevent the linear unbounded tirofyp,, we should avoid the

dependence a’ on the acoustic time scale. This is done by expresginig terms of

61



p2(n,t). Substituting a solution of the form;(n, 7/)e™™ in Eq. (3.29), we obtain:

. D2h D2a Ty
_ wT o 54
pr =g + T, T (5.4)

Ase — 0, 7 — oo, because in the relation= 7’ /¢, we have assumed of O(1) and
7 of O(1/¢). In the limitT — oo, (pan/Tp)e ™™ — 0. The expression fop, can be
rewritten as: R

= (5.5)
Here, we have removed the dependence of density fluctuatiireacoustic time scale.
Now, the variation of the magnitude of heat release rateuaiain is on the convective
time scale, reflecting the influence of fluid flow on the acaugtessure field. The new

expression for heat release rate fluctuation can now beewrits:
Q' = BpRXYe Fo/lT (5.6)

Eqg. (5.6) is substituted in Eq. (5.2) to obtain:

aan
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wherew = BXYe P¢/ET Matching the terms of same order, Eq. (5.7) can be rewritten

as follows:
aﬁm _— o ~3 0,12, ~2 19,12,2 A \D 7 QT 5.9
o —Up.VyP2q + Py, + 01op5, + V15 Ppag + Apaq + RePr b (5.9

Substituting (5.5) in Eqg. (3.34), we obtained an equatiaorito

Ty
or!

~
poRePr

= —ﬁo.vnTQ + &Tgﬁga + 9T22]§2a + 19T23 + )\TQ + VZTQ (510)

Equations (5.9-5.10) are nonlinear evolution equatiomsatmustic pressure and sec-
ond order thermal fluctuations. The coefficients) and«) correspond to the physical

processes in the system such as heat release rate, tempelifititsion and the rate of
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change of the mean pressuyre The nonlinear terms in Egs. (5.9-5.10) have contri-
bution from the thermal and acoustic pressure fluctuatidrieerefore, the nonlinear

Egs. (5.9-5.10) represent a ‘pressure - temperature’ oaupl

5.1 Coupling mechanisms

5.1.1 Pressure-Temperature coupling

As suggested by Claviet al. (1990), the pressure coupling is established wién
andp,, are of the same order. In our derivation, we have achieveddhee order of
magnitude for acoustic pressure and heat release ratedtiosts with()’ appearing as
a source tgi,, (see Eq. (5.2)). Apart from the coupling between the acotistid and
the heat release rate fluctuation, we also have the influante tiydrodynamic field
represented a%,.V, (the convective term) in the nonlinear equations. Thegsfasing

the nonlinear equations we can explain the acoustic-flaovetfiteraction.

5.1.2 Convection reaction diffusion equations

Equations (5.9-5.10) can be written as follows:

~

aan

— ~ A r ’y
o + 1io-Vypaa = f(Paas T2) + ﬁV%TQ (5.11)
6T2 - A A - i -
B + 1oV Ty = g(p2a, To) + oRePr V%TQ (5.12)

wheref (paa, Ts) = i, +0Top5, + VT3 b2a+ Np2a aNAg(Pra, To) = aTop3, +0T3p2a+
VT3 + AT, are nonlinear functions in the convective reaction diffaséquations. The

coefficients, 6, ¥ and )\ are:

(v = 1)HD,w

5.13
T2 (5.13)

o= —
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Po (5.14)

(5.15)

1 —1)HD,p%w 10
_ =D e (= DHDugige 1 0mo
poRePr Do po OT

(5.16)

The linear term\p,, can be rewritten as-(y — 1)paa/(poRePr) x ViTy — (v —
1)Qpaa/po + (v — 1)Q'P2a/po + (P2a/po) X Opo/O7'. The factorp,, Q' represents the
product of the heat release rate magnitude and the acousssye amplitude. This

factor is similar to Rayleigh inde&(x), which is:

Glr) = % / ¢ (@ ) (. )t (5.17)

which represents the product of the heat release rate flimiuand the acoustic pres-
sure averaged over one oscillation cycle. The oscillatiotucs on the fast acoustic
time scale.G(z) > 0 implies the growth of acoustic pressure a#r) < 0 implies
the damping. The term,,Q’, which is obtained by the elimination of fast acoustic
time scale evolution, represents the Rayleigh index. ®rim is contained in the linear
term. The linear term, therefore determines the linear graate. Representing the
acoustic-hydrodynamic interaction as a CRD system has eangaje. Now we can
say that the stability characteristics of a thermo-acouststem resemble that of any
reaction diffusion system. We can explore the stabilitywfsystem using the methods
employed in exploring the stability of a wide variety of otldgnamical systems. These
dynamical systems include the popular Rayleigh-Benarsgeaxiion model (Newell and
Whitehead, 1969), FitzHugh-Nagumo model (for neural tetaits) (FitzHugh, 1955)
and Turing model (for morphogenesis) (Turing, 1952). Tfaee our representation of
thermo-acoustic system as a convective reaction diffusystem has many advantages.
For example, the RD equations represent the propagatiofroff The front can rep-
resent the location of inhomogeneity in a system, conngtkia homogenous states on
either sides of the inhomogeneity. For example, the flametireano-acoustic system

represents a front in an otherwise homogenous hydrodynfldc The temperature
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rise at the interface of burnt and unburnt mixtures, cauyealeaction zone is another
example of front in combustion. Schvab-Zel'dovich equatis an RD equations to
compute the propagation of such fronts. In the present ggntes will describe the

propagation of localized small pressure perturbatioroohiced by the heat source.

The CRD equations, with the coefficients representing thesiphl parameters,
gives insight to the role of each parameter on the stabilitthe system. The coef-
ficient of the linear termX) in EQ. (5.9) shows that acoustic pressure amplitude esolve
linearly due to the rate of change of the mean pressure anud¢he heat release rate.
As shown by Eg. (3.12), the rate of change of mean pressw@kabwn as ‘DC shift’,
has contribution from the heat release rate fluctuation duée acoustic field. The
origin of DC shift and its relation to the acoustic pressuseiltation was theoretically
explained earlier (Flandret al, 2007). Previous investigations reveal that these pro-
cess, DC shift and growth of acoustic pressure amplitudegeshhcommon mechanism.
We have revealed a new mechanism - coupling of acousticymeesscillation with heat
release rate fluctuation - relating the growth in acousgsgure amplitude with the DC
shift.

Nonlinear terms are derived from the heat release rate #tiotuterm. Therefore,
'weights’ of the nonlinear terms, 6 and decide the intensity of heat release rate
fluctuation. These weights are functions of Damkohler nuenéb: and heat release
ratew. The weights are therefore functions of physical variabl€seir magnitudes
depend on the type of fuel, mass fractions of fuel and air aedémperature in the
system. Another factor that is incorporateddiand is densityp,. Influence of these
weights on the stability characteristic of a thermo-adousgstem is demonstrated in

the next section using some examples.

5.1.3 Transition from non-oscillatory state to oscillatoy state

In this section we construct an example using which we detratesthe transitions ex-
hibited by a thermo-acoustic system. In Fig. (5.1), we tHai® the physical meaning of
our example problem. The perturbation (shown by a tiny luampthe long length scale

acoustic wave represent the short length scale acoustiarpation. Equations (3.31-
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3.32) describe the spatial evolution of long length scatauatic field. This evolution
encounters the short length scale dissipative effectsifoitm of thermal diffusion and
viscous dissipation. On the long length scale, the evaluéiquations do not have a
source term that drives the acoustic field. On the other héreddriving terms - the
convection term and the nonlinear term representing thereésase rate fluctuation -
are written with respect to the short length scale varigbM/e have also expressed the
dissipative effects on the short length scale in the CRDesysT herefore, the CRD sys-
tem, describing the spatial evolution of perturbationstenghort length scale, is more
suitable to study the evolution of any acoustic perturlmetidn physical systems, such
a small length scale perturbation is introduced by locdlilzeat sources such as pre-
mixed flame located in a long tube (Vi al., 2003; Wu, 2005) or electrically heated
mesh in a Rijke tube (Mariappan and Sujith, 2011). The loeatysbation grows in
amplitude in time. The perturbation also spread spatidlye spatiotemporal evolution
eventually modifies the acoustic field in the duct. In real bastors, the local fluctua-
tions in the heat release rate can occur from the localizeuiy of gases entrapped in
vortices (Poinsogt al, 1987). Our model problem serves the purpose of investigati

the influence of such a local heat source on the acoustissdydamic coupling.

