

AS2070: Aerospace Structural Mechanics Module 2: Composite Material Mechanics

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT Madras, Chennai

March 17, 2025

Table of Contents

(Also see Daniel and Ishai 2006)

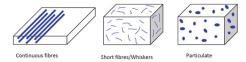
- Introduction
 - What are Composites?
 - Modeling Composite Material
 - Constitutive Modeling for Composites
 - Classical Laminate Theory
- 2 Composite Materials
 - Types of Composite Materials
 - Micro-Mechanics Descriptions
 - The Rule of Mixtures
- 4 Macro-Mechanics Descriptions
 - Material Symmetry and Anisotropy
- 5 Analysis of Planar Laminates
 - Generally Orthotropic Laminat
- 6 Classical Laminate Theory
 - \bullet The Laminate Orientation Code

Chapters 1-3, 11 in Kollár and Springer (2003).

Chapter 25 in Megson (2013)

Chapters 1-3 in Gibson (2012).

PRINCIPLES OF


COMPOSITE

MECHANICS

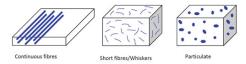
MATERIAL

Introduction

- Structural material consisting of multiple non-soluble macro-constituents.
- Main motivation: material properties tailored to applications.
- Both stiffness and strength comes from the fibers/particles, and the matrix holdes everything together.

Types of composite materials (Figure from NPTEL Online-IIT KANPUR (2025))

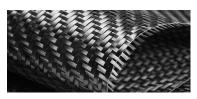
AS2070


Examples

- Reinforced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)

3 / 29

Introduction

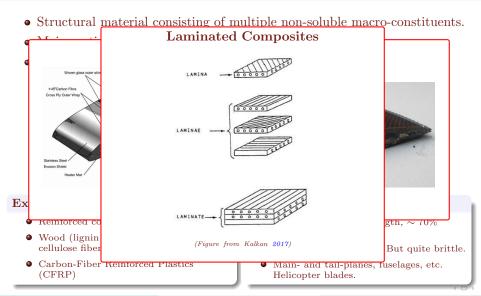

- Structural material consisting of multiple non-soluble macro-constituents.
- Main motivation: material properties tailored to applications.
- Both stiffness and strength comes from the fibers/particles, and the matrix holdes everything together.

Types of composite materials (Figure from NPTEL Online-IIT KANPUR (2025))

Examples

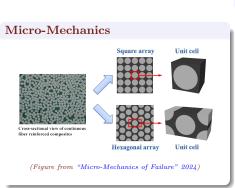
- Reinforced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)

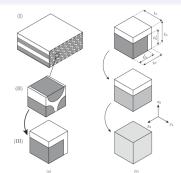
Introduction


• Structural material consisting of multiple non-soluble macro-constituents.

- Kemiorced concrete
- Wood (lignin matrix reinforced by cellulose fibers)
- Carbon-Fiber Reinforced Plastics (CFRP)

- \sim 2x stiffness, \sim 3x strength, \sim 70% weight of AA.
- High fatigue resistance. But quite brittle.
- Main- and tail-planes, fuselages, etc. Helicopter blades.

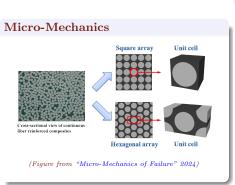

Introduction

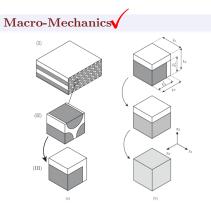

1.2. Modeling Composite Material

Introduction

Two main approaches:

Macro-Mechanics

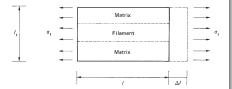



Homogenization of micro-structure (Figure from Skovsquard and Heide-Jørgensen 2021)

1.2. Modeling Composite Material

Introduction

Two main approaches:



Homogenization of micro-structure (Figure from Skovsquard and Heide-Jørgensen 2021)

Introduction

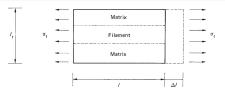
Axial Elongation

 Strain is fixed, but stress experienced by media differ.

$$\sigma_l = E_l \varepsilon_l$$

Stress-strain relationship simplifies as,

$$\sigma_m = E_m \varepsilon_l, \quad \sigma_f = E_f \varepsilon_l$$

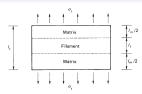

$$\sigma_l A = \sigma_m A_m + \sigma_f A_f$$

$$\Longrightarrow E_l = \frac{A_f}{A} E_f + \frac{A_m}{A} E_m.$$

(Figures from Megson 2013) March 17, 2025 5/29

Introduction

Axial Elongation

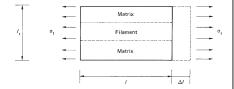

 Strain is fixed, but stress experienced by media differ.

$$\sigma_l = E_l \varepsilon_l$$

Stress-strain relationship simplifies as,

$$\begin{split} \sigma_m &= E_m \varepsilon_l, \quad \sigma_f = E_f \varepsilon_l \\ \sigma_l A &= \sigma_m A_m + \sigma_f A_f \\ \Longrightarrow \boxed{E_l = \frac{A_f}{A} E_f + \frac{A_m}{A} E_m}. \end{split}$$

Transverse Elongation

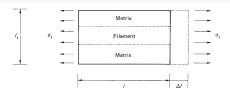

Stress is fixed, strains differ:

$$\begin{split} \varepsilon_t l_t &= \varepsilon_m l_m + \varepsilon_f l_f \\ \Longrightarrow \frac{\sigma_t}{E_t} l_t &= \frac{\sigma_t}{E_m} l_m + \frac{\sigma_t}{E_f} l_f \\ \Longrightarrow \boxed{\frac{1}{E_t} = \frac{1}{E_m} \frac{l_m}{l_t} + \frac{1}{E_f} \frac{l_f}{l_t}} \,. \end{split}$$

(Figures from Megson 2013) March 17, 2025 5/29

Introduction: Poisson Effects

Axial-Transverse Coupling

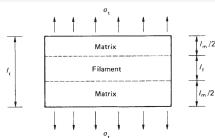


Transverse displacement written as

$$\begin{split} \Delta_t &= \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t \\ \Longrightarrow & \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}. \end{split}$$

