AS2070: Aerospace Structural Mechanics Module 1: Elastic Stability

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT Madras, Chennai

February 18, 2025

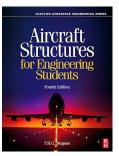
Table of Contents

1 Introduction

- Elastic Stability
- Bifurcation
- Modes of Stability Loss
- 2 Euler Buckling of Columns
 - Equilibrium Equations
 - Kinematic Description
 - The Linear Buckling Problem
 - The Pinned-Pinned Column
 - The Southwell Plot
 - The Clamped-Clamped Column
- 3 Energy Perspectives
 - Snap-Through Buckling
- Plate Buckling

BUCKLING OF BARS, PLATES, AND SHELLS

Chapters 1-3 in Brush and Almroth (1975).

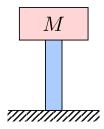


Chapters 7-9 in Megson (2013)

February 18, 2025

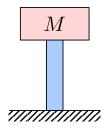
Structural Stability: What?

• Consider supporting a mass M on the top of a rod.

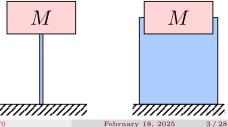


Structural Stability: What?

• Consider supporting a mass M on the top of a rod.



Two Extreme Cases:

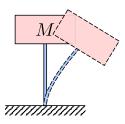


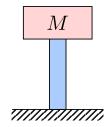
Balaji, N. N. (AE, IITM)

AS2070

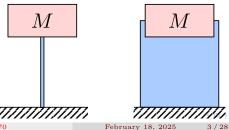
Structural Stability: What?

- Consider supporting a mass M on the top of a rod.
- Collapse is imminent on at least one!





Two Extreme Cases:

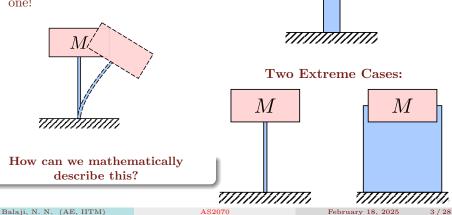


Balaji, N. N. (AE, IITM)

AS2070

Structural Stability: What?

- Consider supporting a mass M on the top of a rod.
- Collapse is imminent on at least one!



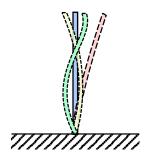
M

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under **perturbation**: How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean *any* change to the system's configuration.
- In this case, this could be different deflection shapes.



Structural Stability: Perturbation Behavior

Perturbation Behavior

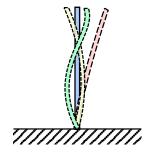
Key insight we will invoke is behavior under **perturbation**: How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean *any* change to the system's configuration.
- In this case, this could be different deflection shapes.

Question (Slightly more specific)

What will the system tend to do if an <u>arbitrarily small</u> magnitude of perturbation is introduced?

- Will it tend to return to its original configuration?
- Will it blow up?
- Will it do **something else entirely**?



Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$\underline{F} = -\nabla U.$$

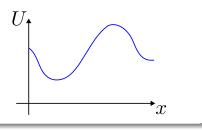
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

 $\nabla U = 0.$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.



Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System 1D Example • The restoring force of a Consider a syste tion These are conservative system can be written is expressed by t the equilibria using a gradient of a **potential** potential is as sl function. $F = -\nabla U.$ Equilibrium • System achieves equilibrium when F = 0, i.e., $\dot{x_1}$ $\dot{x_2}$ \mathbf{x} $\nabla U = 0.$

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

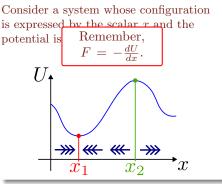
• The restoring force of a conservative system can be written using a gradient of a **potential function**:

$$\underline{F} = -\nabla U.$$

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0$$



Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$\underline{F} = -\nabla U.$$

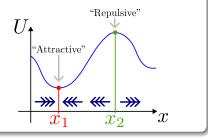
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0$$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.



Balaji, N. N. (AE, IITM)

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

 $\underline{F} = -\nabla U.$

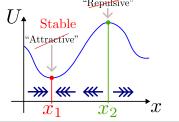
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

 $\nabla U = 0.$

1D Example

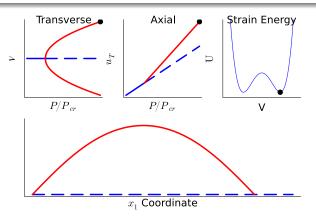
Consider a system whose configuration is expressed by the scalar x and the potential is as shown. Unstable "Reputsive"



1.2. Bifurcation

Introduction

A system is said to have **undergone a bifurcation** if its state of stability has changed due to the variation of some parameter.



