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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling I

Prismatic Structures

o The transverse buckling equation you should be exposed to thus far starts with an
assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic
assumptions):

/ /
ur = —(Xov" + Xzw'), w2 =v, wuz=w,
and an assumed “dominant” compressive stress field:

e i
A
0
0

Q
-
I

0 0
0o 0f,
0 0
with P being the applied load and A being the sectional area.
o The axial strain for the above deformation field is

1
fu=ui1tg (ui,+u3,+u3,),

where we have used the full nonlinear expression for the Lagrangian strain.

Balaji, N. N. (AE, IITM) AS3020* November 10, 2025 3/29



Prismatic Structures Transverse Buckling

1.1. Transverse Buckling II

Prismatic Structures

2
e We drop the u% , term above for the small strain case (since u1,1 > %) and obtain

the Von Karman Strain Expression:

2 2
u + us
Enn=uiq+ 217 781
2
e The overall stress field will be taken as the sum of the imposed field of op,, = —% and

the elastic stress 011 = Ey&11.

e The virtual work due to the stress (integrated over the section S) is written as

—6I1
—— sU
oW = 0110611 = —— + Eyéi1 ) 611 = ——0&11 + EyE110E11 = 6(U —1I).
s s\ A s A

Where we have identified 611 as the load contribution and U as the elastic contribution.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling ITI

Prismatic Structures

o The load contribution is written as
P
oIl = a dur,1 + (u2,10u2,1 + us 10u3,1)dA
s

which, upon substitution of the above displacement field and assuming centroidal
coordinate system becomes,

‘ oIl = P(v,ldv,l + w,ldw,l) X

o We need to integrate this along the span of the beam to obtain the overall virtual work
(let us assume P(X71)). This simplifies through integration by parts as:

YA L
/51‘[:/13’(1;,161),1 +w16w,1)dXy
0 0

= P(v,10v + w,16w)

L
e
— / ((Pv,1),10v 4 (Pw,1),16w) dX1
0
0

4

L
- / SVI(PV ;) dX1 + PSVTV |
’ 0
0
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling IV

Prismatic Structures

o Next we consider the elastic contributions

I I
o =By [fon dwn] [122 Izﬂ [111)}1111] = BydV 1, "LV 1y

which, upon span-wise integration, becomes

L

£
/5U =6V, TEIV |
0

. — 5ZT(EZ/£Z,11)’1

s

V4
)
+ / VT (ByIV 1y | dxy.
o ==

o Putting everything together, we have

¢ 4
fov-for () 2 Jon
0 0
4

T ((Eygz,u) o Pz,l) r +6V'" (ByLV 1,)
, 0 0

By the principle of virtual work the above must be zero for equilibrium for arbitrary 6V
and 6V ;.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling V

Prismatic Structures

e For this equality to hold for arbitrary virtual displacements (6V') and rotations (§V)
each of the terms above should be equated to zero in their respective domains. So we
obtain the differential equation system:

) n ' (PZJ) =0 X1€(0,0)

(E‘y£Z 11) [ +PV; =0, (OR) V =specified, X1 € {060}
EylV 1, =0, (OR) V'=specified, X1 € {0,¢}.

Note that this assumes that no other form of external load is applied.

o Considering the ez deformation in the symmetric case (I23 = 0), the above simplifies to

EyI33v”” + Py =0 i

which is the familiar Euler equation for buckling.

e Refer to ch. 7 in Sun (2006) for the different cases of boundary conditions herein.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I

Prismatic Structures

o For the transverse case, we started with a pure bending kinematics and derived the
transverse load due to compression using the work done. What happens when we
also account for torsion?

o Here, the kinematic deformation field is
up =019, wuz=—-X30, wuz= X20,

where 0(X1) is the twisting angle (we allow this to be a general function of X1), and
¥ (Xa, X3) is the St-Venant warping function (see Module 5).

e The axial strain (under Von Karman simplification, as before) is:
1 X2+ X2
S =u11 + 5(”5,1 +ud ) =v011+ %9,21-

o The shear strains (we only write out the linear strains) are

m2 = (Y2 —X3)0,1, m3 = (Y3+ X2)01.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling IT

Prismatic Structures

Following the same process as above, the virtual work under an axial imposed stress field

of 011 = —% is written as

P
W = / (_Z + Ey&11)0E11 + Gyi20712 + Gy130713
s

—oII
oU

P
= / —25511 + Ey&116E11 + Gy120712 + Gy136v13 = 6(U — 1I).
s

Note that unlike the bending case, we have considered shear contributions also here.

