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Mathematical Rudiments Vector Convention, Notation

1.1. Vector Convention, Notation I
1. Mathematical Rudiments

Vector Notation: v = v˜T e˜
We will put a (·) underneath a symbol to denote that it is a vector (e.g., v ).

We will put a (·)˜ underneath a symbol to denote that it is an array, i.e., a collection of

numbers (e.g., v˜ =

v1

v2

v3

).
Note that e˜ =

e1e2
e3

, i.e., a collection of unit vectors.

For tensors we will put two bars below: (·) . Correspondingly, matrices will be written with

two tilde underneath (·)˜̃.

Einstein’s Summation Convention: Dummy Indices

s = a1x1 + a2x2 + · · · =
n∑

i=1

aixi → aixi = akxk = amxm

Consider α = aijxixj , v = viei , T = Tijei ej
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Mathematical Rudiments Vector Convention, Notation

1.1. Vector Convention, Notation II
1. Mathematical Rudiments

Inner Products

We will use both ⟨u , v ⟩ and u · v to denote the inner product of u and v .

For tensors we use ⟨T ,Q ⟩ and T : Q to denote tensor inner products.

For tensors operating on vectors, we have both the left contraction and right contraction as
⟨u , T ⟩ and ⟨T , u ⟩ respectively (also u · T and T · u ).

Note: ⟨v , u ⟩ = v · u = v˜Tu˜; ⟨T , v ⟩ = T · v = (T˜̃v˜)T e˜; ⟨u , ⟨T , v ⟩⟩ = u · T · v = u˜TT˜̃v˜.
Free Indices

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

y3 = a31x1 + a32x2 + a33x3

 =⇒ yi = aijxj

Consider Tij = AimAjm.
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Mathematical Rudiments Vector Convention, Notation

1.1. Vector Convention, Notation III
1. Mathematical Rudiments

The Kronecker Delta

δij := ⟨ei , ej ⟩ =

{
1 i = j

0 i ̸= j

Consider Cijkl = δikδjl,

Cijkl = δilδjk.

The Levi-Civita Symbol

ϵijk := ⟨ei ×ej , ek ⟩ =


1 if {(i, j, k)} ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if {(i, j, k)} ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}
0 otherwise

Note: ei × ej = ϵijkek .

Consider a · (b × c ) ,∆F .

Property: ϵijkϵmnk = δimδjn − δinδjm

ϵijkϵmnk = (ϵijkek ) · (ϵmnkek ) = (ei × ej ) · (em × en )

(ei × ej ) · (em × en ) =


1, ei × ej = em × en
−1, ei × ej = −em × en = en × em
0, otherwise

= δimδjn − δinδjm

Consider (a × b ) · (c × d ) (Lagrange’s identity).
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Mathematical Rudiments Vector Convention, Notation

1.1. Vector Convention, Notation IV
1. Mathematical Rudiments

Derivative Notation

∇u ≡
∂ui

∂xj

:= ui,j .

In Operator Notation, we may write ∇ (·) =
∂(·)
∂x1

e1 +
∂(·)
∂x2

e2 +
∂(·)
∂x3

e3 .

Exercise: Express the following in indicial notation: ∇u , ∇ · u , ∇ × u , ∇ × Q , ∇u ,

∆u = ∇2u = ∇ · (∇u ), ∇ · (∇ × u ), ∇ × ∇ × u , ∇ · σ .
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Mathematical Rudiments Matrix Algebra in Indicial Notation

1.2. Matrix Algebra in Indicial Notation
Mathematical Rudiments

Indicial notation leads to some very nifty tricks while dealing with classical matrix algebra.
Consider the following:

Determinant of a Matrix is Written as a scalar
triple product of its columns or row vectors:

A˜̃ =

A11 A12 A13

A21 A22 A23

A31 A32 A33

→ Aij .

det(A˜̃) = ⟨A1iei × A2jej , A3kek ⟩ = ϵijkA1iA2jA3k

= ⟨Ai1ei × Aj2ej , Ak3ek ⟩ = ϵijkAi1Aj2Ak3.

Rows(Columns) of the adjoint of a
Matrix can be written as the

components of the cross product
of the remaining Column(Row)

vectors

Adj(A˜̃)1i = ϵijkAj2Ak3, and

Adj(A˜̃)i1 = ϵijkA2jA3k.

You should be able to verify easily that
Adj(A˜̃)A˜̃ = det(A˜̃)I˜̃.

The derivative of the determinant is simplified as

d

dp
(det(A˜̃)) =

d

dp
(ϵijkA1iA2jA3k) = ϵijk

(
A

′
1iA2jA3k + A1iA

′
2jA3k + A1iA2jA

′
3k

)
= Adj(A˜̃)i1A′

1i + Adj(A˜̃)j2A′
2j + Adj(A˜̃)k3A

′
3k = Adj(A˜̃)ijA′

ji

= trace(Adj(A˜̃)ijA′
jk) = trace(Adj(A˜̃)A˜̃ ′

).

This will turn out to be quite an important result later on.
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Mathematical Rudiments Some Multi-Variate Calculus

1.3. Some Multi-Variate Calculus
1. Mathematical Rudiments

Differential Calculus

Scalar, vector fields

Gradients, directional derivative

Divergence, Curl

Observe:

∇ × (∇ · ϕ) = ϵijkϕ,kjei .

But ϵijkϕ,kj = −ϵikjϕ,jk,

So for continuously differentiable ϕ, we
have

ϵijkϕ,jk = 0 => ∇ × (∇ · ϕ) = 0 .

Integral Calculus

Gauss Divergence Theorem

∫
Ω

F,idΩ =

∫
∂Ω

Fni︷ ︸︸ ︷
⟨Fei , njej ⟩ dΓ

This is a general result that works for
all objects!

Vectors:
∫
Ω
Fi,jdΩ =

∫
∂Ω

FinjdΓ.

