AS – 568 High Temperature Gas Dynamics Dr. T. M. Muruganandam Supplementary Exercise – 5 Feb 25, 2012

Reaction	$A_k(mol, cm3, s)$	$m_k(T \text{ in } K)$	$E_k(kcal/mol)$
(i) $H + O2 \rightarrow O + OH$	1.91e14	0.0	16.44
(ii) $O + H2 \rightarrow H + OH$	5.08e4	2.67	6.292
(iii) $OH + H2 \rightarrow H2O + H$	2.16e8	1.51	3.43
(iv) $O + H2O \rightarrow OH + OH$	2.97e6	2.02	13.4
(v) $H2 + M \rightarrow H + H + M$	4.57e19	-1.4	105.1
(vi) $H + OH + M \rightarrow H2O + M$	4.5e22	-2.0	0.00
(vii) any radical \rightarrow surface quench	5.0e5	0.5	0.00
eg.: $OH + S \rightarrow$ quenched at wall			

1. (a) Find the explosion limits curve of the system given below:

(b) Estimate the ignition time (defined as the time when 1% of product concentration is formed) for a case on the line and a case slightly into the explosive region.

- 2. Consider the above mechanism with (a) reaction 2 being in PE and (b) QS approx for O in reactions 1&2. Find the explosion limit(s) for the system at 3 atm. Explain the differences with problem 1(a) and the current two cases.
- 3. In assignment 1, problem 2, find the blowout characteristic (flow rate at which system blows out) of the burner for various ϕ values for adiabatic conditions, and compare the same for non-adiabatic conditions. Interpret the results.
- **4.** In assignment 1, problem 3, what is the effect on the plot, if (i) Tin is increased by 200K, or (ii) Pin is decreased by 0.1 atm. Interpret the results.