As far as the type of heat source is considered, which isilmghlin space, the
model problem represents the heat release rate-acoustiagtion in a horizontal Rijke
tube. However, in the previous studies the entire heat sdarocalized. In our model
problem, the heat release rate fluctuation is localized. fdumi heat release rate is
specified everywhere else. The localized heat releasewhiet) is higher than the rest
of the computational domain is specified with the help of tbefficients or 'weights’
of the nonlinear terms. The weights are function of heatasderate. Therefore, the
localized fluctuations are specified by providing the valfes, # and? to be 1.2 times
their values in the rest of the domain. The localized heaas# rate can also occur
when there is a localized perturbation in species massdract However, the species
mass fractions decide the heat release rate. Thereforepwetdpecify the values of
species mass fractions separately. We use these assusnticduce the complexity
of the model problem. A simple model problem such as the omadtated will help

us to investigate the nonlinear nature of acoustic-hydnadyic interaction.
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We study the short scale acoustic-hydrodynamic interactging CRD system. We
have achieved the isolation of long length scale phenonmenathe short length scale
phenomena through the derivation (see Eqgs. (3.30-3.3RD §ystem, thus obtained,
is the mathematical description of flame-acoustic intévact Therefore, the present
investigation emphasize the role of short length scale flaomaistic interaction in es-
tablishing the acoustic-hydrodynamic interaction. Thacgpscale separation that we

achieved is an advantage of applying the techniques of MMS.

Small scale fluctuafion on7) scale

Long wave (represented ongscale)

Figure 5.1: Illustration of small but finite amplitude logarturbation on the acoustic
field.

A one dimensional domain withy = 56 grid points is created. The CRD system is
solved on the one dimensional domain (see Fig. (5.2)). Tmebew of grid points is
selected based on a convergence study. The coordirdgBnes the spatial location. A
small but finite amplitude perturbation (shown in Fig. ($.3hat represents the small
scale perturbation in Fig. (5.1), is applied at the centethefsolution domain. The
solution of the acoustic field variables on the long lengtles@acoustic field is sepa-
rated from solution of the short scale acoustic perturipatiorherefore, assuming an
open-open duct, we impose the same boundary conditionsgB@)th endpoints. We
impose the values at the endpoints to be same as their atljaaats. This is a simple
BC, which we believe will prevent any spurious numericalikestions and help in the
convergence of numerical solution. Also, this BC is suffiti® study the nonlinear

dynamics of acoustic-hydrodynamic interaction.
Location of localized heat

release rate fluctuation

el

N=56

Figure 5.2: 1D representation of an open-open tube with flaceted in the centre.
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Figure 5.3: The initial condition for acoustic pressuretpdration amplitude. X-axis
shows the number of grid points representing the discretiizgeometry.

Next, we need to choose a bifurcation parameter. We haveenohbe coefficient
A of the linear term for this purpose. Our choice is due to thelysby Flandroet al.
(2007), where investigates the significance of DC shift enttlansition of acoustic field
from non-oscillatory to oscillatory state. We also havetabation from thermal diffu-
sion and mean heat release rate in deciding the magnituddmbur bifurcation study,
we use numerical methods available in XPPAUT (Ermentrdd@22 for the time march-
ing solution and the continuation methods available in AUDOedelet al., 1997) for
constructing bifurcation diagrams. We obtained two typdsiforcations: one, a bifur-
cation that exhibits hysteresis effects and another a stipeal bifurcation that further
bifurcates to create a bistable zone. The later is called¢d@nskary bifurcation (Anan-

thkrishnaret al.,, 1998).

A model Ginzburg Landau equation (GLE), which is another GfigBtem, was pro-
posed by Chomaz (1992) as a bistable dynamical system madstiufdying hydrody-
namic stability. Using our derived CRD system, in additiorttie study of bistability,
we investigate the variation in saturation amplitude ared\vriation in the threshold
point as a response to the variation in the weights of noafiterms. Figures (5.4-5.6)

show these variations as a result of variatiod Bnd.

We have a bifurcation that shows the existence of hysteresis where there are
two stable states: one is an oscillatory state shown by thleehiamplitude state in
Fig. (5.4) and other one is a non-oscillatory state showrhbyzero amplitude branch.
Here, since the bifurcation diagram is computed from théutvm equation for acous-
tic pressure amplitude, the zero amplitude branch impl@s-oscillatory state (i.e.

DPaa = P2,€™7, Whenpy, = 0, ps, = 0). This reduction in order, by the separation
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of fast oscillation, is an advantage of our approach. As aeguence, the origin of
limit cycle oscillations from Hopf bifurcation (Burnley drCulick, 1996; Subramanian
et al, 2013) could be interpreted as the transition from zero #ogd to non-zero am-
plitude branch through pitchfork bifurcation. Computatioime can be saved by this
separation. In Fig (5.6), we have another type of bifurcatihere two oscillatory
states that bifurcate from a primary supercritical biftiea This type of bifurcation
is relevant in mechanical systems (Ananthkrishegal., 1998) and in thermo-acoustic

systems (Juniper, 2011).

A unique feature of the CRD system is the type of hysteresisvahn Fig. (5.4).
This type of hysteresis arise as a result of an ‘imperfecterturbed’ pitchfork bifur-
cation (Hoyle, 2006). Previous investigations (Burnley &ulick, 1996; Subramanian
et al, 2013) show that the hysteresis region is created in thaitycof a subcritical
Hopf bifurcation. However, we show that a perturbed pitckfbifurcation can also
create a hysteresis region. In this section, we will show tihia perturbation is due
to the quadratic nonlinear term() present in the nonlinear equations. Such type of
bifurcation was not discovered earlier in the study of costiom instability. Hysteresis

creates a bhistable zone.

1.5 g
NN
1 ﬁ/
o 2
0.5; 1
F—’é. }\'h
-8 5 0 0.5 1

Figure 5.4: Bifurcation diagram, computed using AUTO, fooastic pressure ampli-
tudep,,. Unstable solutions are indicated by dotted lines and ststlu-
tions are indicated by solid lines. A hysteresis zone exasivben the fold
point F and\ = \,. We have chosea =-1,60 =0.6,9 =-0.09 anduyg = 1
for the computation of this diagram.

A bifurcation creating a bistable zone has a bifurcatiompgj, which marks the
upper limit of the parameter space in which stable non-ladoily and oscillatory so-
lutions coexist. Wher\ > )\, zero amplitude or non-oscillatory solution is unstable.
Any small perturbation will attain a finite high amplitudeabch. We have shown in

this thesis, the influence of weightsand) on the location of\;, (shown in Fig. (5.5)).
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These weights are functions af and are related to each other. As the valué ahd¢
decreases);, moves towards the point = 0, thereby decreasing the hysteresis width.
Also, the amplitude of the non-zero branch reduces esreduced in magnitude. The
magnitude of burned gas density, therefore, has a signifeféect on the hysteresis
width. Therefore, the magnitude of weights serves two psepothe determination of

saturation amplitude and the value of bifurcation paranedte/hich transition occurs.

Figure 5.5: We show the influence of the magnitud® @nd) on the location of\,.
We use the valueg = 2 andy = -1 for the computation of b, = 0.9 and
¥ =-0.2025 for b2 and = 0.6 andy = -0.09 for curve b3A;,1, A2 and A3
are the bifurcation points for curves b1, b2 and b3 respelgtivhe curves
are obtained by numerical continuation, using AUTO.

The variation in the location of, causing the change in the hysteresis width, may in-
terest the researchers in thermo-acoustics. One of thetrewestigation by Gopalakr-
ishnan and Suijith (2014) experimentally investigated #ngse of change in hysteresis
width. The influence of mass flow rate on the reduction of hngsie width was investi-
gated by Matveev (2003). The weights are decided by factais as Damkohler num-
ber Da, which in turn is the ratio of flow time scale to the chemicale¢iscale. There-
fore, Da depends on the mass flow rate. Further, a relation betweemchidime scale
and acoustic time scale could be made based on the study byddhl (1991). Such
an investigation is within the scope of our theory. The sdeoy bifurcation shown in
Fig. (5.6) is another promising finding of our investigatidime secondary fold poirff;
creates a another oscillatory branch. The secondary hiiorcis exhibited for weights
2 times their values in the rest of the domain. There are tallsiscillatory branches
for the same\. This implies that the perturbations of magnitude gredtanthe thresh-
old curveU, reaches the higher amplitude branch Lower magnitude perturbations
(magnitude less thafl,) attains the lower amplitude branch. Therefore, secondary

bifurcation also create a bistable zone.
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Figure 5.6: Bifurcation diagram, computed using AUTO, shmsupercrtitical bifur-
cation with dotted line showing unstable solutions anddsliies showing
stable solutions. A bistable zone is created because obttéifurcation
at ;. We have used the values=-1,60 =1, =-0.01 anduy = 1. For
A > \p, system is unstable.

