TUTORIAL-3 (12 Feb 2019)

 Thermodynamics for Aerospace Engineers (AS1300)1. Air flows at the rate of $0.5 \mathrm{~kg} / \mathrm{s}$ through an air compressor, entering at $10 \mathrm{~m} / \mathrm{s}$ velocity, 100 kPa and $1.0 \mathrm{~m}^{3} / \mathrm{kg}$ volume, and leaving at $8 \mathrm{~m} / \mathrm{s}, 700 \mathrm{kPa}$, and $0.20 \mathrm{~m}^{3} / \mathrm{kg}$. The internal energy of the air leaving is $100 \mathrm{~kJ} / \mathrm{kg}$ greater than that of the air entering. Assume that there is no significant height difference between the inlet at outlet. Cooling water in the compressor jacket absorbs heat from the air at the rate of 58 kW . (a) Compute the rate of shaft work input to the air in kW . (b) Find the ratio of the inlet pipe diameter to outlet pipe diameter.
2. In a steam power station, steam flows steadily through a 0.2 m diameter pipeline from the boiler to the turbine. After the boiler, the steam conditions are found to be: $\mathrm{P}=4 \mathrm{MPa}, \mathrm{T}=400 \mathrm{deg} \mathrm{C}$, $\mathrm{h}=3313.6 \mathrm{~kJ} / \mathrm{kg}$, and $\mathrm{v}=0.073 \mathrm{~m}^{3} / \mathrm{kg}$. At the turbine inlet, the conditions are found to be: $\mathrm{P}=3.5 \mathrm{MPa}$, $\mathrm{T}=392 \mathrm{deg} \mathrm{C}, \mathrm{h}=3302.6 \mathrm{~kJ} / \mathrm{kg}$, and $\mathrm{v}=0.084 \mathrm{~m}^{3} / \mathrm{kg}$. There is a heat loss of $8.5 \mathrm{~kJ} / \mathrm{kg}$ from the pipeline. Assume that the pipeline is horizontal. Calculate the steam flow rate.
3. An aircraft with a turbojet engine is in flight with a velocity of $270 \mathrm{~m} / \mathrm{s}$. Ambient air temperature is -15 deg C . Gas temperature at the outlet of the engine is 600 deg C . Corresponding enthalpy values of air and gas are respectively 260 and $950 \mathrm{~kJ} / \mathrm{kg}$. Fuel-air-ratio is 0.02 . Chemical energy of the fuel can be assumed to be $45 \mathrm{MJ} / \mathrm{kg}$ of fuel. Owing to incomplete combustion only 95% of the heat is released in the engine. Heat loss from the engine is $12 \mathrm{~kJ} / \mathrm{kg}$ of air. Calculate the exhaust jet velocity.
4. A turbine operates under steady flow conditions, receiving steam at the following state: $\mathrm{P}=1.2$ $\mathrm{MPa}, \mathrm{T}=188$ deg $\mathrm{C}, \mathrm{h}=2785 \mathrm{~kJ} / \mathrm{kg}$, velocity $\mathrm{u}_{1}=33.3 \mathrm{~m} / \mathrm{s}$ and elevation 3 m . The steam leaves the turbine at the following state: $\mathrm{P}=20 \mathrm{kPa}, \mathrm{h}=2512 \mathrm{~kJ} / \mathrm{kg}, \mathrm{u}_{2}=100 \mathrm{~m} / \mathrm{s}$, and elevation 0 m . Heat is lost to the surroundings at the rate of $0.29 \mathrm{~kJ} / \mathrm{s}$. If the rate of steam flow through the turbine is $0.42 \mathrm{~kg} / \mathrm{s}$, what is the power output of the turbine in kW ?
5. A room has two fans each consuming 180 W power, and three 100 W lamps. Ventilation air at the rate of $80 \mathrm{~kg} / \mathrm{h}$ enters with an enthalpy of $84 \mathrm{~kJ} / \mathrm{kg}$ and leaves with an enthalpy of $59 \mathrm{~kJ} / \mathrm{kg}$. If each person puts out heat at the rate of $630 \mathrm{~kg} / \mathrm{h}$, determine the rate at which heat is to be removed by a room cooler, so that a steady state is maintained in the room.
6. A reciprocating air compressor takes in $2 \mathrm{~m} 3 / \mathrm{min}$ air at $0.11 \mathrm{MPa}, 20 \mathrm{deg} \mathrm{C}$, which it delivers at 1.5 $\mathrm{MPa}, 111 \mathrm{deg} \mathrm{C}$, to an aftercooler where the air is cooled at constant pressure to 25 deg C . The power absorbed by the compressor is 4.15 kW . Determine the heat transfer in (a) the compressor, and (b) the cooler. State the assumptions used.

Tutorial question to be solves by TMM in class.

1. A tank containing 45 kg of water initially at 45 deg C , has one inlet and one outlet with equal mass flow rates. Liquid water enters at 45 deg C and a mass flow rate of $270 \mathrm{~kg} / \mathrm{h}$. A cooling coil immersed in the water removes energy at a rate of 7.6 kW . The water is well mixed by a paddle wheel with a power input of 0.6 kW . The pressures at the inlet and exit are equal. Ignore the changes in KE and $P E$. Find the variation of water temperature with time.
2. Air flows steadily at the rate of $0.4 \mathrm{~kg} / \mathrm{s}$ through an air compressor, entering at $6 \mathrm{~m} / \mathrm{s}$ with a pressure of 1 bar and a specific volume of $0.85 \mathrm{~m} 3 / \mathrm{kg}$, and leaving at $4.5 \mathrm{~m} / \mathrm{s}$ with a pressure of 6.9 bar and specific volume of $0.16 \mathrm{~m} 3 / \mathrm{kg}$. The internal energy of the air leaving is $88 \mathrm{~kJ} / \mathrm{kg}$ greater than that of air entering. Cooling water in a jacket, surrounding the cyllinder absorbs heat from the air at the rate of 59W. Calculate the power required to drive the compressor and the inlet and outlet cross section areas.
