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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling I

Prismatic Structures

o The transverse buckling equation you should be exposed to thus far starts with an
assumed kinematic field consisting of pure bending (assuming Kirchhoff kinematic
assumptions):

/ /
ur = —(Xov" + Xzw'), w2 =v, wuz=w,
and an assumed “dominant” compressive stress field:

e i
A
0
0

Q
-
I

0 0
0o 0f,
0 0
with P being the applied load and A being the sectional area.
o The axial strain for the above deformation field is

1
fu=ui1tg (ui,+u3,+u3,),

where we have used the full nonlinear expression for the Lagrangian strain.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling II

Prismatic Structures

u%l)

e We drop the u% ; term above for the small strain case (since u1,1 > —5 and obtain

the Von Karman Strain Expression:

u? | +u?
En =g+ L
2
e The overall stress field will be taken as the sum of the imposed field of op,, = 7§ and

the elastic stress 011 = Ey&€11.
@ The virtual work due to the stress is written as

—oI1
U

—
P P —N—
oW = 0116611 = (_Z + Eygn) 0&11 = —25511 +Ey5115E11 =46(U —1I).

Where we have identified 011 as the load contribution and dU as the elastic contribution.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling ITI

Prismatic Structures

o The load contribution is written as
P
oIl = a dur,1 + (u2,10u2,1 + us 10u3,1)dA
s

which, upon substitution of the above displacement field and assuming centroidal
coordinate system becomes,

‘ oIl = P(v,ldv,l + w,ldw,l) X

o We need to integrate this along the span of the beam to obtain the overall virtual work
(let us assume P(X71)). This simplifies through integration by parts as:

YA L
/51‘[:/13’(1;,161),1 +w16w,1)dXy
0 0

= P(v,10v + w,16w)

L
e
— / ((Pv,1),10v 4 (Pw,1),16w) dX1
0
0

4

L
- / SVI(PV ;) dX1 + PSVTV |
’ 0
0
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling IV

Prismatic Structures

o Next we consider the elastic contributions

I I
o =By [fon dwn] [122 Izﬂ [111)}1111] = BydV 1, "LV 1y

which, upon span-wise integration, becomes

L

£
/5U =6V, TEIV |
0

. — 5ZT(EZ/£Z,11)’1

s

V4
)
+ / VT (ByIV 1y | dxy.
o ==

o Putting everything together, we have

¢ 4
fov-for () 2 Jon
0 0
4

T ((Eygz,u) o Pz,l) r +6V'" (ByLV 1,)
, 0 0

By the principle of virtual work the above must be zero for equilibrium for arbitrary 6V
and 6V ;.
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Prismatic Structures Transverse Buckling

1.1. Transverse Buckling V

Prismatic Structures

e For this equality to hold for arbitrary virtual displacements (6V') and rotations (§V)
each of the terms above should be equated to zero in their respective domains. So we
obtain the differential equation system:

) n ' (PZJ) =0 X1€(0,0)

(E‘y£Z 11) [ +PV; =0, (OR) V =specified, X1 € {060}
EylV 1, =0, (OR) V'=specified, X1 € {0,¢}.

Note that this assumes that no other form of external load is applied.

o Considering the ez deformation in the symmetric case (I23 = 0), the above simplifies to

EyI33v”” + Py =0 i

which is the familiar Euler equation for buckling.

e Refer to ch. 7 in Sun (2006) for the different cases of boundary conditions herein.
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling

Prismatic Structures

o For the transverse case, we started with a pure bending kinematics and derived the
transverse load due to compression using the work done. What happens when we
also account for torsion?

e Here, the kinematic deformation field is

up =017, uz=-X30, u3z= X0,
where 0(X7) is the twisting angle (we allow this to be a general function of X1), and
(X2, X3) is the St-Venant warping function (see Module 5).
e The axial strain (under Von Karman simplification, as before) is:
X3+ X2 02
2 b
o Under an axial stress field of 011 = %}D, the work done by the load (per unit length)
simplifies as

P X2+ X2 P It
I=—-011&1 = — 0 2 T392dA==—0 / dA + P—0%,
o11€11 A/Sd) 11+ 5 a3 ne + oA

where we have canceled out |, s YdA because net displacement due to warping is zero.
111 is the polar second moment of area.
o We stationarize the work potential and obtain the twist contribution from the load:
111 111 o(d11) I11

SIl=P—45(0%) = —P—-60,.60 — =2 = _P—0.,.
24 %0 A P = 5(56) A H

1
E11 =u1,1 + §(u§1 + u%l) =011 +
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I

Prismatic Structures

e From the consideration of “pure twist”, the twisting moment is written as

Mywist = GJe,l

2
as per the notation introduced in Module 5. Recall that we had J = I11 — % 2 aaindﬁ
for the torsion constant.

e We ignored the straight stresses 11 in Module 5 since fs 011dA = 0 and we argued that
o011 will be small. Although small, the variations are sufficient to induce additional shear
flow, so let us consider it now.