This type of secondary bifurcation was studied by Ananstkranet al. (1998) to
show the existence of multiple limit cycles in vibrating rheaical systems. Multi-
ple limit cycles are a consequence of secondary bifurcatitmwever, he used a Van
der Pol oscillator to explain the secondary bifurcationtetauch models were used
by Ananthkrishnaret al. (2005) to explain multiple limit cycles in a thermo-acousti
systems. Juniper (2011) used a nonlinear heat releasesratést (u/3)'/2) to show
multiple limit cycle in thermo-acoustic system. Our thealso shows that the existence
of secondary bifurcation is a result on nonlinear souraa té distinction between two
types of bifurcations that we observed is that one type airbétion exhibits hysteresis
in the vicinity of A, and another type does not exhibit hysteresis in the vicwiity,,.

We will now investigate the transition from one type to aresttype of bifurcation.

5.1.4 Supercritical bifurcation as a limiting case

Thermo-acoustic systems are known to exhibit both suge@irand subcritical bifur-
cations (Waugh, 2013). He described these bifurcationcassequence of the nonlin-
ear processes in the system. A dynamical system that urekesgibcritical bifurcation
exhibits hysteresis zone. In a supercritical bifurcatloysteresis effect is absent. How-
ever, a mechanism that causes the transition from a bifarcatith hysteresis to a su-
percritical bifurcation is unknown. Our nonlinear theooyrhulated as nonlinear CRD
system also can exhibit the bifurcation with hysteresistAedsupercritical bifurcation.

We show a possible reason for the transition from one typedther type of bifurcation
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using CRD system. We use mean dengjfyas a parameter for showing the transition.
Mean density changes as a response to the rise in tempedatumg combustion
can also be related to the mass flow rate of air-fuel mixtuppbed to the combustion
chamber. Mean density is also dependent on the preheat tatuge Fuel-air mix-
ture is preheated to thrice the ambient temperature in mampastion applications
(Menon, 2008). Therefore, mean density is a parameter which repredeatsoimbus-
tion process. The change in mean density causes variatiparal). The manner in
which this variation occur is described by Egs. (5.14-5.Y8¢ can see from Fig. (5.8)
that the hysteresis width is reduced whilgis reduced. The problem description is
the same as the one described for the computation of Fig. (3Here is a localized
heat release rate fluctuation. Therefore, the short lerggile acoustic-hydrodynamic
interaction is investigated for explaining the phenomeobvariation in the hysteresis

width. The reduction in the hysteresis width is linear wiglspect to the variation in

3
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Figure 5.7: Transition from the bifurcation exhibiting lgsesis to a supercritical bi-
furcation asd, 0 are reduced. The changednandd is in response to the
change inp. The relations between the mean density and the weights are
described by Egs. (5.14-5.15).

0.2

Hysteresis width

0 01 02 ; 03 04
Figure 5.8: Hysteresis width is reducedsas> 0. The reduction i reduces the weight
0 linearly and the weight’ quadratically.

po- However, ag, becomes close to zero, the hysteresis width approachesxtozky
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asymptotically. The lower values pf result in very low values off (O(107?)) in the

CRD system. Thereafter, convergence in solution is diffimubchieve. Therefore, we
have computed hysteresis width only il = 0.08. In the next section, we will show
that the change in the type of bifurcation from one that exhisteresis to supercritical

is a result of quadratic nonlinearity.

5.1.4.1 Cause of change in the type of bifurcation

The quadratic nonlinearity,) in the nonlinear evolution equations for acoustic pres-
sure amplitude has a significant effect on determining tpe tf bifurcation. In this
section, we will demonstrate this effect by arbitrarily osong ¢, the coefficient of
the quadratic nonlinear term, to be 0. In Fig. (5.9b), we shiwat in the absence of
guadratic nonlinear term the bifurcation is supercrititalFig. (5.9a), we introduce the

guadratic term by imposing a non-zero valuef@nd retrieve the hysteresis behavior.

a) 1.5 b) 1.5
o 1 o q
(@ (Q
05 ! 0.5 /
8.5 1 1.5 8.5 1 1.5
A A

Figure 5.9: a) Bifurcation diagram gf, computed using AUTO with the coefficients
a=-1, /=0 andv=-1, b) Bifurcation diagram of,, with the coefficients
a=-1,0=1 andy=-1.

The hysteresis behavior, in the bifurcation described epavise from a ‘pertur-
bation’ of ‘imperfection’ in the normal form (Eq. (1.16)) alupercritical bifurcation
(Hoyle, 2006). The normal form has only a linear term and acctdsm. Therefore, the
guadratic term in the CRD system is a perturbation. Pertlbifercation problems are
discussed widely in the field of beam buckling (Jackson, 1@3lubitsky and Scha-
effer, 1978). For example, in the context of Euler beam hagkbroblem, Golubitsky
and Schaeffer (1978) has explained the effect of a pertiorbat the potential energy
in causing sudden buckling. They have shown the pertunsiio both supercritical

and transcritical bifurcations, associated with the baglof beams, when the critical
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compressive force is exceeded. Now we know the influence adiigic nonlinearity
on the hysteresis exhibited by our CRD system. Next, we usltuss the trend in the

variation of hysteresis width.

5.1.4.2 Power law variation of hysteresis width

For the parameter range shown in Fig. (5.8), the variatiothefhysteresis width in
response to the variation in the mean density obeys the dawef he hysteresis width

varies agi. A log-log plot is shown in Fig. (5.10). Recently, the powawlrelation
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Figure 5.10: Log-log plot showing the variation in the hysgts width in response to
the variation in density. A linear variation in the log-lotppis obtained
because the hysteresis width is proportionalo

between the variation in the hysteresis width and the Sabnbmber was shown in
experiments by Gopalakrishnan and Sujith (2014). They ddfthe Strouhal number
to be the ratio of the convective to acoustic time scalgean have an influence on the
mass flow rate. Mass flow rate determines the convective spded the Damkohler
number that appear in the weights is the ratio of the conwetitne scale to the chem-
ical time scale. Therefore, the weights are also functidrisre scales. A conjecture
could be made relating the ratio of time scales to the hysieredth. An investigation
in this direction comes under the scope of present work. Wevsh Fig. (5.7), the tran-
sition from a bifurcation resulting in finite width hysteresegion (shown by curvé)

to a supercritical bifurcation (shown by curkg. Such a transition is the consequence
of reduction in the magnitude of the coefficients of nonlirteams due to the reduction
in the mean density. Now we need to know the influence of cdaiveon the transition

to instability.
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5.1.5 Propagating flame inside a duct

Thermo-acoustic instability has also been investigatedifoexperimental configura-
tion where a premix flame propagates in a tube (Searby, 1982%uch cases, the
convective effects are negligible. Therefore, the conved¢erm can be neglected. For
studying the influence of propagation of the premix flame @natoustic field inside a
tube, we need to introduce a coordinate transformation fiime of reference is fitted
onto the flame front by introducing the transformati®n= n — w7’ for the CRD sys-
tem.w is the speed of propagation of the flame front. Experimen&darby (1992) and
Clanetet al.(1999) confirms ‘primary instability’ where the heat releaate fluctuation
due to the flame front fluctuation leads to the growth in thaiatio pressure amplitude.
The growth is exponential followed by a nonlinear saturatido reproduce this trend,
we have applied the coordinate transformation to reduceClRB system into a set
of ordinary differential equations; i.edp,,/dX = —1/w(f + (1/RePr)d*Ty/dX?)
anddTy/dX = —1/(pow)(g + (/RePr)d*Ty/dX?), wheref represents the nonlinear
terms in Eq. (5.9) ang represents the nonlinear terms in Eq. (5.10). To reprekent t
heat release rate fluctuation, we impose valuesfar andv (As we have discussed
before, these coefficients represent the intensity of hedabse rate fluctuation). In
Fig. (5.11), we show the evolution of acoustic pressure @oga with respect to the
spatio-temporal coordinat&. The exponential growth and the saturation of acoustic
pressure amplitude is evident from Fig. (5.11a). In Figl1b), we plot the evolution
with respect to various. As the coefficient\ is increased, the growth rate increases
(growth rates for the curve® > ¢3 > c1). However, we also see that the saturation
amplitude is not determined by the growth rate (amplitudecfo> ¢2 > c¢1). Sat-
uration amplitude is determined by the coefficients of noedir terms. Therefore, we

know that) represents the linear growth rate.