Also
∫
Ω
Fi,idΩ =

∫
∂Ω

FinidΓ.
Tensors:∫
Ω
Fij,kdΩ =

∫
∂Ω

FijnkdΓ

Stoke’s Law:∫
A
⟨(∇ × F ), n ⟩dA =

∫
∂A

⟨F , t ⟩dℓ

Curvilinear Coordinates

Scalar field ϕ gradient:

δϕ =
∂ϕ

∂x1

δx1 +
∂ϕ

∂x2

δx2

=
∂ϕ

∂r
δr +

∂ϕ

∂θ
δθ

Polar bases
e r = Cθe 1 + Sθe 2 =⇒ δe r = δθe θ

e θ = −Sθe 1 + Cθe 2 =⇒ δe θ = −δθe r

Position vector
δr = δre r + rδe r

= δre r + rδθe θ

For δϕ = ∇ϕ · δr ,

∇ϕ =
∂ϕ

∂r
e r +

1

r

∂ϕ

∂θ
e θ

Stoke’s Law as a Special Case of Gauss Divergence
in 2D

∫
A
⟨∇ × F , n ⟩dA =

∫
A

ϵijkFk,jnidA

=

∫
∂A

Fkϵijknibjdℓ

=

∫
∂A

Fktkdℓ

=

∫
∂A

⟨F , t ⟩dℓ.
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Deformations and Strain The Basic Premise

2. Deformations and Strain
2.1. The Basic Premise

How to describe the change in shape independently of rigid body motions?

The deformations are mapped as

Lagrangian xi = xi(X )
Eulerian Xi = Xi(x )

Under the Lagrangian description we have,

dxi =

FiI︷ ︸︸ ︷
∂xi

∂XI
dXI

Length ds2 = ||dx ||2 = dxidxi =

dXI

[
∂xi
∂XI

∂xi
∂XJ

]
dXJ

Angle ds1ds2 cos θ = dxidxj =

dXI

[
∂xi
∂XI

∂xj

∂XJ

]
dXJ

dX

{E I}I=1,2,3

X

dx

{ei
}i=1,2

,3

x

X = XIE I

x = xiei

How does dX transform
into dx ?

x = X + u

Balaji, N. N. (AE, IITM) AS3020* September 8, 2025 10 / 58



Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation
2. Deformations and Strain

A vector v is written as
v = viei ,

and is defined as a linear combination of the bases of its vector-space.

Suppose I have another coordinate system spanning the same vector-space, this comes
with its own set of basis vectors {ei ′}i=1,...,n.

If the vector represents a physical/geometrical measurement, it can not change based
on coordinate system, i.e., it is objective.

So, the following equality must hold:

v = viei = v′iei
′,

with vi and v′i being the components of the same vector under the different
coordinate frames.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation
2. Deformations and Strain

Assuming that both {ei } and {ei ′} represent orthogonal rectilinear coordinate
systems (inner products ⟨ei , ej ⟩ ≡ ⟨ei ′, ej ′⟩ = δij), we write down:

vi = ⟨ei , v ⟩; v′i = ⟨ei ′, v ⟩.

Evaluating v′i we obtain,
v′i = ⟨ei ′, vjej ⟩ = ⟨ei ′, ej ⟩vj .

Denoting ⟨ei ′, ej ⟩ = Qij , we get our component tranformation law for a vector:

v′i = Qijvj ⇔ v˜′ = Q˜̃v˜ .

Using the array notation we have v = v˜T e˜ = v˜′T e˜′. Substituting the above we can show

that the basis vectors themselves also transform (assuming rectilinear transformations)
as

e˜′ = Q˜̃e˜ .
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Tensors
2. Deformations and Strain

We will define a (2nd order) tensor as a linear combination of basis-dyads:

T = Tijei ej = T ′
ijei

′ej
′,

where we have required T to be invariant under coordinate change.

Using a double-contraction operation (dyadic inner product), we write down the
components of T ′

ij as,

T ′
ij = ⟨T , ei

′ej
′⟩ = Tmn⟨em en , ei

′ej
′⟩

= Tmn ⟨ei ′, em ⟩︸ ︷︷ ︸
Qim

Qjn︷ ︸︸ ︷
⟨ej ′, en ⟩

= QimTmnQjn.

In array notation we write the components as,

T˜̃ ′ = Q˜̃T˜̃Q˜̃T .

For a tensor to be
invariant, its

components have to
transform in this

fashion.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Summary
2. Deformations and Strain

Supposing I specify a basis change by

e˜′ = Q˜̃e˜,
for a vector v = v˜T e˜ to be invariant, its components have to transform as

v˜′ = Q˜̃v˜.
for a tensor T = T˜̃e˜ ⊗ e˜ to be invariant, its components have to transform as

T˜̃ ′ = Q˜̃T˜̃Q˜̃T

If it transforms in any other fashion, then invariance is not guaranteed, or in other
words, the quantity is not objective.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Relationship to
Gradients
2. Deformations and Strain

We will now establish a relationship between coordinate transformation and
component-gradients.

Consider an infinitesimal line vector dx = dxiei = dx′
iei

′.

It is obvious that the components dx′˜ have to be related to the components dx˜. So we
write

dx′
i =

∂x′
i

∂xj
dxj (1)

By invariance requirements, we have

dx′
i = Qijdxj . (2)

Comparing eq. (1) and eq. (2) we obtain,

Qij =
∂x′

i

∂xj
or Q˜̃ = grad

(
x′˜ )

grad(·) operator =⇒
gradient operation
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: The Deformation
Gradient
2. Deformations and Strain

The deformation gradient (FiI = ∂xi
∂XI

) relates quantities in the deformed (xi) and the

undeformed configurations (XI). So we shall investigate the influence of coordinate
change on it.
We setup coordinate change as E˜ → E˜ (undeformed configuration coordinate change)

and e˜ → e˜′ (deformed configuration coordinate change) such that the coordinate

transformation matrices are

Q
(X)
IJ =

∂XI

∂XJ
= ⟨EI , EJ ⟩ and Q

(x)
ij =

∂x′
i

∂xj
= ⟨ei ′, ej ⟩ .

