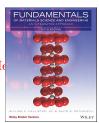


AS2070: Aerospace Structural Mechanics Module 3: Introduction to Fatigue and Failure


Instructor: Nidish Narayanaa Balaji

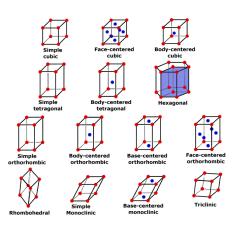
Department of Aerospace Engineering, IIT Madras

April 7, 2025

Table of Contents

- Introduction
 - Structure of Materials
 - Understanding the Stress-Strain Curve
 - Failure Mechanisms
 - Fracture
 Fatigue
 - Energy Release Rate
 - Linear Elastic Fracture Me
 - Modes of Fracture
- 2 Introduction to Fatigue

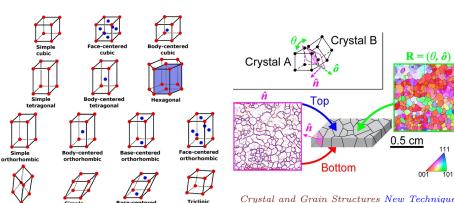
Chapter 3 in Jr and Rethwisch (2012).


Chapters 1-3 in Kumar (2009).

Chapter 15 in Megson (2013)

1.1. Structure of Materials

Introduction



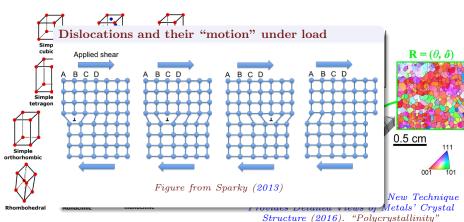
Types of crystal structures in metals Sparky (2013)

1.1. Structure of Materials

Introduction

Rhombohedral

Types of crystal structures in metals Sparky
(2013)

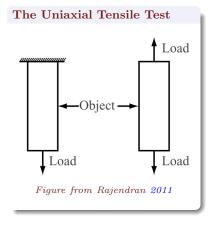

monoclinic

Crystal and Grain Structures New Technique Provides Detailed Views of Metals' Crystal Structure (2016). "Polycrystallinity"

Monoclinic

1.1. Structure of Materials

Introduction



Types of crystal structures in metals Sparky
(2013)

4 🗆 🕨

1.2. Understanding the Stress-Strain Curve

Introduction

1.2. Understanding the Stress-Strain Curve

Introduction

Terminology

- Proportionality Limit;
- Elastic Limit;
- Yield Point;
- 4 Ultimate Strength;
- Fracture Point;
- 6 Elongation at Failure;

Ductile Fracture

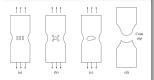


Figure from Rajendran 2011

Ductile Material Stress-Strain Curve

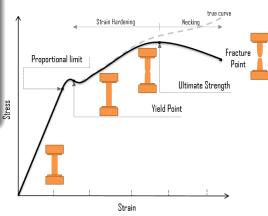
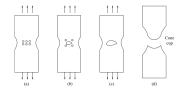


Figure from Connor 2020

1. Introduction

"Griffith Theory" of brittle fracture

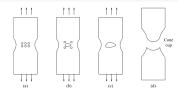

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. Introduction

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{d\widetilde{E}_{surface}}{dL}$

Ductile Fracture


Ductile Fracture Rajendran 2011

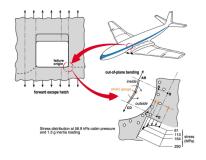
1. Introduction

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

Ductile Fracture Rajendran 2011

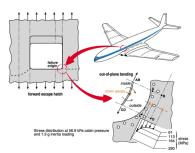

5/11

Sr. No	Brittle Fracture	Ductile Fracture
1.	It occurs with no or little plastic deformation.	It occurs with large plastic deformation.
2.	The rate of propagation of the crack is fast.	The rate of propagation of the crack is slow.
3.	It occurs suddenly without any warning.	It occurs slowly.
4.	The fractured surface is flat.	The fractured surface has rough contour and the shape is similar to cup and cone arrangement.
5.	The fractured surface appears shiny.	The fractured surface is dull when viewed with naked eye and the surface has dimpled appearance when viewed with scanning electron microscope.
6.	It occurs where micro crack is larger.	It occurs in localised region where the deformation is larger.

Ductile vs Brittle Fracture Rajendran 2011

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue $\textit{What Is Metal Fatigue?}\ 2021...$


The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

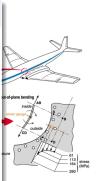
1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue? 2021...

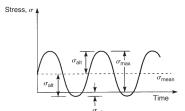
A more recent example (2021 United Airlines Boeing 777) DCA21FA085Aspx. [video]

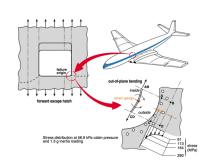
The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

1. Introduction


..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatique? 2021...

