

AS2070: Aerospace Structural Mechanics Module 2: Composite Material Mechanics

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT Madras, Chennai

 $March\ 11,\ 2025$

Table of Contents

(Also see Daniel and Ishai 2006)

- Introduction
 - What are Composites?
 - Modeling Composite Material
 - Constitutive Modeling for Composites
- Classical Laminate Theory
- 2 Composite Materials
 - Types of Composite Materials
 - Micro-Mechanics Descriptions
 - The Rule of Mixtures

Chapters 1-3, 11in Kollár and PRINCIPLES OF Springer (2003).

Chapter 25 in Meason (2013)

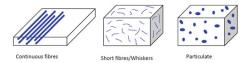
COMPOSITE

MECHANICS

MATERIAL

Introduction

- Structural material consisting of multiple non-soluble macro-constituents.
- Main motivation: material properties tailored to applications.
- Both stiffness and strength comes from the fibers/particles, and the matrix holdes everything together.



Types of composite materials (Figure from NPTEL Online-IIT KANPUR (2025))

Examples

- Reinforced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)

3 / 15

Introduction

- Structural material consisting of multiple non-soluble macro-constituents.
- Main motivation: material properties tailored to applications.
- Both stiffness and strength comes from the fibers/particles, and the matrix holdes everything together.

Types of composite materials (Figure from NPTEL Online-IIT KANPUR (2025))

Examples

- Reinforced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)



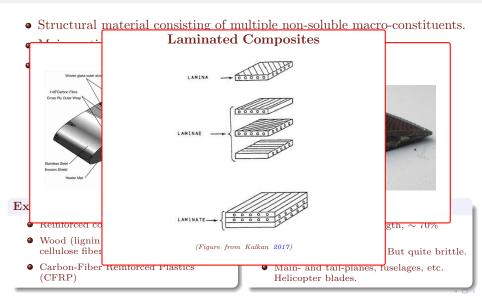
Introduction

• Structural material consisting of multiple non-soluble macro-constituents.

- Kemiorced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)

- \sim 2x stiffness, \sim 3x strength, \sim 70% weight of AA.
- High fatigue resistance. But quite brittle.
- Main- and tail-planes, fuselages, etc. Helicopter blades.

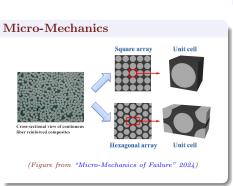
Introduction



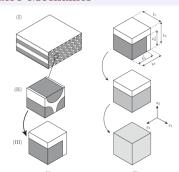
1.2. Modeling Composite Material

Introduction

Two main approaches:



Macro-Mechanics



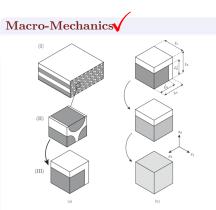
Homogenization of micro-structure (Figure from Skovsquard and Heide-Jørgensen 2021)

1.2. Modeling Composite Material

Introduction

Two main approaches:

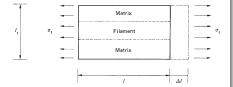
Micro-Mechanics Square array Unit cell Cross-sectional view of continuous fiber reinforced composites Unit cell Hexagonal array (Figure from "Micro-Mechanics of Failure" 2024)



Homogenization of micro-structure (Figure from Skovsquard and Heide-Jørgensen 2021)

Introduction

Axial Elongation



 Strain is fixed, but stress experienced by media differ.

$$\sigma_l = E_l \varepsilon_l$$

Stress-strain relationship simplifies as,

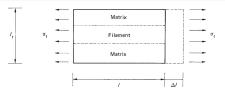
$$\sigma_m = E_m \varepsilon_l, \quad \sigma_f = E_f \varepsilon_l$$

$$\sigma_l A = \sigma_m A_m + \sigma_f A_f$$

$$\Longrightarrow \boxed{E_l = \frac{A_f}{A} E_f + \frac{A_m}{A} E_m}.$$

Introduction

Axial Elongation



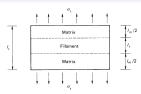
 Strain is fixed, but stress experienced by media differ.

