AS3020: Aerospace Structures Module 8: Some Results From Buckling (V4)

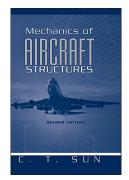
Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

November 10, 2025

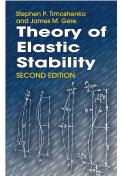
Table of Contents

- Prismatic Structures
 - Transverse Buckling
 - Torsional Buckling
 - The Simply Supported Case
 - Deformation Fields for a "Cross" Section
- Planar Structures
 - Buckling of Plates



Chapter 7 in Sun (2006)

AS3020*



Chapter 5 in Timoshenko and Gere (2009)

1.1. Transverse Buckling I

Prismatic Structures

 The transverse buckling equation you should be exposed to thus far starts with an assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic assumptions):

$$u_1 = -(X_2v' + X_3w'), \quad u_2 = v, \quad u_3 = w,$$

and an assumed "dominant" compressive stress field:

$$g_P = \begin{bmatrix} \frac{-P}{A} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix},$$

with P being the applied load and A being the sectional area.

• The axial strain for the above deformation field is

$$\mathcal{E}_{11} = u_{1,1} + \frac{1}{2} \left(u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2 \right),\,$$

where we have used the full nonlinear expression for the Lagrangian strain.

< □ →

1.1. Transverse Buckling II

Prismatic Structures

• We drop the $u_{1,1}^2$ term above for the small strain case (since $u_{1,1} \gg \frac{u_{1,1}^2}{2}$) and obtain the Von Karman Strain Expression:

$$\mathcal{E}_{11} = u_{1,1} + \frac{u_{2,1}^2 + u_{3,1}^2}{2}.$$

- The overall stress field will be taken as the sum of the imposed field of $\sigma_{P_{11}} = -\frac{P}{A}$ and the elastic stress $\sigma_{11} = E_u \mathcal{E}_{11}$.
- The virtual work due to the stress (integrated over the section S) is written as

$$\delta W = \int_{\mathcal{S}} \sigma_{11} \delta \mathcal{E}_{11} = \int_{\mathcal{S}} \left(-\frac{P}{A} + E_y \mathcal{E}_{11} \right) \delta \mathcal{E}_{11} = \int_{\mathcal{S}} \underbrace{-\frac{-\sigma_{11}}{P} \delta \mathcal{E}_{11}}_{-\frac{\sigma_{11}}{P} \delta \mathcal{E}_{11}} + \underbrace{E_y \mathcal{E}_{11} \delta E_{11}}_{-\frac{\sigma_{11}}{P} \delta \mathcal{E}_{11}} = \delta (U - \Pi).$$

Where we have identified $\delta\Pi$ as the load contribution and δU as the elastic contribution.

4 □ ▶

1.1. Transverse Buckling III

Prismatic Structures

• The load contribution is written as

$$\delta\Pi = \frac{P}{A} \int_{\mathcal{S}} \delta u_{1,1} + (u_{2,1} \delta u_{2,1} + u_{3,1} \delta u_{3,1}) dA$$

which, upon substitution of the above displacement field and assuming centroidal coordinate system becomes,

$$\delta\Pi = P(v_{,1}\delta v_{,1} + w_{,1}\delta w_{,1}).$$

• We need to integrate this along the span of the beam to obtain the overall virtual work (let us assume $P(X_1)$). This simplifies through integration by parts as:

$$\begin{split} \int\limits_0^\ell \delta \Pi &= \int\limits_0^\ell P(v,_1 \delta v,_1 + w,_1 \delta w,_1) dX_1 \\ &= P(v,_1 \delta v + w,_1 \delta w) \bigg|_0^\ell - \int\limits_0^\ell \left((Pv,_1),_1 \delta v + (Pw,_1),_1 \delta w \right) dX_1 \\ &= - \int\limits_0^\ell \delta \underline{V}^T (P\underline{V},_1)_{,1} dX_1 + P \delta \underline{V}^T \underline{V},_1 \bigg|_0^\ell \end{split}$$

