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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling I
Prismatic Structures

The transverse buckling equation you should be exposed to thus far starts with an
assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic
assumptions):

u1 = −(X2v
′ +X3w

′), u2 = v, u3 = w,

and an assumed “dominant” compressive stress field:

≈
σP =

−P
A

0 0
0 0 0
0 0 0

 ,
with P being the applied load and A being the sectional area.

The axial strain for the above deformation field is

E11 = u1,1 +
1

2

(
u21,1 + u22,1 + u23,1

)
,

where we have used the full nonlinear expression for the Lagrangian strain.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling II
Prismatic Structures

We drop the u21,1 term above for the small strain case (since u1,1 ≫
u2
1,1

2
) and obtain

the Von Karman Strain Expression:

E11 = u1,1 +
u22,1 + u23,1

2
.

The work done by the external load P can be written (in span-wise density) as

Π = −
P

A

∫
S
u1,1 +

u22,1 + u23,1

2
dA

which, upon substitution of the above displacement field and assuming centroidal
coordinate system becomes,

Π =
P

2
(v′

2
+ w′2) .

We stationarize the above w.r.t. v, w as follows:

δΠ = P
(
v′δ(v′) + w′δ(w′)

)
= −P

(
δv

d

dX1
v′ + δw

d

dX1
w′

)
= −P (v′′δv + w′′δw).

(If you find this step mysterious, please approach me!)
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling III
Prismatic Structures

The transverse load contributions, therefore, are:

[
f2
f3

]
=


∂(δΠ)

∂(δv)

∂(δΠ)

∂(δw)

 = −P
[
v′′

w′′

]
.

In module 4, we already derived the differential form governing beams in shear as

EY

[
I33 I23
I23 I22

] [
v′′′′

w′′′′

]
=

[
f2
f3

]
=⇒ EY

[
I33 I23
I23 I22

] [
v′′′′

w′′′′

]
+ P

[
v′′

w′′

]
=

[
0
0

]
,

where we have assumed that no other external source of transverse loads are applied.

Considering the e2 deformation in the symmetric case the above simplifies to

EyI33v
′′′′ + Pv′′ = 0 , which is the familiar Euler equation for buckling.

Refer to ch. 7 in Sun (2006) for the different cases herein.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling
Prismatic Structures

For the transverse case, we started with a pure bending kinematics and derived the
transverse load due to compression using the work done. What happens when we
also account for torsion?
Here, the kinematic deformation field is

u1 = θ,1ψ(X2, X3), u2 = −X3θ, u3 = X2θ,

where θ(X1) is the twisting angle (we allow this to be a general function of X1), and
ψ(X2, X3) is the St-Venant warping function (see Module 5).
The axial strain (under Von Karman simplification, as before) is:

E11 = u1,1 +
1

2
(u22,1 + u23,1) = ψθ,11 +

X2
2 +X2

3

2
θ2.

Under an axial stress field of σ11 = −P
A

, the work done by the load (per unit length)
simplifies as

Π = −
P

A

∫
S
ψθ,11 +

X2
2 +X2

3

2
θ2,1dA = −

P

A
θ,11

�
�
��

∫
S
ψdA− P

I11

2A
θ2,1,

where we have canceled out
∫
S ψdA because net warping is zero under pure twist. I11 is

the polar second moment of area.
We stationarize the work potential and obtain the twist contribution from the load:

δΠ = −P
I11

2A
δ(θ2,1) = P

I11

A
θ,11δθ =⇒ mp =

∂(δΠ)

∂(δθ)
= P

I11

A
θ,11.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I
Prismatic Structures

From the consideration of “pure twist”, the twisting moment is written as

Mtwist = GJθ,1

as per the notation introduced in Module 5. Recall that we had J = I11 − 1
2

∫
∂S

∂ψ2

∂n
dℓ

for the torsion constant.

We ignored the straight stresses σ11 in Module 5 since
∫
S σ11dA = 0 and we argued that

σ11 will be small. Although small, the variations are sufficient to induce additional shear
flow, so let us consider it now.

Using linear elasticity we have

σ11 = EyE11 = Eyθ,11ψ.

The shear flow that the section develops is written as (same procedure as we followed in
Modules 4 and 5):

dq

ds
+ tσ11,1 = 0 =⇒ qwarp(s)− q0 = −

s∫
0

tσ11,1ds = −Eyθ,111
s∫

0

tψds.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling II
Prismatic Structures

Let us restrict our discussions to open sections with q0 = 0 (our running integral starts
from a free tip). Recall that our analysis in Module 5 led to:
ψ(s) = −2AOs(s) = −

∫ s
0 p(s)ds.

