Physical Gas Dynamics (Ph 5300)
Exc \# 2
we haw 6 unknowns and there are two type of atoms,
que-2: equations -

$$
\begin{align*}
& \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H} \tag{1}\\
& \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{O} \tag{L}\\
& \mathrm{H}+\mathrm{O} \rightleftharpoons \mathrm{OH} \tag{3}\\
& \mathrm{OH}+\mathrm{H} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{align*}
$$

P_{t} : total Paramo

$$
\begin{align*}
& K P_{3}=\frac{P_{\mathrm{OH}}}{P_{0} P_{H}}=\frac{\left(P_{t} x_{\mathrm{OH}}\right)}{\left(P_{t}^{2} x_{0} x_{H}\right)} \tag{iii}\\
& K P_{4}=\frac{P_{H_{2} \mathrm{O}}}{P_{\mathrm{OH}} P_{H}}=\frac{P_{t}\left(x_{H_{2} \mathrm{O}}\right)}{P_{t}^{2} x_{\mathrm{OH}} x_{H}} \tag{iv}
\end{align*}
$$

at equilibrium \rightarrow

$$
k_{p_{1}}=\frac{P_{H}^{2}}{P_{H_{2}}}=\frac{\left(P_{t} \times \times_{H}\right)^{2}}{\left(P_{t} \times \times_{H_{2}}\right)}
$$

$$
k p_{2}=\frac{p_{0}^{2}}{P_{02}}=\frac{\left(P_{t} x_{0}\right)^{2}}{\left(p_{t} x_{02}\right)}-(i i,)
$$

Atom balance equs \rightarrow

$$
\left[2 \cdot N_{H_{2}}^{\infty}+1 \cdot N_{H}^{0}+1 \cdot N_{\mathrm{OH}}^{0}+2 \cdot N_{\mathrm{H}_{2} \mathrm{O}}^{0}\right]_{t=0}^{+\infty}=\left[\begin{array}{r}
2 \cdot M_{\mathrm{H}_{2}}+1 \cdot N_{\mathrm{H}}+ \\
\left.1 \cdot N_{\mathrm{OH}}+2 \cdot N_{\mathrm{H}_{2} \mathrm{O}}\right]_{\text {at }}
\end{array}\right.
$$

Since total number of atoms ail always be conserved. \tan ' H ' $Z '^{\prime} O^{\prime}$.

$$
\begin{aligned}
& {\left[2 \cdot N_{\mathrm{O}_{2}}^{0}+1 \cdot N_{0}^{0}+1 \cdot \mathrm{~N}_{\mathrm{OH}}^{0}+1 \cdot M_{\mathrm{H}_{2} \mathrm{O}}^{0}\right]_{\text {initial atoms of } 10 \%} } \\
&=\left[2 \cdot N_{\mathrm{O}_{2}}+1 \cdot N_{0}+1 \cdot M_{\mathrm{OH}}+1 \cdot N_{H_{2} \mathrm{O}}\right]_{\text {at equil: }}
\end{aligned}
$$

we con convent the abou eqn as following by using
(v.) and (vi) \rightarrow
(v) \div (v is)

$$
\begin{aligned}
& \Rightarrow\binom{2 N_{H_{2}}^{0}+1 \cdot N_{\mathrm{H}}^{0}+1 \cdot N_{\mathrm{OH}}^{0}+2 \cdot N_{\mathrm{H}_{2} \mathrm{O}}^{0}}{2 M_{\mathrm{O}_{2}}^{0}+1 \cdot M_{\mathrm{O}}^{0}+1 \cdot N_{\mathrm{OH}}^{0}+1 \cdot N_{\mathrm{H}_{2} \mathrm{O}}^{0}} \\
& \left.=\left(\frac{2 \cdot P_{\mathrm{H}_{2}}+P_{\mathrm{H}}+P_{0 H}+2 P_{H_{2} \mathrm{O}}}{2 P_{O_{2}}+P P_{0}+P \mathrm{PH}+P_{H_{2} \mathrm{O}}}\right)_{\text {at equ, }} \right\rvert\,
\end{aligned}
$$