$$\sigma_l = E_l \varepsilon_l$$

Stress-strain relationship simplifies as,

$$\begin{split} \sigma_m &= E_m \varepsilon_l, \quad \sigma_f = E_f \varepsilon_l \\ \sigma_l A &= \sigma_m A_m + \sigma_f A_f \\ \Longrightarrow \boxed{E_l = \frac{A_f}{A} E_f + \frac{A_m}{A} E_m}. \end{split}$$

Transverse Elongation



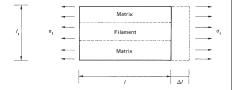
Stress is fixed, strains differ:

$$\begin{split} \varepsilon_t l_t &= \varepsilon_m l_m + \varepsilon_f l_f \\ \Longrightarrow \frac{\sigma_t}{E_t} l_t &= \frac{\sigma_t}{E_m} l_m + \frac{\sigma_t}{E_f} l_f \\ \Longrightarrow \boxed{\frac{1}{E_t} = \frac{1}{E_m} \frac{l_m}{l_t} + \frac{1}{E_f} \frac{l_f}{l_t}} \,. \end{split}$$

(Figures from Megson 2013) March 11, 2025 5 / 15

Introduction: Poisson Effects

Axial-Transverse Coupling



Transverse displacement written as

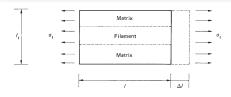
$$\Delta_t = \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t$$

$$\Longrightarrow \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}.$$

(Figures from Megson 2013)

Introduction: Poisson Effects

Axial-Transverse Coupling

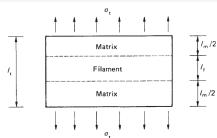


Transverse displacement written as

$$\Delta_t = \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t$$

$$\Longrightarrow \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}.$$

Transverse-Axial Coupling



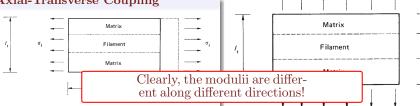
Axial displacement written as

$$\nu_m \frac{\sigma_t}{E_m} = \nu_f \frac{\sigma_t}{E_f} := \nu_{tl} \frac{\sigma_t}{E_t},$$

$$\Longrightarrow \boxed{\nu_{tl} = \frac{E_t}{E_l} \nu_{lt}}.$$

(Figures from Megson 2013)

Introduction: Poisson Effects



Transverse displacement written as

$$\begin{split} \Delta_t &= \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t \\ \Longrightarrow & \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}. \end{split}$$

Axial displacement written as

$$\begin{split} \nu_m \, \frac{\sigma_t}{E_m} &= \nu_f \, \frac{\sigma_t}{E_f} \! := \nu_{tl} \, \frac{\sigma_t}{E_t}, \\ &\Longrightarrow \left[\nu_{tl} = \frac{E_t}{E_l} \nu_{lt} \right]. \end{split}$$

(Figures from Megson 2013)

 $I_{\rm m}/2$

6 / 15

Introduction: Anisotropy

General Anisotropy

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Introduction: Anisotropy

General Anisotropy

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \end{bmatrix}$$

Monoclinic: Single Plane of Symmetry

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & 0 & 0 \\ C_{12} & C_{22} & C_{23} & C_{24} & 0 & 0 \\ C_{13} & C_{23} & C_{33} & C_{34} & 0 & 0 \\ C_{14} & C_{24} & C_{34} & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & C_{56} \\ 0 & 0 & 0 & 0 & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Introduction: Anisotropy

Triclinic: Three Planes of Symmetry

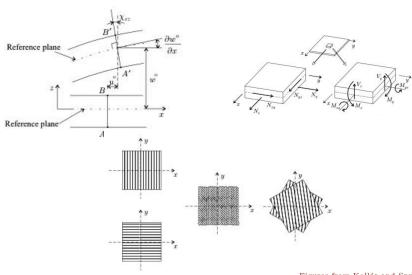
$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Transversely Isotropic

