NOTE: Specific gas contant R = 287 J/Kg/K and $\gamma = 1.4$ is used wherever not mentioned.

1. Gas at $P_o = 10$ MPa and $T_o = 1000K$ is expanded to p = 1 atm $= 1.01325 * 10^5 Pa$ Assuming adiabatic expansion:

$$\frac{P_o}{p} = \left(1 + \frac{(\gamma - 1)}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Substituting p, Po and $\gamma = 1.4$ we get M = 3.68 Also,

$$\frac{T_o}{T} = \left(1 + \frac{(\gamma - 1)}{2}M^2\right)$$

So, at $T_o = 1000K$ and M = 3.68 we get T = 269.7K

$$M = \frac{v}{c} = \frac{v}{\sqrt{\gamma RT}}$$

Substituting values we get v = 1211.42 m/s

2. Air moving at v = 1000 m/s at $p = 1atm = 1.01325 * 10^5 Pa$ and T = 300K is isentropically expanded to T = 100K

$$M_1 = \frac{v}{\sqrt{\gamma RT}} = 2.88$$

From gastables for isentropic flows at $M_1 = 2.88$ we get $T/T_o = 0.3761$ and $p/P_o = 0.0326$. Using the given static temperature and pressure values we get: $T_o = 797.67K$ and $P_o = 3.11MPa$

Since T_o reamins contant due to isentropic expansion, at the final temperature T = 100K, we have $T/T_o = 0.1254$. Using gastbales we get $M_2 = 5.90$ and $p_2/P_o = 0.0007$.

$$v_2 = M_2 \sqrt{\gamma RT} = 1182.65 m/s$$

and

$$p_2 = 21756.9Pa$$

3. Special gas ($\gamma = 1.3$ and MW = 18), therefore

$$R_{gas} = \frac{8314.3}{18} = 461.90 \qquad J/Kg/K$$

Argon ($\gamma = 1.67$ and MW = 40), therefore

$$R_{argon} = \frac{8314.3}{40} = 207.858 \qquad J/Kg/K$$

Since the Mach numbers are same

$$(\frac{v}{\sqrt{\gamma RT}})_{gas} = (\frac{v}{\sqrt{\gamma RT}})_{argon}$$

Therefore,

$$\frac{v_{gas}}{v_{argon}} = \frac{(\sqrt{\gamma RT})_{argon}}{(\sqrt{\gamma RT})_{gas}} \tag{1}$$

Since,

$$\frac{T_o}{T} = \left(1 + \frac{(\gamma - 1)}{2}M^2\right)$$

and stagnation conditions are same we can write:

$$\frac{T_{argon}}{T_{gas}} = \frac{\left(1 + \frac{(\gamma - 1)}{2}M^2\right)_{gas}}{\left(1 + \frac{(\gamma - 1)}{2}M^2\right)_{argon}}$$
(2)

Using (1) and (2) we get:

$$\frac{v_{gas}}{v_{argon}} = 1.84775$$

4. Supersonic aircraft is flying at h = 5km

$$T = T_o - Lh$$

and

$$p = P_o \left(\frac{T_h}{T_o}\right)^{g/RI}$$

where L (Lapse rate) = 0.0065 K/m, T_o (Sea level) = 288 K and P_o (Sea level) = 1.01325 * 10⁵ Pa

So, at h = 5 km = 5000 m we get T = 255.5 K and $p = 0.55 * 10^5$ Pa The maximum pressure that the structure can withstand is p = 10 bar = $10 * 10^5$ Pa

Considering body fixed co-ordinates we need to find the maximum permissible mach number for $p_1 = 0.55 * 10^5$ Pa and $P_{o_2} = 10^6$ Pa

Using gastables for normal shock relations, for

$$\frac{P_{o_2}}{p_1} = 18.18$$

we get mach number M = 3.70

Therefore, the maximum relative airspeed will be

$$v = M * \sqrt{\gamma R T_1} = 1185.5 m/s$$

5. A meteor is flying at M=25. Using normal shock relations at M=25 we get:

$$\frac{T_2}{T_1} = 122.47$$

Now, maximum T_2 that the structure can withstand is 1300 K, so maximum permissible T_1 is

$$T_1 = 10.61K$$

The altitude corresponding to this temperature will be somewhere in Mesosphere 60-70 Km