Under this coordinate change we have,

F
′
iI =

∂x′
i

∂XI

=
∂x′

i

∂xj

∂xj

∂XJ

∂XJ

∂XI

= Q
(x)
ij FjJ (Q˜̃ (X)T )JI =⇒ F˜̃ ′

= Q˜̃ (x)F˜̃Q˜̃ (X)T .

This is transforming quite unlike a tensor

Q˜̃ (x) and Q˜̃ (X) need not necessarily be the same (we are free to choose measurement

coordinates at each instant)

We assume orthonormal
rectilinear bases, so Q˜̃−1 = Q˜̃T .
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: The Cauchy
Deformation Tensor
2. Deformations and Strain

Now we consider C˜̃ = F˜̃TF˜̃ . Under coordinate change this becomes,

C˜̃ = F˜̃ ′T
F˜̃ ′

=

(
Q˜̃ (x)F˜̃Q˜̃ (X)T

)T (
Q˜̃ (x)F˜̃Q˜̃ (X)T

)
= Q˜̃ (X)F˜̃TQ˜̃ (x)TQ˜̃ (x)F˜̃Q˜̃ (X)T

=⇒ C˜̃ = Q˜̃ (X)F˜̃TF˜̃Q˜̃ (X)T

Unlike the deformation gradient...

...this is transforming like a tensor’s components!
So it would make sense to define a tensor of the form C = CIJE IE J . This is referred to as

the Cauchy deformation tensor.

Note that all of the above is merely an aside, motivating the construction of an “objective
representation” of deformation. We will next see how this is practically useful.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor
2. Deformations and Strain

We are now ready to define the strain tensor based on length change. Denoting
||dX || = dS and ||dx || = ds we write,

ds2 − dS2 = dXI

(
FiIFjJ − δIJ

)
dXJ = dX˜ T

[
F˜̃TF˜̃ − I˜̃

]
dX˜

= dX˜ T
[
C˜̃ − I˜̃

]
dX˜

= dX ·
(
C − I

)
· dX .

For small changes in length, ds2 − dS2 = (ds+ dS)(ds− dS) ≈ 2dS(ds− dS). So the
above equation becomes

2dS(ds− dS) = dX ·
[
C − I

]
· dX =⇒

ds− dS

dS
=

(
dX

dS

)
·
(
1

2

[
C − I

])
·
(
dX

dS

)
.

We hereby come across a convenient objective tensor quantity:

E =
1

2

[
C − I

]
.

Formally E is known as the Green Lagrange Strain Tensor.

You should be comfortable

with the notation in

this equality by now!
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Interpretations
Deformations and Strain

Let us consider dX = dSE1 , i.e., in the undeformed configuration the line segment is
along e1 . The relative length change for this can be written as

ds− dS

dS
= (E1 ) · E · (E1 ) = E11.

I.e., E11 represents the relative elongation of a line segment along the E1 direction in
the undeformed state.
(Similarly E22, E33 can be interpreted)

So the diagonal elements of E represent relative elongations, a.k.a., “straight strains”.

If the undeformed element is along some arbitrary unit vector n , then the relative
change in length is given as:

ds− dS

dS
= n · E · n .

How about shape change?
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Interpretations
2. Deformations and Strain

For considering shape changes, it is not enough just to look at a single
line-segment.

Let us consider 2 line-vectors along the E1 and E2 vectors: dX (A) = dS(A)E1 ,
dX (B) = dS(B)E2 (so we have dX (A) · dX (B) = 0).

After deformation, the angle between the two, θ can be obtained through the inner
product:

dx (A) · dx (B) = ds(A)ds(B) cos θ.

Writing θ = π
2
− γ12 and ds(A) = (1 + E11)dS(A) (similarly for ds(B)), the above

simplifies as

dX (A) · C · dX (B) = dS(A)dS(B)(1 + E11)(1 + E22) sin γ12

[
dS(A) 0 0

] [
2E˜̃ + I˜̃

]  0

dS(B)

0

 ≈ dS(A)dS(B)(γ12 + E11γ12 + E22γ12 + E11E22γ12)

dS(A)dS(B)2E12 = dS(A)dS(B)γ12.

γ12 = 2E12 .

sin γ12 ≈ γ12

Small Deformation

dX (B)

dX (A)

dx (B)

dx (A)
θ

We call this the
shear strain.

For lines arbitrarily oriented along some n and s (such that
n · s = 0), the shear strain/angle change is written as

γns = n · E · s .
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: In terms of displacement
2. Deformations and Strain

Let us now express strain in terms of the displacement field u (X ).

We have xi = Xi + ui. So the deformation gradient is written as,

FiI =
∂xi

∂XI
= δiI + ui,I ⇔ F˜̃ = I˜̃+∇u˜̃ .

Cauchy deformation tensor is written as (with components C˜̃ = F˜̃TF˜̃),
CIJ = FiIFiJ = δIJ + uI,J + uJ,I + ui,Iui,J .

From this, the strain tensor is written as (with components E = 1
2
(C − I ))

EIJ =
1

2

 ∂uI

∂XJ
+

∂uJ

∂XI
+

∂ui

∂XI

∂ui

∂XJ︸ ︷︷ ︸
ignored for small strain



Infinitesimal Strain Tensor: EIJ =
1

2
(uI,J + uJ,I) .
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Volume Change
2. Deformations and Strain

Consider three arbitrarily oriented vectors dX (1), dX (2), dX (3) in the undeformed
configuration. The volume that they describe is given by

dV = ϵIJKdX
(1)
I dX

(2)
J dX

(3)
K .

Upon deformation, using the same notation as above, the volume becomes

dv = ϵijkdx
(1)
i dx

(2)
j dx

(3)
k .

