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Mathematical Rudiments Vector Convention, Indicial Notation

1.1. Vector Convention, Indicial Notation I
1. Mathematical Rudiments

Vector Notation: v = v˜T e˜
We will put a (·) underneath a symbol to denote that it is a vector (e.g., v ).

We will put a (·)˜ underneath a symbol to denote that it is an array, i.e., a collection of

numbers (e.g., v˜ =

v1

v2

v3

).
Note that e˜ =

e1e2
e3

, i.e., a collection of unit vectors.

For tensors we will put two bars below: (·) . Correspondingly, matrices will be written with

two tilde underneath (·)˜̃.

Einstein’s Summation Convention: Dummy Indices

s = a1x1 + a2x2 + · · · =
n∑

i=1

aixi → aixi = akxk = amxm

Consider α = aijxixj , v = viei , T = Tijei ej
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Mathematical Rudiments Vector Convention, Indicial Notation

1.1. Vector Convention, Indicial Notation II
1. Mathematical Rudiments

Free Indices

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

y3 = a31x1 + a32x2 + a33x3

 =⇒ yi = aijxj

Consider Tij = AimAjm.

The Kronecker Delta

δij := ⟨ei , ej ⟩ =

{
1 i = j

0 i ̸= j

Consider Cijkl = δikδjl, Cijkl = δilδjk.

The Levi-Civita Symbol

ϵijk := ⟨ei ×ej , ek ⟩ =


1 if {(i, j, k)} ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if {(i, j, k)} ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}
0 otherwise

Note: ei × ej = ϵijkek .
Consider a · (b × c ) ,∆F .
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Mathematical Rudiments Vector Convention, Indicial Notation

1.1. Vector Convention, Indicial Notation III
1. Mathematical Rudiments

Property: ϵijkϵmnk = δimδjn − δinδjm

ϵijkϵmnk = (ϵijke k) · (ϵmnke k) = (ei × ej ) · (em × e n)

(ei × ej ) · (em × e n) =


1, ei × ej = em × e n

−1, ei × ej = −em × e n = e n × em

0, otherwise

= δimδjn − δinδjm

Consider (a × b ) · (c × d ) (Lagrange’s identity).

Derivative Notation

∇u ≡
∂ui

∂xj

:= ui,j .

In Operator Notation, we may write ∇ (·) =
∂(·)
∂x1

e1 +
∂(·)
∂x2

e2 +
∂(·)
∂x3

e3 .

Exercise: Express the following in indicial notation: ∇u , ∇ · u , ∇ × u , ∇ × Q , ∇u ,

∆u = ∇2u = ∇ · (∇u ), ∇ · (∇ × u ), ∇ × ∇ × u , ∇ · σ .
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Mathematical Rudiments Matrix Algebra in Indicial Notation

1.2. Matrix Algebra in Indicial Notation
Mathematical Rudiments

Indicial notation leads to some very nifty tricks while dealing with classical matrix algebra.
Consider the following:

Determinant of a Matrix is Written as a scalar
triple product of its columns or row vectors:

A˜̃ =

A11 A12 A13

A21 A22 A23

A31 A32 A33

→ Aij .

det(A˜̃) = ⟨A1iei × A2jej , A3kek ⟩ = ϵijkA1iA2jA3k

= ⟨Ai1ei × Aj2ej , Ak3ek ⟩ = ϵijkAi1Aj2Ak3.

Rows(Columns) of the adjoint of a
Matrix can be written as the

components of the cross product
of the remaining Column(Row)

vectors

Adj(A˜̃)1i = ϵijkAj2Ak3, and

Adj(A˜̃)i1 = ϵijkA2jA3k.

You should be able to verify easily that
Adj(A˜̃)A˜̃ = det(A˜̃)I˜̃.

The derivative of the determinant is simplified as

d

dp
(det(A˜̃)) =

d

dp
(ϵijkA1iA2jA3k) = ϵijk

(
A

′
1iA2jA3k + A1iA

′
2jA3k + A1iA2jA

′
3k

)
= Adj(A˜̃)i1A′

1i + Adj(A˜̃)j2A′
2j + Adj(A˜̃)k3A

′
3k = Adj(A˜̃)ijA′

ji

= trace(Adj(A˜̃)ijA′
jk) = trace(Adj(A˜̃)A˜̃ ′

).