o Using linear elasticity we have
o1 = By = Ey0 117,

@ The shear flow that the section develops is written as (same procedure as we followed in
Modules 4 and 5):

s s

+to11,1 =0 = quarp(s) — qo Z*/t011,1d8= *Eye,ul/ti/)d&
0 0

dq
ds
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling IT

Prismatic Structures

e Let us restrict our discussions to open sections with go = 0 (our running integral starts
from a free tip). Recall that our analysis in Module 5 led to:
P(s) = —2A40s(s) = — [3 p(s)ds.

e The twisting moment that the warping shear flow quwarp(s) leads to is written as the full
integral (denoted [ (-)ds)

S
d
Mwarp:/p(s)(huarp(s)dsz/(*d*f) /*Eyg,llltw(z)dz ds,
0
. v
where we have invoked p(s) = — 3.

o Applying integration by parts we have

Muyarp = Eyf 11 / % w(s)/t 2)dz | — tp%(s)ds = —Ey (/tw2(s)ds> 011
C

w

= \ Muarp = —EyCuwb 11 \

The constant Cy, is called the warping constant and is a sectional property (much like
the warping function itself, torsion constant .J, area A, second moments, etc.).
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling I1I

Prismatic Structures

e Now we have a contribution from pure twist, GJ6 1, and a contribution from warping
suppression, —Fy,Cyw0 411. Adding these both should give us the externally applied total
moment:

Mot = GJO 1 — EyCuwb 111 |-

e For constant M, the above can be solved to obtain #(X1). This is the generalized
equation governing torsional kinematics.

o Under the presence of axial compression, d‘]i\;[(ff‘ =mp = — Pg“ 0,11. Incorporating this

into the equation yields:

I
EyCuw 1111 + (P%1 — GJ) 011 =01

which is Sturm-Liouville problem of the form:

pPhL Gy
0 %011 =0, pP=—2————
1111 +p70 11 p EyCu
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Prismatic Structures Torsional Buckling

1.2. Torsional Buckling

Prismatic Structures

o The torsion constant J and warping
constant C, can be derived for any given
thin walled section. The expressions for
common sections are shown in the table
here.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 1

Prismatic Structures

e The simplest example is the simply supported beam under axial compression.
Transverse buckling leads to:

o2 By I,

Pc'rft'r,n =n 72

where I, is a principal second moment (i.e., eigenvalue of the I matrix).

e Under pure torsion, we obviously set § = 0 (zero twist) at the ends. But, since it is a
free end, 011 has to be zero everywhere. That is, 011 = Ey0 119 (X2, X3) = 0. Since ¥ is
non-trivial, # 11 = 0 represents the boundary condition.

e This is mathematically very similar to the moment-free boundary condition which is
E,Iw” = 0. This is just a coincidence, but this renders the two problems
mathematically identical, yielding,

111 5 T2 EyCy J 5 A m2EyCy
Pcrftw,nj —-GJ=n T = | Per—tw,n :GAK +n KT

o We now have two different critical load estimates!

o When P exceeds Pc,_¢r n, then the beam buckles transversely, or bends.
o When P exceeds Per_tw,n, then the beam twists, or undergoes torsion deformation.
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case 11

Prismatic Structures

o A real designer must account for both. Let us set n = 1 and find when the
twist-buckling will occur at a lower load than transverse buckling:

n2Ey (1
Pcr—tw,l < Pcr—tr,l = |GJ < EQy (% p_cw) .

o The RHS in the above represents a limiting value for the torsional rigidity of open
sections. As it is, recall that J ~ O(¢3) for thin walled sections, so it is not very difficult
to meet the above condition.

e In practice, we find that the warping constant C,, is small/close to zero for thin walled
rectangular sections meeting at a point like the following.

L4y

Fig. 5-5 from Timoshenko and Gere (2009)
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Prismatic Structures Torsional Buckling

1.2.1. Torsional Buckling: The Simply Supported Case III

Prismatic Structures

@ So the condition can be simplified to

I
GJ S %Pcrftr,l

2
EyI, . .
where Per_ir1 = % is the Euler critical load.

o This form of the equation is valid even for other boundary conditions - you just
substitute the correct critical load.

o Furthermore, substituting Cy, = 0 in the critical load expression leads to
J
Per—twn = GAI— | i.e., the (first) critical load is independent of the length of
11

the beam!
(Note that the C', = 0 approximation no longer holds for the higher modes)
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

First Two Buckling Modes in the Simply Supported Condition

(=]
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Prismatic Structures Torsional Buckling

1.2.2. Torsional Buckling: Deformation Fields for a ”Cross” Section

Prismatic Structures

CODE aster

CODE aster CODE aster

First Four Buckling Modes in the Cantilevered Condition
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-~ PlanarStructures Bucklingof Plates
2.1. Buckling of Plates

Planar Structures
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Planar Structures Buckling of Plates
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