Using the deformation gradient to write this out (dx˜ = F˜̃dX˜ ), we have

dv = ϵijkFiIFjJFkK︸ ︷︷ ︸ dX(1)
I dX

(2)
J dX

(3)
K

We have previously seen that ϵijkFiIFjJFkK = ϵIJKdet(F˜̃). Substituting this in the

above we get,

dv = ϵIJKdet(F˜̃)dX(1)
I dX

(2)
J dX

(3)
K = det(F˜̃)dV .

J := det(F˜̃) is known as the Jacobi determinant. dv = JdV
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

For the infinitesimal case, the deformation gradient component matrix is expressed as

F˜̃ = I˜̃+ ε∇u˜̃ ,

where ε > 0 is some small number (ε ≪ 1).

Since ε is small, we will try to expand out J as a Taylor series in ε about ε = 0:

J(ε) = J(ε = 0) + ε
dJ

dϵ

∣∣∣∣
ε=0

+O(ε2).

Derivative of Determinant

d

dp

(
det(M˜̃)

)
= trace

(
Adj(M˜̃)

dM˜̃
dp

)

For invertible M˜̃, Adj(M˜̃) = JM˜̃−1.

This simplifies as,

J(ε) = det(I˜̃) + ε
(
J(ε = 0)trace

(
I˜̃−1∇u˜̃

))
+O(ε2) ≈ 1 + ε

∇ ·u=tr(E˜̃)︷ ︸︸ ︷
tr(∇u˜̃ )
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

Undeformed volume is dV , deformed volume is dv = JdV . So relative change in
volume is

dv − dV

dV
= J − 1.

For the infinitesmial displacement case J ≈ 1 + tr(∇u) (we have set u → εu here).
Substituting, we get

dv − dV

dV
= tr(∇u) = uI,I = EII = tr(E˜̃).

So the trace of the strain tensor is the relative volume change.

In Summary we have, for the strain tensor,

Each diagonal element corresponds to stretching/compressing,

Off-diagonal elements correspond to shearing,

Trace (sum of diagonal elements) corresponds to volume change.
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Deformations and Strain The Strain Tensor

Summary
2. Deformations and Strain

We have defined the deformation gradient matrix F˜̃ and the strain tensor E .

Notice: Under no deformation, if you just changed the coordinate frame of
observation, F˜̃ will change, but E˜̃ will not.

Rigid Body Motion

x = c + RX

What is the deformation gradient here?

What is the infinitesimal strain tensor here?

What is the finite strain tensor here?

What should the material respond to? What is the quantity that the material wants
to resist?

Additional Reading:
Einstein’s Covariance Principle
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Deformations and Strain Strain Compatibility

2.4. Strain Compatibility
2. Deformations and Strain

Necessary Reading

Read Section 1.10 in Megson (2013)

Since strains are defined based on the displacement field, the different strain
components are related.

For the infinitesimal case we have: 2EIJ = uI,J + uJ,I . To avoid confusion with the
Levi-Civita symbol we will use E to denote the strain tensor henceforth.
We want to manipulate this such that we get an equality fully expressed in the
strains alone.

Differentiating by XK and premultiplying by ϵMJK we have,

2ϵMJKEIJ,K =
������: 0
ϵMJKuI,JK + ϵMJKuJ,IK → free indices: I,M

We differentiate this by XL and pre-multiply by ϵNIL to get:

2ϵNILϵJKMEIJ,KL = ϵMJK������: 0
ϵNILuJ,IKL → free indices: K,L
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2.4. Strain Compatibility
2. Deformations and Strain

The compatibility equation ϵMJKϵNILEIJ,KL = 0 represents a 3× 3 system of 9

equations.

We have two symmetries: EIJ = EJI (strain tensor symmetry), and
EIJ,KL = EIJ,LK (strain continuously differentiable).
Applying this can convince us that the equation is also symmetric. So we have
3(3+1)

2
= 6 unique equations.

In component notation, these can be written out as,

E22,33 + E33,22 = 2E23,23, E22,13 + E13,22 = E12,23 + E23,12

E33,11 + E11,33 = 2E13,13, E33,12 + E12,33 = E13,23 + E23,13

E11,22 + E22,11 = 2E12,12, E11,23 + E23,11 = E12,13 + E13,12

The strains have to satisfy these conditions for them to “have been generated” by a continuously
differentiable displacement field.

(M,N) = (1, 1)

(M,N) = (2, 2)

(M,N) = (3, 3)

(M,N) = (1, 3)

(M,N) = (1, 2)

(M,N) = (2, 3)
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Deformations and Strain Illustrative Example

2.5. Illustrative Example
Deformations and Strain

Displacement Field (ε > 0 some small
number):

u = ε

0.1X1 + 0.8X2 sin(4X1)
0.2(cos(4X1)− 1)

0


Deformation Gradient (F˜̃ = I˜̃+∇u˜̃):

F˜̃ =

1 + ε(0.1 + 3.2X2 cos(4X1)) ε0.8 sin(4X1) 0
−ε0.8 sin(4X1) 1 0

0 0 1



Infinitesimal Strain Tensor components:

E˜̃ = ε

0.1 + 3.2X2 cos(4X1) 0 0
0 0 0
0 0 0

 .

Stretched length of axial “fibre” (initially
along e1 ) is

ℓdef =

1∫
0

(1+E11)dX1 = 1+ε (0.1 + 0.8X2 sin(4)) .

Deformed configuration plotted for ε = 1. A discretized wire-mesh
is chosen just for plotting.

Also try to get expres-
sions for how areas and
volumes will transform!
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Stress and Equilibrium

3. Stress and Equilibrium

Force is a vector. Area is a vector. What is pressure (F/A)?

Consider a small area ∆A in a cut-section of an elastic body as shown. The traction
vector t is the limiting force

t = lim
∆A→0

∆F

∆A
.

By basic force-balance arguments, we can argue that the relationship between the
traction vector and the normal vector to the chosen area has to be linear.

ti = σijnj ⇔ t = σ · n .

Figure from Lai, Ru-
bin, and Krempl 2010

Figure from Lai, Ru-
bin, and Krempl 2010

Cauchy Stress Principle
1 t (−n ) = −t (n ).