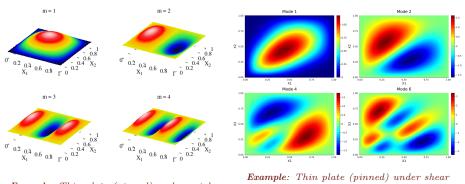
Example: A pinned-pinned beam undergoing axial loading.

Balaji, N. N. (AE, IITM)

1.3. Modes of Stability Loss

Introduction

The **configuration** that a system can assume as it undergoes a bifurcation is the mode of the stability loss.

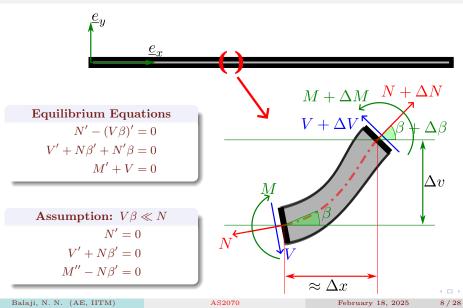


Example: Thin plate (pinned) under axial loading

loading

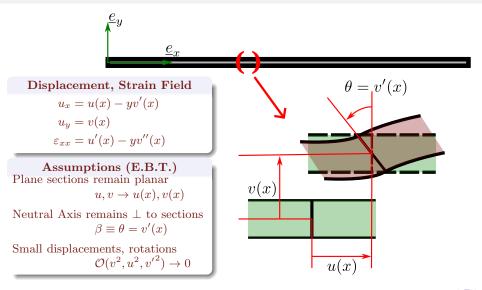
2.1. Equilibrium Equations

Euler Buckling of Columns



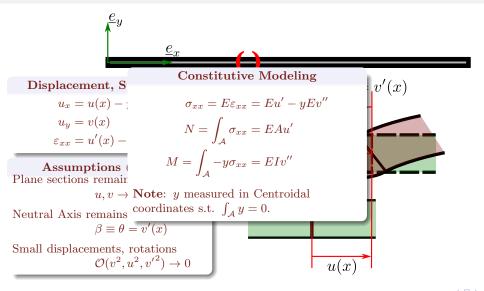
2.2. Kinematic Description

Euler Buckling of Columns



2.2. Kinematic Description

Euler Buckling of Columns



2.3. The Linear Buckling Problem

Euler Buckling of Columns

• Substituting, we are left with,

$$N' = \boxed{EAu'' = 0}, \quad M'' - N\beta' = \boxed{EIv'''' - Nv'' = 0}$$

Axial Problem

• Boundary conditions representing axial compression:

$$u(x=0) = 0, \quad EAu'(x=\ell) = -P$$

• Solution:

$$u(x) = -\frac{P}{EA}x$$

Transverse Problem

• Substituting N = -P we have,

$$v'''' + k^2 v'' = 0, \quad k^2 = \frac{P}{EI}.$$

• The general solution to this **Homogeneous ODE** are

 $v(x)=A_0+A_1x+A_2\cos kx+A_3\sin kx$

• Boundary conditions on the transverse displacement function v(x) are necessary to fix A_0, A_1, A_2, A_3 .

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem

• For a Pinned-pinned beam we have v = 0 on the ends and zero reaction moments at the supports:

 $v = 0, \quad x = \{0, \ell\}$ $v'' = 0, \quad x = \{0, \ell\}$

• So the general solution reduces to

 $v(x) = A_3 \sin kx,$

with the boundary condition

$$A_3 \sin k\ell = 0.$$

• Apart from the trivial solution $(A_3 = 0)$ we have

$$k_{(n)}\ell = n\pi \implies k_n = n\frac{\pi}{\ell}$$

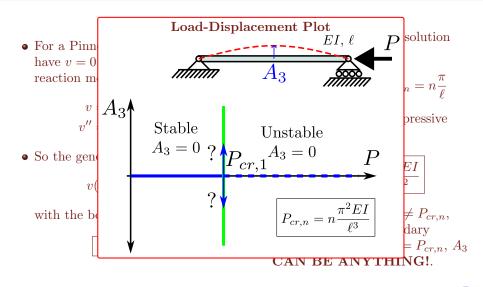
or in terms of the compressive load P,

$$P_{cr,n} = n^2 \frac{\pi^2 EI}{\ell^2}$$

• Interpretation: If $P \neq P_{cr,n}$, $A_3 = 0$ to satisfy boundary conditions. But for $P = P_{cr,n}$, A_3 **CAN BE ANYTHING!**.