Introduction: Poisson Effects

Axial-Transverse Coupling



Transverse displacement written as

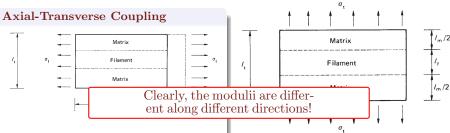
$$\Delta_t = \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t$$

$$\Longrightarrow \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}.$$

Transverse-Axial Coupling

Axial displacement written as

$$\nu_m \frac{\sigma_t}{E_m} = \nu_f \frac{\sigma_t}{E_f} := \nu_{tl} \frac{\sigma_t}{E_t},$$


$$\Longrightarrow \boxed{\nu_{tl} = \frac{E_t}{E_l} \nu_{lt}}.$$

(Figures from Megson 2013)

6/29

Introduction: Poisson Effects

Transverse displacement written as

$$\begin{split} \Delta_t &= \nu_m \varepsilon_l l_m + \nu_f \varepsilon_l l_f := \nu_{lt} \varepsilon_l l_t \\ \Longrightarrow & \boxed{\nu_{lt} = \frac{l_m}{l_t} \varepsilon_l + \frac{l_f}{l_t} \varepsilon_f}. \end{split}$$

Axial displacement written as

$$\begin{split} \nu_m \frac{\sigma_t}{E_m} &= \nu_f \frac{\sigma_t}{E_f} := \nu_{tl} \frac{\sigma_t}{E_t}, \\ &\Longrightarrow \boxed{\nu_{tl} = \frac{E_t}{E_l} \nu_{lt}}. \end{split}$$

(Figures from Megson 2013)

Introduction: Anisotropy

General Anisotropy

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Introduction: Anisotropy

General Anisotropy

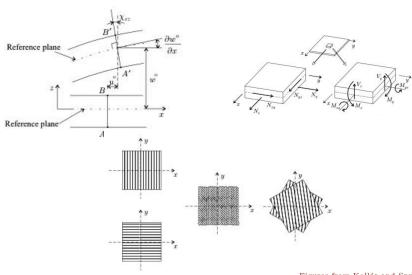
$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \end{bmatrix}$$

Monoclinic: Single Plane of Symmetry

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & 0 & 0 \\ C_{12} & C_{22} & C_{23} & C_{24} & 0 & 0 \\ C_{13} & C_{23} & C_{33} & C_{34} & 0 & 0 \\ C_{14} & C_{24} & C_{34} & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & C_{56} \\ 0 & 0 & 0 & 0 & C_{56} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Introduction: Anisotropy

Triclinic: Three Planes of Symmetry

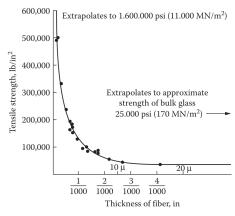

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

Transversely Isotropic

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{C_{11} - C_{12}}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix}$$

1.4. Classical Laminate Theory

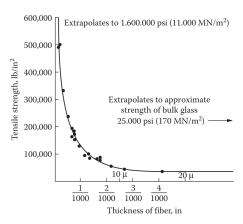
Introduction

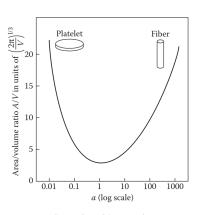


Figures from Kollár and Springer 2003

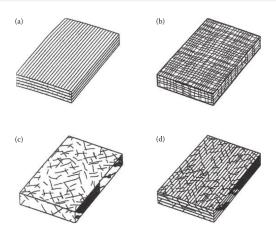
Balaji, N. N. (AE, IITM)

AS2070


2. Composite Materials


Griffith's experiments with glass fibres (1920)
(Figure from Gibson 2012)

2. Composite Materials


Griffith's experiments with glass fibres (1920)
(Figure from Gibson 2012)

 $(Figure\ from\ Gibson\ {\color{red}2012})$

2.1. Types of Composite Materials

Composite Materials

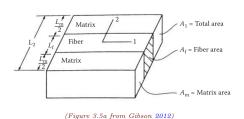
FIGURE 1.4

Types of fiber-reinforced composites. (a) Continuous fiber composite, (b) woven composite, (c) chopped fiber composite, and (d) hybrid composite.

(Figure from Gibson 2012)

11 / 29

Micro-Mechanics Descriptions


The rule of mixtures is introduced as a very simple framework for developing "overall"/representative mechanical properties.

Basic Definitions

Subscripts $(\cdot)_f$, $(\cdot)_m$, $(\cdot)_v$, and $(\cdot)_c$ denote quantities corresponding to the fiber, matrix, void, and composite (as a whole).

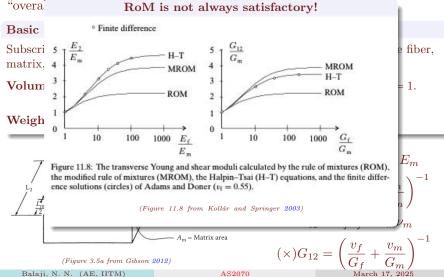
Volume Fraction $v_f = \frac{V_f}{V_c}, v_m = \frac{V_m}{V_c}, v_v = \frac{V_v}{V_c}$ such that $v_f + v_m + v_v = 1$. Note that composite density $\rho_c = \rho_f v_f + \rho_m v_m$.

Weight Fraction $w_f = \frac{\rho_f}{\rho_c} v_f$

$$E_1 = v_f E_f + v_m E_m$$

$$(\times) E_2 = \left(\frac{v_f}{E_f} + \frac{v_m}{E_m}\right)^{-1}$$

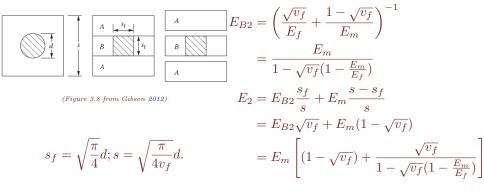
$$\nu_{12} = v_f \nu_f + v_m \nu_m$$


$$(\times) G_{12} = \left(\frac{v_f}{G_f} + \frac{v_m}{G_m}\right)^{-1}$$

Balaji, N. N. (AE, IITM)

AS2070

Micro-Mechanics Descriptions


The rule of mixtures is introduced as a very simple framework for developing

12 / 29

Micro-Mechanics Descriptions

• The mismatch is related to the fact that our idealized picture was a poor representation of reality to begin with. More geometrical details of the fiber arrangement are necessary.