4 □ ▶

Next we consider the elastic contributions

1.1. Transverse Buckling IV

$$\delta U = E_y \begin{bmatrix} \delta v_{,11} & \delta w_{,11} \end{bmatrix} \begin{bmatrix} I_{33} & I_{23} \\ I_{23} & I_{22} \end{bmatrix} \begin{bmatrix} v_{,11} \\ w_{,11} \end{bmatrix} = E_y \delta \underline{V}_{,11}^T \underline{\underline{I}} \underline{V}_{,11}$$

which, upon span-wise integration, becomes

$$\int\limits_{0}^{\ell} \delta U = \delta \underline{V}_{,1}{}^{T} E_{y} \underline{\underline{I}} \underline{V}_{,11} \bigg|_{0}^{\ell} - \delta \underline{V}^{T} \Big(E_{y} \underline{\underline{I}} \underline{V}_{,11} \Big)_{,1} \bigg|_{0}^{\ell} + \int\limits_{0}^{\ell} \delta \underline{V}^{T} \Big(E_{y} \underline{\underline{I}} \underline{V}_{,11} \Big)_{,11} dX_{1}.$$

• Putting everything together, we have

$$\int_{0}^{\ell} \delta W = \int_{0}^{\ell} \delta \underline{V}^{T} \left(\left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right)_{,11} + \left(P \underline{V}_{,1} \right)_{,1} \right) dX_{1}$$
$$- \delta \underline{V}^{T} \left(\left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right)_{,1} + P \underline{V}_{,1} \right) \Big|_{0}^{\ell} + \delta \underline{V}^{\prime T} \left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right) \Big|_{0}^{\ell}.$$

By the principle of virtual work the above must be zero for equilibrium for arbitrary $\delta \underline{V}$ and δV_1 .

6/29

1.1. Transverse Buckling V

Prismatic Structures

• For this equality to hold for arbitrary virtual displacements $(\delta \underline{V})$ and rotations $(\delta \underline{V}')$ each of the terms above should be equated to zero in their respective domains. So we obtain the differential equation system:

$$\begin{split} \left(E_{y}\underline{\underline{I}}\,\underline{V}_{,11}\right)_{,11} + \left(P\underline{V}_{,1}\right)_{,1} &= 0, \quad X_{1} \in (0,\ell) \\ \left(E_{y}\underline{\underline{I}}\,\underline{V}_{,11}\right)_{,1} + P\underline{V}_{,1} &= 0, \quad (\text{OR}) \quad \underline{V} = \text{specified}, \quad X_{1} \in \{0,\ell\} \\ E_{y}\underline{\underline{I}}\,\underline{V}_{,11} &= 0, \quad (\text{OR}) \quad \underline{V}' &= \text{specified}, \quad X_{1} \in \{0,\ell\}. \end{split}$$

Note that this assumes that no other form of external load is applied.

• Considering the $\underline{e_2}$ deformation in the symmetric case $(I_{23} = 0)$, the above simplifies to

$$E_y I_{33} v'''' + P v'' = 0 ,$$

which is the familiar Euler equation for buckling.

• Refer to ch. 7 in Sun (2006) for the different cases of boundary conditions herein.

1.2. Torsional Buckling I

Prismatic Structures

- For the transverse case, we started with a pure bending kinematics and derived the transverse load due to compression using the work done. What happens when we also account for torsion?
- Here, the kinematic deformation field is

$$u_1 = \theta_{,1}\psi, \quad u_2 = -X_3\theta, \quad u_3 = X_2\theta,$$

where $\theta(X_1)$ is the twisting angle (we allow this to be a general function of X_1), and $\psi(X_2, X_3)$ is the St-Venant warping function (see Module 5).

• The axial strain (under Von Karman simplification, as before) is:

$$\mathcal{E}_{11} = u_{1,1} + \frac{1}{2}(u_{2,1}^2 + u_{3,1}^2) = \psi \theta_{,11} + \frac{X_2^2 + X_3^2}{2}\theta_{,1}^2.$$

• The shear strains (we only write out the linear strains) are

$$\gamma_{12} = (\psi_{,2} - X_3)\theta_{,1}, \quad \eta_{13} = (\psi_{,3} + X_2)\theta_{,1}.$$

