For your reference only. You are responsible for checking the correctness of all formulae.

Chapter One. Free vibration of 1-DOF systems

Natural frequency,
$$\omega_n = \sqrt{\frac{k}{m}}$$
, period $T = \frac{2\pi}{\omega_n}$

Free response of 1-DOF undamped systems
$$x = A \sin(\omega_n t + \phi)$$
, $A = \frac{\sqrt{\omega_n^2 x_0^2 + v_0^2}}{\omega_n}$, $\phi = \tan^{-1} \frac{\omega_n x_0}{v_0}$

Damping ratio
$$\varsigma = \frac{c}{c_{cr}} = \frac{c}{2\sqrt{km}}$$
, damped natural frequency $\omega_d = \omega_n \sqrt{1-\varsigma^2}$, Period $T = \frac{2\pi}{\omega_d}$,

Free response of underdamped systems

$$x = Ae^{-\varsigma\omega_{n}t}\sin(\omega_{d}t + \phi), A = \frac{\sqrt{(v_{0} + \varsigma\omega_{n}x_{0})^{2} + (x_{0}\omega_{d})^{2}}}{\omega_{d}}, \ \phi = \tan^{-1}\frac{x_{0}\omega_{d}}{v_{0} + \varsigma\omega_{n}x_{0}}$$

Stiffness, in general, $k = F/\Delta l$ or $M/\Delta \theta$, a cantilever beam $k = \frac{3EI}{l^3}$, axial stiffness of a rod $k = \frac{EA}{l}$,

Torsional stiffness of a rod k = GJ/l,

Stiffness of two springs in parallel $k = k_1 + k_2$, stiffness of two springs in series $k = \frac{k_1 k_2}{(k_1 + k_2)}$

Logarithmic decrement
$$\delta = \ln \frac{x(t)}{x(t+T)}$$
, damping ratio $\zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$

Chapter Two. Response to Harmonic Excitation $F(t) = F_0 \cos \omega t$ (note $f_0 = F_0 / m$)

Response of undamped system
$$x = \frac{v_0}{\omega_n} \sin \omega_n t + (x_0 - \frac{f_0}{\omega_n^2 - \omega^2}) \cos \omega_n t + \frac{f_0}{\omega_n^2 - \omega^2} \cos \omega t, \ \omega \neq \omega_n$$

Frequency of beat
$$\omega_{beat} = |\omega_n - \omega|$$
, frequency of oscillation $\omega_{oscil} = \frac{\omega_n + \omega}{2}$

Response of underdamped system to a harmonic force $F = F_0 \cos \omega t$

$$x = Ae^{-\varsigma\omega_n t}\sin(\omega_d t + \phi) + X\cos(\omega t - \theta), \ X = \frac{F_0/m}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\varsigma\omega_n\omega)^2}}, \ \theta = \tan^{-1}\frac{2\varsigma\omega_n\omega}{\omega_n^2 - \omega^2}$$

$$\phi = \tan^{-1} \frac{\omega_d (x_0 - X \cos \theta)}{v_0 + (x_0 - X \cos \theta) \zeta \omega_n - \omega X \sin \theta}, A = \frac{x_0 - X \cos \theta}{\sin \phi}$$

Base excitation $y = Y \sin \omega_b t$,

Displacement transmissibility
$$\frac{X}{Y} = \left[\frac{1 + (2\zeta r)^2}{(1 - r^2)^2 + (2\zeta r)^2} \right]^{1/2}, r = \frac{\omega_b}{\omega_a}$$

Force transmissibility
$$\frac{F_T}{kY} = r^2 \left[\frac{1 + (2\zeta r)^2}{(1 - r^2)^2 + (2\zeta r)^2} \right]^{1/2}$$

Rotating Unbalance. Magnitude of steady-state response
$$X = \frac{m_0 e}{m} \frac{r^2}{\sqrt{(1-r^2)^2+(2\varsigma r)^2}}$$
, $r = \frac{\omega}{\omega_n}$

Chapter 3. General Forced Response

Response to an impulse at t = 0, $F(t) = \hat{F}\delta(t)$, $x(t) = \frac{\hat{F}}{m\omega_d}e^{-\varsigma\omega_n t}\sin\omega_d t$

Response to an impulse at $t = \tau$, $F(t) = \hat{F}\delta(t-\tau)$, $t \ge \tau$, $x(t) = \frac{\hat{F}}{m\omega_d}e^{-\varsigma\omega_n(t-\tau)}\sin\omega_d(t-\tau)$, $t \ge \tau$

Response to a step input at t=0, $F(t)=F_0$, $x(t)=\frac{F_0}{k}-\frac{F_0}{k\sqrt{1-\varsigma^2}}e^{-\varsigma\omega_n t}\cos(\omega_d t-\theta)$, $\theta=\tan^{-1}\frac{\varsigma}{\sqrt{1-\varsigma^2}}$

Response to a step input at $t=\tau$, $F(t)=F_0$, $x(t)=\frac{F_0}{k}-\frac{F_0}{k\sqrt{1-\varsigma^2}}e^{-\varsigma\omega_n(t-\tau)}\cos[\omega_d(t-\tau)-\theta], t\geq \tau$

Chapter 4. Multiple-Degree-Freedom Systems

Matrix equation of undamped systems free of excitation $M\ddot{\mathbf{x}} + K\mathbf{x} = \mathbf{0}$