Micro-Mechanics Descriptions

(Recommended reading: Sec. 3.2.3 in Daniel and Ishai 2006)

The Halpin-Tsai Equation

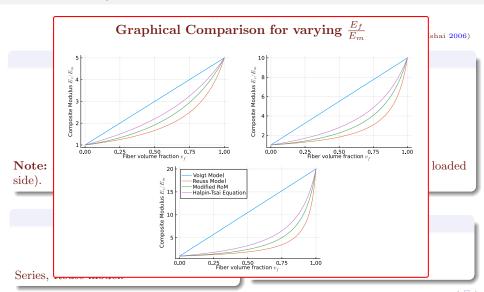
$$E_{2} = E_{m} \frac{1 + \xi \eta v_{f}}{1 - \eta v_{f}}, \quad \eta = \frac{E_{f} - E_{m}}{E_{f} + \xi E_{m}}$$
$$= E_{m} \frac{E_{f} + \xi E_{m} + \xi v_{f} (E_{f} - E_{m})}{E_{f} + \xi E_{m} - v_{f} (E_{f} - E_{m})}$$

Note: $\xi = 2$ for circular section fibers. $\xi = \frac{2a}{b}$ for rectangular fibers (b being loaded side).

Case 1:
$$\xi \to 0$$

$$E_2 = \left(\frac{v_f}{E_f} + \frac{1 - v_f}{E_m}\right)^{-1}$$

Series, *Reuss* model.


Case 2:
$$\xi \to \infty$$

$$E_2 = E_f v_f + E_m (1 - v_f)$$

Parallel, Voigt model.

14 / 29

Micro-Mechanics Descriptions

3.1. The Rule of Mixtures: Numerical Example

Micro-Mechanics Descriptions

(from Kollár and Springer 2003)

Consider a Graphite/Epoxy unidirectional ply. Matrix properties are given with subscript m in the table below. Nominal properties with fiber volume fraction $v_f = 60\%$ are also given. Assume that the fibers show anisotropy $(E_{f1} \neq E_{f2})$.

	E_1	E_2	G_{12}	ν_{12}	E_m	G_m	ν_m
Value	148	9.65	4.55	0.3	4.1	1.5	0.35

All modulii in GPa.

Estimate the following:

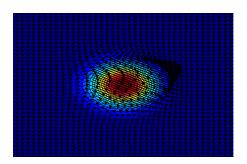
- Fiber modulus properties
- Composite material modulii for volume fraction $v_f = 0.55$.

(Also discussed sensitivity analysis)

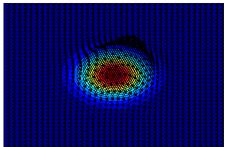
Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?


4 □ ト

Material Symmetry and Anisotropy

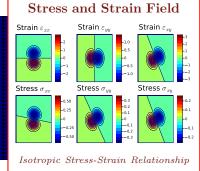

Material Symmetry

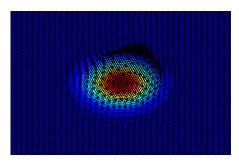
The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Deformation Case 1

Deformation Case 2 (Case 1 Rotated)


16 / 29


Material Symmetry and Anisotropy

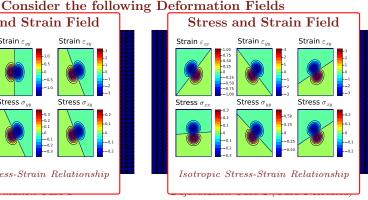
Material Symmetry

The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Deformation Case 2 (Case 1 Rotated)

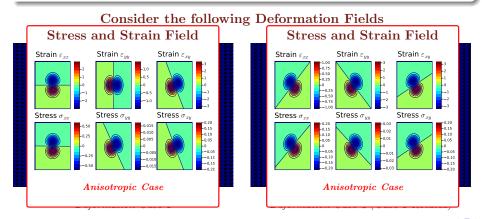
16 / 29


Material Symmetry and Anisotropy

Material Symmetry

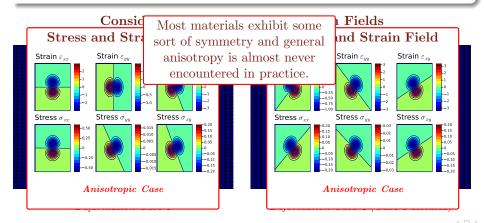
The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?

Stress and Strain Field Strain ε_{xx} Strain ε_{vu} Strain ε_{xy} Stress o ... Stress σ_{yy} Stress σ_{vv}


Isotropic Stress-Strain Relationship

Material Symmetry and Anisotropy

Material Symmetry


The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question: If the strain field on a deformable object is changed, how does the stress field change?

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

How do stresses and strains transform under coordinate change?

- Suppose $\underline{x} \in \mathbb{R}^3$ are the coordinates of a point in 3D space.
- Let $x' \in \mathbb{R}^3$ be the coordinates under transformation.
- We will write: $|\underline{x}' = \underline{Q}\underline{x}|$, with $Q^{-1} = \underline{Q}^T$.

Strains

$$\bullet \ \underline{\varepsilon} = \frac{1}{2} \left(\underline{\nabla}_{\underline{x}} \underline{u} + \underline{\nabla}_{\underline{x}} \underline{u}^T \right)$$

$$\bullet \ \underline{\nabla}_{\underline{x}'}\underline{u}' = \underline{Q} \,\underline{\nabla}_{\underline{x}}\underline{u}\underline{Q}^{-1} \\ \Longrightarrow \left[\underline{\varepsilon}' = \underline{Q} \,\underline{\varepsilon} \,\underline{Q}^{T}\right].$$

Stresses

- Cauchy Stress Definition: $\underline{t} = \underline{\sigma} \underline{n}$
- $\bullet \ \underline{Q}\,\underline{t} = \underline{t}' = \underline{\underline{\sigma}}'\underline{n}' = \underline{\underline{\sigma}}'\underline{Q}\,\underline{n} = \underline{Q}\,\underline{\underline{\sigma}}\,\underline{n}$ $\implies |\underline{\sigma}' = \underline{Q}\underline{\sigma}\underline{Q}^T$

Reflections

Note that reflections may be expressed as a coordinate change with

$$\underline{\underline{Q}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (reflection about the xy plane).