8 / 29

1.2. Torsional Buckling II

Prismatic Structures

• Following the same process as above, the virtual work under an axial imposed stress field of $\sigma_{11} = -\frac{P}{A}$ is written as

$$\delta W = \int_{\mathcal{S}} \left(-\frac{P}{A} + E_y \mathcal{E}_{11} \right) \delta \mathcal{E}_{11} + G \gamma_{12} \delta \gamma_{12} + G \gamma_{13} \delta \gamma_{13}$$

$$= \int_{\mathcal{S}} \underbrace{-\frac{\delta \Pi}{P} \delta \mathcal{E}_{11}}_{\delta U} + \underbrace{E_y \mathcal{E}_{11} \delta \mathcal{E}_{11} + G \gamma_{12} \delta \gamma_{12} + G \gamma_{13} \delta \gamma_{13}}_{\delta U} = \delta (U - \Pi).$$

- Note that unlike the bending case, we have considered shear contributions also here.
- The load contribution is written as

$$\delta\Pi = \frac{P}{A} \int_{\mathcal{S}} \psi \delta\theta_{,11} + (X_2^2 + X_3^2)\theta_{,1}\delta\theta_{,1} dA = \frac{P}{A} \delta\theta_{,11} \int_{\mathcal{S}} \psi dA + P \frac{I_{11}}{A}\theta_{,1}\delta\theta_{,1},$$

where we have canceled out $\int_{\mathcal{S}} \psi dA$ because net displacement due to warping is zero. I_{11} is the polar second moment of area.

• We next consider the integral of $\delta\Pi$ and integrate it by parts to write:

$$\int_{0}^{\ell} \delta \Pi = \int_{0}^{\ell} \frac{PI_{11}}{A} \theta_{,1} \delta \theta_{,1} dX_{1} = \frac{PI_{11}}{A} \theta_{,1} \delta \theta \Big|_{0}^{\ell} - \int_{0}^{\ell} \left(\frac{PI_{11}}{A} \theta_{,1} \right)_{,1} dX_{1}.$$

Balaji, N. N. (AE, IITM) AS3020* November 10, 2025 9/29

1.2. Torsional Buckling III

Prismatic Structures

• Coming to the elastic contributions, this simplifies as

$$\begin{split} \delta U &= \int_{\mathcal{S}} E_y \psi^2 \theta_{,11} \delta \theta_{,11} + G \left((\psi_{,2} - X_3)^2 + (\psi_{,3} + X_2)^2 \right) \theta_{,1} \delta \theta_{,1} \\ &= \int_{\mathcal{S}} E_y \psi^2 dA \theta_{,11} \delta \theta_{,11} + \int_{\mathcal{S}} G \left(\underbrace{\psi_{,2}^2 + \psi_{,3}^2}_{,2} + X_2^2 + X_3^2 + 2X_2 \psi_{,3} - 2X_3 \psi_{,2} \right) dA \theta_{,11} \delta \theta_{,11} + \underbrace{G \left(I_{11} + \int_{\mathcal{S}} X_2 \psi_{,3} - X_3 \psi_{,2} dA \right) \theta_{,1} \delta \theta_{,1}}_{:= E_y C_w \theta_{,11} \delta \theta_{,11} + GJ \theta_{,1} \delta \theta_{,1}} \end{split}$$

(Recall the governing equations and boundary conditions for ψ from Module 5)

ullet Here, C_w is defined as the **warping constant** of the section, and is a property of the section (like area, second moment, etc.).

10 / 29

1.2. Torsional Buckling IV

• Integrating δU over the span of the beam leads to

$$\begin{split} \int\limits_{0}^{\ell} \delta U = & E_{y} C_{w} \theta_{,11} \delta \theta_{,1} \bigg|_{0}^{\ell} - \left(\left(E_{y} C_{w} \theta_{,11} \right)_{,1} - G J \theta_{,1} \right) \delta \theta \bigg|_{0}^{\ell} \\ + \int\limits_{0}^{\ell} \left(\left(E_{y} C_{w} \theta_{,11} \right)_{,11} - \left(G J \theta_{,1} \right)_{,1} \right) \delta \theta dX_{1} \end{split}$$

Now we put everything together.

$$\begin{split} \int\limits_{0}^{\ell} \delta W &= \int\limits_{0}^{\ell} \left(\left(E_{y} C_{w} \theta_{,11} \right)_{,11} - \left(GJ \theta_{,1} \right)_{,1} + \left(\frac{PI_{11}}{A} \theta_{,1} \right)_{,1} \right) \delta \theta dX_{1} \\ &+ \left[E_{y} C_{w} \theta_{,11} \delta \theta_{,1} - \left(\left(E_{y} C_{w} \theta_{,11} \right)_{,1} - GJ \theta_{,1} + \frac{PI_{11}}{A} \theta_{,1} \right) \delta \theta \right] \Big|_{0}^{\ell} \end{split}$$