Natural frequencies can be found by solving the equation $\det \left[-\omega^2 M + K \right] = 0$

Mode shapes can be found by solving the equation $\left[-\omega_i^2 M + K\right] \mathbf{u}_i = \mathbf{0}$

Free response using the modal analysis method

- 1. Calculate $M^{-1/2}$
- 2. Calculate $\tilde{K} = M^{-1/2}KM^{-1/2}$
- 3. Solve for the eigenvalues $\det \left[\tilde{K} \omega^2 I \right] = 0$ and eigenvectors $\left[\tilde{K} \omega_i^2 I \right] \mathbf{v}_i = \mathbf{0}$
- 4. Normalize $\overline{\mathbf{v}}_i = \frac{\mathbf{v}_i}{\sqrt{\mathbf{v}_i^T \mathbf{v}_i}}$ and form the matrix $P = [\overline{\mathbf{v}}_1 \quad \overline{\mathbf{v}}_2]$
- 5. Calculate the matrix $S = M^{-1/2}P$ and $S^{-1} = P^TM^{1/2}$
- 6. Calculate the initial conditions in the modal coordinates $\mathbf{r}_0 = S^{-1}\mathbf{x}_0$, $\dot{\mathbf{r}}_0 = S^{-1}\dot{\mathbf{x}}_0$
- 7. Find the response in the modal coordinates $\ddot{r}_i + \omega_i^2 r_i = 0$, r_{i0} , \dot{r}_{i0} , $r_i = \sqrt{r_{i0}^2 + \frac{\dot{r}_{i0}^2}{\omega_i^2}} \sin(\omega_i t + \tan^{-1}\frac{\omega_i r_{i0}}{\dot{r}_{i0}})$
- 8. Find the response in the physical coordinates $\mathbf{x}(t) = S\mathbf{r}(t)$

Proportional damping if $C = \alpha M + \beta K$, damping is proportional. In such case, $S^T CS = diag \left[2\varsigma_i \omega_i \right]$. In the case of a 2-DOF system, $2\varsigma_1 \omega_1 = \alpha + \beta \omega_1^2$, $2\varsigma_2 \omega_2 = \alpha + \beta \omega_2^2$

Free response of a damped system. Solve the response in the modal coordinate $\ddot{r}_i + 2\varsigma_i\omega_i\dot{r}_i + \omega_i^2r_i = 0$, r_{i0} , \dot{r}_{i0} . Then transform it back to the physical coordinate $\mathbf{x}(t) = S\mathbf{r}(t)$.

Forced response of an undamped system. Find the force in the modal coordinate $\mathbf{f}(t) = S^T \mathbf{F}(t)$. Solve for r_{ih} and r_{ip} from the equation: $\ddot{r}_i + \omega_i^2 r_i = f_i$, r_{i0} , \dot{r}_{i0} . The formula for r_i can be found in Chapter two. Then transform it back to the physical coordinate $\mathbf{x}_p = S\mathbf{r}_p$ and $\mathbf{x}_h = S\mathbf{r}_h$. $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$.

Forced response of a damped system. Find the force in the modal coordinate $\mathbf{f}(t) = S^T \mathbf{F}(t)$. Solve for r_{ip} and r_{ih} from the equation: $\ddot{r}_i + 2\varsigma_i \omega_i \dot{r}_i + \omega_i^2 r_i = f_i$, r_{i0} , \dot{r}_{i0} . Then transform it back to the physical coordinate $\mathbf{x}_p = S\mathbf{r}_p$ and $\mathbf{x}_h = S\mathbf{r}_h$. $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$.

Chapter Five. Design for Vibration Suppression.

Understand the use of Nomograph for specifying acceptable limits of sinusoidal vibration (also refer to Section 1.2) Vibration isolation

Displacement transmissibility $\frac{X}{Y} = \left[\frac{1 + (2\varsigma r)^2}{(1 - r^2)^2 + (2\varsigma r)^2} \right]^{1/2}$ for isolating a device from a vibrating source.

Force transmissibility $\frac{F_T}{F_0} = \left[\frac{1 + (2\zeta r)^2}{(1 - r^2)^2 + (2\zeta r)^2} \right]^{1/2}$ for isolating a vibrating source from its surroundings.

Vibration absorber. The principle $\omega_a = \omega$ such that X = 0.

$$\frac{Xk}{F_0} = \frac{1 - \frac{\omega^2}{\omega_a^2}}{\left[1 + \mu(\frac{\omega_a}{\omega_p})^2 - (\frac{\omega}{\omega_p})^2\right]\left[1 - (\frac{\omega}{\omega_a})^2\right] - \mu(\frac{\omega_a}{\omega_p})^2}$$

where
$$\omega_a=\sqrt{\frac{k_a}{m_a}}$$
 , $\omega_p=\sqrt{\frac{k_m}{m}}$, $\mu=\frac{m_a}{m}$, $\beta=\frac{\omega_a}{\omega_p}$

Natural frequencies of the entire system can be found by solving

$$[1 + \mu(\frac{\omega_a}{\omega_p})^2 - (\frac{\omega}{\omega_p})^2][1 - (\frac{\omega}{\omega})^2] - \mu(\frac{\omega_a}{\omega_p})^2 = 0$$

Operation range can be found by solving

$$\frac{Xk}{F_0} = \pm 1$$

Basics of linear algebra

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \det(A) = ad - bc, A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$