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{C_{11} - C_{12}}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

1.4. Classical Laminate Theory

Introduction



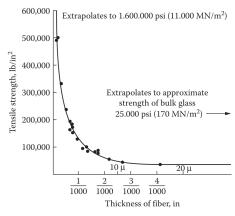
Figures from Kollár and Springer 2003

Balaji, N. N. (AE, IITM)

AS2070

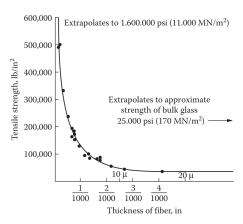
March 11, 2025

2. Composite Materials

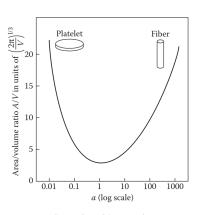


Griffith's experiments with glass fibres (1920)
(Figure from Gibson 2012)

2. Composite Materials



Griffith's experiments with glass fibres (1920)
(Figure from Gibson 2012)



 $(Figure\ from\ Gibson\ {\color{red}2012})$

2.1. Types of Composite Materials

Composite Materials

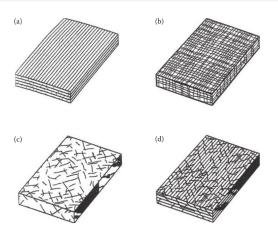


FIGURE 1.4

Types of fiber-reinforced composites. (a) Continuous fiber composite, (b) woven composite, (c) chopped fiber composite, and (d) hybrid composite.

(Figure from Gibson 2012)

11 / 15

Micro-Mechanics Descriptions

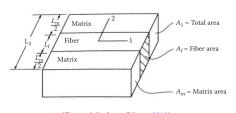
The rule of mixtures is introduced as a very simple framework for developing "overall"/representative mechanical properties.

Basic Definitions

Subscripts $(\cdot)_f$, $(\cdot)_m$, $(\cdot)_v$, and $(\cdot)_c$ denote quantities corresponding to the fiber, matrix, void, and composite (as a whole).

Volume Fraction $v_f = \frac{V_f}{V_c}, v_m = \frac{V_m}{V_c}, v_v = \frac{V_v}{V_c}$ such that $v_f + v_m + v_v = 1$. Note that composite density $\rho_c = \rho_f v_f + \rho_m v_m$.

Weight Fraction $w_f = \frac{\rho_f}{\rho_c} v_f$



$$(\times)E_2 = \left(\frac{v_f}{E_f} + \frac{v_m}{E_m}\right)^{-1}$$

$$\nu_{12} = v_f \nu_f + v_m \nu_m$$

$$(\times)G_{12} = \left(\frac{v_f}{G_f} + \frac{v_m}{G_m}\right)^{-1}$$

 $E_1 = v_f E_f + v_m E_m$

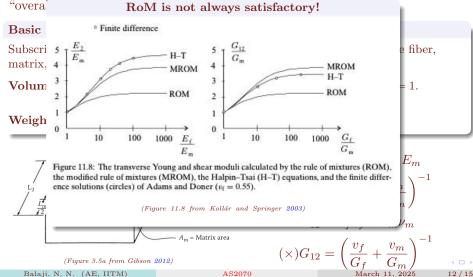
(Figure 3.5a from Gibson 2012)

Balaji, N. N. (AE, IITM)

AS2070

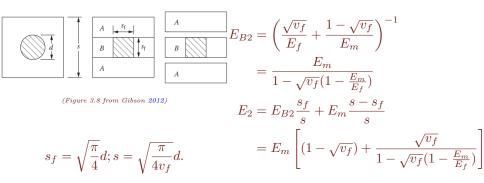
Micro-Mechanics Descriptions

The rule of mixtures is introduced as a very simple framework for developing



Micro-Mechanics Descriptions

• The mismatch is related to the fact that our idealized picture was a poor representation of reality to begin with. More geometrical details of the fiber arrangement are necessary.