This will turn out to be quite an important result later on.
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Mathematical Rudiments Some Multi-Variate Calculus

1.3. Some Multi-Variate Calculus
1. Mathematical Rudiments

Differential Calculus

Scalar, vector fields

Gradients, directional derivative

Divergence, Curl

Curvilinear coordinates: The
divergence has to be
coordinate-independent

Integral Calculus

Gauss Divergence Theorem

∫
Ω

F,idΩ =

∫
∂Ω

Fni︷ ︸︸ ︷
⟨Fei , njej ⟩ dΓ

This is a general result that works for
all objects!

Vectors:
∫
Ω
Fi,jdΩ =

∫
∂Ω

FinjdΓ.

Also
∫
Ω
Fi,idΩ =

∫
∂Ω

FinidΓ.
Tensors:∫
Ω
Fij,kdΩ =

∫
∂Ω

FijnkdΓ

Stoke’s Law:∫
A
⟨(∇ × F ), n ⟩dA =

∫
∂A

⟨F , t ⟩dℓ

Curvilinear Coordinates

Scalar field ϕ gradient:

δϕ =
∂ϕ

∂x1

δx1 +
∂ϕ

∂x2

δx2

=
∂ϕ

∂r
δr +

∂ϕ

∂θ
δθ

Polar bases
e r = Cθe 1 + Sθe 2 =⇒ δe r = δθe θ

e θ = −Sθe 1 + Cθe 2 =⇒ δe θ = −δθe r

Position vector
δr = δre r + rδe r

= δre r + rδθe θ

For δϕ = ∇ϕ · δr ,

∇ϕ =
∂ϕ

∂r
e r +

1

r

∂ϕ

∂θ
e θ

Stoke’s Law as a Special Case of Gauss Divergence
in 2D

∫
A
⟨∇ × F , n ⟩dA =

∫
A

ϵijkFk,jnidA

=

∫
∂A

Fkϵijknibjdℓ

=

∫
∂A

Fktkdℓ

=

∫
∂A

⟨F , t ⟩dℓ.
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Deformations and Strain The Basic Premise

2. Deformations and Strain
2.1. The Basic Premise

How to describe the change in shape independently of rigid body motions?

The deformations are mapped as

Lagrangian xi = xi(X )
Eulerian Xi = Xi(x )

Under the Lagrangian description we have,

dxi =

FiI︷ ︸︸ ︷
∂xi

∂XI
dXI

Length ds2 = dxidxi =

dXI

[
∂xi
∂XI

∂xi
∂XJ

]
dXJ

Angle ds1ds2 cos θ = dxidxj =

dXI

[
∂xi
∂XI

∂xj

∂XJ

]
dXJ

dX

{E I}I=1,2,3

X

dx

{ei
}i=1,2

,3

x

X = XIE I

x = xiei

How does dX transform
into dx ?

x = X + u
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation
2. Deformations and Strain

A vector v is written as
v = viei ,

and is defined as a linear combination of the bases of its vector-space.

Suppose I have another coordinate system spanning the same vector-space, this comes
with its own set of basis vectors {ei ′}i=1,...,n.

If the vector represents a physical/geometrical measurement, it can not change based
on coordinate system, i.e., it is objective.

So, the following equality must hold:

v = viei = v′iei
′,

with vi and v′i being the components of the same vector under the different
coordinate frames.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation
2. Deformations and Strain

Assuming that both {ei } and {ei ′} represent orthogonal rectilinear coordinate
systems (inner products ⟨ei , ej ⟩ ≡ ⟨ei ′, ej ′⟩ = δij), we write down:

vi = ⟨ei , v ⟩; v′i = ⟨ei ′, v ⟩.

Evaluating v′i we obtain,
v′i = ⟨ei ′, vjej ⟩ = ⟨ei ′, ej ⟩vj .

Denoting ⟨ei ′, ej ⟩ = Qij , we get our component tranformation law for a vector:

v′i = Qijvj ⇔ v˜′ = Q˜̃v˜ .

Using the array notation we have v = v˜T e˜ = v˜′T e˜′. Substituting the above we can show

that the basis vectors themselves also transform (assuming rectilinear transformations)
as

e˜′ = Q˜̃e˜ .
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Tensors
2. Deformations and Strain

We will define a (2nd order) tensor as a linear combination of basis-dyads:

T = Tijei ej = T ′
ijei

′ej
′,

where we have required T to be invariant under coordinate change.

Using a double-contraction operation, we write down the components of T ′
ij as,

T ′
ij = Tmn ⟨ei ′, em⟩︸ ︷︷ ︸

Qim

Qjn︷ ︸︸ ︷
⟨ej ′, e n⟩

= QimTmnQjn.

In array notation we write the components as,

T˜̃ ′ = Q˜̃T˜̃Q˜̃T .

