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Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

The Uniaxial Tensile Test

Figure from Rajendran 2011

Figure from Connor 2020

Terminology

1 Proportionality Limit;

2 Elastic Limit;

3 Yield Point;

4 Ultimate Strength;

5 Fracture Point;

6 Elongation at Failure;

Ductile Fracture

Figure from Rajendran 2011

Toughness, Resilience Engineer
2020Strain Hardening Megson 2013

Classifications

Brittle, Ductile

Non-dissipative: Elastic,
Hyper-elastic

Dissipative: Elastic-perfectly
plastic, Bi-linear elastoplastic, etc.
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Fracture
1. Understanding the Stress-Strain Curve

“Griffith Theory” of brittle fracture

Theoretical fracture stress ∼ E
5 − E

30

(steel ∼ E
1000 )

Fracture occurs when
Estrain = Esurface

Crack propagates when
dEstrain

dL =
dEsurface

dL

Ductile Fracture

Ductile Fracture Rajendran 2011

Ductile vs Brittle Fracture Rajendran 2011
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Fatigue
1. Understanding the Stress-Strain Curve

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
2021...

Fatigue variables Megson 2013

The S-n Diagram Megson 2013

The De Havilland Comet The deHavilland Comet Disaster
2019 [lecture]

A more recent example (2021 United Airlines Boeing
777) DCA21FA085.Aspx 2024. [video]

Fatigue Crack Propagation: Beech Marks

Figure from Fatigue Physics 2024

S-N Curves for Common Metals Jr and Rethwisch 2012
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Creep
1. Understanding the Stress-Strain Curve

Constant stress applied over a long
time

High temperature phenomenon
(>∼ 30− 45% of melting point)

Examples

Zinc Melts at ∼ 420◦ C
(Tcreep ∼ 145◦ C)

Lead Tcreep ∼ 114◦ C

Titanium Tcreep ∼ 650◦ C

Tin Tcreep ∼ 80◦ C

Steel, AA Tcreep ∼ 400◦ C

Nickel Melts at ∼ 900◦ C

Super-Alloys

Creep curve Rajendran 2011

Fundamentally related to grain dislocation
movement

Single crystal solutions: Super-Alloys:
Tcreep > 1000◦ C

Single Crystal Casting SingleCrystalCasting2008

DMRL developed this capability in 2021 DRDO Develops Single Crystal Blades for Helicopter
Engine Application 2024

Tmelting ↑ =⇒ EY oung ↑, dgrain ↑ ⇐= creep resistance ↑
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Materials Used in Aircrafts Metallic Alloys

2. Materials Used in Aircrafts
2.1. Metallic Alloys

Main Considerations

Strength-to-weight ratio;

Stiffness, Strength;

Toughness, resistance to fast crack
propagation;

Fatigue life;

Thermal behavior (“Superalloys”)

Metallic Alloys/“Solutions”

Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si, S, P
(C ↑, Ductility↓ )

Al Alloys Cu, Mg, Mn, Si, Fe, Zn, Ni, Ti

Ti Alloys Al, V

Ni Superalloys Cr, Al

Stress strain curve of common metals What Is a Stress-Strain
Curve? 2024

Alloy ρ (kg m−3) E (GPa) σu (GPa)

Fe 7800 200 1
Al 2700 69 0.7
Ti 4400 120 1.26

Steel Alloys Rajendran 2011

Aluminum Alloys Rajendran 2011

Necessary Reading

Pages 353-359 in Megson 2013.
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Fatigue life;

Thermal behavior (“Superalloys”)

Metallic Alloys/“Solutions”

Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si, S, P
(C ↑, Ductility↓ )
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Ti Alloys Al, V

Ni Superalloys Cr, Al Stress strain curve of common metals What Is a Stress-Strain
Curve? 2024

Alloy ρ (kg m−3) E (GPa) σu (GPa)

Fe 7800 200 1
Al 2700 69 0.7
Ti 4400 120 1.26

Steel Alloys Rajendran 2011

Aluminum Alloys Rajendran 2011
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Pages 353-359 in Megson 2013.
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As Carbon Content↑, Strength↑, but Ductility↓ Jr and Rethwisch 2012
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The ability of a metal to deform
plastically depends on the ability of its
disloications to move.

Restricting or hindering dislocation
motion renders a material harder and
stronger.

Material Strengthening

1 Grain size reduction

2 Solid-solution (alloys)

3 Strain hardening

Figures from Jr and Rethwisch 2012

Screw Edge

Dislocation line

Grain Size Reduction

Grain boundaries act as barriers to dislocation movement

Figure from New Technique Provides Detailed Views of Metals’ Crystal Structure 2016

Hall-Petch Equation:

σy = σ0 + kyd
− 1

2

Controlled by heat-treatment (rate of solidification, etc.)

Solid-Solution Alloying

Substitutional/interstitial impurity addition

Impurities redistribute lattice strains

Figure from Jr and Rethwisch 2012

Solutes have a tendency to distribute around imperfections in host
lattice

Greater stress necessary for dislocation movement =⇒ Greater
strength and hardness

Strain/Work Hardening aka Cold Working

Increased yield stress with plastic deformation

The “price” that we pay is reduced ductility

Figure from Jr and Rethwisch 2012

As plastic work is done, dislocations increase in size/move closer. It
takes higher stress to move bigger/more numerous dislocations.

Annealing undoes this.
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of thermal histories.
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3.2. The Fe-Fe3C System: Heat Treatment
3. Introduction to Material Science

Although a phase may be unstable (eg., Austenite
for T < 727◦ C), phase-change takes time,
especially when solid.

When cooled at higher temperatures, we get thick
lamellae =⇒ coarse pearlite

For T ∈ (215◦ C, 540◦ C), Bainite (Ferrite +
Cementite) is formed

When quenched to ∼ambient, Martensite
“Diffusion-less” transformation
Super-saturated carbon solution
Non-equilibrium, time-independent

The presence of other alloy content changes these
curves

Isothermal transformation diagram Jr and Rethwisch
2012

Fine-Pearlite is harder!

Bainite is harder than Pearlite!
Martensite is the hardest!

Tempering

Heating up and holding the
steel at a temperature below
eutectoid (T ∈ (250◦ C,650◦

C)).

Enhances ductility and
relieves internal stresses

Summary
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3.2. The Fe-Fe3C System: The Heat Treatment Process
3. Introduction to Material Science

A typical heat treatment process involving Austenizing, quenching and tempering
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