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

• Under reflection about the xy plane, the strain transforms as,

$$\begin{bmatrix} \varepsilon'_x & \frac{\gamma'_{xy}}{2} & \frac{\gamma'_{xz}}{2} \\ & \varepsilon'_y & \frac{\gamma'_{yz}}{2} \\ \text{sym} & & \varepsilon'_z \end{bmatrix} = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{bmatrix} \begin{bmatrix} \varepsilon_x & \frac{\gamma_{xy}}{2} & \frac{\gamma_{xz}}{2} \\ & \varepsilon_y & \frac{\gamma_{yz}}{2} \\ \text{sym} & & \varepsilon_z \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & -1 \end{bmatrix}$$
$$= \begin{bmatrix} \varepsilon_x & \frac{\gamma_{xy}}{2} & -\frac{\gamma_{xz}}{2} \\ & \varepsilon_y & -\frac{\gamma_{yz}}{2} \\ \text{sym} & & \varepsilon_z \end{bmatrix}$$

So in Voigt notation we have,

So in Voigt notation we have,
$$\begin{bmatrix} \varepsilon_x' \\ \varepsilon_y' \\ \varepsilon_y' \\ \gamma_{xy}' \\ \gamma_{yz}' \end{bmatrix} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & 0 & 0 \\ \cdot & 0 & 0 &$$

Balaji, N. N. (AE, IITM)

March 17, 2025

18 / 29

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

Balaji, N. N. (AE, IITM)

• Under reflection about the xy plane, the strain transforms as,

If a material were symmetric about the xy plane, then reflecting the strain field about the xy plane will result in a stress field that is reflected about the same xy plane. Note • Strain field reflection is a kinematic operation/configuration change. • Change in the Stress field is the effect that the above kinematic change results in. • If the material happens to be symmetric about the reflection plane, then this change will be a reflection. T_{xu} T_{xz} Similarly for Stress

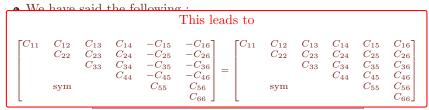
AS2070

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

• We have said the following:

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{zz} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & C_{55} & C_{56} \\ & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{zz} \end{bmatrix}$$

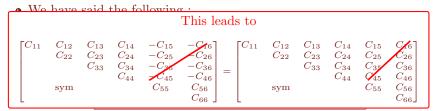

Recall that this symmetry follows from strain energy existence

$$\begin{bmatrix} \sigma_x' \\ \sigma_y' \\ \sigma_z \\ \tau_{xy}' \\ \tau_{xz}' \\ \tau_{zz}' \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & & C_{55} & C_{56} \\ & & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x' \\ \varepsilon_y' \\ \varepsilon_y' \\ \gamma_{xz}' \\ \gamma_{zz}' \\ \gamma_{zz}' \end{bmatrix}$$

(The $\underline{\underline{C}}$ matrix is the same in both the original and the reflected coordinate systems)

4 □ ▶

Macro-Mechanics Descriptions


Recall that this symmetry follows from strain energy existence

$$\begin{bmatrix} \sigma_{x}' \\ \sigma_{y}' \\ \sigma_{z} \\ \tau_{xy}' \\ \tau_{zz}' \\ \tau_{zz}' \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & & C_{55} & C_{56} \\ & & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}' \\ \varepsilon_{y}' \\ \varepsilon_{y}' \\ \gamma_{xz}' \\ \gamma_{zz}' \end{bmatrix}$$

(The $\underline{\underline{C}}$ matrix is the same in both the original and the reflected coordinate systems)

→ □ →

Macro-Mechanics Descriptions

Recall that this symmetry follows from strain energy existence

$$\begin{bmatrix} \sigma_{T}' \\ \sigma_{y}' \\ \sigma_{z} \\ \tau_{xy}' \\ \tau_{zz}' \\ \tau_{zz}' \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ & & C_{33} & C_{34} & C_{35} & C_{36} \\ & & & C_{44} & C_{45} & C_{46} \\ & & & & & C_{55} & C_{56} \\ & & & & & & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{T}' \\ \varepsilon_{y} \\ v_{xz}' \\ v_{xz}' \\ v_{zz}' \end{bmatrix}$$

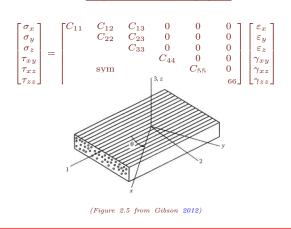
(The $\underline{\underline{C}}$ matrix is the same in both the original and the reflected coordinate systems)

 \dashv \square \rightarrow

Macro-Mechanics Descriptions

We have said the following.

This leads to


Finally we see that material symmetry about the xz plane implies the following simplification to the constitutive relationship.

This is known as a Monoclinic Material (13 constants). This is also quite rare to encounter in practice.

< □ →

Macro-Mechanics Descriptions

Suppose all the three fundamental planes are planes of symmetry, we have an **Orthotropic Material** (9 constants).

Macro-Mechanics Descriptions

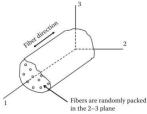
Suppose all the three fundamental planes are planes of symmetry, we have an **Orthotropic Material** (9 constants).

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_x \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{45} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \end{bmatrix}$$

Notice that $(\sigma_{(x,y,z)}, \varepsilon_{(x,y,z)})$ and $(\tau_{(xy,xz,yz)}, \gamma_{(xy,xz,yz)})$ are naturally decoupled as a consequence of symmetry in this coordinate system.

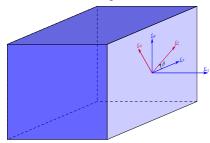
Also note,

- Specially orthotropic
- Generally orthotropic


(Figure 2.5 from Gibson 2012)

19 / 29

4.1. Material Symmetry and Anisotropy: Transverse Isotropy


Macro-Mechanics Descriptions

• In continuous fiber reinforced composites, it is often the case that the fibers are randomly distributed on a plane. This leads to planar isotropy in the plane perpendicular to the fiber stacking direction.

 $(Figure\ 2.6\ from\ Gibson\ {\color{red} \bf 2012})$

• How do the stresses and strains transform on the plane?

$$\begin{split} &(\sigma_x,\sigma_y,\sigma_z,\tau_{xy},\tau_{xz},\tau_{yz}) \to (\sigma_\xi,\sigma_\eta,\sigma_z,\tau_{\xi\eta},\tau_{\xiz},\tau_{\eta z}) \\ &(\varepsilon_x,\varepsilon_y,\varepsilon_z,\gamma_{xy},\gamma_{xz},\gamma_{yz}) \to (\varepsilon_\xi,\varepsilon_\eta,\varepsilon_z,\gamma_{\xi\eta},\gamma_{\xi z},\gamma_{\eta z}) \end{split}$$