For a tensor to be
invariant, its

components have to
transform in this

fashion.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Summary
2. Deformations and Strain

Supposing I specify a basis change by

e˜′ = Q˜̃e˜,
for a vector v = v˜T e˜ to be invariant, its components have to transform as

v˜′ = Q˜̃v˜.
for a tensor T = T˜̃e˜ ⊗ e˜ to be invariant, its components have to transform as

T˜̃ ′ = Q˜̃T˜̃Q˜̃T

If it transforms in any other fashion, then invariance is not guaranteed, or in other
words, the quantity is not objective.
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: Relationship to
Gradients
2. Deformations and Strain

We will now establish a relationship between coordinate transformation and
component-gradients.

Consider an infinitesimal line vector dx = dxiei = dx′
iei

′.

It is obvious that the components dx′˜ have to be related to the components dx˜. So we
write

dx′
i =

∂x′
i

∂xj
dxj (1)

By invariance requirements, we have

dx′
i = Qijdxj . (2)

Comparing eq. (1) and eq. (2) we obtain,

Qij =
∂x′

i

∂xj
or Q˜̃ = grad

(
x′˜ )

grad(·) operator =⇒
gradient operation
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: The Deformation
Gradient
2. Deformations and Strain

The deformation gradient (FiI = ∂xi
∂XI

) relates quantities in the deformed (xi) and the

undeformed configurations (XI). So we shall investigate the influence of coordinate
change on it.
We setup coordinate change as E˜ → E˜ (undeformed configuration coordinate change)

and e˜ → e˜′ (deformed configuration coordinate change) such that the coordinate

transformation matrices are

Q
(X)
IJ =

∂XI

∂XJ
= ⟨EI , EJ ⟩ and Q

(x)
ij =

∂x′
i

∂xj
= ⟨ei ′, ej ⟩ .

Under this coordinate change we have,

F
′
iI =

∂x′
i

∂XI

=
∂x′

i

∂xj

∂xj

∂XJ

∂XJ

∂XI

= Q
(x)
ij FjJ (Q˜̃ (X)T )JI =⇒ F˜̃ ′

= Q˜̃ (x)F˜̃Q˜̃ (X)T .

This is transforming quite unlike a tensor

Q˜̃ (x) and Q˜̃ (X) need not necessarily be the same (we are free to choose measurement

coordinates at each instant)

We assume orthonormal
rectilinear bases, so Q˜̃−1 = Q˜̃T .
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Deformations and Strain Objectivity and Coordinate Transformation

2.2. Objectivity and Coordinate Transformation: The Cauchy
Deformation Tensor
2. Deformations and Strain

Now we consider C˜̃ = F˜̃TF˜̃ . Under coordinate change this becomes,

C˜̃ = F˜̃ ′T
F˜̃ ′

=

(
Q˜̃ (x)F˜̃Q˜̃ (X)T

)T (
Q˜̃ (x)F˜̃Q˜̃ (X)T

)
= Q˜̃ (X)F˜̃TQ˜̃ (x)TQ˜̃ (x)F˜̃Q˜̃ (X)T

=⇒ C˜̃ = Q˜̃ (X)F˜̃TF˜̃Q˜̃ (X)T

Unlike the deformation gradient...

...this is transforming like a tensor’s components!
So it would make sense to define a tensor of the form C = CIJE IE J . This is referred to as

the Cauchy deformation tensor.

Note that all of the above is merely an aside, motivating the construction of an “objective
representation” of deformation. We will next see how this is practically useful.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor
2. Deformations and Strain

We are now ready to define the strain tensor based on length change. We wrote,

ds2 − dS2 = dXI

(
FiIFjJ − δIJ

)
dXJ

= dX˜ T
[
F˜̃TF˜̃ − I˜̃

]
dX˜ = dX˜ T

[
C˜̃ − I˜̃

]
dX˜ .

For small changes in length, ds2 − dS2 = (ds+ dS)(ds− dS) ≈ 2dS(ds− dS). So the
change in length is written as

ds− dS =
1

dS
dX˜ T

(
1

2

[
C˜̃ − I˜̃

])
dX˜ .

We hereby come across a convenient matrix that can also be used to define an objective
tensor:

ε˜̃=
1

2

[
C˜̃ − I˜̃

]
, ε = εIJEI EJ

Formally ε is known as the Green Lagrange Strain Tensor.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Interpretations
Deformations and Strain

Let us consider dX = dSE1 , i.e., in the undeformed configuration the line segment is
along e1 . The relative length change for this can be written as

ds− dS

dS
=

1

2dS2
(dSE1 ) · ε · (dSE1 ) = ε11.