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem



2.3.1. The Pinned-Pinned Column: The Imperfect Case I

The Linear Buckling Problem

- Suppose there are initial imperfections in the beam's neutral axis such that the neutral axis can be written as $v_0(x)$.
- Noting that strains are accumulated only on the *relative displacement* $v(x) v_0(x)$, we write

$$EI(v - v_0)'''' + Pv'' = 0.$$

Note that the axial load P acts on the **net rotation** of the deflected beam, so we do not need to use $(v - v_0)''$ here.

• The governing equations become

$$EIv^{\prime\prime\prime\prime\prime} + Pv^{\prime\prime} = EIv_0^{\prime\prime\prime\prime},$$

or, in more convenient notation,

$$\frac{v'''' + k^2 v'' = v_0'''}{\text{AS2070}}.$$

Balaji, N. N. (AE, IITM)

2.3.1. The Pinned-Pinned Column: The Imperfect Case II

The Linear Buckling Problem

• Describing the imperfect neutral axis using an infinite series,

$$v_0 = \sum_n C_n \sin(n\frac{\pi x}{\ell}) \quad \left(\implies v_0''' = \sum_n \left(n\frac{\pi}{\ell}\right)^4 C_n \sin(n\frac{\pi x}{\ell}) \right),$$

the governing equations become

$$v^{\prime\prime\prime\prime} + k^2 v^{\prime\prime} = \sum_n \left(n\frac{\pi}{\ell}\right)^4 C_n \sin(n\frac{\pi x}{\ell}).$$

February 18, 2025

13/28

2.3.1. The Pinned-Pinned Column: The Imperfect Case III

The Linear Buckling Problem

• This is solved by,

$$v(x) = \sum_{n} \frac{\left(n\frac{\pi}{\ell}\right)^{2}}{\left(n\frac{\pi}{\ell}\right)^{2} - k^{2}} C_{n} \sin(n\frac{\pi x}{\ell})$$

= $\sum_{n} \frac{\frac{n^{2}\pi^{2}EI}{\ell^{2}}}{\frac{n^{2}\pi^{2}EI}{\ell^{2}} - P} C_{n} \sin(n\frac{\pi x}{\ell}) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_{n} \sin(n\frac{\pi x}{\ell})$

14/28

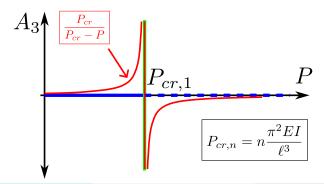
2.3.1. The Pinned-Pinned Column: The Imperfect Case

The Linear Buckling Problem

• Look carefully at the solution

$$v(x) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_n \sin(n\frac{\pi x}{\ell}).$$

• Clearly $P \to P_{cr,n}$ are singularities. Even for very small C_n , the "blow-up" is huge.



2.3.2. The Southwell Plot

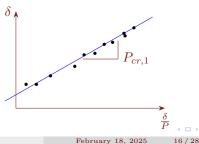
The Linear Buckling Problem

• The relative deformation amplitude at the mid-point is given as (for $P < P_{cr,1}),$

$$\delta \approx \frac{P_{cr,1}}{P_{cr,1} - P} C_1 - C_1 = \frac{C_1}{\frac{P_{cr,1}}{P} - 1}$$
$$\implies \delta = P_{cr,1} \frac{\delta}{P} - C_1$$

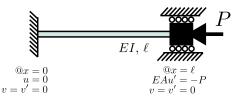
The Southwell Plot

- Plotting δ vs $\frac{\delta}{P}$ allows **Non-Destructive** Evaluation of the critical load
- $P_{cr,1}$ is estimated without having to buckle the column



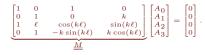
2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem



- The axial solution is the same as before: $u(x) = -\frac{P}{EA}x$.
- The transverse general solution also has the same form but boundary conditions are different.