2 t
(∑3

i=1 ∆Aiei

)
=
∑3

i=1 t (∆A1e1 ).

Cauchy Stress Tensor: σ = σijei ej s.t. t = tiei = σijnjei = σ · n .
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Stress and Equilibrium

Force Equilibrium
3. Stress and Equilibrium

Consider the forces on a small volume dv in the deformed domain (denoted Ωd):

Body loads
∫
Ωd

fi(x )dv

Surface tractions
∫
∂Ωd

tid|a|

Static equilibrium is written as∫
∂Ωd

σijdaj +

∫
Ωd

fidv = 0.

Applying Gauss divergence, this simplifies to,∫
Ωd

σij,j + fidv = 0 =⇒ σij,j + fi = 0 .

This is the static equilibrium equation.

Balaji, N. N. (AE, IITM) AS3020* September 8, 2025 30 / 58



Stress and Equilibrium

Moment Equilibrium
3. Stress and Equilibrium

We next consider the balance of the moments of forces on the same differential element.∫
∂Ωd

ϵijkxjσkldal︸ ︷︷ ︸
x×t d|a|

+

∫
Ωd

ϵijkxjfkdv = 0.

Applying Gauss divergence again we get,∫
Ωd

ϵijk((xjσkl),l + xjfk)dv =

∫
Ωd

ϵijk
(
δjlσkl + xj�����(σkl,l + fk)

)
dv = 0

=⇒ ϵijkσjk = 0

which is an assertion of symmetry of the stress tensor.

Note that we have assumed the absense of body moments here.

Balaji, N. N. (AE, IITM) AS3020* September 8, 2025 31 / 58



Stress and Equilibrium Stress Work Done

3.1. Stress Work Done
3. Stress and Equilibrium

Let us now consider the work done by the stress. For convenience, we start with the
rate of work done: force×velocity .

On the infinitesimal element we have,

dU

dt
=

∫
∂Ωd

σij u̇idaj +

∫
Ωd

fiu̇idv.

Application of Gauss divergence leads to,

dU

dt
=

∫
Ωd

(σij u̇i),j + fiu̇idv =

∫
Ωd

σij u̇i,j + u̇i�����(σij,j + fi)dv

=⇒
dU

dt
=

∫
Ωd

σij
1

2
(u̇i,j + u̇j,i) dv =

∫
Ωd

σijEijdv.

The power density is written as,

dU
dt

= σij Ėij .
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done: Non-Dissipative Solid
3. Stress and Equilibrium

For a general non-dissipative solid, the work done must be path-independent, i.e., the
energy U must be a state of the system. In other words, the energy must be solely
dependent on the system’s configuration, i.e., kinematic state.
So we shall write

dU

dt
=

∂U

∂Eij
Ėij .

The above also holds for the energy density U and we already have U̇ = σij Ėij . So

∂U
Eij

Ėij = σij Ėij =⇒ σij =
∂U
Eij

.

In other words, it MUST be possible to write the stress as a gradient of a
scalar energy density with respect to strain for non-dissipativity.
So we say that stress and strain are energy conjugates of one another.

Technical Note

In the above derivation, we have made some rather sweeping assumptions about the
deformations and the deformation gradients being small. For e.g., the deformed domain Ωd is
taken to be approximately the same as the un-deformed domain Ω and the infinitesimal
strain formula is directly invoked. See sec. 4.12 in Lai, Rubin, and Krempl 2010 for the
general case.

Additional Reading: What is an Exact Differential?
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Stress and Equilibrium Principal Stress Components

3.2. Principal Stress Components
Stress and Equilibrium

Since stress is an objective tensor, its components may be written as a 3× 3 matrix for
the general case. Under coordinate transformation (with Q˜̃), this transforms as

σ˜̃′ = Q˜̃σ˜̃Q˜̃T , Q˜̃ =


...

...
...

⟨e˜′, e1 ⟩ ⟨e˜′, e2 ⟩ ⟨e˜′, e3 ⟩
...

...
...

 .

Since σ˜̃ is a symmetric matrix (from angular momentum balance), it is always possible

to find a coordinate system under which σ˜̃′ is a strictly diagonal matrix:

σ˜̃′ =

σ1 0 0
0 σ2 0
0 0 σ3

 =⇒ σ˜̃′e1
′ = σ1e1

′ (|||ly for 2,3),

i.e., the traction on each of the fundamental coordinate planes is strictly normal.

The values σ1, σ2, σ3 are known as the principal stresses and the columns of Q˜̃ are

the components of the principal axes components expressed in the e˜ frame.

There is no loss in generality in choosing the principal axis while talking about
things like the Mohr’s circle since the prinicipal coordinate system can be obtained

for any given stress tensor. So all the insights gained therein also generalize.
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3.2. Principal Stress Components: Interpretations
3. Stress and Equilibrium

Principal components may be defined for strains too. These come with a geometric
interpretation as follows.

Consider the operation E˜̃u˜. Say, v˜ = E˜̃u˜.
v˜ represents the components of a vector which can be arbitrarily oriented w.r.t. u˜.
Consider some unit vector ϕ˜ such that E˜̃ϕ˜ = λϕ˜.The operation of the matrix E˜̃ leads to perfect stretching by a factor of λ.

The pair (λ, ϕ˜) are known as an eigenpair of E˜̃, where λ is a principal strain and ϕ˜represents the components of the principal axis.

For 3D mechanics, we have 3 principal directions.

Consider the 2D case below:

ϕ 1

ϕ 2

λ1

λ2

ϕ 1

ϕ 2

α1

α2

λ1α1

λ2α2

ϕ 1

ϕ 2
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Stress and Equilibrium Mohr’s Circle

3.3. Mohr’s Circle
Stress and Equilibrium

Consider a 2D case with σ˜̃ =

[
σ11 σ12

σ12 σ22

]
.

Consider a plane section with normal n = cos θe1 + sin θe2 (at angle θ with e1 ). The
perpendicular is denoted n⊥ = − sin θe1 +cos θe2 . Note that n⊥ lies on the plane itself.