I.e., ε11 represents the relative elongation of a line segment along the E1 direction in the
undeformed state.
(Similarly ε22, ε33 can be interpreted)

So the diagonal elements of ε represent relative elongations, a.k.a., “straight strains”.

How about shape change?
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Interpretations
2. Deformations and Strain

For considering shape changes, it is not enough just to look at a single
line-segment.

Let us consider 2 line-vectors of equal magnitude dX (A) = dSE1 , dX (B) = dSE2 and
along two basis directions in the undeformed state (so we have ⟨dX (A), dX (B)⟩ = 0).

In the deformed condition, the inner product is
⟨dx (A), dx (B)⟩ = dX (A) · C · dX (B) = dX (A) · (2ε + I ) · dX (B) = 2dX (A) · ε ·X (B).

Substituting for the components of dX (A), dX (B) this can be shown to be:

⟨dx (A), dx (B)⟩︸ ︷︷ ︸
ds2 cos θ

= 2dS2ε12.

For small angle changes about π
2
, it is better to use θ = π

2
− γ such that the LHS

becomes ds2 sin γ. When the system is undergoing no (read negligible) length change
(ds = dS, diagonal elements of ε˜̃ are zero), this angle change can be expressed as:

γ12 = 2ε12 .
dX (B)

dX (A)

dx (B)

dx (A)
θ

We call this the
shear strain.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Interpretations
2. Deformations and Strain

Consider the operation E˜̃u˜. Say, v˜ = E˜̃u˜.
v˜ represents the components of a vector which can be arbitrarily oriented w.r.t. u˜.
Consider some unit vector ϕ˜ such that E˜̃ϕ˜ = λϕ˜.The operation of the matrix E˜̃ leads to perfect stretching by a factor of λ.

The pair (λ, ϕ˜) are known as an eigenpair of E˜̃ and ϕ˜ represents a principal direction.

For 3D mechanics, we have 3 principal directions.
Consider the 2D case below:

ϕ 1

ϕ 2

λ1

λ2

ϕ 1

ϕ 2

α1

α2

ϵ1α1

ϵ2α2

ϕ 1

ϕ 2
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: In terms of displacement
2. Deformations and Strain

Let us now express strain in terms of the displacement field u (X ).

We have xi = Xi + ui. So the deformation gradient is written as,

FiI =
∂xi

∂XI
= δiI + ui,I ⇔ F˜̃ = I˜̃+∇u˜̃ .

Cauchy deformation tensor is written as (with components C˜̃ = F˜̃TF˜̃),
CIJ = FiIFiJ = δIJ + uI,J + uJ,I + ui,Iui,J .

From this, the strain tensor is written as (with components ε˜̃= 1
2
(C˜̃ − I˜̃))

εIJ =
1

2

 ∂uI

∂XJ
+

∂uJ

∂XI
+

∂ui

∂XI

∂ui

∂XJ︸ ︷︷ ︸
ignored for small strain



Infinitesimal Strain Tensor: εIJ =
1

2
(uI,J + uJ,I) .
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Volume Change
2. Deformations and Strain

Consider three arbitrarily oriented vectors dX (1), dX (2), dX (3) in the undeformed
configuration. The volume that they describe is given by

dV = ϵIJKdX
(1)
I dX

(2)
J dX

(3)
K .

Upon deformation, using the same notation as above, the volume becomes

dv = ϵijkdx
(1)
i dx

(2)
j dx

(3)
k .

Using the deformation gradient to write this out (dx˜ = F˜̃dX˜ ), we have

dv = ϵijkFiIFjJFkK︸ ︷︷ ︸ dX(1)
I dX

(2)
J dX

(3)
K

We have previously seen that ϵijkFiIFjJFkK = ϵIJKdet(F˜̃). Substituting this in the

above we get,

dv = ϵIJKdet(F˜̃)dX(1)
I dX

(2)
J dX

(3)
K = det(F˜̃)dV .

J := det(F˜̃) is known as the Jacobi determinant. dv = JdV
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

For the infinitesimal case, the deformation gradient component matrix is expressed as

F˜̃ = I˜̃+ ϵ∇u˜̃ ,

where ϵ > 0 is some small number (ϵ ≪ 1).

Since ϵ is small, we will try to expand out J as a Taylor series in ϵ about ϵ = 0:

J(ϵ) = J(ϵ = 0) + ϵ
dJ

dϵ

∣∣∣∣
ϵ=0

+O(ϵ2).