we have Six equations and Six unknown con be Solved using matlab.
use

$$
\begin{aligned}
& \text { (P) } P_{2}+P_{H}+P_{0}+P_{O_{2}}+P_{\mathrm{OH}}+P_{\mathrm{H}_{2} \mathrm{O}}=P_{\text {total }} \\
& \text { C } X_{\mathrm{H}_{2}}+x_{\mathrm{H}}+x_{\mathrm{O}}+x_{\mathrm{O}_{2}}+x_{\mathrm{OH}}+x_{\mathrm{H}_{2} \mathrm{O}}=1
\end{aligned}
$$

que-3.
equations of atom balance \rightarrow
use \rightarrow

$$
\sum P_{i}=P_{t o t a l}
$$

or

$$
\begin{aligned}
P_{\mathrm{N}_{2}} & +P_{\mathrm{O}_{2}}+P_{\mathrm{N}}+P_{0} \\
& +P_{\mathrm{NO}_{0}}+P_{\mathrm{NO}_{2}}=P_{t}
\end{aligned}
$$

$$
\left(2 \cdot N_{M_{2}}^{0}+1 \cdot N_{N}^{0}+1 \cdot M_{N_{0}}^{0}+1 \cdot M_{M_{O_{2}}}^{0}\right)
$$

$$
=2 \cdot N_{N_{2}}+1 \cdot M_{N}+1 \cdot N_{N O}+1 \cdot N_{N N_{2}}
$$

$$
\frac{2 \cdot N_{\mathrm{N}_{2}}^{0}+1 \cdot N_{\mathrm{N}}^{0}+1 \cdot \mathrm{~N}_{\mathrm{NO}}+1 \cdot \mathrm{~N}_{\mathrm{NO}_{2}}^{0}}{2 \cdot N_{\mathrm{O}_{2}}^{0}+1 \cdot N_{0}^{0}+1 \cdot \mathrm{~N}_{\mathrm{NO}}^{0} \cdot 2 \cdot \mathrm{~N}_{\mathrm{NO}_{2}}^{0}}=\frac{2 P_{\mathrm{N}_{2}}+P_{\mathrm{N}}+P_{\mathrm{NO}_{0}}+P_{\mathrm{NO}_{2}}}{2 P_{\mathrm{O}_{2}}+P_{\mathrm{O}}+P_{\mathrm{NO}_{0}}+2 P_{\mathrm{NO}_{2}}}
$$

$$
\begin{align*}
& \text { eqns. } \\
& \mathrm{M}_{2} \rightleftharpoons \quad 2 \mathrm{M} \\
& \mathrm{O}_{2} \rightleftharpoons 20 \\
& M+O \rightleftarrows N O \\
& \mathrm{NO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2} \\
& K_{p_{1}}=\frac{P_{N}^{2}}{P_{N_{2}}} \tag{i.}\\
& K P_{2}=\frac{P_{0}^{2}}{P_{\mathrm{O}_{2}}} \tag{ii,}\\
& K P_{3}=\frac{P N_{0}}{P_{N} P_{0}} \tag{iii,}\\
& \mathrm{KP}_{4}=\frac{\mathrm{PNO}_{2}}{P_{\mathrm{NO}_{0} * \sqrt{\mathrm{PO}_{2}}}} \tag{0}
\end{align*}
$$

qux-1.

$$
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}
$$

initially
at equi.

$$
\begin{gathered}
1-x \\
P_{\mathrm{CO}}=\left(\frac{1-x / 2}{3-x / 2}\right) \times P_{t} \\
P_{\mathrm{O}_{2}}=\left(\frac{1-x / 2}{3-x / 2}\right) \times P_{t} \\
P_{\mathrm{CO}}
\end{gathered}
$$

a) $\quad P_{t}=1$ atm, $T=300 \mathrm{~K}$.

$$
K p=\begin{array}{ll}
P_{\mathrm{CO}_{2}}\left(P_{\text {ref }}\right)^{1 / 2} \\
P_{\mathrm{CO}_{0}} \cdot\left(P_{\mathrm{O}_{2}}\right)^{1 / 2} & -\Delta G_{\text {ran }}(T)
\end{array} \quad \therefore \quad k_{p}=\frac{\text { Since } P_{\text {ref }}=1}{P_{\mathrm{CO}_{0}} \cdot\left(P_{\mathrm{O}_{2}}\right)^{1 / 2}}
$$

$$
\text { also } k p=e^{-\frac{\Delta a_{2 \times n}(T)}{R T}}
$$

Note: " K_{p} " is unitboss quantity.