• The boundary conditions may be expressed as



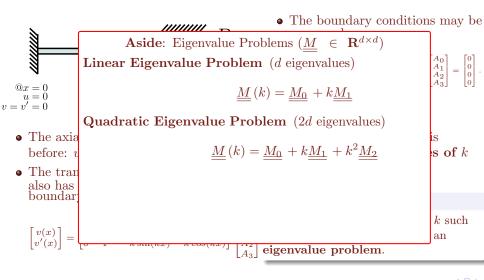
• There can be non-trivial solutions only when \underline{M} is singular, i.e., for choices of k such that $\Delta(\underline{M}) = 0$.

The Eigenvalue Problem

 $\begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{bmatrix}$ This problem setting of finding k such that $\Delta(\underline{M}(k)) = 0$ is known as an **eigenvalue problem**.

2.3.3. The Clamped-Clamped Column

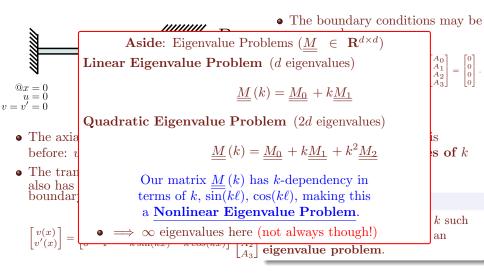
The Linear Buckling Problem



Balaji,	N. N.	(AE,	IITM)
---------	-------	------	-------

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem



17/28

2.3.3. The Clamped-Clamped Column I

The Linear Buckling Problem

• We proceed to solve this as,

$$\Delta \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & k \\ 1 & \ell & \cos(k\ell) & \sin(k\ell) \\ 0 & 1 & -k\sin(k\ell) & k\cos(k\ell) \end{bmatrix} \right) = -k \left(k\ell \sin(k\ell) + 2\cos(k\ell) - 2 \right)$$

• We set it to zero through the following factorizations:

$$\Delta(\underline{\underline{M}}(k)) = -k\left(2k\ell\sin(\frac{k\ell}{2})\cos(\frac{k\ell}{2}) - 4\sin^2(\frac{k\ell}{2})\right)$$
$$= -2k\sin(\frac{k\ell}{2})\left(k\ell\cos(\frac{k\ell}{2}) - 2\sin(\frac{k\ell}{2})\right) = 0$$
$$\Longrightarrow \overline{\sin(\frac{k\ell}{2})} = 0, \quad \text{(or)} \quad \overline{\tan(\frac{k\ell}{2}) = \frac{k\ell}{2}}.$$

Balaji, N. N. (AE, IITM)

2.3.3. The Clamped-Clamped Column II

The Linear Buckling Problem

• Two "classes" of solutions emerge:

•
$$\sin(\frac{k\ell}{2}) = 0 \implies \frac{k_n\ell}{2} = n\pi \implies P_n^{(1)} = 4n^2 \frac{\pi^2 EI}{\ell^2}$$

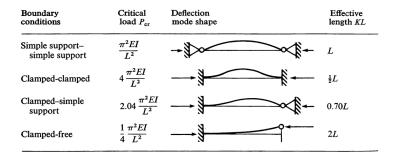
• The smallest critical load is $P_n^{(1)} = 4 \frac{\pi^2 EI}{\ell^2} = \frac{\pi^2 EI}{(\frac{\ell}{2})^2}$.

Concept of "Effective Length"

- **Question**: If the beam were simply supported, what would be the length such that it also has the same first critical load?
- Here it comes out to be $\ell_{eff} = \frac{\ell}{2}$.
- The column clamped on both ends can take the same buckling load as a column that is pinned on both ends with half the length.

2.3.3. The Clamped-Clamped Column III

The Linear Buckling Problem



Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

• Derive the effective length for the clamped-simply supported and clamped-free columns.

2.3.3. The Clamped-Clamped Column: The Mode-shape

• Let us substitute $k_1 = \frac{2\pi}{\ell}$ into the matrix $\underline{\underline{M}}(k_1)$ so that the boundary conditions now read as

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{2\pi}{\ell} \\ 1 & \ell & 1 & 0 \\ 0 & 1 & 0 & \frac{2\pi}{\ell} \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

• This implies the following:

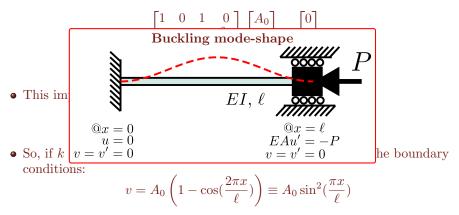
$$A_1 = 0, \quad A_3 = 0, \quad A_2 = -A_0.$$

