AS3020: Aerospace Structures Module 8: Some Results From Buckling (V2)

Instructor: Nidish Narayanaa Balaji

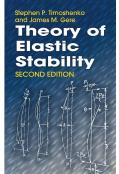
Dept. of Aerospace Engg., IIT-Madras, Chennai

November 10, 2025

Table of Contents

- Prismatic Structures
 - Transverse Buckling
 - Torsional Buckling
 - The Simply Supported Case
 - Deformation Fields for a "Cross" Section
- Planar Structures
 - Buckling of Plates

Chapter 7 in Sun (2006)



Chapter 5 in Timoshenko and Gere (2009)

1.1. Transverse Buckling I

• The transverse buckling equation you should be exposed to thus far starts with an assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic assumptions):

$$u_1 = -(X_2v' + X_3w'), \quad u_2 = v, \quad u_3 = w,$$

and an assumed "dominant" compressive stress field:

$$g_P = \begin{bmatrix} \frac{-P}{A} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix},$$

with P being the applied load and A being the sectional area.

• The axial strain for the above deformation field is

$$\mathcal{E}_{11} = u_{1,1} + \frac{1}{2} \left(u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2 \right),\,$$

where we have used the full nonlinear expression for the Lagrangian strain.

1.1. Transverse Buckling II

Prismatic Structures

• We drop the $u_{1,1}^2$ term above for the small strain case (since $u_{1,1} \gg \frac{u_{1,1}^2}{2}$) and obtain the Von Karman Strain Expression:

$$\mathcal{E}_{11} = u_{1,1} + \frac{u_{2,1}^2 + u_{3,1}^2}{2}.$$

- The overall stress field will be taken as the sum of the imposed field of $\sigma_{P_{11}} = -\frac{P}{A}$ and the elastic stress $\sigma_{11} = E_y \mathcal{E}_{11}$.
- The virtual work due to the stress is written as

$$\delta W = \sigma_{11} \delta \mathcal{E}_{11} = \left(-\frac{P}{A} + E_y \mathcal{E}_{11} \right) \delta \mathcal{E}_{11} = \underbrace{-\frac{\delta \Pi}{P} \delta \mathcal{E}_{11}}_{\delta U} + \underbrace{E_y \mathcal{E}_{11} \delta E_{11}}_{\delta U} = \delta (U - \Pi).$$

Where we have identified $\delta\Pi$ as the load contribution and δU as the elastic contribution.

4 □ ▶

1.1. Transverse Buckling III

Prismatic Structures

• The load contribution is written as

$$\delta\Pi = \frac{P}{A} \int_{\mathcal{S}} \delta u_{1,1} + (u_{2,1} \delta u_{2,1} + u_{3,1} \delta u_{3,1}) dA$$

which, upon substitution of the above displacement field and assuming centroidal coordinate system becomes,

$$\delta\Pi = P(v_{,1}\delta v_{,1} + w_{,1}\delta w_{,1}).$$

• We need to integrate this along the span of the beam to obtain the overall virtual work (let us assume $P(X_1)$). This simplifies through integration by parts as:

$$\begin{split} \int\limits_0^\ell \delta \Pi &= \int\limits_0^\ell P(v,_1 \delta v,_1 + w,_1 \delta w,_1) dX_1 \\ &= P(v,_1 \delta v + w,_1 \delta w) \bigg|_0^\ell - \int\limits_0^\ell \left((Pv,_1),_1 \delta v + (Pw,_1),_1 \delta w \right) dX_1 \\ &= - \int\limits_0^\ell \delta \underline{V}^T (P\underline{V},_1),_1 dX_1 + P\delta \underline{V}^T \underline{V},_1 \bigg|_0^\ell \end{split}$$

1.1. Transverse Buckling IV

Prismatic Structures

• Next we consider the elastic contributions

$$\delta U = E_y \begin{bmatrix} \delta v_{,11} & \delta w_{,11} \end{bmatrix} \begin{bmatrix} I_{33} & I_{23} \\ I_{23} & I_{22} \end{bmatrix} \begin{bmatrix} v_{,11} \\ w_{,11} \end{bmatrix} = E_y \delta \underline{V}_{,11}{}^T \underline{\underline{I}} \underline{V}_{,11}$$

which, upon span-wise integration, becomes

$$\int\limits_{0}^{\ell} \delta U = \delta \underline{V}_{,1}{}^{T} E_{y} \underline{\underline{I}} \underline{V}_{,11} \bigg|_{0}^{\ell} - \delta \underline{V}^{T} \Big(E_{y} \underline{\underline{I}} \underline{V}_{,11} \Big)_{,1} \bigg|_{0}^{\ell} + \int\limits_{0}^{\ell} \delta \underline{V}^{T} \Big(E_{y} \underline{\underline{I}} \underline{V}_{,11} \Big)_{,11} dX_{1}.$$

