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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling I

Prismatic Structures

o The transverse buckling equation you should be exposed to thus far starts with an
assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic
assumptions):

/ /
ur = —(Xov" + Xzw'), w2 =v, wuz=w,
and an assumed “dominant” compressive stress field:
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with P being the applied load and A being the sectional area.
o The axial strain for the above deformation field is

1
fu=ui1tg (ui,+u3,+u3,),

where we have used the full nonlinear expression for the Lagrangian strain.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling II

Prismatic Structures

2
o We drop the u% ; term above for the small strain case (since u1,1 > %) and obtain

the Von Karman Strain Expression:

@ The work done by the external load P can be written (in span-wise density) as

w2 , + u?
1= ul’l+¥dj4

,Zs

which, upon substitution of the above displacement field and assuming centroidal
coordinate system becomes,

o We stationarize the above w.r.t. v, w as follows:

S =P (Vo) +w's(w)) =-P (51}%1}’ + 6w%w/) = —P(" v+ w'sw).

(If you find this step mysterious, please approach me!)
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling ITI

Prismatic Structures

@ The transverse load contributions, therefore, are:

A(SII)

8(6v) o
Hﬂ - a(s1) =7 [“’"} ’

O(dw)

o In module 4, we already derived the differential form governing beams in shear as

Isz  Ds| [V _ [fe I3z Iz [0 o1 [0
Ey [123 122:| |:w/m T s = | By Iog  Iool| [w" + P W T ol P

where we have assumed that no other external source of transverse loads are applied.

o Considering the ea deformation in the symmetric case the above simplifies to

‘ EyIs33v"" + Pv' =0 ‘, which is the familiar Euler equation for buckling.

@ Refer to ch. 7 in Sun (2006) for the different cases herein.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling

Prismatic Structures

o For the transverse case, we started with a pure bending kinematics and derived the
transverse load due to compression using the work done. What happens when we
also account for torsion?

e Here, the kinematic deformation field is

up = 0711/1(X2,X3), uz = — X360, usz = X206,

where 0(X1) is the twisting angle (we allow this to be a general function of X1), and
(X2, X3) is the St-Venant warping function (see Module 5).
e The axial strain (under Von Karman simplification, as before) is:

X2 +X2 02
=R

o Under an axial stress field of 011 = %}D, the work done by the load (per unit length)
simplifies as

P X2+ X2 P I
I=— 0 22802 dA=——0 / dA—P—0%,
1 ¢ 11+ 5 1 ,11/ L

where we have canceled out fs 1dA because net warping is zero under pure twist. I7; is
the polar second moment of area.
o We stationarize the work potential and obtain the twist contribution from the load:

I a(s11) 111
o1t = —P1L5(0%) = P2L0,1160 _ o) plu
(07) = A A ) A

1
11 =u1,1 + §(u§71 + u§1) =011+

1.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I

Prismatic Structures

e From the consideration of “pure twist”, the twisting moment is written as

Mywist = GJe,l

2
as per the notation introduced in Module 5. Recall that we had J = I11 — % 2 aaindﬁ
for the torsion constant.

e We ignored the straight stresses 11 in Module 5 since fs 011dA = 0 and we argued that
o011 will be small. Although small, the variations are sufficient to induce additional shear
flow, so let us consider it now.

o Using linear elasticity we have
o1 = By = Ey0 117,

@ The shear flow that the section develops is written as (same procedure as we followed in
Modules 4 and 5):

s s

+to11,1 =0 = quarp(s) — qo Z*/t011,1d8= *Eye,ul/ti/)d&
0 0

dq
ds
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling IT

Prismatic Structures

e Let us restrict our discussions to open sections with go = 0 (our running integral starts
from a free tip). Recall that our analysis in Module 5 led to:
P(s) = —2A40s(s) = — [3 p(s)ds.

e The twisting moment that the warping shear flow quwarp(s) leads to is written as the full
integral (denoted [ (-)ds)

d S
Mwarp:/p(S)Qwarp(S)dSZ/(*dff) /*Ey97111tw(z)dz ds,
0

where we have invoked p(s) = f% from module 5.

o Applying integration by parts we have

Muparp = Eye,u/% w(s)/t 2)dz | — 92 (s)ds = —E, (/¢ (s)d )0 11

— \ Muarp = —EyCuwb 11 \

The constant Cy, is called the warping constant and is a sectional property (much like
the warping function itself, torsion constant .J, area A, second moments, etc.).
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I1I

Prismatic Structures

e Now we have a contribution from pure twist, GJ6 1, and a contribution from warping
suppression, —Fy,Cyw0 411. Adding these both should give us the externally applied total
moment:

Mot = GJO 1 — EyCuwb 111 |-

e For constant M, the above can be solved to obtain #(X1). This is the generalized
equation governing torsional kinematics.

o Under the presence of axial compression, d‘]i\;[(ff‘ =mp = Pi“ 0.11. Incorporating this

into the equation yields:

I
EyCuw 1111 + (P%1 — GJ) 011 =01

which is Sturm-Liouville problem of the form:

pPhL Gy
0 %011 =0, pP=—2————
1111 +p70 11 p EyCu
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 1

Prismatic Structures

e The simplest example is the simply supported beam under axial compression.
Transverse buckling leads to:

o2 By I,

Pc'rft'r,n =n 72

where I, is a principal second moment (i.e., eigenvalue of the I matrix).

e Under pure torsion, we obviously set § = 0 (zero twist) at the ends. But, since it is a
free end, 011 has to be zero everywhere. That is, 011 = Ey0 119 (X2, X3) = 0. Since ¥ is
non-trivial, # 11 = 0 represents the boundary condition.

e This is mathematically very similar to the moment-free boundary condition which is
E,Iw” = 0. This is just a coincidence, but this renders the two problems
mathematically identical, yielding,

111 5 T2 EyCy J 5 A m2EyCy
Pcrftw,nj —-GJ=n T = | Per—tw,n :GAK +n KT

o We now have two different critical load estimates!

o When P exceeds Pc,_¢r n, then the beam buckles transversely, or bends.
o When P exceeds Per_tw,n, then the beam twists, or undergoes torsion deformation.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 11

Prismatic Structures

o A real designer must account for both. Let us set n = 1 and find when the
twist-buckling will occur at a lower load than transverse buckling:

n2Ey (1
Pcr—tw,l < Pcr—tr,l = |GJ < EQy (% p_cw) .

o The RHS in the above represents a limiting value for the torsional rigidity of open
sections. As it is, recall that J ~ O(¢3) for thin walled sections, so it is not very difficult
to meet the above condition.

e In practice, we find that the warping constant C,, is small/close to zero for thin walled
rectangular sections meeting at a point like the following.

L4y

Fig. 5-5 from Timoshenko and Gere (2009)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case III

Prismatic Structures

@ So the condition can be simplified to

Ii1
GJ S Tpcr—tr,l

2
EyI, . .
where Per_ir1 = % is the Euler critical load.

e This form of the equation is valid even for other boundary conditions - you just
substitute the correct critical load.
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

First Two Buckling Modes in the Simply Supported Condition

(=]
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

CODE aster

CODE aster CODE aster

First Four Buckling Modes in the Cantilevered Condition
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-~ PlanarStructures Bucklingof Plates
2.1. Buckling of Plates

Planar Structures
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Planar Structures Buckling of Plates
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