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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling I
Prismatic Structures

The transverse buckling equation you should be exposed to thus far starts with an
assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic
assumptions):

u1 = −(X2v
′ +X3w

′), u2 = v, u3 = w,

and an assumed “dominant” compressive stress field:

≈
σP =

−P
A

0 0
0 0 0
0 0 0

 ,
with P being the applied load and A being the sectional area.

The axial strain for the above deformation field is

E11 = u1,1 +
1

2

(
u21,1 + u22,1 + u23,1

)
,

where we have used the full nonlinear expression for the Lagrangian strain.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling II
Prismatic Structures

We drop the u21,1 term above for the small strain case (since u1,1 ≫
u2
1,1

2
) and obtain

the Von Karman Strain Expression:

E11 = u1,1 +
u22,1 + u23,1

2
.

The overall stress field will be taken as the sum of the imposed field of σP11
= −P

A
and

the elastic stress σ11 = EyE11.
The virtual work due to the stress (integrated over the section S) is written as

δW =

∫
S
σ11δE11 =

∫
S

(
−
P

A
+ EyE11

)
δE11 =

∫
S

−δΠ︷ ︸︸ ︷
−
P

A
δE11 +

δU︷ ︸︸ ︷
EyE11δE11 = δ(U −Π).

Where we have identified δΠ as the load contribution and δU as the elastic contribution.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling III
Prismatic Structures

The load contribution is written as

δΠ =
P

A

∫
S
δu1,1 + (u2,1δu2,1 + u3,1δu3,1)dA

which, upon substitution of the above displacement field and assuming centroidal
coordinate system becomes,

δΠ = P (v,1δv,1 + w,1δw,1) .

We need to integrate this along the span of the beam to obtain the overall virtual work
(let us assume P (X1)). This simplifies through integration by parts as:

ℓ∫
0

δΠ =

ℓ∫
0

P (v,1δv,1 + w,1δw,1)dX1

= P (v,1δv + w,1δw)

∣∣∣∣ℓ
0

−
ℓ∫

0

((Pv,1),1δv + (Pw,1),1δw) dX1

= −
ℓ∫

0

δV T (PV ,1),1dX1 + PδV TV ,1

∣∣∣∣ℓ
0
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling IV
Prismatic Structures

Next we consider the elastic contributions

δU = Ey
[
δv,11 δw,11

] [I33 I23
I23 I22

] [
v,11
w,11

]
= EyδV ,11

T I V ,11

which, upon span-wise integration, becomes

ℓ∫
0

δU = δV ,1
TEyI V ,11

∣∣∣∣ℓ
0

− δV T
(
EyI V ,11

)
,1

∣∣∣∣ℓ
0

+

ℓ∫
0

δV T
(
EyI V ,11

)
,11
dX1.

Putting everything together, we have

ℓ∫
0

δW =

ℓ∫
0

δV T
((

EyI V ,11

)
,11

+
(
PV ,1

)
,1

)
dX1

− δV T
((

EyI V ,11

)
,1

+ PV ,1

)∣∣∣∣ℓ
0

+ δV ′T
(
EyI V ,11

)∣∣∣∣ℓ
0

.

By the principle of virtual work the above must be zero for equilibrium for arbitrary δV
and δV ,1.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling V
Prismatic Structures

For this equality to hold for arbitrary virtual displacements (δV ) and rotations (δV ′)
each of the terms above should be equated to zero in their respective domains. So we
obtain the differential equation system:(

EyI V ,11

)
,11

+
(
PV ,1

)
,1

= 0, X1 ∈ (0, ℓ)(
EyI V ,11

)
,1

+ PV ,1 = 0, (OR) V = specified, X1 ∈ {0, ℓ}

EyI V ,11 = 0, (OR) V ′ = specified, X1 ∈ {0, ℓ}.

Note that this assumes that no other form of external load is applied.

Considering the e2 deformation in the symmetric case (I23 = 0), the above simplifies to

EyI33v
′′′′ + Pv′′ = 0 ,

which is the familiar Euler equation for buckling.

Refer to ch. 7 in Sun (2006) for the different cases of boundary conditions herein.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I
Prismatic Structures

For the transverse case, we started with a pure bending kinematics and derived the
transverse load due to compression using the work done. What happens when we
also account for torsion?