• Putting everything together, we have

$$\int_{0}^{\ell} \delta W = \int_{0}^{\ell} \delta \underline{V}^{T} \left(\left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right)_{,11} + \left(P \underline{V}_{,1} \right)_{,1} \right) dX_{1}$$
$$- \delta \underline{V}^{T} \left(\left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right)_{,1} + P \underline{V}_{,1} \right) \Big|_{0}^{\ell} + \delta \underline{V}^{\prime T} \left(E_{y} \underline{\underline{I}} \underline{V}_{,11} \right) \Big|_{0}^{\ell}.$$

By the principle of virtual work the above must be zero for equilibrium for arbitrary $\delta \underline{V}$ and $\delta \underline{V}$.

Balaji, N. N. (AE, IITM) AS3020* November 10, 2025 6 / 18

1.1. Transverse Buckling V

Prismatic Structures

• For this equality to hold for arbitrary virtual displacements $(\delta \underline{V})$ and rotations $(\delta \underline{V}')$ each of the terms above should be equated to zero in their respective domains. So we obtain the differential equation system:

$$\begin{split} \left(E_{y}\underline{\underline{I}}\,\underline{V}_{,11}\right)_{,11} + \left(P\underline{V}_{,1}\right)_{,1} &= 0, \quad X_{1} \in (0,\ell) \\ \left(E_{y}\underline{\underline{I}}\,\underline{V}_{,11}\right)_{,1} + P\underline{V}_{,1} &= 0, \quad (\text{OR}) \quad \underline{V} = \text{specified}, \quad X_{1} \in \{0,\ell\} \\ E_{y}\underline{\underline{I}}\,\underline{V}_{,11} &= 0, \quad (\text{OR}) \quad \underline{V}' &= \text{specified}, \quad X_{1} \in \{0,\ell\}. \end{split}$$

Note that this assumes that no other form of external load is applied.

• Considering the $\underline{e_2}$ deformation in the symmetric case $(I_{23} = 0)$, the above simplifies to

$$E_y I_{33} v'''' + P v'' = 0,$$

which is the familiar Euler equation for buckling.

• Refer to ch. 7 in Sun (2006) for the different cases of boundary conditions herein.

Balaji, N. N. (AE, IITM)

1.2. Torsional Buckling

Prismatic Structures

- For the transverse case, we started with a pure bending kinematics and derived the transverse load due to compression using the work done. What happens when we also account for torsion?
- Here, the kinematic deformation field is

$$u_1 = \theta_{,1}\psi, \quad u_2 = -X_3\theta, \quad u_3 = X_2\theta,$$

where $\theta(X_1)$ is the twisting angle (we allow this to be a general function of X_1), and $\psi(X_2, X_3)$ is the St-Venant warping function (see Module 5).

• The axial strain (under Von Karman simplification, as before) is:

$$\mathcal{E}_{11} = u_{1,1} + \frac{1}{2}(u_{2,1}^2 + u_{3,1}^2) = \psi \theta_{,11} + \frac{X_2^2 + X_3^2}{2}\theta_{,1}^2.$$

• Under an axial stress field of $\sigma_{11} = \frac{-P}{A}$, the work done by the load (per unit length) simplifies as

$$\Pi = -\sigma_{11}\mathcal{E}_{11} = \frac{P}{A} \int_{\mathcal{S}} \psi \theta_{,11} + \frac{X_2^2 + X_3^2}{2} \theta_{,1}^2 dA = \frac{P}{A} \theta_{,11} \int_{\mathcal{S}} \psi dA + P \frac{I_{11}}{2A} \theta_{,1}^2,$$

where we have canceled out $\int_{\mathcal{S}} \psi dA$ because net displacement due to warping is zero. I_{11} is the polar second moment of area.