The traction vector is given by t˜= σ · n and its components can be written as

t˜=

[
σ11 cos θ + σ12 sin θ
σ12 cos θ + σ22 sin θ

]
.

This is resolved along the (n , n⊥) directions by the coordinate transformation,[
σn

τs

]
=

[
n˜T

n˜T
⊥

]
t˜=

[
σ11+σ22

2
+ σ11−σ22

2
cos 2θ + σ12 sin 2θ

−σ11−σ22
2

sin 2θ + σ12 cos 2θ

]
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Stress and Equilibrium Mohr’s Circle

3.3. Mohr’s Circle
Stress and Equilibrium

If we are willing to re-define θ as the angle from the first principal axis, then the Mohr’s
circle equations simplify to yield the normal and tangential traction components as:

σn =
σ1 + σ2

2
+

σ1 − σ2

2
cos 2θ

τs = −
σ1 − σ2

2
sin 2θ.

Here,
σn is the magnitude of the traction that is acting along the section normal
direction n .
τs is the magnitude of the traction that is acting “in-plane”, i.e., in a direction
perpendicular to the section normal, say n⊥.

Since the above is the equation of a circle centered at (σ1+σ2
2

, 0) (remember x = r cosα,
y = r sinα for a circle centered at the origin), we can graphically plot τs versus σn on a
plane for different values of θ. =⇒ This will trace out a circle.

A Graphical Summary of What Just Happened
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Stress and Equilibrium Mohr’s Circle

3.3.1. Mohr’s Circle of Strain
Mohr’s Circle

Since strain is also an objective tensor, pursuing its 2D transformation through a similar approach
leads to the Mohr’s circle of strain.

Starting from a 2D case with E˜̃ =

[
E11 γ12

2γ12
2

E22

]
we consider two infinitesimal lines

initially oriented along n and s (dSn , dSt ).

The elongation that a line along dSn experiences is
ds− dS

dS
= n · E · n = εn .

The shear strain between them is γs = 2t · E · n .

Substituting, we get[
εn
γs

]
=

[E11+E22
2

+ E11−E22
2

cos 2θ + γ12
2

sin 2θ
−(E11 − E22) sin 2θ + γ12 cos 2θ

]
In terms of principal stress (redefining θ as before) the above becomes[

εn
γs

]
=

[ ε1+ε2
2

+ ε1−ε2
2

cos 2θ
−(ε1 − ε2)

]
.
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Constitutive Relationships

4. Constitutive Relationships

We have developed tensor-representations of both the stress, σ = σijei ej and strain,
E = Eijei ej . We are now interested in relating the components of the two.

The most general linear relationship that one can assume is

σij = CijklEkl.

If the system is non-dissipative, then the stress must be expressible as σij = ∂U
∂Eij

. So,

∂2U
∂Eij∂Ekl

= Cijkl.

Since we expect a smooth energy density, the indices (i, j) and (k, l) must be swappable.
This represents the first symmetry property of Cijkl (i, j ↔ k, l).

Since stress and strain are also symmetric, the following index-swaps must be
permissible: i ↔ j, k ↔ l.
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Constitutive Relationships

Simplification Arguments
4. Constitutive Relationships

In summary we have the following roadmap for simplification:

General Case Cijkl 3× 3× 3× 3 = 81 terms

Stress-Strain Symmetry i ↔ j, k ↔ l
3(3+1)

2
× 3(3+1)

2
= 36 terms

Non-dissipativity, smoothness (i, j) ↔ (k, l)
6(6+1)

2
= 21 terms

Suppose the material is isotropic, then the components Cijkl are invariant under
coordinate transformations. This means that it must be composed of δ·· symbols.

Under symmetry, we have 3 unique combinations:

δijδkl, δikδjl, δilδjk,

and we write:
Cijkl = α1δijδkl + α2δikδjl + α3δilδjk.

Applying this to the stress-strain relationship, we get:

σij = α1δijEkk + α2Eij + α3Eji =⇒ σij = λδijEkk + 2µEij .
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4.1. Linear Isotropic Elasticity
4. Constitutive Relationships

We shall define the Young’s modulus EY and Poisson’s ratio in terms of the principal
stresses and strains as ε1ε2

ε3

 =
1

EY

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

σ1

σ2

σ3

 .

From the Mohr’s circle expressions we have the stresses and strains for a plane and line
at angle θ for a 2D case as

[
σn

τs

]
=

[
σ1+σ2

2
+ σ1−σ2

2
cos 2θ

−σ1−σ2
2

sin 2θ

]
,

[
εn
γs

]
=

[ ε1+ε2
2

+ ε1−ε2
2

cos 2θ
−(ε1 − ε2) sin 2θ

]
.

From the above constitutive relationship (assuming σ3 = 0), the shear strain becomes:

γs = −(ε1 − ε2) sin 2θ = −
1 + ν

EY
(σ1 − σ2) sin 2θ => γs =

2(1 + ν)

EY
σn .

The modulus between the shear strain and shear stress is denoted G = EY
2(1+ν)

and is

referred to as the shear modulus. It is important to note that this is not an independent
constitutive constant.
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4.1. Linear Isotropic Elasticity
4. Constitutive Relationships

We have also spoken about volume change. In terms of strains this is,

dv − dV

dv
= E11 + E22 + E33

=
1− 2ν

E
(σ11 + σ22 + σ33).

In other words we have Eii = 1
κ

σii
3

, where σii
3

is the volumetric stress (or pressure).

Here κ = EY
3(1−2ν)

is known as the bulk modulus.

Stability Requirements

For elastic stability, all the modulii must be positive (for positive definite potentials).
Physical observation shows us that most materials are stable.

For G > 0, we need to have ν > −1; and for κ > 0, we need to have ν < 0.5.

In summary we have, ν ∈ (−1, 0.5) , EY > 0 .

