Introduction Experimental Campaign Measurement Insights Ooo Ooo Ooo Ooo Ooo

### IMAC 2025, Orlando, FL, USA

#### **#18782:** Epistemic Insights on Frictional Hysteresis Models based on Micro-Slip Measurements under Single- and Multi-Harmonic Loading

Nidish Narayanaa Balaji <sup>1</sup> Daniel Fochler <sup>2</sup> Malte Krack <sup>2</sup>

<sup>1</sup>Department of Aerospace Engineering, IIT Madras

<sup>2</sup>Institute of Aircraft Propulsion Systems, University of Stuttgart



Universität Stuttgart





#### Experimental Campaign Measurement Insights Parametric Identification Conclusions OOO

#### 1. Introduction

- Frictional Joints are ubiquitous
- Two broad categories: Macro-Slip Micro-Slip √
- Different mathematical models have been proposed for each<sup>a</sup>.
- Utility of these models in epistemic investigations of friction currently limited.

<sup>a</sup>Mathis et al. 2020.

#### Goals

"Rigid" friction

- Investigate *epistemic* features of experimentally measured hysteretic responses in the micro-slip regime
- Explore mathematical descriptions and repeatable parametric identification methodologies.





Micro-slip Model

#18782

- Tribometer designed to investigated friction in the **micro-slip regimes**
- Metallic (steel) specimens of 1 2 mm<sup>2</sup> nominal contact area.







See talk #18786 for details





Voltage excitation of the form

 $v(t) = V_1 \cos \Omega t + V_2 \cos(n\Omega t + \phi)$ 

• We have five control parameters:



Voltage excitation of the form

 $v(t) = V_1 \cos \frac{\Omega t}{t} + V_2 \cos(t \frac{\Omega t}{t} + \phi)$ 

We have five control parameters:
 Ω Excitation frequency



Voltage excitation of the form

 $v(t) = \frac{V_1 \cos \Omega t}{V_2 \cos(n\Omega t + \phi)}$ 

We have five control parameters:
 Ω Excitation frequency
 V<sub>1</sub>, V<sub>2</sub> Harmonic amplitude (s)



• Voltage excitation of the form

 $v(t) = V_1 \cos \Omega t + V_2 \cos n\Omega t + \phi$ 

• We have five control parameters:

Ω Excitation frequency  $V_1, V_2$  Harmonic amplitude (s) n, φ Higher harmonic and relative phase



| • | Voltage excitation of the form                          | Test | $V_1$ | $V_2$ | Ω  | n | $\phi$ | Remarks             |
|---|---------------------------------------------------------|------|-------|-------|----|---|--------|---------------------|
|   | []                                                      | 1    | 1     | 0     | 20 | 3 | 0      | Periodic            |
|   | $v(t) = V_1 \cos \Omega t + V_2 \cos(n\Omega t + \phi)$ | 2    | 0     | 1     | 20 | 3 | 0      | excitation          |
|   |                                                         | 3    | 0.6   | 0.35  | 20 | 3 | 0      |                     |
| ٠ | We have five control parameters:                        | 4    | 0.6   | 0.5   | 20 | 3 | 0      |                     |
|   |                                                         | 5    | 0.6   | 0.6   | 20 | 3 | 90     | Varying second      |
|   | Ω Excitation frequency                                  | 6    | 0.6   | 0.7   | 20 | 3 | 180    | component           |
|   | V <sub>1</sub> , V <sub>2</sub> Harmonic amplitude (s)  | 7    | 0.6   | 0.7   | 20 | 3 | 232    | amplitude           |
|   | $n, \phi$ Higher harmonic and relative                  | 8    | 0.6   | 0.85  | 20 | 3 | 0      | and phase.          |
|   | nhase                                                   | 9    | 0.6   | 0.85  | 20 | 3 | 135    |                     |
|   | phase                                                   | 10   | 0.6   | 0.85  | 20 | 3 | 270    |                     |
|   |                                                         | 11   | 0.6   | 0.85  | 20 | 2 | 0      |                     |
|   |                                                         | 12   | 0.6   | 0.85  | 20 | 4 | 315    | Varying harmonic    |
|   |                                                         | 13   | 0.6   | 0.85  | 20 | 5 | 315    | of second           |
|   |                                                         | 14   | 0.6   | 0.85  | 20 | 6 | 0      | component.          |
|   |                                                         | 15   | 1     | 0     | 30 | 3 | 0      |                     |
|   |                                                         | 16   | 1     | 0     | 40 | 3 | 0      | Periodic excitation |
|   |                                                         | 17   | 1     | 0     | 50 | 3 | 0      | cases with          |
|   |                                                         | 18   | 1     | 0     | 60 | 3 | 0      | varying frequency.  |