• So, if $k = k_1$, the solution has to be the following to satisfy the boundary conditions:

$$v = A_0 \left(1 - \cos(\frac{2\pi x}{\ell}) \right) \equiv A_0 \sin^2(\frac{\pi x}{\ell})$$

2.3.3. The Clamped-Clamped Column: The Mode-shape

• Let us substitute $k_1 = \frac{2\pi}{\ell}$ into the matrix $\underline{\underline{M}}(k_1)$ so that the boundary conditions now read as



21/28

3. Energy Perspectives

- Concept of conservative force field.
- Work done by a force field:

$$W(\underline{x})\Big|_{\underline{x_1}}^{\underline{x_2}} = \int_{\underline{x_1}}^{\underline{x_2}} \underline{f(\underline{x})} \cdot d\underline{x}.$$

• Introduction to work done.

Example

- Force balance reads: F = kx
- Work done expression: $W(x) = Fx \frac{k}{2}x^2$

3. Energy Perspectives

• Expanding W about some \underline{x}_s we have,

$$W(\underline{x}_s + \delta \underline{x}) = W(\underline{x}_s) + \underline{\nabla}W\big|_{\underline{x}_s} \delta \underline{x} + \mathcal{O}(\delta \underline{x}^2).$$

• Stationarity of work: $\delta W = \underline{\nabla} W(\underline{x}_s) \delta \underline{x} = 0, \quad \forall \quad \underline{x} \in \Omega$, where Ω is the configuration-space.

Example

• For the SDoF system above, we have $W = Fx - \frac{k}{2}x^2$ and

$$\nabla W(x_s) = \frac{dW}{dx} = F - kx_s = 0 \implies x_s = \frac{F}{k}.$$

- Work-stationarity hereby gives a convenient definition for equilibrium.
- What about higher order effects?

3. Energy Perspectives

• Continuing the Taylor expansion (SDoF case) for W(x) we have,

$$W(x) = W(x_s) + \frac{dW}{dx}(x_s)\delta x + \frac{1}{2}\frac{d^2W}{dx^2}(x_s)\delta x^2 + \mathcal{O}(\delta x^3).$$

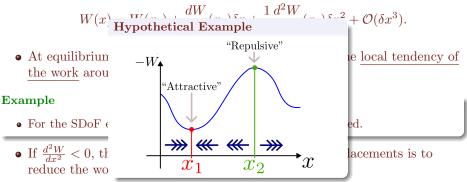
• At equilibrium, $\frac{dW}{dx}$ is zero. The sign of $\frac{d^2W}{dx^2}$ governs the local tendency of the work around equilibrium.

Example

- For the SDoF example, $\frac{d^2W}{dx^2} = -k$, implying W is maximized.
- If $\frac{d^2W}{dx^2} < 0$, then the second order effect of virtual displacements is to reduce the work scalar: **Stable Equilibrium**.
- The opposite case is **Unstable Equilibrium**.

3. Energy Perspectives

• Continuing the Taylor expansion (SDoF case) for W(x) we have,



• The opposite case is **Unstable Equilibrium**.

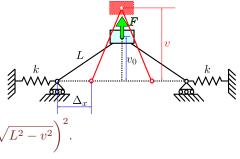
Energy Perspectives

- We will consider the SDoF model to the right (from Wiebe et al. 2011).
- The strain energy on the springs (two) is

$$U(v) = 2 \times \frac{k}{2} \Delta_x^2 = k \left(\sqrt{L^2 - v_0^2} - \sqrt{L^2 - v^2} \right)^2$$

• The work done by the load (to take the mid-point from v_0 to v) is given by,

$$\Pi(v) = F(v - v_0).$$



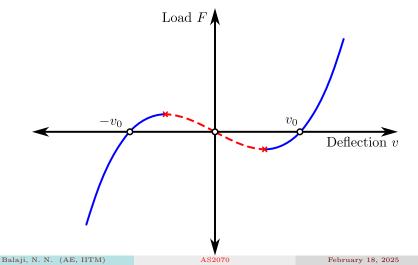
etting
$$\frac{dW}{dv} = 0$$
 we get

$$F = -2kv \left(1 - \sqrt{\frac{L^2 - v_0^2}{L^2 - v^2}}\right).$$

S

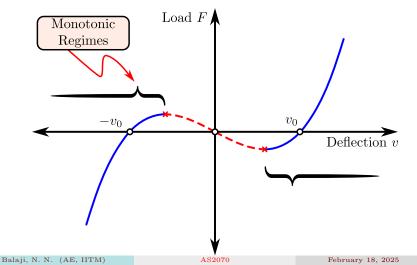
Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