Balaji, N. N. (AE, IITM)

Micro-Mechanics Descriptions

(Recommended reading: Sec. 3.2.3 in Daniel and Ishai 2006)

The Halpin-Tsai Equation

$$E_{2} = E_{m} \frac{1 + \xi \eta v_{f}}{1 - \eta v_{f}}, \quad \eta = \frac{E_{f} - E_{m}}{E_{f} + \xi E_{m}}$$
$$= E_{m} \frac{E_{f} + \xi E_{m} + \xi v_{f} (E_{f} - E_{m})}{E_{f} + \xi E_{m} - v_{f} (E_{f} - E_{m})}$$

Note: $\xi = 2$ for circular section fibers. $\xi = \frac{2a}{b}$ for rectangular fibers (b being loaded side).

Case 1:
$$\xi \to 0$$

$$E_2 = \left(\frac{v_f}{E_f} + \frac{1 - v_f}{E_m}\right)^{-1}$$

Series, *Reuss* model.

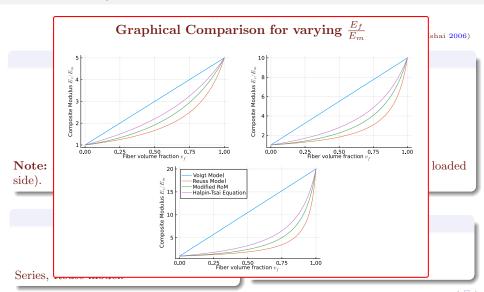
Case 2:
$$\xi \to \infty$$

$$E_2 = E_f v_f + E_m (1 - v_f)$$

Parallel, Voigt model.

Balaji, N. N. (AE, IITM) AS2070 March 11, 2025 14 / 15

Micro-Mechanics Descriptions



References I

- Ronald F. Gibson. Principles of Composite Material Mechanics, 3rd ed. Dekker Mechanical Engineering. Boca Raton, Fla: Taylor & Francis, 2012. ISBN: 978-1-4398-5005-3 (cit. on pp. 2, 18-23).
- [2] László P. Kollár and George S. Springer. Mechanics of Composite Structures, Cambridge: Cambridge University Press, 2003. ISBN: 978-0-521-80165-2. DOI: 10.1017/CB09780511547140. (Visited on 01/11/2025) (cit. on pp. 2, 17, 21, 22).
- [3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 9-13).
- [4] Isaac M. Daniel and Ori Ishai. Engineering Mechanics of Composite Materials, 2nd ed. New York: Oxford University Press, 2006. ISBN: 978-0-19-515097-1 (cit. on pp. 2, 24, 25).
- [5] NPTEL Online-IIT KANPUR. https://archive.nptel.ac.in/content/storage2/courses/101104010/ui/Course_home-1.html. (Visited on 01/22/2025) (cit. on pp. 3-6).
- [6] Carbon Fiber Top Helicopter Blades. (Visited on 01/22/2025) (cit. on pp. 3-6).
- [7] Şevket Kalkan. "TECHNICAL INVESTGATION FOR THE USE OF TEXTILE WASTE FIBER TYPES IN NEW GENERATION COMPOSITE PLASTERS". PhD thesis. July 2017 (cit. on pp. 3-6).
- [8] "Micro-Mechanics of Failure". Wikipedia, (May 2024). (Visited on 01/22/2025) (cit. on pp. 7, 8).
- [9] Simon Skovsgaard and Simon Heide-Jørgensen. "Three-Dimensional Mechanical Behavior of Composite with Fibre-Matrix Delamination through Homogenization of Micro-Structure". Composite Structures, 275, (July 2021), pp. 114418. DOI: 10.1016/j.compstruct.2021.114418 (cit. on pp. 7, 8).