1

1

19

20

0

0

70 3

80 3

0

0







### 3. Measurement Insights

#### Focus Aspects

Symmetry Masing's Hypotheses

Rate dependence, Normal Load Dependence Friction Modeling

Slip sensitivity Wear Degradation

Multi-Harmonic Responses Response Regimes

- 1. Introduction
- 2. Experimental Campaign
- 3. Measurement Insights Rate Dependence Symmetry Multi-Harmonic Responses Slip Sensitivity Normal Load Dependence
- 4. Parametric Identification Model Form Assessment Predictive Assessments
- 5. Conclusions



### 3.1. Rate Dependence

Measurement Insights

- We investigate rate dependence by fixing voltage amplitude and varying frequency
- This can help in the choice of an appropriate mathematical description

#### Rate Independence

Force-displacement relationship is independent of the magnitude of velocity.

Introduction Compared Campaign According to Conclusions O

### 3.1. Rate Dependence

Measurement Insights

- We investigate rate dependence by fixing voltage amplitude and varying frequency
- This can help in the choice of an appropriate mathematical description

#### Rate Independence

Force-displacement relationship is independent of the magnitude of velocity.

20

While the responses are rateindependent for the most part, relatively minor ratedependence is observable.







# 3.2. Symmetry

Measurement Insights

#### The Masing Element

- The forward part of the hysteresis curve is identical to the reverse part of the hysteresis curve, only **stretched** by a factor of two and **reflected** across the axes when oscillating between two extremes.
- The equation of any hysteretic response curve is **determined from the last point of the** loading cycle before reversal and requiring that if the loading curve crosses a previous loading curve, it must correspond to the previous loading curve. As in (Brake 2017)



Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions

000000



# 3.2. Symmetry



Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions



# 3.2. Symmetry





## 3.2. Symmetry





# 3.2. Symmetry



Introduction Experimental Campaign October Oct



### 3.3. Multi-Harmonic Responses

Measurement Insights

- Different parameter sets explore single and multi-harmonic response cases
- Hysteretic sub-cycles observed in the micro-slip regime



Force (N) vs Displacement ( $\mu$ m) Measurements

IntroductionExperimental CampaignMeasurement InsightsParametric IdentificationConclusionsOOOOOOOOOOOOO



### 3.3. Multi-Harmonic Responses

Measurement Insights

- Different parameter sets explore single and multi-harmonic response cases
- Hysteretic sub-cycles observed in the micro-slip regime
- Backbone is reconstructed through careful post-processing





Force (N) vs Displacement ( $\mu$ m) Measurements

IntroductionExperimental CampaignMeasurement InsightsParametric IdentificationConclusionsOOOOOOOOOOOOOOO



#### Universität Stuttgart



 Introduction
 Experimental Campaign
 Measurement Insights
 Parametric Identification
 Conclusions

 0
 00
 000●00
 000
 000
 000
 Un

#### Universität Stuttgart





### 3.4. Slip Sensitivity

Measurement Insights

• The measured hystereses extremely sensitive to the occurrence of a macro-slip event





### 3.4. Slip Sensitivity

Measurement Insights

• The measured hystereses extremely sensitive to the occurrence of a macro-slip event





- There is currently no active control of normal load in our setup, but this is measured.
- We use this to study/observe normal load dependence.



Measured normal displacement and load







- There is currently no active control of normal load in our setup, **but this is measured**.
- We use this to study/observe normal load dependence.
- Theoretical studies in the Iwan framework (Rajaei and Ahmadian 2014) indicate that:
  - Linearized stiffness has no variation.
  - Macro-slip level scales.
  - Scaling proportional to normal load.







Measurement Insights



#### Seemingly Counter-Intuitive? Experimental Observation $\uparrow F_N, \quad \downarrow \mu F_N \implies \downarrow \mu$ ?

Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions 00000



Universität Stuttgart



#### Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions

#### 4. Parametric Identification

Dynamic Regression: The Dahl Model

• Time series of force is fit to the Dahl model:

$$\dot{f} = \sigma_0 \left| 1 - \frac{f}{f_c} \operatorname{sgn}(\dot{u}) \right|^n \operatorname{sgn}\left( 1 - \frac{f}{f_c} \operatorname{sgn}(\dot{u}) \right) \dot{u}$$

• Linear Regression Framework (n = 1):

 $\dot{f} = \begin{bmatrix} \dot{u} & -f |\dot{u}| \end{bmatrix} \begin{bmatrix} \sigma_0 \\ f_c^{-1} \end{bmatrix}$ 

• Parameters refined through nonlinear regression using these estimates.