5.1.6 Effect of convection term

In Section 5.1.3, we discussed the transition to instgtwten a localized perturbation
is present in the domain. The localized perturbation seaer the entire domain

and induce global instability. However, the manner in whitis spread occurs in not
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Figure 5.11: The exponential growth of the acoustic pressunplitudep,, which is
followed by the nonlinear saturation. a) Regimes of the expdial growth
and the saturation. This curve is computed from the cootditrans-
formed CRD system withh = 0.0072, a = 0.71, § = 1.42, 9 = 0.5041
andw = 0.23 (also the curvel in b). The comparison of growth rates for
various values of coefficients is shown in b: curas obtained by using
A = 0.0168, « = 0.84, 0 = 1.68, ¥ = 0.7046 andw = 0.33 and curve
c3 is obtained by using = 0.0157, « = 0.87, 6 = 1.74, ¥ = 0.7569 and
w = 0.35.

yet clear. In a reaction-diffusion system the local spateturbation is communicated
to the neighboring spatial location through the diffusiongess. Diffusion process
is slower than the convective process. In CRD system, we &a@nvective term in

addition to the diffusion term. Therefore, we investigteinfluence of this convection

term in the spread of local perturbation.

We have provided a non-zero value fay in the computation of bifurcation dia-
grams 5.4 and 5.6. In Fig. (5.12), we show that without cotiwadhe localized per-
turbation will only grow temporally. Therefore, we suppdbat the role of diffusion
in the spread of localized disturbances in a reaction-giiffiu system is played by the
convection term in our CRD system. Each of the grid pointseggnt a node which
interact with the neighboring nodes. The information ordisturbances in each node
should be communicated with the neighboring nodes for tbal lperturbation to grow
spatially. However, in the absence of convection this comgation is absent. In
Fig. (5.13), we impose an arbitrary value fay and show that the local disturbances
spread all over the solution domain. Therefore, we now kri@at/the localized pertur-
bation spread spatially as a result of convection. In the cleapter, we emphasize the

effect of convection in the spatial growth of localized distances.
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Figure 5.12: The spatiotemporal evolutionggf without the influence of convection
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Figure 5.13: In the presence of convection the local peatishs grow both in space
and in time wheni,y = 0.1

5.2 Conclusion

In this chapter, we have developed a set of convection mradiifusion (CRD) equa-
tions. The thermal-acoustic interaction that represdrgspressure-temperature cou-
pling is explained using the new nonlinear CRD equationsadthe CRD system, the
mechanism of acoustic-hydrodynamic interaction thatdeadhermo-acoustic instabil-
ity is examined. The convective teri, ., represents the influence of hydrodynamic
field. The nonlinear reaction term in the CRD equations rsgmethe influence of heat
release rate fluctuations. The heat release rate fluctuatsirown to be a consequence
of chemical reaction-acoustic interaction. We prove thatdthemical reaction-acoustic
interaction is responsible for the coupling of the acouBélt variables; i.e. the sec-
ond order thermal, second order density and the acousssyre fluctuations, with the

hydrodynamic field.

Solving for the CRD system, we observed two types of bifuoret 1) a bifurcation
that introduces bistable zone consisting of oscillatory mon-oscillatory solutions and
2) a bifurcation that introduces bistable zone with two lbestwiry solutions. The theory

is formulated through a rigorous mathematical derivatromfthe governing equations
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for compressible fluid flow. The control parameters that wheitees the bifurcation
characteristics are the parameters governing combustomegs. These parameters can
be related to the ratio of time scales, the mass flow rate angrécheat temperature.
Therefore, the weights that determine the strength of neatity have physical mean-

ing. This is an improvement over the present theoreticaletsod

In this chapter we have explained the origin of hysteresisguke physical param-
eters such as heat release rate, Damkohler number and mesty dethe combustion
chamber. In the next chapter, we investigate the influenamo¥ection on the spa-

tiotemporal growth of local pressure disturbances.
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CHAPTER 6

Influence of convection on the stability characteristics of

thermo-acoustic system

In the previous chapter, we saw that the representationeofitb-acoustic system as a
convection reaction diffusion system (CRD). We saw thatffline flow velocity has a
significant role in transporting the local acoustic preegiisturbances, leading to the
spread of disturbances in space. As an outcome of our asalyshermo-acoustic
system, we have shown the existence of a hysteresis zonmpaoging the bifurca-
tions. In the control parameter space where hysteresisteffee found, oscillatory and
non-oscillatory solutions coexist. Such a phenomenonlisdtaistability. Bistability

is a significant stability characteristic of a thermo-admusystem (Zinn and Lieuwen,

2006; Subramaniaet al, 2013; Burnley and Culick, 1996).

As discussed in Chapter 1, the existence of a bistable zomaeiso the existence
of two types of physical mechanisms - a mechanism that dahgadoustic pressure
amplitude and another mechanism that acts to amplify thesdimopressure amplitude.
These physical mechanisms arise from various acousticesum a reacting flow field.
We use the term ’sources’, as they resemble the aeroacswostices found using the
source filtering approach of aeroacoustic perturbatioratops (Ewert and Schroder,
2003). One such mechanism is due to the convection due touiddlw. Convection
of acoustic energy is one such factor that influences thdisgadf the system. In chap-
ter 4, from the demonstration of the transition to instaéjilve also find that the heat
release rate and DC shift also contribute to the growth ofisito pressure amplitude.
The heat release rate fluctuation arising from the chemiaabustic interaction, also
appear as a source on the right hand side of the convectiotiaealiffusion (CRD)
equations. Our discussion leads to the fact that the sotine¢sve deal with, in the
study of thermo-acoustic system, are convective - acotygbe. In this context, the
theoretical framework developed in Chapter 3 reinforceditidings of earlier investi-

gators (Chapter 1, Zinn and Lieuwen, 2006; Shanbhegaé, 2009). The role of these



sources in the growth and saturation of acoustic pressupéitane that determines the

bistability in a thermo-acoustic system will be discussethe following section.

6.1 Stability as a consequence of linear vs nonlinear pro-

Cesses

The growth of any infinitesimal disturbances are initiallyvgrned by the linear pro-
cesses (see Fig. (1.2)). The nonlinear saturation progestevhen the disturbances
grow to a finite amplitude. Therefore, earlier studies emspeathe need for under-
standing the nonlinear stability characteristics in addito the stability characteris-
tics revealed from the linear stability analysis (Zinn anduwen, 2006; Noiragt al,,
2008). Noirayet al. (2008) emphasizes the role of nonlinear processes usingcailole
ing function approach. In their analysis, they observed filrasome parameters, very
small amplitude disturbances grow linearly until the amugale is reduced to zero by the
nonlinear processes. Also, initial negative growth rate alaserved to become positive
for sufficiently high amplitude. Again, for higher ampliteidthe growth rate is reduced
to zero. Therefore, we believe that the linear and nonlipeacesses are related to the

driving and damping that causes bistability in a thermouatio system.

