For your reference only. Y ou are responsible for checking the correctness of all formulae.

Chapter One. Freevibration of 1-DOF systems
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Free response of 1-DOF undamped systems X = Asin(a,t + ¢), A=
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Free response of underdamped systems
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Stiffness, in general, k= F/al or M /a6, acantilever beam k = 3E%3 , axidl stiffnessof arod k = Eél/
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Torsional stiffnessof arod K = G‘% ,

Stiffness of two springsin parallel K =k, + K, , stiffness of two springsin series k = k1l%k1 k)
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Chapter Two. Response to Harmonic Excitation F (t) = F, cosat (note f, = F,/m)
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Rotating Unbalance. Magnitude of steady-state response X = dl: T -2
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Chapter 3. General Forced Response
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Responseto animpulseat t =0, F(t) = Ifé'(t) , X(t) = Le’g’”nt sinaw,t
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Chapter 4. Multiple-Degree-Freedom Systems

Matrix equation of undamped systems free of excitation MX + KX =0

Natural frequencies can be found by solving the equation det [—a)ZM + K] =0

M ode shapes can be found by solving the equation [—a)izM +K ] u =0
Free response using the modal analysis method

1. Caculate M 2

2. Calculate K = M V2KM ™2

3. Solvefor the eigenvalues det[K -l J =0 and eigenvectors [K -

N V; . -
4. Normdize V; = ! and form the matrix P =[V, V,]
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5. Calculatethematrix S=M ?P and S*=P'M"?
6. Calculatetheinitial conditionsin the modal coordinates I, = S™'X,, f, = S X,

a)-ZI]vi =0
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7. Find the response in the modal coordinates I; + a)izri =0,rp, I, T,
r
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8. Find the responsein the physical coordinates X(t) = S (t)
Proportional damping if C = aM + K , damping is proportional. In such case, S'CS = diag [Zgia),] .Inthe
case of a2-DOF system, 2¢,@, = a + fw?, 26,0, = o + fw?

Free response of a damped system. Solve the response in the modal coordinate i + 2,@l: + @7t =0, g, T, .
Then transform it back to the physical coordinate X(t) = S (t) .

Forced response of an undamped system. Find the force in the modal coordinate f (t) = S'F(t) . Solvefor r,, and
I, fromthe equation: f; + w’r, = f, 1,1, Theformulafor I, can befound in Chapter two. Then transform it
back to the physical coordinate X, = S, and X, = &, X=X, +X;,.

Forced response of adamped system. Find the force in the modal coordinate f (t) = S"F(t) . Solve for N, and

from the equation: T, + 2¢,@ I + @?r, = f,, Iy, I, . Then transform it back to the physical coordinate X, =3,

and X, = &, X=X, +X,,.



Chapter Five. Design for Vibration Suppression.
Understand the use of Nomograph for specifying acceptable limits of sinusoidal vibration (also refer to Section 1.2)
Vibration isolation
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Displacement transmissibility — = > (2 cr) > for isolating a device from a vibrating source.
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Force transmissibility — = 55 > for isolating a vibrating source from its surroundings.
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Vibration absorber. The principle @, = @ suchthat X =0.
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Natural frequencies of the entire system can be found by solving
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Operation range can be found by solving
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Basics of linear algebra
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A= AT =  det(A)=ad—bc, At=—=
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