Derivative of Determinant

d

dp

(
det(M˜̃)

)
= trace

(
Adj(M˜̃)

dM˜̃
dp

)

For invertible M˜̃, Adj(M˜̃) = JM˜̃−1.

This simplifies as,

J(ϵ) = det(I˜̃) + ϵ
(
J(ϵ = 0)trace

(
I˜̃−1∇u˜̃

))
+O(ϵ2) ≈ 1 + ϵ

∇ ·u︷ ︸︸ ︷
tr(∇u˜̃ )

Balaji, N. N. (AE, IITM) AS3020* August 20, 2025 23 / 49



Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

Undeformed volume is dV , deformed volume is dv = JdV . So relative change in
volume is

dv − dV

dV
= J − 1.

For the infinitesmial case J ≈ 1+ tr(∇u) (we have set u → ϵu here). Substituting, we get

dv − dV

dV
= tr(∇u) = uI,I = EII = tr(E˜̃).

So the trace of the strain tensor is the relative volume change.

In Summary we have, for the strain tensor,

Each diagonal element corresponds to stretching/compressing,

Off-diagonal elements correspond to shearing,

Trace (sum of diagonal elements) corresponds to volume change.
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Deformations and Strain The Strain Tensor

Summary
2. Deformations and Strain

We have defined the deformation gradient matrix F˜̃ and the strain tensor E .

Notice: Under no deformation, if you just changed the coordinate frame of
observation, F˜̃ will change, but E˜̃ will not.

Rigid Body Motion

x˜ = c˜+ R˜̃X˜
What is the deformation gradient here?

What is the infinitesimal strain tensor here?

What is the finite strain tensor here?

What should the material respond to? What is the quantity that the material wants
to resist?
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Deformations and Strain Strain Compatibility

2.4. Strain Compatibility
2. Deformations and Strain

Necessary Reading

Read Section 1.10 in Megson (2013)

Since strains are defined based on the displacement field, the different strain
components are related.

For the infinitesimal case we have: 2EIJ = uI,J + uJ,I . To avoid confusion with the
Levi-Civita symbol we will use E to denote the strain tensor henceforth.
We want to manipulate this such that we get an equality fully expressed in the
strains alone.

Differentiating by XK and premultiplying by ϵJKM we have,

2ϵJKMEIJ,M =
������: 0
ϵJKMuI,JK + ϵJKMuJ,IK → free indices: I,M

We differentiate thisa by XL and premultiply by ϵILN to get:

2ϵILN ϵJKMEIJ,MN = ϵJKM������: 0
ϵILNuJ,IKL → free indices: K,L

Balaji, N. N. (AE, IITM) AS3020* August 20, 2025 26 / 49



Deformations and Strain Strain Compatibility

2.4. Strain Compatibility
2. Deformations and Strain

The compatibility equation ϵMJKϵNILEIJ,MN = 0 represents a 3× 3 system of 9

equations.

We have two symmetries: EIJ = EJI (strain tensor symmetry), and
EIJ,KL = EIJ,LK (strain continuously differentiable).
Applying this can convince us that the equation is also symmetric. So we have
3(3+1)

2
= 6 unique equations.

In component notation, these can be written out as,

E22,33 + E33,22 = 2E23,23, E22,13 + E13,22 = E12,23 + E23,12

E33,11 + E11,33 = 2E13,13, E33,12 + E12,33 = E13,23 + E23,13

E11,22 + E22,11 = 2E12,12, E11,23 + E23,11 = E12,13 + E13,12

The strains have to satisfy these conditions for them to “have been generated” by a continuously
differentiable displacement field.

(k, l) = (1, 1)

(k, l) = (2, 2)

(k, l) = (3, 3)

(k, l) = (1, 3)

(k, l) = (1, 2)

(k, l) = (2, 3)
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Stress and Equilibrium

3. Stress and Equilibrium

Force is a vector. Area is a vector. What is pressure (F/A)?

Consider a small area ∆A in a cut-section of an elastic body as shown. The traction
vector t is the limiting force

t = lim
∆A→0

∆F

∆A
.

By basic force-balance arguments, we can argue that the relationship between the
traction vector and the normal vector to the chosen area has to be linear.

ti = σijnj .

Figure from Lai, Ru-
bin, and Krempl 2010

Figure from Lai, Ru-
bin, and Krempl 2010

Cauchy Stress Tensor: σijei ej
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Stress and Equilibrium

Force Equilibrium
3. Stress and Equilibrium

Consider the forces on a small volume dv in the deformed configuration (denoted
Ωd):

Body loads
∫
Ωd

fi(x )dv

Surface tractions
∫
∂Ωd

tid|a|

Static equilibrium is written as∫
∂Ωd

σijdaj +

∫
Ωd

fidv = 0.