The twisting moment that the warping shear flow qwarp(s) leads to is written as the full
integral (denoted

∫
(·) ds)

Mwarp =

∫
p(s)qwarp(s)ds =

∫ (
−
dψ

ds

) s∫
0

−Eyθ,111tψ(z)dz

 ds,

where we have invoked p(s) = − dψ
ds

from module 5.

Applying integration by parts we have

Mwarp = Eyθ,11

∫
d

ds

ψ(s)
�
�
�
��s∫

0

tψ(z)dz

− ψ2(s)ds = −Ey
(∫

ψ2(s)ds

)
︸ ︷︷ ︸

Cw

θ,11

=⇒ Mwarp = −EyCwθ,11 .

The constant Cw is called the warping constant and is a sectional property (much like
the warping function itself, torsion constant J , area A, second moments, etc.).
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling III
Prismatic Structures

Now we have a contribution from pure twist, GJθ,1, and a contribution from warping
suppression, −EyCwθ,q11. Adding these both should give us the externally applied total
moment:

Mtot = GJθ,1 − EyCwθ,111 .

For constant Mtot, the above can be solved to obtain θ(X1). This is the generalized
equation governing torsional kinematics.

Under the presence of axial compression, dMtot
dX1

= mP = PI11
A

θ,11. Incorporating this

into the equation yields:

EyCwθ,1111 +

(
P
I11

A
−GJ

)
θ,11 = 0 ,

which is Sturm-Liouville problem of the form:

θ,1111 + p2θ,11 = 0, p2 =
P I11

A
−GJ

EyCw
.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case I
Prismatic Structures

The simplest example is the simply supported beam under axial compression.
Transverse buckling leads to:

Pcr−tr,n = n2 π
2EyIp

ℓ2

where Ip is a principal second moment (i.e., eigenvalue of the I matrix).

Under pure torsion, we obviously set θ = 0 (zero twist) at the ends. But, since it is a
free end, σ11 has to be zero everywhere. That is, σ11 = Eyθ,11ψ(X2, X3) = 0. Since ψ is
non-trivial, θ,11 = 0 represents the boundary condition.

This is mathematically very similar to the moment-free boundary condition which is
EyIw′′ = 0. This is just a coincidence, but this renders the two problems
mathematically identical, yielding,

Pcr−tw,n
I11

A
−GJ = n2 π

2EyCw

ℓ2
=⇒ Pcr−tw,n = GA

J

I11
+ n2 A

I11

π2EyCw

ℓ2
.

We now have two different critical load estimates!

When P exceeds Pcr−tr,n, then the beam buckles transversely, or bends.
When P exceeds Pcr−tw,n, then the beam twists, or undergoes torsion deformation.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case II
Prismatic Structures

A real designer must account for both. Let us set n = 1 and find when the
twist-buckling will occur at a lower load than transverse buckling:

Pcr−tw,1 ≤ Pcr−tr,1 =⇒ GJ ≤
π2Ey

ℓ2

(
I11

A
Ip − Cw

)
.

The RHS in the above represents a limiting value for the torsional rigidity of open
sections. As it is, recall that J ∼ O(t3) for thin walled sections, so it is not very difficult
to meet the above condition.

In practice, we find that the warping constant Cw is small/close to zero for thin walled
rectangular sections meeting at a point like the following.

Fig. 5-5 from Timoshenko and Gere (2009)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case III
Prismatic Structures

So the condition can be simplified to

GJ ≤
I11

A
Pcr−tr,1

where Pcr−tr,1 =
π2EyIp
ℓ2

is the Euler critical load.

This form of the equation is valid even for other boundary conditions - you just
substitute the correct critical load.
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section
Prismatic Structures

First Two Buckling Modes in the Simply Supported Condition
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section
Prismatic Structures

First Four Buckling Modes in the Cantilevered Condition
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Planar Structures Buckling of Plates

2.1. Buckling of Plates
Planar Structures
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Planar Structures Buckling of Plates

References I

[1] C. T. Sun. Mechanics of Aircraft Structures, 2nd edition. Hoboken, N.J: Wiley, June 2006.
isbn: 978-0-471-69966-8 (cit. on pp. 2, 5).

[2] Stephen P. Timoshenko and James M. Gere. Theory of Elastic Stability, Courier
Corporation, June 2009. isbn: 978-0-486-47207-2 (cit. on pp. 2, 11).

Balaji, N. N. (AE, IITM) AS3020* November 4, 2025 15 / 15


	Prismatic Structures
	Transverse Buckling
	Torsional Buckling

	Planar Structures
	Buckling of Plates

	References