1.2. Torsional Buckling V

Prismatic Structures

• The results in the following PDE governing torsional deformation under axial load:

$$(E_y C_w \theta_{,11})_{,11} + \left(\left(\frac{PI_{11}}{A} - GJ \right) \theta_{,1} \right)_{,1} = 0, \quad X_1 \in (0, \ell)$$

$$E_y C_w \theta_{,11} = 0, \quad (OR) \quad \theta_{,1} = \text{specified}, \quad X_1 \in \{0, \ell\}$$

$$(E_y C_w \theta_{,11})_{,1} + \left(\frac{PI_{11}}{A} - GJ \right) \theta_{,1} = 0, \quad (OR) \quad \theta = \text{specified}, \quad X_1 \in \{0, \ell\}.$$

• For constant parameters (uniform prismatic beam) the governing equation is written as:

$$E_y C_w \theta_{,1111} + \left(\frac{PI_{11}}{A} - GJ\right) \theta_{,11} = 0$$

which is a Sturm-Liouville equation of the form

$$\theta_{,1111} + p^2 \theta_{,11} = 0, \qquad p^2 = \frac{\frac{PI_{11}}{A} - GJ}{E_y C_w}$$

which is mathematically identical to the transverse buckling equation.

• Even boundary conditions are very similar, so the solution procedure will follow exactly the same process.

12 / 29

Balaji, N. N. (AE, IITM) AS3020* November 10, 2025

1.2. Torsional Buckling: Alternative Derivation through Shear Flow Arguments I

Prismatic Structures

- It is helpful to use a more "practical" derivation to understand the E_yC_w term better. We shall revert to shear flow for this it turns out that the E_yC_w term is due to the shear flow variations "induced" by the axial stress field that the warping function induces.
- From the consideration of "pure twist", the twisting moment is written as

$$M_{twist} = GJ\theta_{,1}$$

as per the notation introduced in Module 5. Recall that we had $J = I_{11} - \frac{1}{2} \int_{\partial S} \frac{\partial \psi^2}{\partial n} d\ell$ for the torsion constant.

- We ignored the straight stresses σ_{11} in Module 5 since $\int_{\mathcal{S}} \sigma_{11} dA = 0$ and we argued that σ_{11} will be small. Although small, the variations are sufficient to induce additional shear flow, so let us consider it now.
- Using linear elasticity we have

$$\sigma_{11} = E_y \mathcal{E}_{11} = E_y \theta_{,11} \psi.$$

4 □ ▶

1.2. Torsional Buckling: Alternative Derivation through Shear Flow Arguments II

Prismatic Structures

• The shear flow that the section develops is written as (same procedure as we followed in Modules 4 and 5):

$$\frac{dq}{ds} + t\sigma_{11,1} = 0 \implies q_{warp}(s) - q_0 = -\int_0^s t\sigma_{11,1} ds = -E_y \theta_{,111} \int_0^s t\psi ds.$$

- Let us restrict our discussions to open sections with $q_0=0$ (our running integral starts from a free tip). Recall that our analysis in Module 5 led to: $\psi(s)=-2A_{Os}(s)=-\int_0^s p(s)ds$.
- The twisting moment that the warping shear flow $q_{warp}(s)$ leads to is written as the full integral (denoted $\int (\cdot) ds$)

$$M_{warp} = \int p(s)q_{warp}(s)ds = \int \left(-\frac{d\psi}{ds}\right) \left(\int\limits_{0}^{s} -E_{y}\theta_{,111}t\psi(z)dz\right)ds,$$

where we have invoked $p(s) = -\frac{d\psi}{ds}$.

14 / 29

1.2. Torsional Buckling: Alternative Derivation through Shear Flow Arguments III

Prismatic Structures

• Applying integration by parts we have

$$\begin{split} M_{warp} &= E_y \theta_{,11} \int \frac{d}{ds} \left(\psi(s) \int\limits_{s}^{s} t \psi(z) dz \right) - t \psi^2(s) ds = -E_y \underbrace{\left(\int\limits_{C_w}^{s} t \psi^2(s) ds \right)}_{C_w} \theta_{,11} \\ &\Longrightarrow \underbrace{\left[M_{warp} = -E_y C_w \theta_{,11} \right]}_{}. \end{split}$$

The constant C_w is called the **warping constant** and is a sectional property (much like the warping function itself, torsion constant J, area A, second moments, etc.).