Here, the kinematic deformation field is

u1 = θ,1ψ, u2 = −X3θ, u3 = X2θ,

where θ(X1) is the twisting angle (we allow this to be a general function of X1), and
ψ(X2, X3) is the St-Venant warping function (see Module 5).

The axial strain (under Von Karman simplification, as before) is:

E11 = u1,1 +
1

2
(u22,1 + u23,1) = ψθ,11 +

X2
2 +X2

3

2
θ2,1.

The shear strains (we only write out the linear strains) are

γ12 = (ψ,2 −X3)θ,1, η13 = (ψ,3 +X2)θ,1.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling II
Prismatic Structures

Following the same process as above, the virtual work under an axial imposed stress field
of σ11 = −P

A
is written as

δW =

∫
S
(−

P

A
+ EyE11)δE11 +Gγ12δγ12 +Gγ13δγ13

=

∫
S

−δΠ︷ ︸︸ ︷
−
P

A
δE11 +

δU︷ ︸︸ ︷
EyE11δE11 +Gγ12δγ12 +Gγ13δγ13 = δ(U −Π).

Note that unlike the bending case, we have considered shear contributions also here.

The load contribution is written as

δΠ =
P

A

∫
S
ψδθ,11 + (X2

2 +X2
3 )θ,1δθ,1dA =

P

A
δθ,11

�
�
��

∫
S
ψdA+ P

I11

A
θ,1δθ,1,

where we have canceled out
∫
S ψdA because net displacement due to warping is zero.

I11 is the polar second moment of area.

We next consider the integral of δΠ and integrate it by parts to write:

ℓ∫
0

δΠ =

ℓ∫
0

PI11

A
θ,1δθ,1dX1 =

PI11

A
θ,1δθ

∣∣∣∣ℓ
0

−
ℓ∫

0

(
PI11

A
θ,1

)
,1

dX1.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling III
Prismatic Structures

Coming to the elastic contributions, this simplifies as

δU =

∫
S
Eyψ

2θ,11δθ,11 +G
(
(ψ,2 −X3)

2 + (ψ,3 +X2)
2
)
θ,1δθ,1

=

∫
S
Eyψ

2dAθ,11δθ,11 +

∫
S
G( ψ2

,2 + ψ2
,3︸ ︷︷ ︸

�����: 0

−
∫
S ψ∇2ψ+

∫
∂S ψ∇ψ·n

+X2
2 +X2

3 + 2X2ψ,3 − 2X3ψ,2)dAθ,1δθ,1

=

:=EyCw︷ ︸︸ ︷∫
S
Eyψ

2dA θ,11δθ,11 +

:=GJ︷ ︸︸ ︷
G

(
I11 +

∫
S
X2ψ,3 −X3ψ,2dA

)
θ,1δθ,1

=EyCwθ,11δθ,11 +GJθ,1δθ,1.

(Recall the governing equations and boundary conditions for ψ from Module 5)

Here, Cw is defined as the warping constant of the section, and is a property of the
section (like area, second moment, etc.).
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling IV
Prismatic Structures

Integrating δU over the span of the beam leads to

ℓ∫
0

δU =EyCwθ,11δθ,1

∣∣∣∣ℓ
0

−
(
(EyCwθ,11),1 −GJθ,1

)
δθ

∣∣∣∣ℓ
0

+

ℓ∫
0

(
(EyCwθ,11),11 − (GJθ,1),1

)
δθdX1

Now we put everything together.

ℓ∫
0

δW =

ℓ∫
0

(
(EyCwθ,11),11 − (GJθ,1),1 +

(
PI11

A
θ,1

)
,1

)
δθdX1

+

[
EyCwθ,11δθ,1 −

(
(EyCwθ,11),1 −GJθ,1 +

PI11

A
θ,1

)
δθ

]∣∣∣∣ℓ
0
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling V
Prismatic Structures

The results in the following PDE governing torsional deformation under axial load:

(EyCwθ,11),11 +

((
PI11

A
−GJ

)
θ,1

)
,1

= 0, X1 ∈ (0, ℓ)

EyCwθ,11 = 0, (OR) θ,1 = specified, X1 ∈ {0, ℓ}

(EyCwθ,11),1 +

(
PI11

A
−GJ

)
θ,1 = 0, (OR) θ = specified, X1 ∈ {0, ℓ}.