#### List of Parameters

- $\sigma_0$  Linearized stiffness
- $f_c$  Saturation force
- n constant

#### Backbone Regression: 4-Parameter Iwan

• Reconstructed backbones are fit to the 4-parameter Iwan model:

$$F(u) = K_t u - \frac{R}{(\chi + 1)(\chi + 2)} u^{\chi + 2}$$

- Data assumed to be in micro-slip.
- Integral Regression Formulation

$$T_F(u) = \begin{bmatrix} F(u)u & u^2 \end{bmatrix} \begin{bmatrix} \frac{1}{\chi+3} \\ \frac{Kt}{2} \frac{\chi+1}{\chi+3} \end{bmatrix}$$

#### List of Parameters

- Kt Linearized stiffness
- $F_s$  Saturation load
- $(\beta = 0 \text{ here.})$
- $\chi$  Dissipation power law exponent







#### 4.1. Model Form Assessment

Parametric Identification

• No differences observed when fitting single harmonic data



Single Harmonic Data



#### 4.1. Model Form Assessment

Parametric Identification

- No differences observed when fitting single harmonic data
- The Dahl model is unable to fit subcycles satisfactorily.



Multi-Harmonic Data (1, 3 harmonics)

The Bouc-Wen model shows a similar performance as the Dahl model.

### 4.2. Predictive Assessments

Parametric Identification

 Predictive assessments are made with a block-wise approach, considering the tests before and after the macro-slip event (Test 8) separately



Force (N) vs Displacement ( $\mu$ m) Measurements



#### Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions 000

### 4.2. Predictive Assessments

Parametric Identification

Training: Test 1

Predictive assessments are made with a block-wise approach, considering the tests before and after the macro-slip event (Test 8) separately





Force (N) vs Displacement ( $\mu$ m) Measurements



#### Introduction Experimental Campaign Measurement Insights Parametric Identification Conclusions 000

0.5

4.2. Predictive Assessments

Parametric Identification

Training: Test 11

20

Predictive assessments are made with a block-wise approach, considering the tests before and after the macro-slip event (Test 8) separately

(2)





Force (N) vs Displacement ( $\mu$ m) Measurements



### 5. Conclusions

- Experimental observations have been made on the frictional contact of metallic speciments in the micro-slip regime
- Special emphasis placed on validation of Masing hypotheses in the multi-harmonic regime
- A repeatable parameter identification procedure for the four-parameter lwan model is developed based on backbone reconstruction

#### Future Work

- A parametric investigation of normal load dependence to develop scaling relationships for frictional hysteresis under normal load variations
- **Epistemic correlation investigations** between hysteresis parameters and surface descriptions (roughness, etc.)



Backup Slides



#### 6. Conclusions

- Experimental observations have been made on the frictional contact of metallic speciments in the micro-slip regime
- Special emphasis placed on validation of Masing hypotheses in the multi-harmonic regime
- A repeatable parameter identification procedure for the four-parameter Iwan model is developed based on backbone reconstruction

#### Future Work

- A parametric investigation of normal load dependence to develop scaling relationships for frictional hysteresis under normal load variations
- Epistemic correlation investigations between hysteresis parameters and surface descriptions (roughness, etc.)

#### Thank You!

Brake, Matthew R. W. (2017). The Mechanics of Jointed Structures. New York, NY: Springer Science+Business Media.

Mathis, Allen T. et al. (July 2020). "A Review of Damping Models for Structures With Mechanical Joints". In: Applied Mechanics Reviews 72.4.

Moneta, Grzegorz (Dec. 2022). "Insight into Damping Sources in Turbines". In: Fatigue of Aircraft Structures 2022.14, pp. 69-82.

Rajaei, Majid and Hamid Ahmadian (Aug. 2014). "Development of Generalized Iwan Model to Simulate Frictional Contacts with Variable Normal Loads". In: Applied Mathematical Modelling 38.15, pp. 4006–4018.

Schwingshackl, C.W., E.P. Petrov, and D.J. Ewins (Apr. 2012). "Measured and Estimated Friction Interface Parameters in a Nonlinear Dynamic Analysis". In: Mechanical Systems and Signal Processing 28, pp. 574–584.



Universität Stuttgart

### 7. Backup Slides

#### 6. Backup Slides

Backbone Reconstruction from Multiharmonic Data Bouc-Wen Fitting Performance



# 7.1. Backbone Reconstruction from Multiharmonic Data Backup Slides

Goal: Obtain relationship between incremental displacement and force, maintaining history-dependence.





# 7.2. Bouc-Wen Fitting Performance Backup Slides