• Now we have a contribution from pure twist, $GJ\theta_{,1}$, and a contribution from warping suppression, $-E_yC_w\theta_{,q11}$. Adding these both should give us the externally applied total moment:

$$M_{tot} = GJ\theta_{,1} - E_y C_w \theta_{,111} \ .$$

• For constant M_{tot} , the above can be solved to obtain $\theta(X_1)$. This is the generalized equation governing torsional kinematics.

4 □ ▶

1.2. Torsional Buckling: Alternative Derivation through Shear Flow Arguments IV

Prismatic Structures

• Under the presence of axial compression, $\frac{dM_{tot}}{dX_1} = m_P = -\frac{PI_{11}}{A}\theta_{,11}$. Incorporating this into the equation yields:

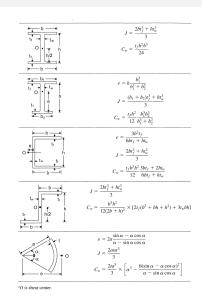
$$E_y C_w \theta_{,1111} + \left(P \frac{I_{11}}{A} - GJ\right) \theta_{,11} = 0$$

which is identical to the equation we derived earlier.

• This version of the derivation is only to provide you an intuitive understanding of the extra term through shear flow. This does not mean that the E_yC_w term is restricted to the thin walled open section case. Since the term follows from the more formal virtual work principle, this is quite general and we can compute the E_yC_w term for any arbitrary solid section/closed section too:

$$E_y C_w = \int_{\mathcal{S}} E_y \psi^2 dA.$$

• The torsion constant J and warping constant C_w for common thin-walled sections are shown in the table here.



November 10, 2025

1.2.1. Torsional Buckling: The Simply Supported Case I

Prismatic Structures

• The simplest example is the simply supported beam under axial compression. Transverse buckling leads to:

$$P_{cr-tr,n} = n^2 \frac{\pi^2 E_y I_p}{\ell^2}$$

where I_p is a principal second moment (i.e., eigenvalue of the \underline{I} matrix).

• We have already seen how the torsion buckling problem is mathematically identical to the flexural buckling problem, so the critical load can directly be written as,

$$P_{cr-tw,n} \frac{I_{11}}{A} - GJ = n^2 \frac{\pi^2 E_y C_w}{\ell^2} \implies \boxed{P_{cr-tw,n} = GJ \frac{A}{I_{11}} + n^2 \frac{A}{I_{11}} \frac{\pi^2 E_y C_w}{\ell^2}}.$$

- We now have two different critical load estimates!
 - When P exceeds $P_{cr-tr,n}$, then the beam buckles transversely, or bends.
 - When P exceeds $P_{cr-tw,n}$, then the beam **twists**, or undergoes torsion deformation.
- A real designer must account for both. Let us set n=1 and find when the twist-buckling will occur at a lower load than transverse buckling:

$$P_{cr-tw,1} \leq P_{cr-tr,1} \implies \boxed{GJ \leq \frac{\pi^2 E_y}{\ell^2} \left(\frac{I_{11}}{A}I_p - C_w\right)}.$$

November 10, 2025 Balaji, N. N. (AE, IITM) AS3020* 18 / 29

1.2.1. Torsional Buckling: The Simply Supported Case II

Prismatic Structures

- The RHS in the above represents a limiting value for the torsional rigidity of open sections. As it is, recall that $J \sim \mathcal{O}(t^3)$ for open thin walled sections, so it is not very difficult to meet the above condition in the open section case. (It is a little more difficult for closed sections)
- In practice, we find that the warping constant C_w is small/close to zero for thin walled rectangular sections meeting at a single point like the following.

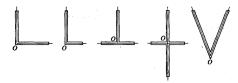


Fig. 5-5 from Timoshenko and Gere (2009)

Prismatic Structures

• So the condition can be simplified to

$$GJ \le \frac{I_{11}}{A} P_{cr-tr,1}$$

where $P_{cr-tr,1} = \frac{\pi^2 E_y I_p}{\ell^2}$ is the Euler critical load.