6.1.1 Identification of linear and nonlinear processes

The theoretical studies on flame - acoustic coupling by W0%2@nd Wuet al. (2003)

prove the existence of nonlinear sources. These nonlirmeacas appear as coupling
functions that establish acoustic - hydrodynamic intéoactThe origin of these non-
linear functions is due to the jump relations that conneouatic velocity across the

compact flame. Wet al. (2003) expressed these jump relations as

[ua] = (1 + (VFp)*)/? = 1) (6.1)
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to represent the acoustic velocity jump across the flame, and

[Uo] = a(1 4 (VE)?) % — (1+ (VFp)?)'/?) (6.2)

to represent the base flow modification across the flame. In(Eds6.2),F, describe

the flame front. Thereforéy Iy, describes the curvature of the flame. Equation (6.1)
suggests that whenever there is a curvature in the flame castacfield is generated.
The right hand side of Egs. (6.1-6.2) represent the unsthadi/release rate concen-
trated along the flame. Both coupling functions show the @rfae of heat release rate

on the hydrodynamic velocity/, and the acoustic velocity,. The jump relations, ac-
cording to Wuet al. (2003), causes a strong nonlinear interaction betweencinestc

field and the flame. From an experiment, which studies theaot®n of vortices with

the heat release rate, Durekal. (2005) proves that the response of the heat release rate

to the incoming flow disturbances is nonlinear.

In addition to the nonlinear processes, there are lineagsses that act in the initial
stages of the growth of pressure disturbances (Culick, R00tese linear processes are
represented as the source terms that appear on the righsltendf equations for the
linear harmonic oscillator. The assumption is that the ntage of disturbances is
small in the initial stages of their evolution. These linequations are obtained as the
first order equations after the application of perturbatioethod. We have obtained
such evolution equations (Egs. 3.24 and 3.25) governing\tbkition of acoustic field
variables. However, in our equations the source terms @@t first order. At higher
orders we can obtain amplitude evolution equations. Indleagiations, the linear and
the nonlinear growth rates are expressed as the coeffiaeimgar and nonlinear terms
respectively. Wiet al. (2003), investigating the interaction of Darrieus-LangBeL)
instability with the sound field, expressed the influencén&dr and nonlinear processes

on the growth of amplitudél of the D-L mode as

A = KA+ 7, A® — 3| BI*A (6.3)

B' = x,A’B +m,B (6.4)
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whereB is the amplitude of the acoustic pressure and velocity fidlte coefficients:,
vs» Vb, Xs @andm,, depends on the physical system under consideration. Tipegsent
the growth rates of D-L instability mode and acoustic fieldafales. The interaction
between the D-L instability mode and the acoustic mode idimear even when their
respective magnitudes are small. Such a nonlinear intera called weakly non-
linear interaction. Similar splitting of linear and nordar processes is achieved by
Subramaniaet al. (2013). The governing equations that describe the cortinitbérom
linear and nonlinear processes are also known as slow floatiegs (Subramanian
et al, 2013). The slow flow equations are obtained as higher omieateons after the
application of perturbation methods (Culick, 2006; ¥tal., 2003; Subramaniagt al.,
2013). CRD equations are higher order equatia@n&y)). Also the CRD equations
show the evolution on the slow time scale or the acoustic Boae. Next, we will

discuss the linear and nonlinear mechanisms in the contextrdCRD system.

6.1.2 The linear and nonlinear processes as represented byetcon-

vection reaction diffusion equation

The convection reaction diffusion equations, derived ithr 3, show a new nonlin-
ear mechanism. This nonlinear mechanism, which arises inenchemical - acoustic
interaction, is also a function of heat release rate (seexpeessions for coefficients in
Egs. (5.9, 5.10)). The chemical - acoustic interaction i;xaerent mechanism present
in low Mach number reacting flows (Oran and Gardner, 1985yeflwer with the in-
fluence of fluid flow disturbances, and the proposed nonlimearhanism, a better de-
scription of driving and damping forces in a thermo-acausyistem is provided in this
chapter. In Chapter 1, we have seen that the driving meaiasigenerally subjected
to the nonlinear effects. The models describing the driviieghanisms tend to adhere
to this general rule. In Fig. (1.2) we can see that the drivingergoes nonlinear evolu-
tion, whereas the damping undergoes linear evolution. Ehendiscussion of coupled
nonlinear CRD equations, we now know that the nonlinear emite appears naturally
in reacting flows. Therefore, CRD equations seem to preskettar picture of nonlin-
ear stability characteristics of a thermo-acoustic systéamlinear terms also prove the

amplitude dependency of the driving mechanism (see Fig))(1.
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6.2 Nonlinear instabilities

The influence of nonlinear sources on the stability of fluicha@iyic system has been
well explored (Chomaz, 1992). Chomaz used a Ginzburg - Lamdmation (GLE)
to model the nonlinear processes in a fluid dynamic systenlieEaGLE was used
to study the stability features of Navier - Stokes equati@sdréche and Manneuville,
2005). The real GLE equation is written as:

2
0A A 92A

where,R(A) = -0V (A)/0A andV (A) = —uA?/2 — A*/4 + A5 /5. The presence of
convective term, the linear and nonlinear terms in GLE rddertiat of CRD equations.
These terms give rise to two nonlinear instabilities - noedir convective instability and

nonlinear absolute instability.

6.2.1 Nonlinear convective instability

As the name suggests, the convective instability arisas fifee interaction between
convection term and the local instability mechanism. Autisance on the parallel base
flow can be expressed as)(y, k, w)expli(kz —wt)], wherek, w and A are the complex
wave number, the frequency and the amplitude respectivdy.a control parameter
R, the instability occurs when the growth rate,..(R) > 0. If a disturbance, local
in nature, dies down, then we call the system to be lineadplst However, if the
convection aids in the transportation of the local distndeato other parts of system,
then the system is convectively unstable. The disturbaresedbwn at a fixed location
and grows in a moving frame of reference (see Fig. (6.1)). skabkility thus defined is
applicable only to linear regime of disturbances. When theees are nonlinear, the
definition is extended to include the disturbance of finitgplitmde. Under the action
of a constant forcing, for a nonlinearly convective stalyletem, a disturbance of finite
amplitude decays in the laboratory frame of reference (Huand Monkewitz, 1990;

Chomaz, 2005).
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Figure 6.1: The illustration of nonlinear convective inslidy. The local disturbance at
a fixed location decays at that point as time advances. Therbigce is
also communicated to other locations.

6.2.2 Nonlinear absolute instability

For an absolute instability, the amplitudeof an infinitesimal disturbance grows to
infinity at any fixed point in the laboratory frame of referendNonlinear absolute in-
stability is defined for a disturbance of finite extent and biuge. The amplitude of
disturbance grows and achieves a saturation amplitudeydbaa point in the labora-

tory frame (see Fig. (6.2)) (Huerre and Monkewitz, 1990; @ha, 2005).
t

X

Figure 6.2: The illustration of nonlinear absolute insthilThe local disturbances grow
at any location in the laboratory reference frame

Thermo-acoustic system involves acoustic - flame - hydradyao interaction. The
stability is then defined in terms of the growth or decay ofuestic disturbance ampli-

tude due to the sources from the underlying hydrodynamiad {ible unsteady reacting
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flow). Therefore in this chapter, we chose to study the statof flow - acoustic -

heat release rate system. To describe the thermo-acoystens We have obtained
coupled nonlinear CRD equations, obtained from Navier k&aequations through
rigorous derivation. Therefore unlike GLE equations, tbepted equations are not
simple model equations for fluid flow instabilities. The tygfenonlinearities inherent
to the flow - acoustic - heat release rate will be investigatddnlinear instabilities,

of absolute and convective nature, will be discussed in tmext of thermo-acoustic

system using CRD equations.

Finally, with the investigation of the nonlinear instabés we show that the bista-
bility is a consequence of two mechanisms: 1) the transfenefgy with the flow field
when the control parameter exceeds a critical value ande2¥dkuration mechanism
introduced by the chemical-acoustic interaction. Thedi@nof energy with the flow
field is again two fold. In the region of NLC, the flow carriesawthe acoustic dis-
turbances from the system. In the NLA regime, the flow aidfiengrowth of acoustic
disturbances to a finite amplitude so that nonlinear meshasicauses the saturation
to self sustained oscillations. In this manner, convectibacoustic disturbances due
to flow acts to damp and drive the disturbances dependingeoretiion in the control

parameter space.

6.3 Nonlinear instability

6.3.1 Problem description

In a thermo-acoustic system, a localized heat source suitdéinas can generate a pres-
sure wave. According to Dunlap (1950), the pressure wawslaathermal fluctuations
and eventually causes heat release rate modulation. Thedhease rate modulation,
in turn, modifies the flow field or introduces local flow distanzes through gas ex-
pansion. A theoretical description of these phenomenaasiged by the system of
Egs. (3.12, 5.9, 5.10). Equation (5.9) represents the infef flow field dynamics
and heat release rate fluctuations on the generation of tcpusssure wave. Equa-

tion (5.10) represents the coupling of acoustic pressuve weth thermal fluctuations.
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Equation (3.12) represents the influence of heat releas®nathe flow field.