• We stationarize the work potential and obtain the twist contribution from the load:

$$\delta \Pi = P \frac{I_{11}}{2A} \delta(\theta_{,1}^2) = -P \frac{I_{11}}{A} \theta_{,11} \delta \theta \implies m_p = \frac{\partial (\delta \Pi)}{\partial (\delta \theta)} = -P \frac{I_{11}}{A} \theta_{,11}.$$

1.2. Torsional Buckling I

Prismatic Structures

• From the consideration of "pure twist", the twisting moment is written as

$$M_{twist} = GJ\theta_{,1}$$

as per the notation introduced in Module 5. Recall that we had $J = I_{11} - \frac{1}{2} \int_{\partial S} \frac{\partial \psi^2}{\partial n} d\ell$ for the torsion constant.

- We ignored the straight stresses σ_{11} in Module 5 since $\int_{S} \sigma_{11} dA = 0$ and we argued that σ_{11} will be small. Although small, the variations are sufficient to induce additional shear flow, so let us consider it now.
- Using linear elasticity we have

$$\sigma_{11} = E_y \mathcal{E}_{11} = E_y \theta_{,11} \psi.$$

• The shear flow that the section develops is written as (same procedure as we followed in Modules 4 and 5):

$$\frac{dq}{ds} + t\sigma_{11,1} = 0 \implies q_{warp}(s) - q_0 = -\int_0^s t\sigma_{11,1} ds = -E_y \theta_{,111} \int_0^s t\psi ds.$$

(□)

1.2. Torsional Buckling II

Prismatic Structures

- Let us restrict our discussions to open sections with $q_0=0$ (our running integral starts from a free tip). Recall that our analysis in Module 5 led to: $\psi(s)=-2A_{OS}(s)=-\int_0^s p(s)ds$.
- The twisting moment that the warping shear flow $q_{warp}(s)$ leads to is written as the full integral (denoted $\int (\cdot) ds$)

$$M_{warp} = \int p(s)q_{warp}(s)ds = \int \left(-\frac{d\psi}{ds}\right) \left(\int_{0}^{s} -E_{y}\theta_{,111}t\psi(z)dz\right)ds,$$

where we have invoked $p(s) = -\frac{d\psi}{ds}$.

• Applying integration by parts we have

$$M_{warp} = E_y \theta_{,11} \int \frac{d}{ds} \left(\psi(s) \int_{0}^{s} t \psi(z) dz \right) - t \psi^2(s) ds = -E_y \underbrace{\left(\int t \psi^2(s) ds \right)}_{C_w} \theta_{,11}$$

$$\implies \boxed{M_{warp} = -E_y C_w \theta_{,11}}.$$

The constant C_w is called the **warping constant** and is a sectional property (much like the warping function itself, torsion constant J, area A, second moments, etc.).

Balaji, N. N. (AE, HTM)

1.2. Torsional Buckling III

Prismatic Structures

• Now we have a contribution from pure twist, $GJ\theta_{,1}$, and a contribution from warping suppression, $-E_yC_w\theta_{,q11}$. Adding these both should give us the externally applied total moment:

$$M_{tot} = GJ\theta_{,1} - E_y C_w \theta_{,111}.$$

- For constant M_{tot} , the above can be solved to obtain $\theta(X_1)$. This is the generalized equation governing torsional kinematics.
- Under the presence of axial compression, $\frac{dM_{tot}}{dX_1} = m_P = -\frac{PI_{11}}{A}\theta_{,11}$. Incorporating this into the equation yields:

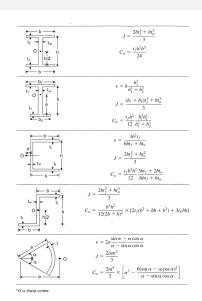
$$E_y C_w \theta_{,1111} + \left(P \frac{I_{11}}{A} - GJ \right) \theta_{,11} = 0$$

which is Sturm-Liouville problem of the form:

$$\theta_{,1111} + p^2 \theta_{,11} = 0, \quad p^2 = \frac{P \frac{I_{11}}{A} - GJ}{E_u C_w}.$$

11 / 18

• The torsion constant J and warping constant C_w can be derived for any given thin walled section. The expressions for common sections are shown in the table here.



November 10, 2025

1.2.1. Torsional Buckling: The Simply Supported Case I Prismatic Structures

• The simplest example is the simply supported beam under axial compression. Transverse buckling leads to:

$$P_{cr-tr,n} = n^2 \frac{\pi^2 E_y I_p}{\ell^2}$$

where I_p is a principal second moment (i.e., eigenvalue of the \underline{I} matrix).