20 / 29

Balaji, N. N. (AE, IITM) AS2070 March 17, 2025

Macro-Mechanics Descriptions

• The stresses and strains transform as follows on the plane:

$$\sigma_{\xi} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

$$\sigma_{\eta} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$

$$(\sigma_z = \sigma_z)$$

$$\tau_{\xi\eta} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tau_{\xi z} = \tau_{xz} \cos \theta + \tau_{yz} \sin \theta$$

$$\tau_{\eta z} = -\tau_{xz} \sin \theta + \tau_{yz} \cos \theta$$

$$\varepsilon_{\xi} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$\varepsilon_{\eta} = \frac{\varepsilon_x + \varepsilon_y}{2} - \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta - \frac{\gamma_{xy}}{2} \sin 2\theta$$

$$(\varepsilon_z = \varepsilon_z)$$

$$\gamma_{\xi\eta} = -(\varepsilon_x - \varepsilon_y) \sin 2\theta + \gamma_{xy} \cos 2\theta$$

$$\gamma_{\xi z} = \gamma_{xz} \cos \theta + \gamma_{yz} \sin \theta$$

$$\gamma_{\eta z} = -\gamma_{xz} \sin \theta + \gamma_{yz} \cos \theta$$

- For an orthotropic material, the straight stresses/strains and shear stresses/strains are fully decoupled.
- So we will consider different cases of kinematic deformation fields to see if more can be said.

< □ →

Macro-Mechanics Descriptions

1. Pure Out-Of-Plane Shear $(\gamma_{xz,yz} \neq 0)$

The Stresses and strains are,

$$\sigma_{\xi} = 0 \qquad \qquad \varepsilon_{\xi} = 0 \qquad \qquad \varepsilon_{\eta} = 0 \qquad$$

- So we have,

o see if

 $\frac{y}{\sin 2\theta}$

Balaji, N. N. (AE, IITM)

Fo

4.1. N Macro-Mec

• Th

For

2. Pure Out-Of-Plane Stretch $(\epsilon_z \neq 0)$

- We have straight stresses $\sigma_x = C_{13}\varepsilon_z, \sigma_y = C_{23}\varepsilon_z$.
- Upon transformation we have,

$$\sigma_{\xi} = \left(\frac{C_{13} + C_{23}}{2} + \frac{C_{13} - C_{23}}{2} \cos 2\theta\right) \varepsilon_{z}$$

$$\sigma_{\xi} = \sigma$$

$$\sigma_{\eta} = \left(\frac{C_{13} + C_{23}}{2} - \frac{C_{13} - C_{23}}{2} \cos 2\theta\right) \varepsilon_{z}$$

$$\varepsilon_{\xi} = 0$$

$$\varepsilon_{\eta} = 0$$

$$\varepsilon_{z} = \varepsilon_{z}$$

$$\sigma_{\eta} = \sigma$$

$$\sigma_{z} = \sigma_{z}$$

$$\tau_{\xi \eta} = -\frac{C_{13} - C_{23}}{2} \sin 2\theta$$

$$\tau_{\xi z} = \tau_{\eta z} = 0$$

$$\tau_{\xi z} = \tau_{\eta z} = 0$$

- For planar isotropy, the relationship between $(\sigma_{\xi}, \sigma_{\eta})$ and σ_z must be independent of θ . This is only possible for $C_{13} = C_{23}$.
- So we have,

str So mc
$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & & C_{33} & 0 & 0 & 0 \\ & & & & C_{44} & 0 & 0 \\ & & & & & & C_{55} & 0 \end{bmatrix}$$

see if

 $\sin 2\theta$

 $\sin 2\theta$

Balaji, N. N. (AE, IITM)

Macro-Me

3. Pure In-Plane Stretch $(\varepsilon_x \neq 0, \varepsilon_u = 0)$

- From the constitutive properties we have $\sigma_x = C_{11}\varepsilon_x$ and $\sigma_u = C_{12} \varepsilon_x$.
- Using this all the other components can be written as

$$\sigma_{\xi} = \begin{cases} \sigma_{\xi} = \left(\frac{C_{11} + C_{12}}{2} + \frac{C_{11} - C_{12}}{2}\cos 2\theta\right)\varepsilon_{x} & \varepsilon_{\xi} = \frac{1 + \cos 2\theta}{2}\varepsilon_{x} \end{cases}$$

$$\sigma_{\eta} = \begin{cases} \sigma_{\eta} = \left(\frac{C_{11} + C_{12}}{2} + \frac{C_{11} - C_{12}}{2}\cos 2\theta\right)\varepsilon_{x} & \varepsilon_{\eta} = \frac{1 - \cos 2\theta}{2}\varepsilon_{x} \end{cases}$$

$$\sigma_{\eta} = \left(\frac{C_{11} + C_{12}}{2} + \frac{C_{11} - C_{12}}{2}\cos 2\theta\right)\varepsilon_{x} & \varepsilon_{\eta} = \frac{1 - \cos 2\theta}{2}\varepsilon_{x} \end{cases}$$

$$= C_{12}\varepsilon_{x} + C_{22}\varepsilon_{y}$$

$$\tau_{\xi\eta} = 0 & \varepsilon_{z} = 0$$

$$\tau_{\xi\eta} = 0 & \tau_{\xi\eta} = 0$$

$$\tau_{\xi z} = \tau_{\eta z} = 0.$$

• For the σ_n equality to hold, we need $C_{22} = C_{11}$. So we have

 So \mathbf{m}

 st

 $\begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{11} & C_{11} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \end{bmatrix}$

 $\frac{xy}{2}\sin 2\theta$ $\frac{xy}{2}\sin 2\theta$

to see if

 $\gamma_{\mathcal{E}z} = \gamma_{nz} = 0.$

Macro-Mechanics Descriptions

.