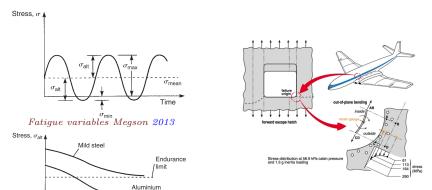
A more recent exan Boeing 777) DCA


Figure from Fatigue Physics 2024


net The deHavilland 2019 [lecture]

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal *Fatique?* 2021...


Fatigue variables Megson 2013

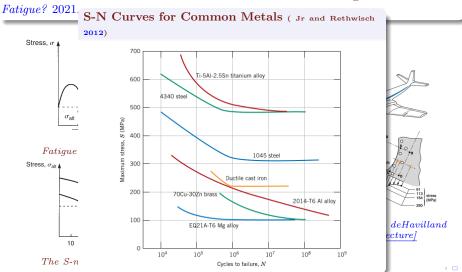
The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

1. Introduction

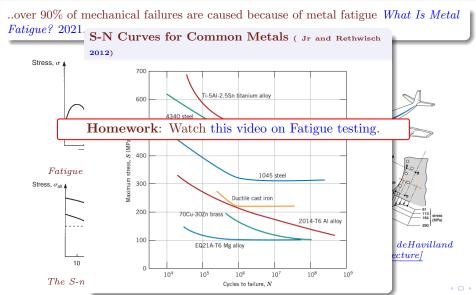
..over 90% of mechanical failures are caused because of metal fatigue $\textit{What Is Metal Fatigue?}\ 2021...$

The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

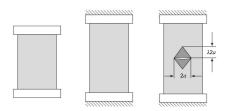
6 / 11


10 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁸

Number of cycles to failure

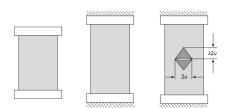

The S-n Diagram Megson 2013

1. Introduction


..over 90% of mechanical failures are caused because of metal fatigue What Is Metal

1. Introduction

Introduction


Simplistic picture of the introduction of a crack in a stretched specimen (Figure from sec 2.5 in Kumar 2009)

- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:

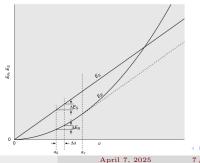
$$E_R = V_{\Delta} \times (\frac{\sigma^2}{2E}) = \frac{2a^2\lambda t\sigma^2}{E}.$$

7/11AS2070

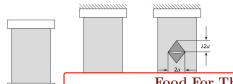
Introduction

Simplistic picture of the introduction of a crack in a stretched specimen (Figure from sec 2.5 in Kumar 2009)

- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:


$$E_R = V_\Delta \times (\frac{\sigma^2}{2E}) = \frac{2a^2\lambda t\sigma^2}{E}.$$

• For thin plates, $\lambda = \frac{\pi}{2}$. So,


$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$

• The "creation" of a surface takes energy. We write this as,

$$E_S = 2(2at)\gamma = 4at\gamma.$$

Introduction

• For thin plates, $\lambda = \frac{\pi}{2}$. So,

$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$

• The "creation" of a surface takes

Food For Thought

• What would a "safe size" of crack be, for a given loading condition? *Hint: Think incrementally*

 $\gamma = 4at\gamma.$

nis as,

• Because $\sigma \approx 0$ in

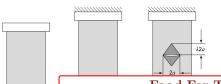
Simplistic pict

in a stretched

2009)

• Corresponding energy loss:

$$E_R = V_\Delta \times (\frac{\sigma^2}{2E}) = \frac{2a^2\lambda t\sigma^2}{E}.$$



Introduction

Simplistic pict

in a stretched

2009)

• For thin plates, $\lambda = \frac{\pi}{2}$. So,

$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$

nis as,

• The "creation" of a surface takes

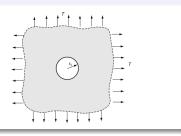
Food For Thought

• What would a "safe size" of crack be, for a given loading condition? Hint: Think incrementally

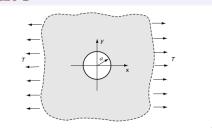
• What type of an experiment would be necessary to confirm this mathematical Because framework? $\sigma \approx 0$ in

• Corresponding energy loss:

$$E_R = V_{\Delta} \times (\frac{\sigma^2}{2E}) = \frac{2a^2\lambda t\sigma^2}{E}.$$


Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

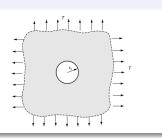

Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

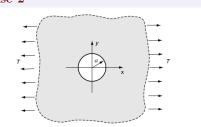
Case 1

Case 2

1.5. Linear Elastic Fracture Mechanics


Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)


Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1

Case 2

Analytical Solution

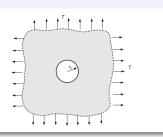
$$\sigma_r = T(1 - \frac{r_1^2}{r^2}), \, \sigma_\theta = T(1 + \frac{r_1^2}{r^2})$$

$$\Longrightarrow \sigma_{\text{max}} = 2T$$

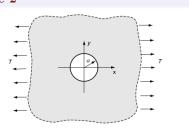
→ □ **→**

8 / 11

1.5. Linear Elastic Fracture Mechanics


Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)


Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1

Case 2

Analytical Solution

$$\sigma_r = T(1 - \frac{r_1^2}{r^2}), \, \sigma_\theta = T(1 + \frac{r_1^2}{r^2})$$

$$\Longrightarrow \left[\sigma_{\text{max}} = 2T\right]$$

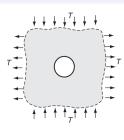
Analytical Solution

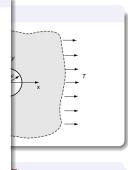
$$\sigma_r = T(1 - \frac{r_1^2}{r^2}) + (\cdot)\cos(2\theta), \ \sigma_\theta = \dots$$

$$\Longrightarrow \left[\sigma_{\text{max}} = 3T\right]$$

Balaji, N. N. (AE, IITM)

1.5. Linear Elastic Fracture Mechanics


Introduction


(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.

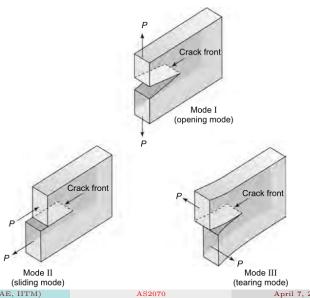
Question: Where will the point of peak stress occur? And which will have higher maximum stress? Case 3

Case 1

Analytical Solution

$$\sigma_r = T(1 - \frac{r_1^2}{r^2}), \ \sigma_\theta = T(1 + \frac{r_1^2}{r^2})$$

$$\Longrightarrow \boxed{\sigma_{\text{max}} = 2T}$$

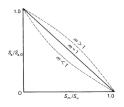

$$\sigma_{\rm max} = 4T$$

$$\sigma_r = T(1 - \frac{r_1^2}{r^2}) + (\cdot)\cos(2\theta), \ \sigma_\theta = \dots$$

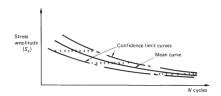
$$\Rightarrow \sigma_{\max} = 3T$$

1.6. Modes of Fracture

Introduction


2. Introduction to Fatigue

Concepts


• Safe Life: RUL

• Fail-Safe: Redundancy

Tensile Stresses: The Goodman Diagram

 $(Figure\ 15.2\ from\ Megson\ {\color{red}2013})$

 $(Figure\ 15.1\ from\ Megson\ 2013)$

The S-N Curve

(Figure from Megson 2013)

$$\sigma_{alt} = \sigma_{\infty} \left(1 + \frac{C}{\sqrt{N}} \right), \quad N \propto \frac{1}{\sigma_{mean}}.$$

References I

- William D. Callister Jr and David G. Rethwisch. Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. 2, 11-17).
- [2] Prashant Kumar. Elements of Fracture Mechanics, 1st Edition. McGraw-Hill Education, 2009. ISBN: 978-0-07-065696-3. (Visited on 12/15/2024) (cit. on pp. 2, 18-21, 26).
- [3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 11-17, 27).
- [4] Sparky. Sparky's Sword Science: Introduction to Crystal Structure. Dec. 2013. (Visited on 08/09/2024) (cit. on pp. 3-5).
- [5] New Technique Provides Detailed Views of Metals' Crystal Structure. https://news.mit.edu/2016/metals-crystal-structure-0706. July 2016. (Visited on 08/09/2024) (cit. on pp. 3-5).
- V Rajendran. Materials Science, Tata McGraw-Hill Education, 2011. ISBN: 978-1-259-05006-0 (cit. on pp. 6-10).
- [7] Nick Connor. What Is Stress-strain Curve Stress-strain Diagram Definition. https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/. July 2020. (Visited on 08/07/2024) (cit. on pp. 6, 7).
- [8] What Is Metal Fatigue? Metal Fatigue Failure Examples. Apr. 2021. (Visited on 08/09/2024) (cit. on pp. 11-17).
- [9] The deHavilland Comet Disaster, July 2019. (Visited on 08/09/2024) (cit. on pp. 11-17).
- [10] Fatigue Physics. (Visited on 08/09/2024) (cit. on pp. 11-17).
- [11] Martin H. Sadd. Elasticity: Theory, Applications, and Numerics, 2nd ed. Amsterdam; Boston: Elsevier/AP, 2009. ISBN: 978-0-12-374446-3 (cit. on pp. 22-25).