Applying Gauss divergence, this simplifies to,∫
Ωd

σij,j + fidv = 0 =⇒ σij,j + fi = 0 .

This is the static equilibrium equation.

Balaji, N. N. (AE, IITM) AS3020* August 20, 2025 29 / 49



Stress and Equilibrium

Moment Equilibrium
3. Stress and Equilibrium

We next consider the balance of the moments of forces on the same differential element.∫
∂Ωd

ϵijkxjσkldal︸ ︷︷ ︸
x×t d|a|

+

∫
Ωd

ϵijkxjfkdv = 0.

Applying Gauss divergence again we get,∫
Ωd

ϵijk((xjσkl),l + xjfk)dv =

∫
Ωd

ϵijk
(
δjlσkl + xj�����(σkl,l + fk)

)
dv = 0

=⇒ ϵijkσjk = 0

which is an assertion of symmetry of the stress tensor.

Note that we have assumed the absense of body moments here.
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done
3. Stress and Equilibrium

Let us now consider the work done by the stress. For convenience, we start with the
rate of work done: force×velocity .

On the infinitesimal element we have,

dU

dt
=

∫
∂Ωd

σij u̇idaj +

∫
Ωd

fiu̇idv.

Application of Gauss divergence leads to,

dU

dt
=

∫
Ωd

(σij u̇i),j + fiu̇idv =

∫
Ωd

σij u̇i,j + u̇i�����(σij,j + fi)dv

=⇒
dU

dt
=

∫
Ωd

σij
∂u̇i

∂XI︸ ︷︷ ︸
ḞiI

∂XI

∂xj︸ ︷︷ ︸
(F˜̃−1)Ij

dv

The power density is written as,

dU
dt

= σij(F˜̃−1)Ij ḞiI .
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done: Non-Dissipative Solid
3. Stress and Equilibrium

For a general non-dissipative solid, the work done must be path-independent, i.e., the
contents of the energy integral must be an exact differential of the conserved quantity
(stress/strain energy).

Here we have, ∫
Ωd

dU
dt

dv =

∫
Ωd

∂U
∂FiI

ḞiIdv =

∫
Ωd

σij(F˜̃−1)Ij ḞiIdv.

It must be noted that the domain of integration, Ωd is also deformation dependent,
making this inconvenient. So we map everything back to the undeformed
reference (denoted Ω):∫

Ω

∂U
∂FiI

ḞiI det(F˜̃)dV︸ ︷︷ ︸
dv

=

∫
Ω
σij(F˜̃−1)Ij ḞiIdet(F˜̃)dV

=⇒ σij =
1

det(F˜̃)
∂U
∂FiI

FjI , σ˜̃ =
1

det(F˜̃)
∂U
∂F˜̃ F˜̃T .
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done: Non-Dissipative Solid under infinitesimal strain
3. Stress and Equilibrium

For the infinitesimal strain case, it can be shown that the above expression simplifies to,

σIJ =
∂U

∂EIJ
.

Intuitively, under this condition, the deformed and undeformed coordinates are almost
the same. Mathematically, this can be worked out by using a perturbative formalism
by setting u → ϵu .
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Constitutive Relationships

4. Constitutive Relationships

We have developed tensor-representations of both the stress, σ = σijei ej and strain,
E = Eijei ej . We are now interested in relating the components of the two.

The most general linear relationship that one can assume is

σij = CijklEkl.

If the system is non-dissipative, then the stress must be expressible as σij = ∂U
∂Eij

. So,

∂2U
∂Eij∂Ekl

= Cijkl.

Since we expect a smooth energy density, the indices (i, j) and (k, l) must be swappable.
This represents the first symmetry property of Cijkl (i, j ↔ k, l).

Since stress and strain are also symmetric, the following index-swaps must be
permissible: i ↔ j, k ↔ l.
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Constitutive Relationships

Simplification Arguments
4. Constitutive Relationships

In summary we have the following roadmap for simplification:

General Case Cijkl 3× 3× 3× 3 = 81 terms

Stress-Strain Symmetry i ↔ j, k ↔ l
3(3+1)

2
× 3(3+1)

2
= 36 terms

Non-dissipativity, smoothness (i, j) ↔ (k, l)
6(6+1)

2
= 21 terms

Suppose the material is isotropic, then the components Cijkl are invariant under
coordinate transformations. This means that it must be composed of δ·· symbols.

