Acceleration Control of a Multirotor UAV Towards Achieving Microgravity

Kedarisetty, S. & Manathara, J.G.

Motivation

Conventional microgravity platforms like drop towers and zero-G aircraft are expensive and not easily accessible

Multirotor UAVs can be low-cost alternative if they can maintain free-fall acceleration (microgravity)

Objective

Design maneuver sequence to enable the multirotor to experience microgravity

Develop controller to maintain acceleration despite time varying drag and propeller performance

Methodology

Feedback linearization control exploiting differential flatness of the system

Robust parameter estimation aiding the controller


Demonstration through field tests

Results

Snapshots of a microgravity flight test

Gravity experienced during flight tests

Aerospace Systems, 2(2), December 2019, pp. 175–188. doi:10.1007/s42401-019-00031-z