For constant parameters (uniform prismatic beam) the governing equation is written as:

EyCwθ,1111 +

(
PI11

A
−GJ

)
θ,11 = 0 ,

which is a Sturm-Liouville equation of the form

θ,1111 + p2θ,11 = 0, p2 =

PI11
A

−GJ

EyCw

which is mathematically identical to the transverse buckling equation.

Even boundary conditions are very similar, so the solution procedure will follow exactly
the same process.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments I
Prismatic Structures

It is helpful to use a more “practical” derivation to understand the EyCw term better.
We shall revert to shear flow for this - it turns out that the EyCw term is due to the
shear flow variations “induced” by the axial stress field that the warping function
induces.

From the consideration of “pure twist”, the twisting moment is written as

Mtwist = GJθ,1

as per the notation introduced in Module 5. Recall that we had J = I11 − 1
2

∫
∂S

∂ψ2

∂n
dℓ

for the torsion constant.

We ignored the straight stresses σ11 in Module 5 since
∫
S σ11dA = 0 and we argued that

σ11 will be small. Although small, the variations are sufficient to induce additional shear
flow, so let us consider it now.

Using linear elasticity we have

σ11 = EyE11 = Eyθ,11ψ.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments II
Prismatic Structures

The shear flow that the section develops is written as (same procedure as we followed in
Modules 4 and 5):

dq

ds
+ tσ11,1 = 0 =⇒ qwarp(s)− q0 = −

s∫
0

tσ11,1ds = −Eyθ,111
s∫

0

tψds.

Let us restrict our discussions to open sections with q0 = 0 (our running integral starts
from a free tip). Recall that our analysis in Module 5 led to:
ψ(s) = −2AOs(s) = −

∫ s
0 p(s)ds.

The twisting moment that the warping shear flow qwarp(s) leads to is written as the full
integral (denoted

∫
(·) ds)

Mwarp =

∫
p(s)qwarp(s)ds =

∫ (
−
dψ

ds

) s∫
0

−Eyθ,111tψ(z)dz

 ds,

where we have invoked p(s) = − dψ
ds

.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments III
Prismatic Structures

Applying integration by parts we have

Mwarp = Eyθ,11

∫
d

ds

ψ(s)
�
�
�
��s∫

0

tψ(z)dz

− tψ2(s)ds = −Ey
(∫

tψ2(s)ds

)
︸ ︷︷ ︸

Cw

θ,11

=⇒ Mwarp = −EyCwθ,11 .

The constant Cw is called the warping constant and is a sectional property (much like
the warping function itself, torsion constant J , area A, second moments, etc.).

Now we have a contribution from pure twist, GJθ,1, and a contribution from warping
suppression, −EyCwθ,q11. Adding these both should give us the externally applied total
moment:

Mtot = GJθ,1 − EyCwθ,111 .

For constant Mtot, the above can be solved to obtain θ(X1). This is the generalized
equation governing torsional kinematics.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments IV
Prismatic Structures

Under the presence of axial compression, dMtot
dX1

= mP = −PI11
A

θ,11. Incorporating this

into the equation yields:

EyCwθ,1111 +

(
P
I11

A
−GJ

)
θ,11 = 0 ,

which is identical to the equation we derived earlier.

This version of the derivation is only to provide you an intuitive
understanding of the extra term through shear flow. This does not mean
that the EyCw term is restricted to the thin walled open section case.
Since the term follows from the more formal virtual work principle, this is
quite general and we can compute the EyCw term for any arbitrary solid
section/closed section too:

EyCw =

∫
S
Eyψ

2dA.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling
Prismatic Structures

The torsion constant J and warping
constant Cw for common thin-walled
sections are shown in the table here.

Table 7.2 from Sun (2006)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case I
Prismatic Structures

The simplest example is the simply supported beam under axial compression.
Transverse buckling leads to:

Pcr−tr,n = n2 π
2EyIp

ℓ2

where Ip is a principal second moment (i.e., eigenvalue of the I matrix).

We have already seen how the torsion buckling problem is mathematically identical to
the flexural buckling problem, so the critical load can directly be written as,

Pcr−tw,n
I11

A
−GJ = n2 π

2EyCw

ℓ2
=⇒ Pcr−tw,n = GJ

A

I11
+ n2 A

I11

π2EyCw

ℓ2
.