Constitutive Relationship

In summary, the constitutive relationship can be written as,

Eij =
1

E
[(1 + ν)σij − νσkkδij ] .
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4.1. Linear Isotropic Elasticity
Constitutive Relationships

Table 5.1 from Lai, Rubin, and Krempl 2010
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5. Failure Theories

Elasticity only deals with the reversible
deformation behavior. But real
materials undergo yielding, necking, and
eventually failure under large loads.

Since there is permanent loss during the
yield process (irreversibility), we will have
to abandon non-dissipativity and
modify the stress-strain relationship.

An Approach for a Failure Theory...

Conduct controlled experiments in the lab

Observe characteristics of failure

Propose generalizations and test with
further experimentation

Failed mild steel specimens (under uni-axial tension)

Necessary Reading: Secs. 5-3 to 5-9
in Budynas, Nisbett, and Shigley 2015
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5. Failure Theories

A first observation (recall from Module 2) is that systems can be classified as brittle or
ductile based on whether they undergo a plastic yield before failure.

Generally, a material is said to be

Ductile if strain at failure is greater than 5%,
Brittle if strain at failure is lesser than 5%.

For Ductile Materials the commonly applicable theories are
Maximum Shear Stress Theory (MSS): Failure occurs when the maximum shear
stress reaches a threshold. (aka Tresca theory)
Distortion Energy Theory (DE): Failure occurs when the distortional strain energy
reaches a threshold.
Ductile Coulomb-Mohr (DCM) Theory: The shear stress threshold for failure grows
linearly with straight stress. Proposed to account for tensile and compressive strengths
being different

For Brittle Materials the applicable theories are
Maximum Normal Stress Theory (MNS): Failure occurs when the normal stress
reaches a threshold.
Brittle Columb-Mohr (BCM) Theory: Same idea as in DCM, to account for
different tensile and compressive strengths.

We will only bother ourselves with MSS and DE here.
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5.1. Maximum Shear Stress Theory
Failure Theories

For ductile materials, failure in a uniaxial
tensile test almost always involves a plane
at 45◦ from the direction of loading.

From the Mohr circle relationships for the
uniaxial case at yielding point
(σ1 = Sy , σ2 = 0) we have,

σn =
Sy

2
+

Sy

2
cos 2θ, τs = −

Sy

2
sin 2θ.

We empirically observe that the
θ = 45◦ also corresponds to the plane
where the shear traction component
is maximum!

We hypothesize that

...yielding begins whenever the maximum shear
stress in any element equals or exceeds the
maximum shear stress in a tension-test
specimen of the same material when that

specimen begins to yield.

Failed mild steel specimens (under uni-axial tension)

Note: Critical shear stress
is Ssy = Sy/2 = 0.5Sy

Observe that the failure theory
is INTEGRALLY tied down to a
very specific experiment (uniaxial
stress test) that you must conduct.

If you’re not prepared/able
to do this test at least

once, the theory is useless.
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5.1. Maximum Shear Stress Theory: Application to Bi-Axial Loading
Failure Theories

For a general case, all of σ1, σ2 and σ3 are non-zero.

The maximum shear stress that can be achieved (among all possible planes) is

τmax = σ1−σ2
2

. MSS predicts that failure will happen when τmax ≥ 0.5Sy , i.e.,

|σ1 − σ2| ≥ Sy , |σ1 − σ3| ≥ Sy , |σ2 − σ3| ≥ Sy .

Note that for the 2D case we will take σ3 = 0.

We’ve got the “non-yield region” in the σ1, σ2 space to be:

{(σ1, σ2) | |σ1 − σ2| < Sy , |σ1| < Sy , |σ2| < Sy}

So given a general state of stress σ˜̃, we must first estimate the principal

stresses and check if they fall within the above to check if it would fail
according to the MSS/Tresca theory.

Graphical Depiction of the Non-Yield Region from MSS
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5.2. Distortion Energy Theory
Failure Theories

We hypothesize here that shape change energy is what leads to failure, NOT
isotropic volume change.

So we “remove” the volume change energy from the overall energy and require that the
remaining energy (which we will call as “distortional” since this only represents shape
change) does not exceed the energy contained in a uniaxial test context.

Formally we hypothesize that

yielding occurs when the distortion strain energy per unit volume reaches or exceeds the
distortion strain energy per unit volume for yield in simple tension or compression of the same

material.
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5.2. Distortion Energy Theory
Failure Theories

The total energy for a general state of stress in an isotropic material is given by:

U =
1

2EY

[
σ1 σ2 σ3

]  1 −ν −ν
−ν 1 −ν
−ν −ν 1

σ1

σ2

σ3

 =
1

2EY

(
σ
2
1 + σ

2
2 + σ

2
3 − 2ν(σ1σ2 + σ1σ3 + σ2σ3)

)
.

The work done by the “hydrostatic pressure” is written by replacing each σi by
σav = σ1+σ2+σ3

3
:

U v =
3(1− 2ν)

2EY
σ2
av =

1− 2ν

6EY
(σ2

1 + σ2
2 + σ2

3 + 2(σ1σ2 + σ1σ3 + σ2σ3)).

Uv is interpreted as energy that only goes into volume change.

The shape change/distortional energy is the “remaining energy” after taking Uv out of U :

Ud = U − Uv =
1 + ν

EY

(
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2

)
.

A uniaxial tensile test specimen fails when the state of stress is (σ1, σ2, σ3) = Sy . The
corresponding distortional energy is written as

Ud,y =
1 + ν

EY
S2
y =⇒ Ud < Ud,y to avoid yielding.

Take a Second to Interpret!

Mathematical Summary:√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2
< Sy .

An alternative interpretation of this theory comes from the fact that the
shear stress magnitude on an octahedral plane (plane with normal

n˜ = 1√
3

[
1 1 1

]T
) is the same as the LHS above.

Sometimes referred to as the Maximum Octahedral Stress Theory,
this states that failure happens due to shear on an octahedral plane. It is
mathematically identical to DE.