Calculating $\Delta G_{\text {mex }}$ at $300 \mathrm{~K} \rightarrow$

$$
\begin{aligned}
& \Delta C_{1}=1 \cdot \hat{g}_{\mathrm{CO}_{2}}-1 \cdot \hat{g}_{C O}-\frac{1}{2} \hat{\jmath}_{0_{2}} \\
&=\left(\hat{h}_{\mathrm{CO}_{2}}-T \hat{\beta}_{\mathrm{CO}_{2}}\right)-\left(\hat{h}_{\mathrm{CO}}-T \hat{\mathrm{~s}}_{\mathrm{co}}\right)-\frac{1}{2}\left(\hat{h}_{\mathrm{O}_{2}}-\pi \hat{\beta}_{O_{2}}\right) \\
&=\left\{\left(69-393.522 \times 10^{3}\right)-300 \times 214.025\right\}-\left\{\left(54-110.527 \times 10^{3}\right)\right. \\
&-300 \times 197.653\} \\
&-\frac{1}{2}\{(54+0)-300 \times 205.329\}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta G=(-457660.5)-(-169768 \cdot 9)-\frac{1}{2}(-61544.7) \\
& \Delta G=\frac{-457.66}{} \quad-457660.5+169768.9+30772.35 \\
& \Delta G=-257119.25 \mathrm{~J} / \mathrm{mol} \\
& -\left\{\frac{-257119.25}{8.31 \times 300}\right\} \\
& k p=e \\
& K_{p}=e^{+103.136} \longrightarrow \infty \\
& \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}
\end{aligned}
$$

equilibrium will Shift tawonds forward direction.
Since co is limiting agent the $c_{\text {ton }}$ it will be almost equal to zero.

$$
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}
$$

initial $1 \quad 1$
at equi.

$$
\begin{gathered}
\left\{\begin{array}{ccc}
1-1 & 1-1 / 2 & 1+1 \\
0 & 1 / 2 & 2
\end{array}\right. \\
x_{c_{0}}=0, \quad x_{02}=1 / 2 / 2.5=\frac{1}{5}=0.2 \\
x_{C_{02}}=(1)-\binom{0.2}{+0}=0.8
\end{gathered}
$$

(b.)

In our equilibrium calculations we solve for final State which is equilibrium, starting from one given state. we do not talk about the kinetics of the process.
thertax in real life, the rate of reaction in the fonwand direction will be extround low and we ham to wait for infinitely ling in andes to achieve equilibrium.
(c.)

$$
\begin{gathered}
T=1000 k ; \quad P_{\text {total }}=2 \text { atm. } \\
k p=e^{-\left(\frac{\Delta C_{2 \times n}}{R T}\right) .}
\end{gathered}
$$

$$
\begin{aligned}
\left.\Delta G\right|_{1000 k}= & \{(33397-393522)-(1000 \times 269.299)\} \\
& -\{(21690-110527)-(1000 \times 234.538)\} \\
& -\frac{1}{2}\{(22703+0)-(1000 \times 243.578)\} \\
\Delta G \mid= & -629424-(-323375)-(110437.5)
\end{aligned}
$$

1000 K

$$
=-195611.5 \quad \text { Joules }\left.\right|_{\text {mole }}
$$

$$
\begin{aligned}
\left.K p\right|_{1000 K} & =e^{\frac{195611.5}{8.31 \times 1000}} \\
& =\underbrace{e^{23.539}}_{\text {very high value }} \longrightarrow \infty
\end{aligned}
$$