Under symmetry, we have 3 unique combinations:

δijδkl, δikδjl, δilδjk,

and we write:
Cijkl = α1δijδkl + α2δikδjl + α3δilδjk.

Applying this to the stress-strain relationship, we get:

σij = α1δijEkk + α2Eij + α3Eji =⇒ σij = λδijEkk + 2µEij .
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Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

Consider a 2D case with σ˜̃ =

[
σ11 σ12

σ12 σ22

]
.

Consider a plane section with normal n̂˜ =
[
cos θ sin θ

]T
. The perpendicular is denoted

ŝ˜=
[
− sin θ cos θ

]T
.

The traction vector is given by t˜= σ˜̃n̂˜:
t˜=

[
σ11 cos θ + σ12 sin θ
σ12 cos θ + σ22 sin θ

]
.

This is resolved along the (n̂ , ŝ ) directions by the coordinate transformation,[
σn

τs

]
=

[
n̂˜T

ŝ˜T
]
t˜=

[
σ11+σ22

2
+ σ11−σ22

2
cos 2θ + σ12 sin 2θ

−σ11−σ22
2

sin 2θ + σ12 cos 2θ

]

Balaji, N. N. (AE, IITM) AS3020* August 20, 2025 36 / 49



Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

Now we consider two infinitesimal lines initially oriented along n̂ and t̂ (dSn̂ , dSt̂ ).

dSn̂ experiences the elongation,

ds− dS

dS
= n̂˜TE˜̃ n̂˜ = ϵℓ.

The shear strain between them is,

γs = 2t̂˜TE˜̃ n̂˜.
Simplifying, we get [

ϵℓ
γs

]
=

[
E11+E22

2
+ E11−E22

2
cos 2θ + E12 sin 2θ

−(E11 − E22) sin 2θ + 2E12 cos 2θ

]
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Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

When no shear load/response is observed, these reduce to,

[
σn

τs

]
=

[
σ11+σ22

2
+ σ11−σ22

2
cos 2θ

−σ11−σ22
2

sin 2θ

]
,

[
ϵℓ
γs

]
=

[
E11+E22

2
+ E11−E22

2
cos 2θ

−(E11 − E22) sin 2θ

]
.

For a linear-elastic material, causal links may be made between σn ↔ ϵℓ and τs ↔ γs.
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Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

From basic arguments one can motivate

E11 =
1

E
σ11 −

ν

E
(σ22 + σ33).

For the 2D case under pure tension,

E11 =
1

E
σ11 −

ν

E
σ22, E22 = −

ν

E
σ11 +

1

E
σ22.

For some section oriented by angle θ we have,

γs(θ) = −(E11 − E22) sin 2θ = −
1 + ν

E
(σ11 − σ22) sin 2θ︸ ︷︷ ︸

2τs

,

which implies, γs(θ) = 2
1 + ν

E
τs .

E: Young’s Modulus, ν: Poisson’s Ratio, and G = E
2(1+ν)

: Shear Modulus.
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Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

We have also spoken about volume change. In terms of strains this is,

dv − dV

dv
= E11 + E22 + E33

=
1− 2ν

E
(σ11 + σ22 + σ33).

In other words we have Eii = κσii, where κ =
1− 2ν

E
, the bulk modulus.

From physical arguments, it is clear that κ > 0, which implies ν < 0.5, which presents an
upper bound for the Poisson’s ratio.

The shear modulus must also be positive. So we have E
2(1+ν)

> 0, which implies

ν > −1 , which presents a lower bound for the Poisson’s ratio.

In summary we have, ν ∈ (−1, 0.5) , E > 0 .
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Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

In tensor notation, this can be written as,

Eij =
1

E
[(1 + ν)σij − νσkkδij ] .
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2D Problems

5. 2D Problems

In 2D, the governing equations can be written as,

σ11,1 + σ12,2 + f1 = 0

σ12,1 + σ22,2 + f2 = 0.

Differentiation the first by X1 and the second by X2 leads to

σ11,11 + σ22,22 + 2σ12,12 + f1,1 + f2,2 = 0.