- Under pure torsion, we obviously set $\theta = 0$ (zero twist) at the ends. But, since it is a free end, σ_{11} has to be zero everywhere. That is, $\sigma_{11} = E_{\eta}\theta_{11}\psi(X_2, X_3) = 0$. Since ψ is non-trivial, $\theta_{.11} = 0$ represents the boundary condition.
- This is mathematically very similar to the moment-free boundary condition which is $E_n I w'' = 0$. This is just a coincidence, but this renders the two problems mathematically identical, yielding,

$$P_{cr-tw,n} \frac{I_{11}}{A} - GJ = n^2 \frac{\pi^2 E_y C_w}{\ell^2} \implies \boxed{P_{cr-tw,n} = GA \frac{J}{I_{11}} + n^2 \frac{A}{I_{11}} \frac{\pi^2 E_y C_w}{\ell^2}}.$$

- We now have two different critical load estimates!
 - When P exceeds $P_{cr-tr,n}$, then the beam buckles transversely, or bends.
 - When P exceeds $P_{cr-tw,n}$, then the beam **twists**, or undergoes torsion deformation.

1.2.1. Torsional Buckling: The Simply Supported Case II

Prismatic Structures

• A real designer must account for both. Let us set n = 1 and find when the twist-buckling will occur at a lower load than transverse buckling:

$$P_{cr-tw,1} \le P_{cr-tr,1} \implies GJ \le \frac{\pi^2 E_y}{\ell^2} \left(\frac{I_{11}}{A} I_p - C_w \right)$$

- The RHS in the above represents a limiting value for the torsional rigidity of open sections. As it is, recall that $J \sim \mathcal{O}(t^3)$ for thin walled sections, so it is not very difficult to meet the above condition.
- In practice, we find that the warping constant C_w is small/close to zero for thin walled rectangular sections meeting at a point like the following.

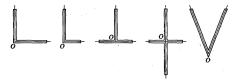


Fig. 5-5 from Timoshenko and Gere (2009)

4 □ ▶

Prismatic Structures

• So the condition can be simplified to

$$GJ \le \frac{I_{11}}{A} P_{cr-tr,1}$$

where $P_{cr-tr,1} = \frac{\pi^2 E_y I_p}{\ell^2}$ is the Euler critical load.

- This form of the equation is valid even for other boundary conditions you just substitute the correct critical load.
- Furthermore, substituting $C_w = 0$ in the critical load expression leads to

$$P_{cr-tw,n} = GA rac{J}{I_{11}}$$
, i.e., the (first) critical load is independent of the length of

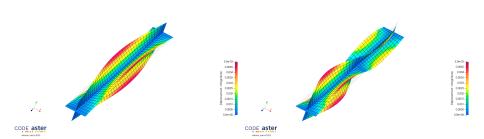
the beam!

(Note that the $C_w = 0$ approximation no longer holds for the higher modes)

15 / 18

1.2.2. Torsional Buckling: Deformation Fields for a "Cross" Section

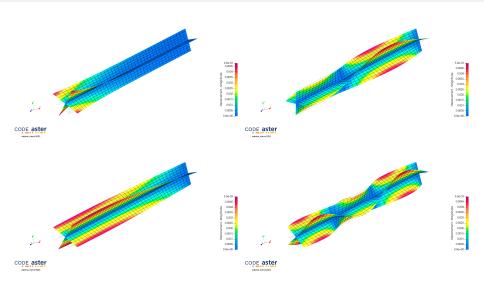
Prismatic Structures



First Two Buckling Modes in the Simply Supported Condition

1.2.2. Torsional Buckling: Deformation Fields for a "Cross" Section

Prismatic Structures



First Four Buckling Modes in the Cantilevered Condition

2.1. Buckling of Plates

- C. T. Sun. Mechanics of Aircraft Structures, 2nd edition. Hoboken, N.J. Wiley, June 2006. ISBN: 978-0-471-69966-8 (cit. on pp. 2, 7, 12).
- [2] Stephen P. Timoshenko and James M. Gere. Theory of Elastic Stability, Courier Corporation, June 2009. ISBN: 978-0-486-47207-2 (cit. on pp. 2, 14).