The load contribution is written as

P P I
ST = —/1/15011+(X22+X§)01501dA:—6011/ dA+P=2L0,60 4,
A 00 1100, 7%, " :

where we have canceled out |, s YdA because net displacement due to warping is zero.

111 is the polar second moment of area.

We next consider the integral of §II and integrate it by parts to write:

) £ V4
PI PI PI
/5 :/ 19 1501dX; = “9159 /( “971> dX;.
0 0 0 1
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I1I

Prismatic Structures

e Coming to the elastic contributions, this simplifies as

sU :/ Ey20.1160.11 + G (1.2 — X3)% + (0.5 + X2)2) 01801
S

:/ Eyp?dA01160 11 +/ G( Z+v% + X2+ X2 4+ 2X91h 3 — 2X31) 2)d-
S S N ——
0
e ey A v
=Ey,Cy =GJ

:/ Eyp?dA 0116011 + G (111 +/ Xotp 3 — X3¢',2dA) 0,160 1
S S
:EyCu,e,ncSG,H + GJ9,159,1.

(Recall the governing equations and boundary conditions for 1) from Module 5)

e Here, (', is defined as the warping constant of the section, and is a property of the
section (like area, second moment, etc.).
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling IV

Prismatic Structures

o Integrating oU over the span of the beam leads to

4 4

- ((Eycw9,11)71 — GJ9,1> 00

0

£
/5U =E,Cw0,11601
0 0

I3
+/ ((ByCub11) 4, — (GI0,) ) 60X
0

o Now we put everything together.

L L
PI
/aw/((Eycwo,n),u—(GJe,l),1+( A“e,l) >59dX1
1
0 0

s

14

PI
+ [EwaQuéG,l - ((Eyowe,n) L —GJ61 + A“e,l) 69]

0
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling V

Prismatic Structures

o The results in the following PDE governing torsional deformation under axial load:

PI
(Eycwﬁ,u),ll + << A11

E,Cw011 =0, (OR) 0, =specified, X; € {0,¢}

—GJ) 9,1) =0, X1 € (0,0)
1

)

Pl
A

(EwaQu)y1 + ( — GJ) 01 =0, (OR) 6 = specified, X; € {0,(}.

e For constant parameters (uniform prismatic beam) the governing equation is written as:

Pl

EyCuw 1111 + ( — GJ) 011 =01

which is a Sturm-Liouville equation of the form

PI
Phu _qJ
EyCu

01111 +p?011 =0, p? =
which is mathematically identical to the transverse buckling equation.

e Even boundary conditions are very similar, so the solution procedure will follow exactly
the same process.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments [

Prismatic Structures

o It is helpful to use a more “practical” derivation to understand the EyCy term better.
We shall revert to shear flow for this - it turns out that the E,C\ term is due to the
shear flow variations “induced” by the axial stress field that the warping function
induces.

e From the consideration of “pure twist”, the twisting moment is written as

Miwist = GJO 1

2
as per the notation introduced in Module 5. Recall that we had J = I11 — % fas %d@
for the torsion constant.

o We ignored the straight stresses o171 in Module 5 since fS 011dA = 0 and we argued that
o011 will be small. Although small, the variations are sufficient to induce additional shear
flow, so let us consider it now.

o Using linear elasticity we have

o011 = Ey&11 = Ey0 11%.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments I1

Prismatic Structures

o The shear flow that the section develops is written as (same procedure as we followed in
Modules 4 and 5):

El s

+to11,1 = 0 = Q’warp(s) —q0 = _/ta'll,lds = _Ey6,111 /t¢d5-
0 0

dq
ds

@ Let us restrict our discussions to open sections with go = 0 (our running integral starts
from a free tip). Recall that our analysis in Module 5 led to:

¥(s) = —240s(s) = — [ p(s)ds.
o The twisting moment that the warping shear flow guwarp(s) leads to is written as the full
integral (denoted [ (-)ds)

d S
Mwarp:/p(s)qwarp(s)ds:/<—d—f) /—Eye,ultw(z)dz ds,
0

dyp

where we have invoked p(s) = — S
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments 111

Prismatic Structures

o Applying integration by parts we have

Muyarp = Eyf 11 / % w(s)/t 2)dz | — tp%(s)ds = —Ey (/tw2(s)ds> 011
C

w

= \ Muarp = —EyCuwb 11 \

The constant Cy, is called the warping constant and is a sectional property (much like
the warping function itself, torsion constant J, area A, second moments, etc.).

e Now we have a contribution from pure twist, GJ6 1, and a contribution from warping
suppression, —Fy,Cyw0 411. Adding these both should give us the externally applied total
moment:

Mot = GJO 1 — EyCuwb 111 |-

e For constant Mi.¢, the above can be solved to obtain #(X1). This is the generalized
equation governing torsional kinematics.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling: Alternative Derivation through Shear Flow
Arguments IV

Prismatic Structures

@ Under the presence of axial compression,

ddL);lot =mp=— PII411 0,11. Incorporating this
into the equation yields:

I
EyCuwb 1111 + (P% — GJ) 011=0]

which is identical to the equation we derived earlier.

o This version of the derivation is only to provide you an intuitive
understanding of the extra term through shear flow. This does not mean
that the E,Cy term is restricted to the thin walled open section case.
Since the term follows from the more formal virtual work principle, this is
quite general and we can compute the F,C), term for any arbitrary solid
section/closed section too:

EyChy :/ Eyy2dA.
S
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Prismatic Structures

1.2. Torsional Buckling

Prismatic Structures

o The torsion constant J and warping
constant (', for common thin-walled
sections are shown in the table here.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 1

Prismatic Structures

e The simplest example is the simply supported beam under axial compression.
Transverse buckling leads to:

2”2Ey1p

Pc'rft'r,n =n 72

where I}, is a principal second moment (i.e., eigenvalue of the I matrix).

@ We have already seen how the torsion buckling problem is mathematically identical to
the flexural buckling problem, so the critical load can directly be written as,

I 72 E,C A A =2E,C
PCT—“U,"% -GJ = 712# Per—twn = GJE + nza# K

o We now have two different critical load estimates!

o When P exceeds P.,_¢r n, then the beam buckles transversely, or bends.
e When P exceeds Py tw,n, then the beam twists, or undergoes torsion deformation.

o A real designer must account for both. Let us set n = 1 and find when the
twist-buckling will occur at a lower load than transverse buckling:

-2 A
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 11

Prismatic Structures

e The RHS in the above represents a limiting value for the torsional rigidity of open
sections. As it is, recall that J ~ O(t?) for open thin walled sections, so it is not very
difficult to meet the above condition in the open section case. (It is a little more difficult
for closed sections)

o In practice, we find that the warping constant C, is small/close to zero for thin walled
rectangular sections meeting at a single point like the following.

WY

Fig. 5-5 from Timoshenko and Gere (2009)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case III

Prismatic Structures

@ So the condition can be simplified to

I
GJ S %Pcrftr,l

2
EyI, . .
where Per_ir1 = % is the Euler critical load.

o This form of the equation is valid even for other boundary conditions - you just
substitute the correct critical load.

o Furthermore, substituting Cy, = 0 in the critical load expression leads to
A
Per—twn = GJI— , i.e., the (first) critical load is independent of the length of
11

the beam!
(Note that the C', = 0 approximation no longer holds for the higher modes)
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

First Two Buckling Modes in the Simply Supported Condition

(=]
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

CODE aster

CODE aster CODE aster

First Four Buckling Modes in the Cantilevered Condition
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Planar Structures Buckling of Plates

2.1. Buckling of Plates I

Planar Structures

e Let us consider a plate on the e; — ea plane. Invoking Kirchhoff assumptions (zero shear

strain, just like we did with beams), the displacement field can be written as
up = —Xzw,;1, uz=-—-Xzwz2, u3z=w.

o The relevant (Von Karman) strains are,

2
CERY w,21
11 =u1,1 + =—X3w,11 +
2 2
2 2
uz o Wy
a2 =u22 + = —X3w,22 +
2 2
Y12 = u1,2 + u2,1 +uz;1u32 = —X32w 12 +w 1w 2.
@ The overall stress field is written as
Ni1 E. Nag E
o11 = —— + —= (€11 +v€a), o022 = —— + — (€22 +vEn1),
t 1—v t 1—v

N
g12 = 722 + G'Yle
where Ni, No, N12 are all loads per unit length.
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Planar Structures Buckling of Plates

2.1. Buckling of Plates I1

Planar Structures

e Skipping a few steps, we have the load contribution to the work coming purely from the
combination of the imposed

OIT = Njjw ;0w ;.
e Integrating this over the whole plate domain P we have,
/ oIl = / (Nijw idw) j — (Nijw ;) jowdA = —/ (Nijw,i),j(SwdAJr/ Nijw njdwdl.
" 7 P oP

@ The elastic contributions read:

t
2
FE,
oU = / 1 7yy2 ((E11 + v€22)0E11 + (E22 + vE11)0E22) + Gy1206712d X3

t
E 2
=4 < X?%dX3> (w11 +vw,22)dw 11 + (w22 + vw,11)dw 22))

1—v2 _t
2
t
2F 2
+ 7 Y < . X§dX3> w 120w 12,
+v -t
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Planar Structures Buckling of Plates