From the earlier research conducted to understand theatten between heat re-
lease rate and acoustic field, two major coupling mechan@mesevealed. They are
pressure coupling and velocity coupling (Claeal., 1990, 1994; Pelce and Rochw-
erger, 1992). In the present study, the nonlinear procegliEh couple the flow field
and acoustic field are found to be due to pressure coupling¢amism through which
the acoustic pressure and heat release rate fluctuatiomsno#é each other). Therefore,
our objective is to study the response of the nonlinear tbeswoustic system described

by Egs. (5.9, 5.10) to an initial infinitesimal acoustic &% perturbation.

Here, we consider the geometry of thermo-acoustic systebeta duct with no
area variation. The duct is filled with fuel-air mixture wigimemixed flame, a source
of heat release rate, is situated at a fixed location. Acteesflame, the acoustic pres-
sure does not vary (Claviet al., 1990, 1994; Pelce and Rochwerger, 1992). This is
true for any localized heat release rate fluctuations. Terd®sacoustic pressure in
such a situation, an additional length scale can be intredlas a function ofj; i.e.
on. Hered is the ratio of length scale which describes the localizeat helease rate
fluctuation to the length scale for acoustic pressure vanatdn is the length scale
describing the spatial variation of acoustic pressureng/shis length scale, which is
longer compared tg, we could describe the acoustic pressure wave to be of the for
Paa(n, T)e*+eT)  The spatio-temporal solution foreff*"++7) is thus separated from
the perturbation amplitude which is localized in the longgth scale {). This scale
separation is schematically represented in Fig. (5.2}ialmerturbations can then be
applied locally top,,(n, 7). Coefficients of Eq. (5.9) represent the physical parameter
of system such as reaction rates, heat release rate ansiaiifftoefficients, for which

values are specified explicitly.

We solve the nonlinear equations numerically in one dinen$or the acoustic
pressure and thermal fluctuations. A CVODE solver (Cokeal., 1996), provided
with XPPAUT (Ermentrout, 2002), is used for the integratadrstiff equations. The
initial velocity field for all the cases discussed belowjs= 0. As a consequence, any
flow disturbance is generated due to the acoustic field albhe zero gradient bound-

ary condition is chosen for the present computations. A migaleexperiment, which
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we have set up now, will permit us to investigate the mecmamtgrowth and decay
of the initial acoustic disturbance and its interactionhwhie flow field and the heat re-

lease rate. The growth of the acoustic pressure perturbatid its saturation to a finite

a) -4 b)
4X 10 2
© 3| Perturbation . 1.5
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Final
2 0 decays  perturbation inal state
g. Perturbation Initial
; rows
S 9 Final state g 5 9 \ perturbation
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g 1 x 56 0 x 5.6
% c) Perturbations d)
= 0.4 being 1.5 =t
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o
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Figure 6.3: Spatio-temporal evolutions computed from E§®, 5.10). These are the
solutions obtained by solving nonlinear equations. lhperturbation to
Pa2a is Of the orderl0~3, @) py, = 0 is stable (S), bp,, = 0 is unstable (U),
¢) Nonlinear convective instability (NLC), d) Nonlinearsaiute instability
(NLA). t; denotes the time of initial perturbation andis the time when
the final state is reached.

amplitude is a characteristic of thermo-acoustic instigbilhe decay of any infinites-
imal perturbation at any specific point in space indicatesiability (S); the growth
indicates an unstable system (U). However, apart from tbesditions, we show that
thermo-acoustic system also exhibits nonlinear convedtLC) and absolute insta-
bility (NLA). The control parameter space for these indiibs, which are governed
by the nonlinearities in the system, is explored. The tygesstabilities exhibited by
the system described by Egs. (5.9, 5.10) are illustratedgn(b.3). The growth of
perturbations in S and U regimes do not depend on the magnatiugerturbation. Per-
turbations of any magnitude will decay in the S regime anevgndJ regime. However,
as you can see in Fig. (6.4), the magnitudes of perturbatettemin the NLA and NLC

regime which indicates the amplitude dependency in the alsenlinear instabilities.

In the subsequent sections, we will explain the significasfddLC and NLA and

the role of convection in determining the stability of a teracoustic system. Insta-
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bility is indicated by a nonzero final amplitude to which théial acoustic disturbance
evolves. To investigate the parameter space of instabilidyhave computed the bifur-
cation diagrams (see Fig. (6.4)), from the nonlinear equatiusing various values of
the physical parameters ¢, 9 and D. The bifurcation diagrams are computed using
AUTO (Doedelet al, 1997). We have computed the bifurcation diagram for values
of D = 0.1,0.01,0.001 and fora« = —0.6, —0.8, —1. These diagrams show the same
gualitative behavior with respect to the types of nonlineatabilities. Therefore, in
Fig. (6.4) we show a demonstrative case for the types of neatiinstabilities observed
in our thermo-acoustic system. We show the influence of tteali coefficieni (a func-
tion of heat release rate and the mean pressure shift) onabiity of the system. The
saturation to the finite amplitude is a consequence of théimear terms; coefficients

of which corresponds to the heat release rate fluctuatioasalacoustic field.

In a thermo-acoustic system, we observe fluid flow fluctuatithrat accompany
the acoustic oscillations. We believe that the couplingveen these two processes is
significant in determining the stability characteristi¢sadhermo-acoustic system. In

the following discussion, we attempt to establish this eotyre.

In Fig. (6.4), the significance of two nonlinear instabdgi- nonlinearly convective
and nonlinearly absolute - is discussed. The parameteespéere there is a possibil-
ity of nonlinear instabilities to occur, has two stable lofags. One is a zero amplitude
branch and other a finite amplitude branch. The pagint®-, p3 andp, indicate the
amplitudes of perturbations introduced in the nonlineatahility regimes. These per-
turbations are introduced uniformly over all grid poinis< 1 to V). For perturbations
p2 andps, the thermo-acoustic system approaches the zero ampétatde For the final
state to be the zero amplitude state, values of the initiadlitmnsp, andp; for the time
marching are in the range(10~3) — O(10~1). For perturbations o (1) (p; andp,)
the system attains the finite amplitude state. The rest stctiapter studies the spatio -

temporal growth of localized acoustic pressure pertuobatdue to fluid flow.
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Figure 6.4: Bifurcation diagram (solid circles computedhgghe method of continua-
tion) with respect to the linear coefficient(control parameter). The other
system parameters are chosemas- —1, 6 = 2,9 = —1, D = 0.01.
The parameter space< A < u; shows NLC (convective because the per-
turbation to the acoustic field in the system eventually ésahe domain,
nonlinear because the growth is governed by the nonlinaaices. The
initial small perturbation of the orde?(10~3) reaches a finite amplitude
before leaving the domain) and < A < us shows NLA (absolute because
the perturbation to the acoustic field grows in space and éingenever de-
cays). A > s is a region where the system is absolutely unstable. Here,
= 0.179 and s, = 0.231. The filled circles show the stable states for
thermo-acoustic system described by Egs. (5.9, 5.10). \Far 0, stable
state isp,, = 0. The stable states for > 0 are the finite amplitudes ob-
tained due to the nonlinear terms. The time evolutions ofupleation in
the parameter space of NLC and NLA are shown in Fig. (6.5) agd6.6)
respectively. The regiof < \ < us is also a bistable region, where zero
amplitude state and a finite amplitude state coexist. Rgimdicates per-
turbations ofO(1071). As seen in this figurep, in the NLC regime rep-
resents a larger perturbation than Pointp; corresponds t@(1073) in
the NLA regime. Perturbatiop, is larger than the perturbatign. The
unstable branch that separajgsandps; from p; andp, is not computed
from continuation, but drawn to represent the relative nitages of pertur-
bations that will result in zero amplitude and finite ampdglbranch.

6.3.2 Nonlinear convective instability

For the nonlinearity in Egs. (5.9, 5.10) to play a significanié in the growth or decay
of acoustic pressure amplitude, the initial infinitesimaturbance should approach a
finite amplitude. In this section, we show the influence offthil flow velocity in this

process. From Eq. (3.12), we can express the dilatation as:

-1 ) ) —1
V,-ih= ———HDa(Q+Q)+—L

1
. Ty — —a.p 6.6
Vo vypoRePr "0 ypy Y (6:6)

The acoustic field and the flow field interact with each othemiag a feedback loop.