 σ_{ξ} :

 $au_{\eta z}$:

0

4. Pure In-Plane Shear $(\gamma_{xy} \neq 0)$

- From the constitutive properties we have $\tau_{xy} = C_{44}\gamma_{xy}$.
- Using this all the other components can be written as

$$\sigma_{\xi} = C_{44}\gamma_{xy}\sin 2\theta = C_{11}\varepsilon_{\xi} + C_{12}\varepsilon_{\eta} \qquad \qquad \varepsilon_{\xi} = \frac{\gamma_{xy}}{2}\sin 2\theta$$

$$\sigma_{\eta} = -C_{44}\gamma_{xy}\sin 2\theta = C_{12}\varepsilon_{\xi} + C_{11}\varepsilon_{\eta} \qquad \qquad \varepsilon_{\eta} = -\frac{\gamma_{xy}}{2}\sin 2\theta$$

$$\sigma_{z} = 0 \qquad \qquad \varepsilon_{z} = 0$$

$$\tau_{\xi\eta} = C_{44}\gamma_{xy}\cos 2\theta \qquad \qquad \varepsilon_{z} = 0$$

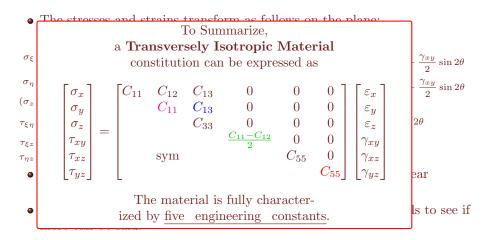
$$\tau_{\xi z} = \tau_{\eta z} = 0. \qquad \qquad \gamma_{\xi\eta} = \gamma_{xy}\cos 2\theta$$

$$\gamma_{\xi z} = \gamma_{\eta z} = 0.$$

• So we have $C_{44}\gamma_{xy}\sin 2\theta = \frac{C_{11}-C_{12}}{2}\gamma_{xy}\sin 2\theta$. Therefore,

 $\frac{\gamma_{xy}}{2}\sin 2\theta$ $\frac{\gamma_{xy}}{2}\sin 2\theta$

ar


to see if

Balaji, N. N. (AE, IITM)

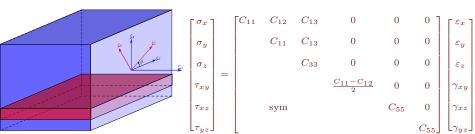
AS2070

March 17, 2025

Macro-Mechanics Descriptions

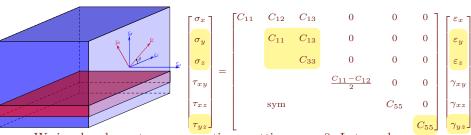
4.1. Material Symmetry and Anisotropy: Engineering Constants

Macro-Mechanics Descriptions


- In engineering practice, the constants are usually written easier in terms of compliance.
- For a specially orthotropic material the strain-stress relationship are usually expressed as,

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{11}} & -\frac{\nu_{21}}{E_{22}} & -\frac{\nu_{31}}{E_{33}} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_{11}} & \frac{1}{E_{22}} & -\frac{\nu_{32}}{E_{33}} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_{11}} & -\frac{\nu_{23}}{E_{22}} & \frac{1}{E_{33}} & 0 & 0 & 0 \\ & & & \frac{1}{G_{12}} & 0 & 0 \\ & & & & \frac{1}{G_{13}} & 0 \\ & & & & \frac{1}{G_{23}} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{xz} \\ \tau_{yz} \end{bmatrix}$$

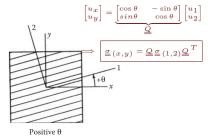
< □ ▶


5. Analysis of Planar Laminates

• Let us just consider one thin layer of a transversely isotropic material (continuously reinforced composite along a single direction).

5. Analysis of Planar Laminates

• Let us just consider one thin layer of a transversely isotropic material (continuously reinforced composite along a single direction).



• We invoke plane stress assumptions, setting $\sigma_z = 0$. Let us also assume small shears, $\tau_{xz} = 0$, $\tau_{yz} = 0$.

(Note: ε_z is not zero, and is implicitly defined)

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

 $(Figure\ 2.11\ from\ Gibson\ {\color{red}2012})$

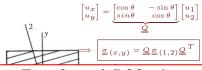
$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau xy \end{bmatrix} = \underbrace{\begin{bmatrix} \cos^2\theta & \sin^2\theta & -2\cos\theta\sin\theta \\ \sin^2\theta & \cos^2\theta & 2\cos\theta\sin\theta \\ \cos\theta\sin\theta & -\cos\theta\sin\theta & \cos^2\theta - \sin^2\theta \end{bmatrix}}_{\substack{T=-1}} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix}$$

$$\underline{\underline{T}} = \begin{bmatrix} \cos^2\theta & \sin^2\theta & 2\cos\theta\sin\theta \\ \sin^2\theta & \cos^2\theta & -2\cos\theta\sin\theta \\ -\cos\theta\sin\theta & \cos\theta\sin\theta & \cos^2\theta - \sin^2\theta \end{bmatrix}$$

- What if the coordinate system is not aligned with the fiber axes?
 The stress and strains transform
- In the constitutive relationship we have,

$$\underline{\underline{\sigma}}_{(1,2)} = \underline{\underline{\underline{C}}} \underline{\underline{\varepsilon}}_{(1,2)}$$

$$\underline{\underline{\underline{T}}} \underline{\underline{\sigma}}_{(1,2)} = \underline{\underline{\sigma}}_{(x,y)} = \underline{\underline{\underline{T}}} \underline{\underline{\underline{C}}} \underline{\underline{\underline{T}}}^{-1} \underline{\underline{\varepsilon}}_{(x,y)}$$


where

$$\underline{\underline{C}} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{33} \end{bmatrix}.$$

24 / 29

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

• What if the coordinate system is — not aligned with the fiber axes?

Transformed $\underline{\underline{C}}$ Matrix

$$\underline{\underline{C}}' = \begin{bmatrix} C_{11}' & C_{12}' & C_{13}' \\ C_{12}' & C_{22}' & C_{23}' \\ C_{13}' & C_{23}' & C_{33}' \end{bmatrix}$$

$$C_{11}' = C_{11}c^4 + C_{22}s^4 + 2(C_{33} + C_{12})c^2s^2$$

$$C_{12}' = (C_{11} + C_{22} - 2C_{33})c^2s^2 + C_{12}(c^4 + s^4)$$

$$C_{13}' = (C_{11} - C_{33} - C_{12})2c^3s - (C_{22} - C_{33} - C_{12})2cs^3$$

$$C_{22}' = C_{11}s^4 + C_{22}c^4 + 2(C_{33} + C_{12})c^2s^2$$

$$C_{23}' = (C_{11} - C_{33} - C_{12})2cs^3 - (C_{22} - C_{33} - C_{12})2c^3s$$

$$C_{33}' = (C_{11} + C_{22} - C_{33} - 2C_{12})2c^2s^2 + C_{33}(c^4 + s^4)$$

 $\underline{\underline{\sigma}}_{(1,2)} = \underline{\underline{C}} \underline{\varepsilon}_{(1,2)}$ $\underline{\underline{T}} \underline{\sigma}_{(1,2)} = \underline{\underline{\sigma}}_{(x,y)} = \underline{\underline{T}} \underline{\underline{C}} \underline{\underline{T}}^{-1} \underline{\varepsilon}_{(x,y)}$

stress and strains transform the constitutive relationship we

$$\underline{\underline{C}} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{33} \end{bmatrix}.$$

$$\underline{\underline{T}} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\cos \theta \sin \theta \\ \sin^2 \theta & \cos^2 \theta & -2\cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos \theta \sin \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$$