It is interesting to note that the epistemology of failure is actually not our
concern here - we are merely interested in putting our uniaxial tensile
testing data to good use in a way that captures the uniaxial tensile test
itself as just a sub-case !
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5.2. Distortion Energy Theory
Failure Theories

For the plane stress situation (σ1 ̸= 0, σ2 ̸= 0, σ3 = 0), the non-yield region is given by

{(σ1, σ2) |
(σ1 − σ2)2 + σ2

1 + σ2
2

2
≤ S2

y},

which defines a rotated ellipse in 2D.

For a state of “pure shear” of magnitude τ , the principal stresses are σ1 = τ , σ2 = −τ .
Here, the criterion becomes,

3τ2 ≤ S2
y =⇒ Ssy =

Sy√
3
= 0.577Sy .

Graphical Depiction of the Non-
Yield Region from DE & MSS

So given a general state of
stress σ˜̃, we must first estimate

the principal stresses and
check if they fall within the

above to check if it would fail
according to the DE theory.

What about Plane Strain? Will there be any difference?
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6. 2D Problems

In 2D, the governing equations can be written as,

σ11,1 + σ12,2 + f1 = 0

σ12,1 + σ22,2 + f2 = 0.

Differentiation the first by X1 and the second by X2 leads to

σ11,11 + σ22,22 + 2σ12,12 + f1,1 + f2,2 = 0.

Strain Compatibility equations in 2D reads:

2E12,12 = E11,22 + E22,11

We, however, need compatibility in terms of stresses, not strains. Now we formalize the
notion of two dimensions:

Plane Stress σ33 = 0
Plane Strain E33 = 0
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The “Plane Stress” Case
6. 2D Problems

Here, we assume σ33 = 0 (but E33 ̸= 0 in general). So the stress-strain relationships are,

E11 =
1

E
σ11 −

ν

E
σ22, E22 =

1

E
σ22 −

ν

E
σ11

2E12 = 2
1 + ν

E
σ12, E33 = −

ν

E
(σ11 + σ22)

Substituting this into the compatibility equations we get,

=⇒
2(1 + ν)

E
σ12,12 =

1

E

(
(σ11 − νσ22),22 + (−νσ11 + σ22),11

)
=

1

E
((σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

σ11,11 + σ11,22 + σ22,11 + σ22,22

1 + ν
+ f1,1 + f2,2 = 0 => σii,jj + (1 + ν)fi,i = 0 .

Balaji, N. N. (AE, IITM) AS3020* September 8, 2025 52 / 58



2D Problems

The “Plane Strain” Case
6. 2D Problems

Here, we assume E33 = 0 (σ33 ̸= 0 in general). So the stress-strain relationships are
simplified as,

E33 =
σ33 − ν(σ11 + σ22)

E
= 0 =⇒ σ33 = ν(σ11 + σ22),

=⇒ E11 =
σ11

E
−

ν

E
(σ22 + σ33) =

1− ν2

E
σ11 −

ν(1 + ν)

E
σ22

=⇒ E22 =
σ22

E
−

ν

E
(σ11 + σ33) =

1− ν2

E
σ22 −

ν(1 + ν)

E
σ11

Substituting this into the compatibility equations we get,

=⇒
2(1 + ν)

E
σ12,12 =

1 + ν

E

(
((1− ν)σ11 − νσ22),22 + (−νσ11 + (1− ν)σ22),11

)
=

1 + ν

E
((1− ν)(σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

(1− ν)(σ11,11 + σ11,22 + σ22,11 + σ22,22) + f1,1 + f2,2 = 0 => σii,jj +
1

1− ν
fi,i = 0 .
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6.1. Airy’s Stress Function
6. 2D Problems

We can now combine both the governing equations and the compatibility
equations, so we can write out the solution fully in terms of stress only.

For the homogeneous case (fi = 0), we have (for both plane stress and plane strain),(
∂2

∂X2
1

+
∂2

∂X2
2

)
(σ11 + σ22) = 0. (3)

We introduce the Airy’s Stress function ϕ that simplifies the system of two PDE’s into a
scalar PDE by the substitutions:

σ11 :=
∂2ϕ

∂X2
2

, σ22 :=
∂2ϕ

∂X2
1

, σ12 := −
∂ϕ

∂X1∂X2
.

(it is easily verified that this satisfies the governing equations σij,j = 0 by definition)

Substitution into eq. (3) leads to

ϕ,1111 + 2ϕ,1122 + ϕ,2222 =

(
∂2

∂X2
1

+
∂2

∂X2
2

)2

ϕ = 0, ∇4ϕ = 0 ,

also known as the Biharmonic Equation.
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6.1. Airy’s Stress Function: Tutorial
6. 2D Problems

The Airy stress function can be used to solve problems with boundary loads. Consider
this simple example from your textbook:

Airy Stress Function: ϕ = Ax2 +Bxy + Cy2
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6.1. Airy’s Stress Function: Tutorial
6. 2D Problems

Consider this second example from your text book (example 2.3):

with a candidate Airy stress function ϕ(x, y) = Ax2 +Bx2y + Cy3 +D(5x2y3 − y5).

Boundary Conditions

σ11 = σ22 = σ12 = 0, y = h

σ11 = σ12 = 0, y = h

σ22 = −q, y = −h

σ11 = σ22 = σ12 = 0, x = 0∫ h

−h

yσ11dy = 0, x = 0
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6.1. Airy’s Stress Function
6. 2D Problems

It may be the case that the Airy stress function doesn’t meet all the boundary
conditions. In this case we find a stress function that approximately satisfies the
BCs in some sense.

So is this completely useless? No.

St. Venant’s Principle (rephrased as in Lai, Rubin, and Krempl 2010)

If some distribution of forces acting on a portion of the surface of a body is replaced by a
different distribution of forces acting on the same portion of the body, then the effects of the two
different distributions on the parts of the body sufficiently far removed from the region of
application of the forces are essentially the same, provided that the two distribution of forces
have the same resultant force and the same resultant couple.

Figure from Megson 2013
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