The solution of (6.6) along with the nonlinear Egs. (5.90% Will provide us the evo-
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Figure 6.5: The initial perturbation to the acoustic fieldsisown in Fig. (6.5a).
Fig. (6.5b) shows the space - time evolution figy. The parameters corre-
spond to the region of NLC in the bifurcation diagram showFim (6.4).

lution of the flow velocity and the acoustic pressure and &nmagore fields. A grid
convergence study is conducted with(number of grid points i direction) = 28, 56,
112, 224. Converged solution is obtained for= 56 and above. Therefore we chose
N =56 for the present study. In the region< A < pu4, any infinitesimal perturbation
is amplified spatially as it is convected out of the domainisTitocess is illustrated in
Fig. (6.3c). The time evolution gf,, at a point in the boundary (where the maximum
amplitude is attained) is shown in Fig. (6.5b). Note thatitifmitesimal perturbation
can be spatially amplified and reach a finite amplitude bdfefere it is convected out
of the domain. However, at the point where the perturbasantroduced, it decays to
zero amplitude. Note that the time and space evolutions showhis chapter are of
the acoustic pressure disturbance amplitude. This gyantitogether with the spatial

distributione!(*97++7) represents the acoustic wave setup inside the duct.

6.3.3 Nonlinear absolute instability

In the regionu; < A < ps in Fig. (6.4), the zero amplitude state, is a metastable
state. The perturbations are not convected out of the donie fluid flow distur-

bances tend to amplify the infinitesimal perturbations tanadiamplitude. Then, the
nonlinear processes act on the growth of perturbationdtiegun the saturation to a
non-zero amplitude. In Fig. (6.6b), there is a rise in theuatio pressure amplitude

whenever there is a flow fluctuation. However, without thedditlow disturbances (to
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Figure 6.6: The time evolution of the acoustic pressure dugd in the NLA region
(11 < A < pg) of Fig.(6.4). (a) Shows the decay fig, = 0 in the absence
of flow disturbances (imposing, = 0) and (b) shows the saturation to a
finite amplitude state in the presence of flow disturbancasirfh the flow
to evolve according to Eq. (6.6)). Even after the flow distumtes decay,
P2q Femains in the finite amplitude state because of the absoaitee of
instability.

Figure 6.7: The spatial - temporal evolution of the amplkud acoustic disturbances
(p22) In the @) NLC regime and the b) NLA regime.

demonstrate this we have imposed= 0 in Fig. (6.6a)), the acoustic pressure ampli-
tude cannot reach the magnitude(fl). As a consequence, the perturbation amplitude
decays to the metastable zero amplitude state. An illustralf this type of instabil-

ity in space and time is shown in Fig. (6.3d). The initial péoation grows in space
and time, till it contaminates the entire domain (see Figiif). For\ > u», any in-
finitesimal perturbation will saturate to a finite amplitudancep,, = 0 is an unstable
state. The system is absolutely unstable in this paramgdees The growth of acoustic

pressure perturbation in this region is shown in Fig. (6.3b)
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6.4 Concluding remarks

As a consequence of the nonlinear saturation mechanisimg iNIitA and NLC region,
states of zero amplitude and finite amplitude coexist. Thexistence of these states
in NLA regime is entirely due to the interaction with the flfldw. While operating
in NLC region, any localized small but finité)(10~3)-O(10!)) perturbation decays
to zero amplitude at that location. Any perturbations oftiramplitude of the order
O(1), applied uniformly in space, reaches the finite amplituééestWhen parameter
region isy; < A < us (NLA), without convection only a perturbation 6f(1), applied
uniformly in space, results in the finite amplitude brancbwdver, with convection, the
flow amplifies the localized small but finit&(10~3)) acoustic disturbances to the finite
amplitude state. This positive interaction indicates theimg effect of convection.
This type of positive interaction is reported here for thstfirme. Without this driving
effect, NLA region is characterized by the decay of infinites disturbances to zero
amplitude state. The finite amplitude branch in the bifuccatiagram (6.4) is a state
where the localized disturbance has contaminated theeesptarce. While in this state of
finite amplitude, with changing the control parameter belowthe acoustic pressure
amplitude do not approach the stgig = 0. The zero amplitude state can only be
attained when\ < 0, indicating the hysteresis effect widely studied in theracoustic

interaction.

92



CHAPTER 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have formulated a theoretical framewosdtuidy the growth of acous-
tic amplitude during the acoustic-hydrodynamic intem@atiln our derivation, we have
revealed a mechanism responsible for the mutual trangortaf acoustic and hydro-
dynamic fields. This mechanism couples the acoustic ancoldydiamic fields. There-
fore, any disturbance in the acoustic field is convected kyhydrodynamic velocity
field and any disturbance in the hydrodynamic field is coregbly the acoustic veloc-
ity field. This mechanism was previously known as convedn@ lift-up mechanism
in the study fluid flow instabilities (Marquet al,, 2009). In the nearly incompressible
hydrodynamic phenomena, observed in magnetohydrodynidmais, the mechanism
of mutual interaction of the fluctuating and the mean fieldsls® known as Reynolds
stress forces (Dastgeer and Zank, 2004). Our convectivdiftsugh mechanism, that
establishes the acoustic-hydrodynamic interactionpislar to the wave-mean flow in-
teraction phenomena found in MHD or atmospheric flows. Inloostion environment,
the mutual interaction of acoustic, heat release rate adcbdynamic fields give rise to
the modification of acoustic field. Therefore, the goverreqgations derived in Chap-
ter 3, using method of multiple scales (MMS), allow us to perf computations on the

combustion generated sound.

We show that the governing equations governing the evaluti@coustic field am-
plitudes are nonlinear perturbation equations. A positeeziback loop between the
acoustic pressure field and the heat release rate may |eael godwth of acoustic pres-
sure amplitude in a thermo-acoustic system. The intemnactiechanism of acoustic
pressure and heat release rate fluctuations, that canisistaliéedback loop, is evident
from the nonlinear equations. These nonlinear equatiansalted convection reaction

diffusion (CRD) system. A subsystem of CRD system; i.e. tieadiffusion system,



has been proposed for various phenomena to represent yimaimical nature (Hoyle,
2006). Therefore, proposing thermo-acoustic system as@ §Rtem is a major ad-

vancement of this thesis.

The new theory, formulated as CRD system, provides a matteahdescription
of combustion instability. Sources responsible for theggation of sound, in a com-
bustion environment, is extracted from the governing e@qoatusing a source filtering
approach (Ewert and Schréder, 2003). For a low Mach number flee convective,
vortical, entropy and acoustic sources exist on differenetscales. In this context,
MMS is advantageous in decomposing the field variables dougpito the time and
space scales. We have described, using the method of rewdples (MMS), the fast
oscillations on the acoustic time scale and the slow timkeesseblution of acoustic pres-
sure amplitude on the convective time scale. We have shoairstith a description is
advantageous for two reasons: 1) we obtain the time scatespate scales of various
sources that drive combustion instability and 2) a sourterifilg approach provides the
knowledge of time scales on which acoustic-vortical-gmgronodes evolve. The sep-
aration of time scales separates the fast acoustic ogmitatind the slow modulation
of acoustic amplitude. As a consequence, the computatioig @sir nonlinear equa-
tions yields a stationary bifurcation. This is in contragfmthe previous investigations
where Hopf bifurcations are computed (Burnley and CulidQ8; Culick, 2006; Sub-
ramaniaret al., 2013). The computation of a stationary bifurcation sawesmutational
resources. On the investigation of low Mach number readtovgs using the evolution
equations, we found a nonlinear mechanism that establétoesstic-hydrodynamic in-
teraction. Mathematically, the interaction is formulas#esch class of convection reaction
diffusion (CRD) equations. Using the CRD system, we studydtability characteris-

tics of acoustic pressure perturbations introduced in tive fileld.

From our investigation, in addition to the time scale sefpanawe have achieved
the space scale separation. We achieved this separatioarivynd two sets of evo-
lution equations - one set governing the long length scaldutadion and another set
governing the small length scale modulation. We believe $hah an approach is ad-
vantageous, since the hydrodynamic fluctuations that sitive acoustic perturbations

are on the small length scale. Furthermore, the nonlineawthrof acoustic pressure
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perturbations is captured by following our approach.