We now have two different critical load estimates!

When P exceeds Pcr−tr,n, then the beam buckles transversely, or bends.
When P exceeds Pcr−tw,n, then the beam twists, or undergoes torsion deformation.

A real designer must account for both. Let us set n = 1 and find when the
twist-buckling will occur at a lower load than transverse buckling:

Pcr−tw,1 ≤ Pcr−tr,1 =⇒ GJ ≤
π2Ey

ℓ2

(
I11

A
Ip − Cw

)
.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case II
Prismatic Structures

The RHS in the above represents a limiting value for the torsional rigidity of open
sections. As it is, recall that J ∼ O(t3) for open thin walled sections, so it is not very
difficult to meet the above condition in the open section case. (It is a little more difficult
for closed sections)

In practice, we find that the warping constant Cw is small/close to zero for thin walled
rectangular sections meeting at a single point like the following.

Fig. 5-5 from Timoshenko and Gere (2009)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case III
Prismatic Structures

So the condition can be simplified to

GJ ≤
I11

A
Pcr−tr,1

where Pcr−tr,1 =
π2EyIp
ℓ2

is the Euler critical load.

This form of the equation is valid even for other boundary conditions - you just
substitute the correct critical load.

Furthermore, substituting Cw = 0 in the critical load expression leads to

Pcr−tw,n = GJ
A

I11
, i.e., the (first) critical load is independent of the length of

the beam!
(Note that the Cw = 0 approximation no longer holds for the higher modes)
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section
Prismatic Structures

First Two Buckling Modes in the Simply Supported Condition
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section
Prismatic Structures

First Four Buckling Modes in the Cantilevered Condition
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Planar Structures Buckling of Plates

2.1. Buckling of Plates I
Planar Structures

Let us consider a plate on the e1 − e2 plane. Invoking Kirchhoff assumptions (zero shear
strain, just like we did with beams), the displacement field can be written as

u1 = −X3w,1, u2 = −X3w,2, u3 = w.

The relevant (Von Karman) strains are,

E11 = u1,1 +
u23,1

2
= −X3w,11 +

w2
,1

2

E22 = u2,2 +
u23,2

2
= −X3w,22 +

w2
,2

2

γ12 = u1,2 + u2,1 + u3,1u3,2 = −X32w,12 + w,1w,2.

The overall stress field is written as

σ11 =
N11

t
+

Ey

1− ν2
(E11 + νE22), σ22 =

N22

t
+

Ey

1− ν2
(E22 + νE11),

σ12 =
N12

t
+Gγ12,

where N1, N2, N12 are all loads per unit length.
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Planar Structures Buckling of Plates

2.1. Buckling of Plates II
Planar Structures

Skipping a few steps, we have the load contribution to the work coming purely from the
combination of the imposed

δΠ = Nijw,iδw,j .

Integrating this over the whole plate domain P we have,∫
P
δΠ =

∫
P
(Nijw,iδw),j − (Nijw,i),jδwdA = −

∫
P
(Nijw,i),jδwdA+

∫
∂P

Nijw,injδwdℓ.

The elastic contributions read:

δU =

t
2∫

− t
2

Ey

1− ν2
((E11 + νE22)δE11 + (E22 + νE11)δE22) +Gγ12δγ12dX3

=
Ey

1− ν2

(∫ t
2

− t
2

X2
3dX3

)
((w,11 + νw,22)δw,11 + (w,22 + νw,11)δw,22))

+
2Ey

1 + ν

(∫ t
2

− t
2

X2
3dX3

)
w,12δw,12,
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Planar Structures Buckling of Plates

2.1. Buckling of Plates III
Planar Structures

which simplify to yield

δU =
Eyt3

12(1− ν2)
((w,11 + νw,22)δw,11 + (w,22 + νw,11)δw,22) + 2

Eyt3

12(1 + ν)
w,12δw,12

= D ((w,11 + νw,22)δw,11 + (w,22 + νw,11)δw,22) + 2D(1− ν)w,12δw,12.