4 ---

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

- Compliance is often more convenient. This also transforms like $\underline{\underline{C}}$ so that we have,
 - Based on this we can write,

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} S'_{11} & S'_{12} & S'_{13} \\ S'_{22} & S'_{23} \\ S'_{33} \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \gamma_{xy} \end{bmatrix}$$

$$S'_{11} = S_{11}c^{4} + S_{22}s^{4} + 2(S_{33} + S_{12})c^{2}s^{2}$$

$$S'_{12} = (S_{11} + S_{22} - 2S_{33})c^{2}s^{2} + S_{12}(c^{4} + s^{4})$$

$$S'_{13} = (S_{11} - S_{33} - S_{12})2c^{3}s - (S_{22} - S_{33} - S_{12})2c^{3}s$$

$$S'_{22} = S_{11}s^{4} + S_{22}c^{4} + 2(S_{33} + S_{12})c^{2}s^{2}$$

$$S'_{23} = (S_{11} - S_{33} - S_{12})2cs^{3} - (S_{22} - S_{33} - S_{12})2c^{3}s$$

$$S'_{23} = (S_{11} - S_{33} - S_{12})2cs^{3} - (S_{22} - S_{33} - S_{12})2c^{3}s$$

$$S'_{33} = (S_{11} + S_{22} - S_{33} - 2S_{12})2c^{2}s^{2} + S_{33}(c^{4} + s^{4})$$

$$E_{x} = \left[\frac{c^{4}}{E_{1}} + \frac{s^{4}}{E_{2}} + \left(\frac{1}{G_{12}} - \frac{\nu_{21}}{E_{2}} \right) 2c^{2}s^{2} \right]^{-1}$$

$$G_{xy} = \left[\frac{c^{4} + s^{4}}{G_{12}} + \left(\frac{1}{E_{1}} + \frac{1}{E_{2}} - \frac{1}{G_{12}} - 2\frac{\nu_{21}}{E_{2}} \right) 2c^{2}s^{2} \right]^{-1}$$

$$-\frac{1}{G_{12}} - 2\frac{\nu_{21}}{E_{2}} \right) 2c^{2}s^{2}$$

• In the material principal directions we• It is customary to express the have,

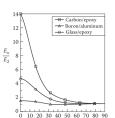
$$\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_1} & -\frac{\nu_{21}}{E_2} & 0 \\ -\frac{\nu_{12}}{E_1} & \frac{1}{E_2} & 0 \\ 0 & 0 & \frac{1}{G_{12}} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} \qquad \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_x} & -\frac{\nu_{yx}}{E_y} & \frac{\eta_{xy,x}}{G_{xy}} \\ \frac{\nu_{xy}}{E_y} & \frac{1}{E_y} & \frac{\eta_{xy,y}}{G_{xy}} \\ \frac{\eta_{xxy}}{\tau_{xy}} & \frac{\eta_{y,xy}}{E_y} & \frac{1}{G_{xy}} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

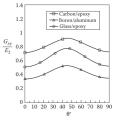
Balaji, N. N. (AE, IITM)

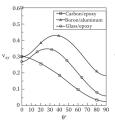
AS2070

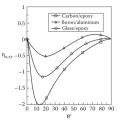
March 17, 2025

Analysis of Planar Laminates


• Compliance is oft also transforms li


$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} S'_{11} & S'_{12} \\ S'_{22} \\ S'_{11} & S_{11}c^4 + S_{22}s^4 \\ S'_{12} & (S_{11} + S_{22} - S_{13}c^4 + S_{22}s^4 \\ S'_{13} & (S_{11} - S_{33} - S'_{22} - S_{11}s^4 + S_{22}s^4 \\ S'_{23} & (S_{11} - S_{33} - S'_{33} - S'_{33}$$


• In the material p have,


$$\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_1} \\ -\frac{\nu_1}{E_2} \\ 0 \end{bmatrix}$$

5.1. Generally Orthotropic Laminatos Off-Axis Modulii

(Figure 2.14 from Gibson 2012)

can write.

$$\left(\frac{1}{G_{12}} - \frac{\nu_{21}}{E_2}\right) 2c^2 s^2 \right]^{-1}$$

$$\left(\frac{1}{G_{12}} - \frac{\nu_{21}}{E_2}\right) 2c^2 s^2 \right]^{-1}$$

$$\left[\frac{1}{E_1} + \frac{1}{E_2}\right]$$
 $\left[\frac{1}{E_1}\right] 2c^2s^2$

$$\left[\frac{1}{2}\right)2c^2s^2$$

express the tive relationship as

$$\begin{bmatrix}
-\frac{\nu y x}{E y} & \frac{\eta x y, x}{G x y} \\
\frac{1}{E y} & \frac{\eta x y, y}{G x y} \\
\frac{\eta y, x y}{E} & \frac{1}{G}
\end{bmatrix}$$

6. Classical Laminate Theory

• In the Kirchhoff-Love Plate Theory we had,

$$\begin{bmatrix} \underline{N} \\ \underline{M} \end{bmatrix} = \begin{bmatrix} \underline{\underline{A}} & \underline{\underline{B}} \\ \underline{\underline{\underline{B}}} & \underline{\underline{\underline{D}}} \end{bmatrix} \begin{bmatrix} \underline{\underline{u}'} \\ \underline{\underline{w}''} \end{bmatrix}$$

where

$$\underline{\underline{A}} = \frac{Et}{1 - \nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}, \quad \underline{\underline{D}} = \frac{Et^3}{12(1 - \nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}, \quad \underline{\underline{B}} = \underline{\underline{0}}.$$

• This can also be written in terms of thickness moments of the constitutive $\begin{bmatrix} 1 & \nu & 0 \end{bmatrix}$

matrix
$$\underline{\underline{C}} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$$
 as

$$\underline{\underline{A}} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \underline{\underline{C}} dz, \quad \underline{\underline{B}} = \int_{-\frac{t}{2}}^{\frac{t}{2}} z \underline{\underline{C}} dz, \quad \underline{\underline{D}} = \int_{-\frac{t}{2}}^{\frac{t}{2}} z^2 \underline{\underline{C}} dz.$$