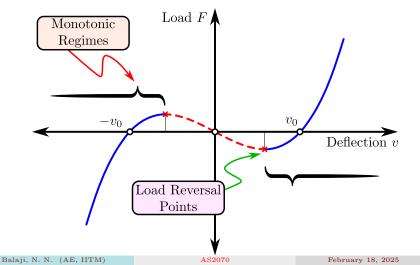
Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



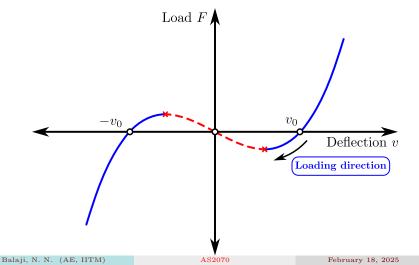
Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



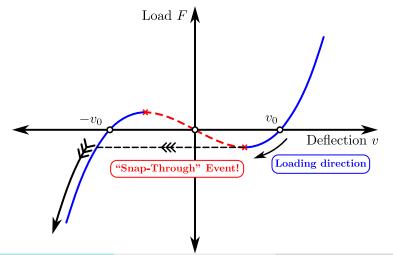
Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



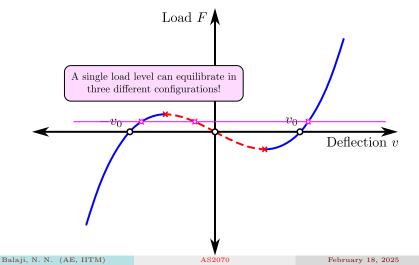
Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



Energy Perspectives

• Instead of an analytical treatment, we will use **Graphical Inspection** to understand this function.



4. Plate Buckling

Plate Buckling

References I

- D. O. Brush and B. O. Almroth. Buckling of Bars, Plates, and Shells, McGraw-Hill, 1975. ISBN: 978-0-07-008593-0 (cit. on pp. 2, 32).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on p. 2).
- [3] R. Wiebe et al. "On Snap-Through Buckling". In: Send AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado: American Institute of Aeronautics and Astronautics, Apr. 2011. ISN: 978-1-60086-951-8. DOI: 10.2514/6.2011-2083. (Visited on 02/18/2025) (cit. on p. 39).

Class Discussions (Outside of Slides)

6. Class Discussions (Outside of Slides)

- Ball on a hill. 2D, 3D cases.
- Assumptions behind compression of a bar.

6.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

- Let us use the energy approach to study the post-buckling behavior of a beam.
- We've developed some intuition that buckling blows up the displacement levels. Let us revise our kinematic description to capture this.
- The (simplified) approach we will follow is as follows:
 - Write out nonlinear kinematics, identify normal force $N = \int_{\mathcal{A}} \sigma_{ax} dA$ and moment $M = \int_{\mathcal{A}} -y\sigma_{ax} dA$.
 - **2** Assume transverse deformation field $v = V \sin\left(\frac{\pi x}{\ell}\right)$
 - **③** Assume axial tip deflection u_T and derive axial deformation field.
 - **()** Express work done in terms of scalars V and u_T . \rightarrow Extremize.
 - **6** Plot force deflection curves, analyze stability.

6.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

Geometrically Nonlinear Kinematics

• The deformation field is written as $u_x = u - yv'$, $u_y = v$. Consider the deformation of a line from (x, y) to $(x + \Delta x, y)$:

$$(x,y) \rightarrow (x+u-yv',y+v),$$

$$(x+\Delta x,y) \rightarrow (x+\Delta x+u-yv'+(u'-yv'')\Delta x,y+v+v'\Delta x),$$

$$\Delta S = \Delta x, \quad \Delta s^2 = \Delta x^2((1+u'-yv'')^2+v'^2).$$

• We write the axial strain as

$$\epsilon_{ax} = \frac{1}{2} \frac{\Delta s^2 - \Delta S^2}{\Delta S^2} = (u' - yv'') + \frac{1}{2} \left((u' - yv'')^2 + {v'}^2 \right)$$
$$\epsilon_{ax} \approx (u' - yv'') + \frac{{v'}^2}{2}.$$

• The final assumption is sometimes referred to as Von Karman strain assumptions.