\therefore the equilibrium well shift in the foncuand direction and the ail not be any co left.

$$
\begin{aligned}
& x_{\mathrm{CO}}=0 \\
& x_{\mathrm{O}_{2}}=0.2 \\
& x_{\mathrm{CO}_{2}}=0.8
\end{aligned}
$$

(d)

$$
\begin{aligned}
T= & 300 k+P_{\text {total }}=2 \text { tar. } \\
\left.\Delta a\right|_{3000 k}= & \{(152852-393522)-3000 \times 334.169\} \\
& -\{(93546-110527)-3000 \times 273.623\} \\
& -\frac{1}{2}\{(98013+0)-3000 \times 284.466\} \\
\left.\Delta G\right|^{2}= & -1243177-(-837850)-(-377692.5) \\
3000 k & =-27634.5
\end{aligned}
$$

$$
\begin{aligned}
\left.k_{p}\right|_{3000 k} & =e^{\left(\frac{27634.5}{8.31 \times 3000}\right)} \\
& =e^{1.10848} \approx e^{1.1}=3
\end{aligned}
$$

Putting in equi. eq \rightarrow

$$
3=\frac{\left(\frac{1+x}{3-x / 2}\right) \times P / t}{\left(\frac{1-x}{3-x / 2}\right) \times P / t}
$$

squaring both the sidys,

$$
\begin{aligned}
& \Rightarrow \quad 9=\frac{(1+x)^{2}}{(1-x)^{2}} \times \frac{(3-x / 2)}{(1-x) * 2} \\
& \Rightarrow 2 * 9(1-x)^{2}(1-x)=(1+x)^{2} \frac{(6-x)}{2} \\
& \Rightarrow 36(1-x)^{3}=36\left(1-3 x+3 x^{2}-x^{3}\right)=-x^{3}+4 x^{2}+11 x+6 \\
& \Rightarrow 35 x^{2}-104 x^{2}+119 x-30=0
\end{aligned}
$$

On Solving using matlab we get,

$$
x=0.302
$$

$$
\text { (molifraction) }\left\{\begin{array}{l}
x_{c_{0}}=\left(\frac{1-x}{3-x_{1}}\right)=0.22 \\
x_{2} \theta_{2}=0.29 \\
x_{c_{0}}=0.49
\end{array}\right.
$$

(e) Now $T=3000 \mathrm{~K}, P_{\text {total }}=5$ atm,
'Kp, cecil remain same as in part (d).

$$
\begin{aligned}
& K_{p}=\frac{P_{c_{2}}}{P_{C_{0} \sqrt{P_{02}}}} \\
& K_{p}=\frac{x_{c_{0}}}{\sqrt{x_{O_{2}} x_{c_{0}}}} \times\left(\frac{1}{\sqrt{P_{t}}}\right. \\
& 3= \\
& \frac{(1+x) \sqrt{3-x / 2}}{(1-x) \sqrt{1-x}} \times \frac{1}{\sqrt{5}}
\end{aligned}
$$

$$
K_{p}=\frac{x_{\mathrm{CO}_{2}}}{\sqrt{x_{O_{2}}} x_{\mathrm{C}_{0}}} \times\left(\frac{1}{\sqrt{P_{t}}}\right. \text { the difference. }
$$

Solving this eq win give the following solns.

$$
\text { mol fractions }\left\{\begin{array}{l}
x \mathrm{co}_{2}=0.57 \\
x o_{2}=0.27 \\
x c_{0}=0.16
\end{array}\right.
$$

$\cot 1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+$ Heat (Exothermic).
(f) from previous solutions we can say following, as cere \uparrow the temp. the reaction follows backward path,

And as un 9 the pressure, the equilibrium shifts in the froncwand direction.
which means the above reaction follows Le chatelier's Principle.
4. How will you solve the problem if the system in $q 3$ is taken from a particular pressure 'P1' to a new pressure 'P2' through external work, keeping the temperature 'T' the same?

Soln:

Nothing special!
Solve the same set of equations for the new Pt , and the same T .
No special considerations needed.