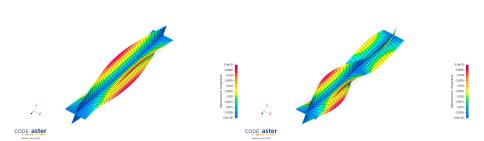
- This form of the equation is valid even for other boundary conditions you just substitute the correct critical load.
- Furthermore, substituting $C_w = 0$ in the critical load expression leads to

$$P_{cr-tw,n} = GJ\frac{A}{I_{11}}$$
, i.e., the (first) critical load is independent of the length of

the beam!

(Note that the $C_w = 0$ approximation no longer holds for the higher modes)

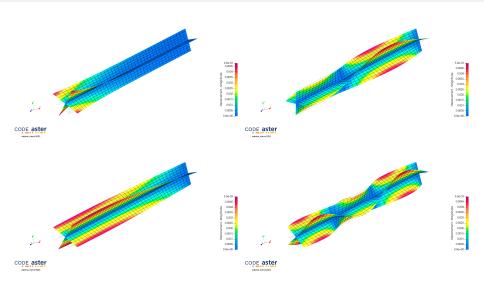
1.2.2. Torsional Buckling: Deformation Fields for a "Cross" Section Prismatic Structures



First Two Buckling Modes in the Simply Supported Condition

1.2.2. Torsional Buckling: Deformation Fields for a "Cross" Section

Prismatic Structures



First Four Buckling Modes in the Cantilevered Condition

2.1. Buckling of Plates I

• Let us consider a plate on the $\underline{e_1} - \underline{e_2}$ plane. Invoking Kirchhoff assumptions (zero shear strain, just like we did with beams), the displacement field can be written as

$$u_1 = -X_3 w_{,1}, \quad u_2 = -X_3 w_{,2}, \quad u_3 = w.$$

• The relevant (Von Karman) strains are,

$$\mathcal{E}_{11} = u_{1,1} + \frac{u_{3,1}^2}{2} = -X_3 w_{,11} + \frac{w_{,1}^2}{2}$$

$$\mathcal{E}_{22} = u_{2,2} + \frac{u_{3,2}^2}{2} = -X_3 w_{,22} + \frac{w_{,2}^2}{2}$$

$$\gamma_{12} = u_{1,2} + u_{2,1} + u_{3,1} u_{3,2} = -X_3 2 w_{,12} + w_{,1} w_{,2}.$$

• The overall stress field is written as

$$\sigma_{11} = \frac{N_{11}}{t} + \frac{E_y}{1 - \nu^2} (\mathcal{E}_{11} + \nu \mathcal{E}_{22}), \quad \sigma_{22} = \frac{N_{22}}{t} + \frac{E_y}{1 - \nu^2} (\mathcal{E}_{22} + \nu \mathcal{E}_{11}),$$
$$\sigma_{12} = \frac{N_{12}}{t} + G\gamma_{12},$$

where N_1, N_2, N_{12} are all loads per unit length.

• Skipping a few steps, we have the load contribution to the work coming purely from the combination of the imposed

$$\delta\Pi = N_{ij}w_{,i}\delta w_{,j}$$
.

• Integrating this over the whole plate domain \mathcal{P} we have,

$$\int_{\mathcal{P}} \delta \Pi = \int_{\mathcal{P}} (N_{ij}w_{,i}\delta w)_{,j} - (N_{ij}w_{,i})_{,j}\delta w dA = -\int_{\mathcal{P}} (N_{ij}w_{,i})_{,j}\delta w dA + \int_{\partial \mathcal{P}} N_{ij}w_{,i}n_{j}\delta w d\ell.$$

• The elastic contributions read:

2.1. Buckling of Plates II

$$\begin{split} \delta U &= \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} \frac{E_y}{1-\nu^2} \left((\mathcal{E}_{11} + \nu \mathcal{E}_{22}) \delta \mathcal{E}_{11} + (\mathcal{E}_{22} + \nu \mathcal{E}_{11}) \delta \mathcal{E}_{22} \right) + G \gamma_{12} \delta \gamma_{12} dX_3 \\ &= \frac{E_y}{1-\nu^2} \left(\int_{-\frac{t}{2}}^{\frac{t}{2}} X_3^2 dX_3 \right) \left((w_{,11} + \nu w_{,22}) \delta w_{,11} + (w_{,22} + \nu w_{,11}) \delta w_{,22} \right) \\ &+ \frac{2E_y}{1+\nu} \left(\int_{-\frac{t}{2}}^{\frac{t}{2}} X_3^2 dX_3 \right) w_{,12} \delta w_{,12}, \end{split}$$