6. Shock velocity $V_s = 2000$ m/s. $T_o = 500$ K and $P_o = 3$ atm = 3 * 1.01325 * 10⁵ Pa

Using shock fixed co-ordinates:

$$M_1 = \frac{v}{\sqrt{\gamma RT}} = 4.46$$

Using gastables for Normal Shock at $M_1 = 4.46$ we get $M_2 = 0.4243$, $p_2/p_1 = 23.0402$ and $T_2/T_1 = 4.8053$ In shock fixed co-ordinates:

$$T_1 = T_o = 500K$$
 and $p_1 = P_o = 3.03975 * 10^5 Pa$

Therefore,

$$T_2 = 2402.65K$$
 $p_2 = 70.0364 * 10^5 Pa$

Let the actual velocity behind the shock in shock free co-ordinates be u_2 . Mach number behind the shock in shock fixed co-ordinates is given as:

$$M_2 = \frac{V_s - u_2}{\sqrt{\gamma R T_2}}$$

Therefore, actual Mach number behind the shock in shock free co-ordinates will be:

$$M_{2_{free}} = \frac{u_2}{\sqrt{\gamma RT_2}} = \frac{V_s}{\sqrt{\gamma RT_2}} - M_2$$
$$M_{2_{free}} = \frac{u_2}{\sqrt{\gamma RT_2}} = \frac{V_s}{\sqrt{\gamma RT_2}} - M_2 = 2.03554 - 0.4243 = 1.61124$$

7. Shock velocity $V_s = -800$ m/s and flow velocity is 50 m/s. Therefore in shock free co-ordinates $v_1 = 50$ m/s Also, $T_1 = 300$ K and $p_1 = 1$ atm = 1.01325 * 10⁵ Pa

In shock fixed co-ordinates:

$$M_1 = \frac{v_1 - V_s}{\sqrt{\gamma RT}} = 2.45$$

Using gastables for Normal Shock at $M_1 = 2.45$ we get $M_2 = 0.5179$, $p_2/p_1 = 6.8363$ and $T_2/T_1 = 2.0885$

Using the given values we get:

$$T_2 = 626.55K \qquad p_2 = 6.92688 * 10^5 Pa$$

Let the actual velocity behind the shock in shock free co-ordinates be u_2 . Mach number behind the shock in shock fixed co-ordinates is given as:

$$M_2 = \frac{V_s - u_2}{\sqrt{\gamma R T_2}}$$

Therefore, actual Mach number behind the shock in shock free co-ordinates will be:

$$M_{2_{free}} = \frac{u_2}{\sqrt{\gamma RT_2}} = \frac{V_s}{\sqrt{\gamma RT_2}} - M_2$$
$$M_{2_{free}} = \frac{u_2}{\sqrt{\gamma RT_2}} = \frac{V_s}{\sqrt{\gamma RT_2}} - M_2 = 1.5944 - 0.5179 = 1.0765$$

8. Similar to problem 6, we have shock moving with velocity $V_s = 800$ m/s, $T_1 = 300$ K and $p_1 = 1$ atm = $1.01325 * 10^5$ Pa

In shock fixed co-ordinates:

$$M_1 = \frac{v_1 - V_s}{\sqrt{\gamma RT}} = 2.304$$

Using gastables for Normal Shock at $M_1 = 2.304$ we get $M_2 = 0.5339$, $p_2/p_1 = 6.0265$ and $T_2/T_1 = 1.9505$

Using the given values we get:

 $T_2 = 585.15K \qquad p_2 = 6.10635 * 10^5 Pa$

Now, using gastables for isentropic flow at $M_2 = 0.5339$ we get $p/P_o = 0.8236$ So, the maximum pressure experienced by the building is:

$$P_o = p_2/0.8236 = 7.41422 * 10^5 Pa = 7.317 atm$$

- 9. Using gastables for weak oblique shock at $M_1 = 3$ and $\theta = 15$ we get for,
- $\gamma = 1.3$: wave angle = 31.53, $p_2/p_1 = 2.7048$ and $T_2/T_1 = 1.3666$
- $\gamma = 1.4$: wave angle = 32.2404, $p_2/p_1 = 2.8216$ and $T_2/T_1 = 1.3883$
- $\gamma = 1.67$: wave angle = 34.2851, $p_2/p_1 = 3.1652$ and $T_2/T_1 = 1.4511$

10. $M_1 = 3$, $p_1 = 2$ atm and T = 250 K. Using gastables for isentropic flow ta $M_1 = 3$ we get: $p_1/P_{o_1} = 0.0272$ and $T_1/T_{o_1} = 0.3571$ So,

 $P_{o_1} = 73.529 a tm$ and $T_{o_1} = 700.084 K$

From gastables for Oblique shock at M = 3 and $\theta = 5$ we get: $M_2 = 2.7497$, $p_2/p_1 = 1.454$, $T_2/T_1 = 1.1146$ and $P_{o_2}/P_{o_1} = 0.9947$

 $P_{o_2} = 73.139atm$ $T_2 = 278.65K$ $p_2 = 2.908atm$

At the top the flow will again deflect by $\theta = 5$ degrees to become parallel with the wall. Using gastables for Oblique shocks at $M_2 = 2.7497$ and $\theta = 5$ we get: $M_3 = 2.5216$, $p_3/p_2 = 1.416$, $T_3/T_2 = 1.1058$ and $P_{o_3}/P_{o_2} = 0.9957$

 $P_{o_3} = 72.824 atm$ $T_3 = 308.131 K$ $p_3 = 4.117 atm$