We have used the dynamical systems analogy in understatieBrigansitions ob-
served in thermo-acoustic system. Methods of the theateaticestigation of the stabil-
ity of thermo-acoustic system has advanced with the agmitaf dynamical systems
theory. Previous investigations in this direction prombet the change in the stability
of a thermo-acoustic system can either occur through a stipeal Hopf bifurcation or
through a subcritical Hopf bifurcation. The origin of linuycle oscillations associated
with the instability is one of the reason for such a clasgifica These investigations
focused on reducing the governing equations for thermatstaminteraction to the nor-
mal form of supercritical or subcritical Hopf bifurcatian$ransition from oscillatory
to non-oscillatory states in a thermo-acoustic systembathhysteresis effect. The
cause of this hysteresis is the motivation behind the stddypange in the stability as
a subcritical bifurcation. However, in this thesis, we shbat the transitions can occur

through a perturbed bifurcation which also exhibit hystereffect.

The perturbed bifurcation can be created by introducingdatitianal term to the
normal form of pitchfork bifurcation. This additional terimtroduces an asymmetry in
the pitchfork bifurcation. For example, following HoyleQ@6), this additional term is

a quadratic term in the equation given below.
v = px + evr® — az® (7.1)

The normal form has both the linear and nonlinear termsjivet ax?®. The additional
term isevz?. As a result of this quadratic term, in addition to the stadicy solution at

x =0, we also obtain stationary solutions at
1
T19 = 2—(61/ + Ve2v? + dav) (7.2)
a

which implies that there are two stationary solutions fior> . = —e*v?/4a. The
bifurcation diagram computed from Eq. (7.1) is shown in Ki§l). We can see that
there are three solutions when> 1. Two of them are described by the stable branches
(solid lines) and one of them is described by the unstabledbré&dotted line). There

is a hysteresis region in the parameter space 1 < 0. As the acoustic perturbation
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amplitudeA is positive, we need to consider only the positive braneh;the solution

branches above the zero amplitude branch.

Figure 7.1: Perturbed pitchfork bifurcation that resutinfrincluding a quadratic non-
linear term in the normal form of supercritical pitchforKunication. Solid
lines indicate the stable branch and dotted line indicaeutistable branch.
x1 andz, are the solutions given in Eq. (7.2). For an acoustic pestioh
amplitudeA, x; andz, are the possible branches that are possible solutions.
The negative branch is a solution to example Eq. (7.1):.fer 0. However,
this negative branch cannot be attained by any perturbatitime acoustic
pressure amplitude.

The bifurcation shown in Fig. (5.4) exhibits the hysteresise near the critical pa-
rameter),. There is one more type of bifurcation that is supercritiezr the critical
parameter. This type of bifurcation, shown in Fig. (5.6)c#@led a secondary bifur-
cation. Such a bifurcation creates multiple oscillatorgrtmhes. In a thermo-acoustic
system, these oscillatory branches correspond to muliipie cycles. The theory is
formulated through a rigorous mathematical derivatiomfrihe governing equations
for compressible fluid flow. Therefore, the control paramsetieat determines the bifur-
cation characteristics have physical meaning. This is gamorement over the present
theoretical models. In this thesis, we have explained tiggroof hysteresis using the
physical parameters such as the heat release rate, the blEmkomber and the mean
density in the combustion chamber. The influence of conveas to spread the local
pressure disturbances spatially, which will lead to a spatnporal growth of initial

disturbances.

The mechanism responsible for the transition from nonHasory to oscillatory
state of acoustic pressure is found to be acoustic-hydaodicicoupling. The transition
can occur in the region of parameter space where systemeahaadkacoustic system is

not absolutely unstable. Using an example, which providesitlnematical description
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of acoustic-hydrodynamic interaction, the influence ofvamtion on introducing the
transition is elucidated. Finally, we propose that in additto stable and unstable
regimes, the control parameter space also has a region \phessure perturbations
show nonlinear convective instability (NLC) and a regioneng perturbations show
nonlinear absolute instability (NLA). Therefore, we prgpdhat convective effects can

be a candidate mechanism for the instability in an otheratigble operating zone.

7.2 Scope of future work

7.2.1 Application to real combustor configuration

The theory formulated in this thesis can be used to expla&mwtlgin of combustion in-
stability in practical combustor configurations. Real caistors exhibit fluid dynamic
instabilities. These instabilities can cause heat releatgefluctuations. For example,
a combustor configuration with oxidizer inflow at the cented &uel co-flow as shown
in Fig. (7.2) can exhibit unsteady base flow field. The unstdbov field can cause
flame instability which in turn cause heat release rate fatein. Using an in-house
computational fluid dynamics code, we have shown one of duaimto-acoustic insta-
bility. In Fig. (7.2), flame surface undergoes flapping inp@sse to the generation and
propagation of vortices in the flow field. The vorticity dyniasican cause fluctuations
in the base flow velocity. The flapping of flame near to the blate known exper-
imentally (Nair, 2006). The generation and propagationatiges and the resulting
non-uniformity in the burning of gases is investigated bynBotet al. (1987). There-
fore, the combustor configuration that we are going to dstias practical relevance.
The combustor has an inflow of oxidizer with velocity The co-flow of fuel is at a
velocity v which is only 10 percentage of the center flow velodity The governing
Egs. (3.10-3.12) for the low Mach number flow are solved tawhtihe base flow veloc-
ity field. In the numerical study of flow dynamics as the onemh Fig. (7.2), vortical
modes and entropy modes (from the propagation of burned gaslee vortices) inter-
act. Such an interaction will lead to the fluctuations in tenapure and vorticity fields

(shown in Fig. (7.4)). In such a numerical study, there areenomntrol parameters
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Figure 7.2: The streamlines of the flow for a) generation ofiges in the bottom mix-
ing layer b)the propagation of vortices out of the domain enayation of
vortices in the top mixing layer. The thick solid line indieahe flapping
flame surface. This figure is plotted from the data computégusn in-
house low Mach number computational fluid dynamics codeldpee by
the author of this thesis. The ratio of fuel to oxidizer véfies, Reynolds
numberRe and the inlet temperatufg are chosen to be/U = 0.1, 2000
and 900K respectively.

than those considered in this thesis. These parametetglathe inlet species mass
fractions and the length and diameter of the combustor. dn (i 3), we see that there
is a fluctuation inug in response to the flapping of the flame. Fluctuations in tleeba
flow is therefore unavoidable when there is thermo-acoussiability. Solving nonlin-
ear equations 5.9 and 5.10 simultaneously with Egs. (3.12}3or low Mach number
flow will help us to study the evolution of acoustic pressumgpétude in response to
the unsteady flow field. However, the boundary conditionstarh a two dimensional
simulation have to be carefully formulated. Further, suctumerical simulation will

be computationally expensive in terms of time and companalipower.

7.2.2 Other nonlinear dynamical phenomena

Constructing a computational solver that solves the nealirequations coupled with
the low Mach number equations will reveal many other noainghenomena. These

phenomena may include chaotic oscillations and interntitbscillations. The theo-
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Figure 7.3: The time trace of base flow velocity fluctuatioresasured near the flame
sheet. This measurement correspond to the fluctuation ibabe flow ve-
locity that arise from the propagation of vortices that dreven in Fig. (7.2)
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Figure 7.4: The time trace of vorticity and temperature flatibns. Points A, B and C
corresponds to the flow field configuration a, b and ¢ showngn f.2).
This time trace is computed for the same parameters usedd@momputa-
tion of Fig. (7.2); i.e.the ratio of fuel to oxidizer velogs, Reynolds num-
ber Re and the inlet temperatufg, are chosen to be/U = 0.1, 2000 and
900K respectively.)

retical analysis presented in this thesis is the first atteémpategorize the problem of
combustion instability into a mathematical class of equregi The reaction diffusion
system is known to exhibit limit cycle oscillations, chaadiscillations and intermittent
oscillations of physical quantities in many fields rangingni chemical oscillators to
neural oscillators. Acoustic pressure oscillations dritag unsteady flow phenomena
can also exhibit such phenomena. Therefore, the presemythan be extended fur-
ther to study such phenomena. Using this theory, the fluiduwho, acoustic and flame

instabilities can be investigated for its origin from acierflame-vortex interactions.
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