AS - $\mathbf{5 6 8 0}$ High Temperature Gas Dynamics
 Dr. T. M. Muruganandam
 Supplementary Exercise - 3
 Aug 20, 2012

1. Derive expressions for H, G and S for each mode of energy (trans, rot, vib) of a molecule.
2. Plot Cv / k vs $\mathrm{T} /$ theta for vibration mode and rotation mode. Note what the value of Cv / k is at $\mathrm{T}=$ theta. And find $\mathrm{T} /$ theta above which error of Cv / k from equipartition law is less than 1%. What is the change in the formula due to symmetry factor?
(b) Do the same for electronic level assuming only one excited level exists. Take $\mathrm{Q}=\mathrm{g}_{0}+\mathrm{g}_{1} * \exp \left(-\right.$ Theta_elec $\left.{ }_{1} / \mathrm{T}\right)$
3. Find H and S as a function of T in the range of 300 to 6000 K for CO 2 molecule (data given below) and compare with JANAF tables. Assume that there is no dissociation.

Species	Theta_r [K]	Theta_v [K]	Q_el	Heat formation of at 298K [kJ/mol
CO2	0.56	1915 961 961 3383	$1+1 \exp (-90000 / \mathrm{T})$	-393.522

4. Refer to the problem number 3. Find out at what temperatures there is change in the Cp of the gas. Try explaining all the changes in Cp of the gas.