We integrate this over P to obtain∫
P

δU =

∫
P

((Dw,11 + νDw,22),11 + (Dw,22 + νDw,11),22 + 2(D(1 − ν)w,12),12) δw

+

∫
∂P

D(w,11 + νw,22)n1δw,1 + D(w,22 + νw,11)n2δw,2 + D(1 − ν)w,12(n1δw,2 + n2δw,1)

−
∫
∂P

(
(D(w,11 + νw,22)),1n1 + (D(w,22 + νw,11)),2n2

+ (D(1 − ν)w,12),1n2 + (D(1 − ν)w,12),2n1

)
δw,

where n1, n2 are the components of the outward pointing boundary normal vector
(n = n1e1 + n2e2).
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Planar Structures Buckling of Plates

2.1. Buckling of Plates IV
Planar Structures

For constant D and ν this simplifies to:∫
P

δU =

∫
P

D(w,1111 + w,2222 + 2w,1122)δw

−
∫
∂P

D(w,111n1 + w,112n2 + w,122n1 + w,222n2)δw

+

∫
∂P

D((w,11 + νw,22)n1 + (1 − ν)w,12n2)δw,1 + D((w,22 + νw,11)n2 + (1 − ν)w,12n1)δw,2,

where we have used symmetry to split the terms related to w,12δw,12.

Using indicial notation the above can be expressed as∫
P
δU =

∫
P
Dw,iijjδw −

∫
∂P

Dw,iijnjδw

+

∫
∂P

Dwijnjδw,i + νD((w,22n1 − w,12n2)δw,1 + (w,11n2 − w,12n1)δw,2)
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Planar Structures Buckling of Plates

2.1. Buckling of Plates V
Planar Structures

Now we are ready to write down the combined principle of virtual work:
δW = δU − δΠ = 0:∫

P
(Dwiijj + (Nijw,i),j) δwdA−

∫
∂P

(Dw,iij +Nijw,i)njδw

+

∫
∂P

D((w,11 + νw,22)n1 + (1− ν)w,12n2)δw,1

+

∫
∂P

D((w,22 + νw,11)n2 + (1− ν)w,12n1)δw,2,

which can be interpreted in differential form (for constant Nij) as:

D∇4
w + N11w,11 + N22w,22 + 2N12w,12 = 0, (X2, X3) ∈ P

(I) (D(∇2
w),j + Nijw,i)nj = 0,

(I) (OR) w = specified, (X2, X3) ∈ ∂P
(II) D((w,11 + νw,22)n1 + (1 − ν)w,12n2) = 0,

(II) (OR) w,1 = specified, (X2, X3) ∈ ∂P
(III) D((w,22 + νw,11)n2 + (1 − ν)w,12n1) = 0,

(III) (OR) w,2 = specified, (X2, X3) ∈ ∂P.

Now we may consider different cases as we see fit.
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2.1. Buckling of Plates I
Planar Structures

Let us just illustrate the case of a rectangular plate simply supported on all sides.

The domain and boundaries are written as:

P =

{
(X1, X2)

∣∣∣∣X1 ∈ (0, a) , X2 ∈ (0, b)

}
,

∂P1 =

{
(X1, X2)

∣∣∣∣X1 ∈ (0, a) , X2 = 0

}
,

˜
n = (0,−1),

∂P2 =

{
(X1, X2)

∣∣∣∣X1 = a, X2 ∈ (0, b)

}
,

˜
n = (1, 0),

∂P3 =

{
(X1, X2)

∣∣∣∣X1 ∈ (0, a) , X2 = b

}
,

˜
n = (0, 1)

∂P4 =

{
(X1, X2)

∣∣∣∣X1 = 0, X2 ∈ (0, b)

}
,

˜
n = (−1, 0),

∂P = ∂P1 ∪ ∂P2 ∪ ∂P3 ∪ ∂P4.

We specify w = 0 on all the boundaries and leave w,i unspecified there (so the
corresponding work conjugate will be set to zero).
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2.1. Buckling of Plates II
Planar Structures

The boundary conditions can, hereby, be written as:

∂P1 : w = 0, D(1− ν)w,12 = 0, D(w,22 + νw,11)= 0,

∂P2 : w = 0, D(w,11 + νw,22) = 0, D(1− ν)w,12 = 0,

∂P3 : w = 0, D(1− ν)w,12 = 0, D(w,22 + νw,11)= 0,

∂P4 : w = 0, D(w,11 + νw,22) = 0, D(1− ν)w,12 = 0.

For the case with N22 = N12 = 0, N11 ̸= 0, the governing equations are

D∇4w +N11w,11 = 0.

Check Megson 2013 for the solutions of this.
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