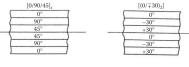
6. Classical Laminate Theory

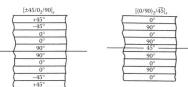
- Suppose we had different laminate plies along the thickness, such that the constitutive matrix is $\underline{\underline{C}}_i$ for $z \in (z_i, z_{i+1})$ and $-\frac{t}{2} = z_1 < \cdots < z_N = \frac{t}{2}$.
- Then the A B D matrices are written as the sums,

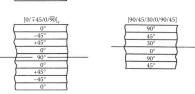
$$\underline{\underline{A}} = \sum_{i} (z_{i+1} - z_i) \underline{\underline{C}}_i, \quad \underline{\underline{B}} = \sum_{i} \frac{z_{i+1}^2 - z_i^2}{2} \underline{\underline{C}}_i, \quad \underline{\underline{D}} = \sum_{i} \frac{z_{i+1}^3 - z_i^3}{3} \underline{\underline{C}}_i.$$

- \bullet Unlike isotropic plates, composite laminates can have non-zero $\underline{\underline{B}}$ matrix (moment-planar coupling), bending-twisting coupling, etc.
- This $\begin{bmatrix} \frac{A}{\underline{B}} & \frac{B}{\underline{D}} \end{bmatrix}$ matrix is known as the Laminate Compliance Matrix.

6.1. The Laminate Orientation Code


Classical Laminate Theory


- Ply angles separated by slashes, ordered from top to bottom
- Subscript "s" for symmetric laminates
- Numerical subscripts for repetitions
- Center ply with an overbar for odd laminates


(See sec. 7.1 in Gibson 2012)

Types

- Symmetric, Antisymmetric, Asymmetric
- Angle-Ply, Cross-Ply, Balanced, $\pi/4$ laminates

(Figure 7.1 from Gibson 2012)

6.1. The Laminate Orientation Code

[A]

Classical Laminate Theory

• Ply angles separ ordered from to

- Subscript "s" fo laminates
- Numerical subsorpetitions
- Center ply with odd laminates

(See

Typ

- Symmetric, Antis Asymmetric
- Angle-Ply, Crosslaminates

Summary of Laminate Stiffnesses

Table 3.4. The [A], [B], [B] matrices for laminates. When the laminate is symmetrical, the [B] matrix is zero. Cross-ply laminates are orthotropic.

[D]

• •	****	• •
Symmetrical		
$\begin{bmatrix} A_{11} & A_{12} & A_{16} \end{bmatrix}$	[0 0 0]	$\begin{bmatrix} D_{11} & D_{12} & D_{16} \end{bmatrix}$
A12 A22 A26	0 0 0 0 0 0 0 0 0	D_{12} D_{22} D_{26}
$\begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix}$	0 0 0	$\begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix}$
Balanced		
$\begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix}$	$\begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix}$	$\begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix}$
A12 A22 0	B_{12} B_{22} B_{26}	D_{12} D_{22} D_{26}
0 0 A ₆₆	B_{16} B_{26} B_{66}	D_{16} D_{26} D_{66}
Orthotropic		
$\begin{bmatrix} A_{11} & A_{12} & 0 \end{bmatrix}$	$\begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{12} & B_{22} & 0 \end{bmatrix}$	$\begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \end{bmatrix}$
A_{11} A_{12} 0 A_{12} A_{22} 0	$ \begin{array}{c cccc} B_{11} & B_{12} & 0 \\ B_{12} & B_{22} & 0 \end{array} $	D_{12} D_{22} 0

Isotropic

$$\begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{11} & 0 \\ 0 & 0 & \frac{A_{11}-A_{12}}{2} \end{bmatrix} \quad \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{12} & B_{11} & 0 \\ 0 & 0 & \frac{B_{11}-B_{12}}{2} \end{bmatrix} \quad \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{11} & 0 \\ 0 & 0 & \frac{D_{11}-D_{12}}{2} \end{bmatrix}$$

Quasi-isotropic

A₁

11	A_{12}	0	B_{11}	B_{12}	$B_{16} \\ B_{26} \\ B_{66}$	D_{11}	D_{12}	D_1
12	A_{11}	0	B_{12}	B_{22}	B ₂₆	D_{12}	D_{22}	D_1
)	0	$\frac{0}{\frac{A_{11}-A_{12}}{2}}$	B_{16}	B_{26}	B_{66}	D_{16}	D_{26}	D_{ϵ}

(Table 3.4 from Kollár and Springer 2003)

Gibson 2012)

- Ronald F. Gibson. Principles of Composite Material Mechanics, 3rd ed. Dekker Mechanical Engineering.
 Boca Raton, Fla: Taylor & Francis, 2012. ISBN: 978-1-4398-5005-3 (cit. on pp. 2, 18-23, 36-42, 52-55, 58, 59).
- [2] László P. Kollár and George S. Springer. Mechanics of Composite Structures, Cambridge: Cambridge University Press, 2003. ISBN: 978-0-521-80165-2. DOI: 10.1017/CB09780511547140. (Visited on 01/11/2025) (cit. on pp. 2, 17, 21, 22, 26, 58, 59).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 9-13).
- [4] Isaac M. Daniel and Ori Ishai. Engineering Mechanics of Composite Materials, 2nd ed. New York: Oxford University Press, 2006. ISBN: 978-0-19-515097-1 (cit. on pp. 2, 24, 25).
- [5] NPTEL Online-IIT KANPUR. https://archive.nptel.ac.in/content/storage2/courses/101104010/ui/Course_home-1.html. (Visited on 01/22/2025) (cit. on pp. 3-6).
- [6] Carbon Fiber Top Helicopter Blades. (Visited on 01/22/2025) (cit. on pp. 3-6).
- [7] Şevket Kalkan. "TECHNICAL INVESTGATION FOR THE USE OF TEXTILE WASTE FIBER TYPES IN NEW GENERATION COMPOSITE PLASTERS". PhD thesis. July 2017 (cit. on pp. 3-6).
- [8] "Micro-Mechanics of Failure". Wikipedia, (May 2024). (Visited on 01/22/2025) (cit. on pp. 7, 8).
- [9] Simon Skovsgaard and Simon Heide-Jørgensen. "Three-Dimensional Mechanical Behavior of Composite with Fibre-Matrix Delamination through Homogenization of Micro-Structure". Composite Structures, 275, (July 2021), pp. 114418. DOI: 10.1016/j.compstruct.2021.114418 (cit. on pp. 7, 8).