2.1. Buckling of Plates III

Planar Structures

which simplify to yield

$$\delta U = \frac{E_y t^3}{12(1-\nu^2)} \left((w_{,11} + \nu w_{,22}) \delta w_{,11} + (w_{,22} + \nu w_{,11}) \delta w_{,22} \right) + 2 \frac{E_y t^3}{12(1+\nu)} w_{,12} \delta w_{,12}$$

= $D \left((w_{,11} + \nu w_{,22}) \delta w_{,11} + (w_{,22} + \nu w_{,11}) \delta w_{,22} \right) + 2D(1-\nu) w_{,12} \delta w_{,12}.$

• We integrate this over \mathcal{P} to obtain

$$\begin{split} &\int_{\mathcal{P}} \delta U = \int_{\mathcal{P}} \left((Dw_{,11} + \nu Dw_{,22})_{,11} + (Dw_{,22} + \nu Dw_{,11})_{,22} + 2(D(1-\nu)w_{,12})_{,12} \right) \delta w \\ &+ \int_{\partial \mathcal{P}} D(w_{,11} + \nu w_{,22}) n_1 \delta w_{,1} + D(w_{,22} + \nu w_{,11}) n_2 \delta w_{,2} + D(1-\nu)w_{,12} (n_1 \delta w_{,2} + n_2 \delta w_{,1}) \\ &- \int_{\partial \mathcal{P}} \left((D(w_{,11} + \nu w_{,22}))_{,1} n_1 + (D(w_{,22} + \nu w_{,11}))_{,2} n_2 \right. \\ &+ (D(1-\nu)w_{,12})_{,1} n_2 + (D(1-\nu)w_{,12})_{,2} n_1 \right) \delta w, \end{split}$$

where n_1, n_2 are the components of the outward pointing boundary normal vector $(n = n_1e_1 + n_2e_2)$.

• For constant D and ν this simplifies to:

2.1. Buckling of Plates IV

$$\begin{split} \int_{\mathcal{P}} \delta U &= \int_{\mathcal{P}} D(w_{,1111} + w_{,2222} + 2w_{,1122}) \delta w \\ &- \int_{\partial \mathcal{P}} D(w_{,111}n_1 + w_{,112}n_2 + w_{,122}n_1 + w_{,222}n_2) \delta w \\ &+ \int_{\partial \mathcal{P}} D((w_{,11} + \nu w_{,22})n_1 + (1 - \nu)w_{,12}n_2) \delta w_{,1} + D((w_{,22} + \nu w_{,11})n_2 + (1 - \nu)w_{,12}n_1) \delta w_{,2}, \end{split}$$

where we have used symmetry to split the terms related to $w_{.12}\delta w_{.12}$.

• Using indicial notation the above can be expressed as

$$\begin{split} \int_{\mathcal{P}} \delta U &= \int_{\mathcal{P}} Dw_{,iijj} \delta w - \int_{\partial \mathcal{P}} Dw_{,iij} n_j \delta w \\ &+ \int_{\partial \mathcal{P}} Dw_{ij} n_j \delta w_{,i} + \nu D((w_{,22}n_1 - w_{,12}n_2) \delta w_{,1} + (w_{,11}n_2 - w_{,12}n_1) \delta w_{,2}) \end{split}$$

2.1. Buckling of Plates V

Planar Structures

• Now we are ready to write down the combined principle of virtual work: $\delta W = \delta U - \delta \Pi = 0$:

$$\int_{\mathcal{P}} (Dw_{iijj} + (N_{ij}w_{,i})_{,j}) \, \delta w dA - \int_{\partial \mathcal{P}} (Dw_{,iij} + N_{ij}w_{,i}) \, n_{j} \delta w$$

$$+ \int_{\partial \mathcal{P}} D((w_{,11} + \nu w_{,22}) n_{1} + (1 - \nu)w_{,12}n_{2}) \delta w_{,1}$$

$$+ \int_{\partial \mathcal{P}} D((w_{,22} + \nu w_{,11}) n_{2} + (1 - \nu)w_{,12}n_{1}) \delta w_{,2},$$