2.1. Buckling of Plates III

Planar Structures

which simplify to yield

= 7‘“3 (( ) ( ) ) 7yt3
w rw w w rw w
oU 1201 — %) 11+ rvw 22)dw 11 + (w22 + vw 11)0w 22 +212(1 )

=D ((w,11 + vw,22)0w 11 + (w22 + vw 11)0w 22) + 2D(1 — v)w 120w 12.

w,120W,12

o We integrate this over P to obtain
/7> SU :/p ((Dw,11 +vDw 22),11 + (Dw,22 + vDw 11) 22 + 2(D(1 — v)w 12) 12) dw
+ /(;pD(w,ll + vw 22)n16w,1 + D(w 22 + vw 11)n2dw 2 + D(1 — v)w, 12(n1dw,2 + nadw 1)
— /a7> ((D(w,u 4+ vw 22)),1n1 + (D(w 22 + vw 11)),2n2
+ (D(1 — v)w,12),1n2 + (D(1 — u)w112),2n1>6w,

where ni,ng are the components of the outward pointing boundary normal vector
(n =nie1 + noea).
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Planar Structures Buckling of Plates

2.1. Buckling of Plates IV

Planar Structures

o For constant D and v this simplifies to:
/ sU =/ D(w,1111 + w,2222 + 2w, 1122)0w
P P
- / D(w, 111m1 + w 112n2 + w,122M1 + W 222M2)0w
oP
+ D((w,11 + vw22)n1 + (1 — v)w 12n2)dw 1 + D((w, 22 + vw,11)n2 + (1 — v)w, 12n1)0w,2,
oP

where we have used symmetry to split the terms related to w 120w, 12.

e Using indicial notation the above can be expressed as

/6U /Dw““ / Dw ;55m 50w

+/ Dw;ijnjéw; + vD((w,22n1 — w’12n2)5w71 + (w711n2 - w,12n1)6w,2)
P
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Planar Structures Buckling of Plates

2.1. Buckling of Plates V

Planar Structures

e Now we are ready to write down the combined principle of virtual work:
OW = 46U — 611 = 0:

/ (Dw“'jj -+ (Nijw,i)yj) dwdA — (Dw,iij + Nijwyi) njéw
P oP
+/ D((w,11 4+ vw,22)n1 + (1 — v)w,12n2)6w 1
oP

+/ D((w,22 + vw,11)n2 + (1 — v)w 12n1)dw 2,
oOP

which can be interpreted in differential form (for constant N;;) as:

DV*w + Niiw 11 + Nogw 22 + 2N12w 12 =0, (X2, X3) €P

(I (D(V?w),j + Nijw,i)n; =0,

(D) (OR) w = specified, (X2, X3) € OP
(I1)  D((w,11 + vw 22)n1 + (1 — v)w, 12n2) = 0,

(I1) (OR) w,; = specified, (X2, X3) € 0P
(III) D((w,22 + l/w,n)nz =+ (1 - V)’wylgnl) =0,
(I1I) (OR) w2 = specified, (X2, X3) € 9P.

o Now we may consider different cases as we see fit.
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Planar Structures

2.1. Buckling of Plates I

Planar Structures

o Let us just illustrate the case of a rectangular plate simply supported on all sides.

Buckling of Plates

@ The domain and boundaries are written as:

P = {(X1,X2)
oP1 = {(Xl,Xz)
ops = { (1. %2)
OP3 = {(X1,X2)

0Py = {(Xl,Xg)

Xi €00, Xae ),
X1 €(0,a), X2 :0}, n=(0,-1),
X1=a, X2E€ (Ovb)}v n= (170)7

X1 €(0,a),X2 :b}, n=(0,1)

X1 =0, Xg¢€ (O,b)}, n = (-1,0),

OP = 0P, UOP2 UIP3UIPy.

o We specify w = 0 on all the boundaries and leave w ; unspecified there (so the
corresponding work conjugate will be set to zero).
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Planar Structures Buckling of Plates

2.1. Buckling of Plates I1

Planar Structures

e The boundary conditions can, hereby, be written as:

OP1:w=0, D(l—v)w2 =0, D(wz2+rw,;i1)=0,
OP2 :w=0, D(wi1+vrwpz)=0 D(Il-v)wiz =0,
OP3:w =0, D(1—v)wi2 =0, D(wp2+rw,;i1)=0,
OPs:w=0, D(wi1+vrwpe)=0 D(I—-v)wiz =0.

e For the case with Nog = N1g = 0, N11 # 0, the governing equations are
DV*w + Niiw,11 = 0.

Check Megson 2013 for the solutions of this.
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Planar Structures Buckling of Plates
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