AS - 5300 Physical Gas Dynamics
 Dr. T. M. Muruganandam
 Supplementary Exercise - 2
 Aug 27, 2019

1. We start with a box having 1 mole each of $\mathrm{CO}, \mathrm{O} 2$ and CO 2 .
(a) What will be the final equilibrium if we allow the gases to come to equilibrium at 300 K 1 atm ?
(b) Do we always reach this in real life? Explain.
(c) What will be the final equilibrium if the gases are allowed to go to equilibrium at 1000K, 2 atm?
(d) What will be the final equilibrium if the gases are allowed to go to equilibrium at $3000 \mathrm{~K}, 2 \mathrm{~atm}$?
(e) What will be the final equilibrium if the gases are allowed to go to equilibrium at 3000K, 5 atm?
(f) Prove that Le Chatelier's Principle is obeyed by the gases in your system.
\{ANS: (a) $\mathrm{Xi}=[0,0.20 .8]$; (c) $[0,0.2,0.8]$; (d) $[0.22,0.29,0.49]$; (e) $[0.16,0.27,0.57]\}$
2. We have a system of gases comprising of $\mathrm{H} 2, \mathrm{O} 2, \mathrm{H}, \mathrm{O}, \mathrm{OH}, \mathrm{H} 2 \mathrm{O}$. Write the equation required to solve the equilibrium composition of the given system of gases at a given P and T .
3. We have a system of gases comprising of $\mathrm{N} 2, \mathrm{O} 2, \mathrm{NO}, \mathrm{NO} 2, \mathrm{O}, \mathrm{N}$. Write the equation required to solve the equilibrium composition of the given system of gases at a given P and T .
4. How will you solve the problem if the system in $q 3$ is taken from a particular pressure 'P1' to a new pressure 'P2' through external work, keeping the temperature 'T' the same?