which can be interpreted in differential form (for constant N_{ij}) as:

$$D\nabla^{4}w + N_{11}w_{,11} + N_{22}w_{,22} + 2N_{12}w_{,12} = 0, \quad (X_{2}, X_{3}) \in \mathcal{P}$$
(I)
$$(D(\nabla^{2}w)_{,j} + N_{ij}w_{,i})n_{j} = 0,$$
(I)
$$(OR) \quad w = \text{specified}, \quad (X_{2}, X_{3}) \in \partial \mathcal{P}$$
(II)
$$D((w_{,11} + \nu w_{,22})n_{1} + (1 - \nu)w_{,12}n_{2}) = 0,$$
(II)
$$(OR) \quad w_{,1} = \text{specified}, \quad (X_{2}, X_{3}) \in \partial \mathcal{P}$$
(III)
$$D((w_{,22} + \nu w_{,11})n_{2} + (1 - \nu)w_{,12}n_{1}) = 0,$$
(III)
$$(OR) \quad w_{,2} = \text{specified}, \quad (X_{2}, X_{3}) \in \partial \mathcal{P}.$$

• Now we may consider different cases as we see fit.

26 / 29

2.1. Buckling of Plates I

Planar Structures

- Let us just illustrate the case of a rectangular plate simply supported on all sides.
- The domain and boundaries are written as:

$$\mathcal{P} = \left\{ (X_1, X_2) \middle| X_1 \in (0, a) , \quad X_2 \in (0, b) \right\},$$

$$\partial \mathcal{P}_1 = \left\{ (X_1, X_2) \middle| X_1 \in (0, a) , X_2 = 0 \right\}, \quad \underline{n} = (0, -1),$$

$$\partial \mathcal{P}_2 = \left\{ (X_1, X_2) \middle| X_1 = a, \quad X_2 \in (0, b) \right\}, \quad \underline{n} = (1, 0),$$

$$\partial \mathcal{P}_3 = \left\{ (X_1, X_2) \middle| X_1 \in (0, a) , X_2 = b \right\}, \quad \underline{n} = (0, 1)$$

$$\partial \mathcal{P}_4 = \left\{ (X_1, X_2) \middle| X_1 = 0, \quad X_2 \in (0, b) \right\}, \quad \underline{n} = (-1, 0),$$

$$\partial \mathcal{P} = \partial \mathcal{P}_1 \cup \partial \mathcal{P}_2 \cup \partial \mathcal{P}_3 \cup \partial \mathcal{P}_4.$$

• We specify w = 0 on all the boundaries and leave $w_{,i}$ unspecified there (so the corresponding work conjugate will be set to zero).

← □ →

2.1. Buckling of Plates II

Planar Structures

• The boundary conditions can, hereby, be written as:

$$\begin{split} \partial \mathcal{P}_1 : w &= 0, \quad D(1-\nu)w_{,12} &= 0, \quad D(w_{,22}+\nu w_{,11}) = 0, \\ \partial \mathcal{P}_2 : w &= 0, \quad D(w_{,11}+\nu w_{,22}) = 0, \quad D(1-\nu)w_{,12} &= 0, \\ \partial \mathcal{P}_3 : w &= 0, \quad D(1-\nu)w_{,12} &= 0, \quad D(w_{,22}+\nu w_{,11}) = 0, \\ \partial \mathcal{P}_4 : w &= 0, \quad D(w_{,11}+\nu w_{,22}) = 0, \quad D(1-\nu)w_{,12} &= 0. \end{split}$$

• For the case with $N_{22} = N_{12} = 0$, $N_{11} \neq 0$, the governing equations are

$$D\nabla^4 w + N_{11}w_{,11} = 0.$$

Check Megson 2013 for the solutions of this.

References I

- [1] C. T. Sun. Mechanics of Aircraft Structures, 2nd edition. Hoboken, N.J.: Wiley, June 2006. ISBN: 978-0-471-69966-8 (cit. on pp. 2, 7, 17).
- Stephen P. Timoshenko and James M. Gere. Theory of Elastic Stability, Courier [2] Corporation, June 2009. ISBN: 978-0-486-47207-2 (cit. on pp. 2, 19).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: [3] 978-0-08-096905-3 (cit. on p. 29).