Balaji, N. N. (AE, IITM)

6.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

• Nearly nothing changes in the equilibrium equations. We first write out the area-normal stresses and moments:

$$N = \int_{\mathcal{A}} E\epsilon_{ax} dA = EA(u' + \frac{{v'}^2}{2}), \quad M = \int_{\mathcal{A}} -yE\epsilon_{ax} dA = EIv''.$$

• The axial force balance reads:

$$N' = EA\frac{d}{dx}\left(u' + \frac{{v'}^2}{2}\right) = 0, \quad u(x)|_{x=0} = 0, \quad u|_{x=\ell} = u_T.$$

6.1. Post-Buckling Behavior (Out of Syllabus): Axial Problem

Class Discussions (Outside of Slides)

• We next impose the transverse deformation field $v(x) = V \sin\left(\frac{\pi x}{\ell}\right)$ on the axial problem. Solving this, we get

$$u(x) = -\frac{\pi V^2}{8\ell} \sin\left(\frac{2\pi x}{\ell}\right) + C_1 x + C_2.$$

- Boundary conditioned are imposed by setting $C_1 = \frac{u_T}{\ell}$ and $C_2 = 0$.
- The parameterized axial deformation field, therefore, is

$$u(x; V, u_T) = \frac{u_T}{\ell} x - \frac{\pi V^2}{8\ell} \sin\left(\frac{2\pi x}{\ell}\right)$$

• Note that we have not said anything about V or u_T so far.

6.1. Post-Buckling Behavior (Out of Syllabus): Strain Energy Density

Class Discussions (Outside of Slides)

• The strain energy density (per unit length) is written as,

$$\mathcal{V} = \int_{\mathcal{A}} \frac{E\epsilon_{ax}^2}{2} dA = \frac{E}{2} \int_{\mathcal{A}} (u' - yv'' + \frac{{v'}^2}{2})^2 dx$$
$$= \frac{EA}{2} \left(u' + \frac{{v'}^2}{2} \right)^2 + \frac{EI}{2} {v''}^2 \approx \frac{EI}{2} {v''}^2 + \frac{EA}{2} \frac{{v'}^4}{4}.$$

- Note that we have assumed $u_T \rightarrow 0$, i.e., providing negligible influence on the overall potential energy.
- Substituting the assumed deformation field $v = V \sin(\frac{\pi x}{\ell})$ and integrating over $(0, \ell)$ we have,

$$\mathcal{V}_{tot} = \int_{0}^{\ell} \mathcal{V}(x) dx = \frac{\pi^{4} EI}{4\ell^{3}} V^{2} + \frac{3\Pi^{4} EA}{64\ell^{3}} V^{4}$$
$$= \frac{\pi^{2} P_{cr}}{4\ell} V^{2} + \frac{3\pi^{2} A P_{cr}}{64 I\ell} V^{4}.$$

Balaji, N. N. (AE, IITM)

6.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

• The work done by an axial compressive load P is given by

$$\Pi = \int_{0}^{\ell} \int_{\mathcal{A}} \frac{P}{A} \varepsilon_{ax} dA dx = \int_{0}^{\ell} \int_{\mathcal{A}} \frac{P}{A} (u' - yv'' + \frac{{v'}^2}{2}) dA dx$$
$$= P \int_{0}^{\ell} u' dx + \frac{P}{2} \int_{0}^{\ell} {v'}^2 dx$$
$$\Pi = P u_T + \frac{\pi^2 P}{4\ell} V^2 \,.$$

• So the total work scalar $(W = \Pi - \mathcal{V}_{tot})$ is given as (we ignore u_T here)

$$W(V) = \frac{\pi^2}{4\ell} (P - P_{cr}) V^2 - \frac{3\pi^2 A}{64I\ell} P_{cr} V^4.$$

6.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

• Stationarizing the work we get,

$$\frac{dW}{dV} = \frac{\pi^2 P_{cr}}{2\ell} V\left(\left(\frac{P}{P_{cr}} - 1\right) - \frac{3A}{8I}V^2\right) \implies V = 0, \pm \sqrt{\frac{8I}{3A}\left(\frac{P}{P_{cr}} - 1\right)}.$$

Note that the non-trivial solution is only active for $P >= P_{cr}$.

• We can next estimate u_T easily by applying the boundary conditions.

6.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