Strain Compatibility equations in 2D reads:

2E12,12 = E11,22 + E22,11

We, however, need compatibility in terms of stresses, not strains. Now we formalize the
notion of two dimensions:

Plane Stress σ33 = 0
Plane Strain E33 = 0
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2D Problems

The “Plane Stress” Case
5. 2D Problems

Here, we assume σ33 = 0 (but E33 ̸= 0 in general). So the stress-strain relationships are,

E11 =
1

E
σ11 −

ν

E
σ22, E22 =

1

E
σ22 −

ν

E
σ11

2E12 = 2
1 + ν

E
σ12, E33 = −

ν

E
(σ11 + σ22)

Substituting this into the compatibility equations we get,

=⇒
2(1 + ν)

E
σ12,12 =

1

E

(
(σ11 − νσ22),22 + (−νσ11 + σ22),11

)
=

1

E
((σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

σ11,11 + σ11,22 + σ22,11 + σ22,22

1 + ν
+ f1,1 + f2,2 = 0 => σii,jj + (1 + ν)fi,i = 0 .
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2D Problems

The “Plane Strain” Case
5. 2D Problems

Here, we assume E33 = 0 (σ33 ̸= 0 in general). So the stress-strain relationships are
simplified as,

E33 =
σ33 − ν(σ11 + σ22)

E
= 0 =⇒ σ33 = ν(σ11 + σ22),

=⇒ E11 =
σ11

E
−

ν

E
(σ22 + σ33) =

1− ν2

E
σ11 −

ν(1 + ν)

E
σ22

=⇒ E22 =
σ22

E
−

ν

E
(σ11 + σ33) =

1− ν2

E
σ22 −

ν(1 + ν)

E
σ11

Substituting this into the compatibility equations we get,

=⇒
2(1 + ν)

E
σ12,12 =

1 + ν

E

(
((1− ν)σ11 − νσ22),22 + (−νσ11 + (1− ν)σ22),11

)
=

1 + ν

E
((1− ν)(σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

(1− ν)(σ11,11 + σ11,22 + σ22,11 + σ22,22) + f1,1 + f2,2 = 0 => σii,jj +
1

1− ν
fi,i = 0 .
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

We can now combine both the governing equations and the compatibility
equations, so we can write out the solution fully in terms of stress only.

For the homogeneous case (fi = 0), we have (for both plane stress and plane strain),(
∂2

∂X2
1

+
∂2

∂X2
2

)
(σ11 + σ22) = 0. (3)

We introduce the Airy’s Stress function ϕ that simplifies the system of two PDE’s into a
scalar PDE by the substitutions:

σ11 :=
∂2ϕ

∂X2
2

, σ22 :=
∂2ϕ

∂X2
1

, σ12 := −
∂ϕ

∂X1∂X2
.

(it is easily verified that this satisfies the governing equations σij,j = 0 by definition)

Substitution into eq. (3) leads to

ϕ,1111 + 2ϕ,1122 + ϕ,2222 =

(
∂2

∂X2
1

+
∂2

∂X2
2

)2

ϕ = 0, ∇4ϕ = 0 ,

sometimes known as the Biharmonic Equation.
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function: Tutorial
5. 2D Problems

The Airy stress function can be used to solve problems with boundary loads. Consider
this simple example from your textbook:

Airy Stress Function: ϕ = Ax2 +Bxy + Cy2
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function: Tutorial
5. 2D Problems

Consider this second example from your text book (example 2.3):

with a candidate Airy stress function ϕ(x, y) = Ax2 +Bx2y + Cy3 +D(5x2y3 − y5).

Boundary Conditions

σ11 = σ22 = σ12 = 0, y = h

σ11 = σ12 = 0, y = h

σ22 = −q, y = −h

σ11 = σ22 = σ12 = 0, x = 0∫ h

−h

yσ11dy = 0, x = 0
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

It may be the case that the Airy stress function doesn’t meet all the boundary
conditions. In this case we find a stress function that approximately satisfies the
BCs in some sense.

So is this completely useless? No.

St. Venant’s Principle (rephrased as in Lai, Rubin, and Krempl 2010)

If some distribution of forces acting on a portion of the surface of a body is replaced by a
different distribution of forces acting on the same portion of the body, then the effects of the two
different distributions on the parts of the body sufficiently far removed from the region of
application of the forces are essentially the same, provided that the two distribution of forces
have the same resultant force and the same resultant couple.
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Balaji, N. N. (AE, IITM) AS3020* August 20, 2025 48 / 49



2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

It may be the case that the Airy stress function doesn’t meet all the boundary
conditions. In this case we find a stress function that approximately satisfies the
BCs in some sense.

So is this completely useless? No.

St. Venant’s Principle (rephrased as in Lai, Rubin, and Krempl 2010)

If some distribution of forces acting on a portion of the surface of a body is replaced by a
different distribution of forces acting on the same portion of the body, then the effects of the two
different distributions on the parts of the body sufficiently far removed from the region of
application of the forces are essentially the same, provided that the two distribution of forces
have the same resultant force and the same resultant couple.

Figure from Megson 2013
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