

General Purpose Nonlinear Modal Analysis Capability in FEAST 8th National Finite Element Developers'/FEAST Users' Meet

Nidish Narayanaa Balaji

Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, INDIA

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

1. Introduction

Objectives

• Make a case for Nonlinear Modal Analysis in general purpose FE Software.

1. Introduction

Objectives

- Make a case for Nonlinear Modal Analysis in general purpose FE Software.
- Demonstrate that inclusion into an existing code can be done with minimal effort.

1. Introduction

Objectives

- Make a case for Nonlinear Modal Analysis in general purpose FE Software.
- Demonstrate that inclusion into an existing code can be done with minimal effort.

Outline of the Talk

- Why Nonlinear Modal Analysis?
- 2 Background on Computational Implementation
 - The RQNM Approach
- 3 Numerical Results
- 4 Conclusion

Introduction

• Linear Modal Analysis has been the standard way of dynamical analysis for more than a century now.

Introduction

• Linear Modal Analysis has been the standard way of dynamical analysis for more than a century now.

Introduction

Introduction

• Let us now consider a simple SDoF oscillator with friction

 $\ddot{x} + c\dot{x} + kx + f_{nl}(x) = F\cos\Omega t.$

• Let's use the elastic dry friction element to model the friction:

Introduction

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

Background on Computational Implementation

- Several computational approaches exist, but quasi-static methods have gained prominence in the assembled structures context (Lacayo and Allen 2019; Balaji and Brake 2020).
- Key here is that the computational effort is identical to a nonlinear static solve.

Background on Computational Implementation

Linear Modal Analysis (LMA)

For a system described by

$$\underline{\underline{M}}\,\underline{\underline{\ddot{u}}} + \underline{\underline{K}}\,\underline{\underline{u}} = \underline{0},$$

- Several computational approaches exist, but quasi-static methods have gained prominence in the assembled structures context (Lacayo and Allen 2019; Balaji and Brake 2020).
- Key here is that the <u>computational effort is identical to</u> <u>a nonlinear static solve.</u>

LMA involves the solution of

$$\left(\underline{\underline{K}} - \lambda \underline{\underline{M}}\right) \underline{\underline{u}} = \underline{0}$$
 (1a)

$$\underline{\underline{u}}^T \underline{\underline{M}} \, \underline{\underline{u}} = 1. \tag{1b}$$

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

February 01, 2025

Background on Computational Implementation

Linear Modal Analysis (LMA)

For a system described by

$$\underline{\underline{M}}\,\underline{\underline{\ddot{u}}} + \underline{\underline{K}}\,\underline{\underline{u}} = \underline{0},$$

- Several computational approaches exist, but quasi-static methods have gained prominence in the assembled structures context (Lacayo and Allen 2019; Balaji and Brake 2020).
- Key here is that the computational effort is identical to a nonlinear static solve.

LMA involves the solution of

$$\left(\underline{\underline{K}} - \lambda \underline{\underline{M}}\right) \underline{\underline{u}} = \underline{0} \tag{1a}$$

$$\underline{\underline{u}}^T \underline{\underline{M}} \underline{\underline{u}} = 1.$$
 (1b)

Courant-Fischer Theorem

Equation (1b) are the first order optimality conditions of $\underset{\underline{u}}{\min} \quad \underline{u}^T \underline{\underline{K}} \underline{u}$

s.t.
$$\underline{u}^T \underline{\underline{M}} \underline{u} - 1 = 0.$$

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

February 01, 2025

Background on Computational Implementation

Generalized Rayleigh Quotient Extremization (Balaji and Brake 2020)

For a system written as

 $\underline{\underline{M}}\,\underline{\underline{u}} + \underline{\underline{K}}\,\underline{\underline{u}} + \underline{\underline{f}}_{nl}(\underline{\underline{u}}) = \underline{0},$

RQ-NMA involves the solution of

$$\underline{\underline{K}} \underline{\underline{u}} + \underline{\underline{f}}_{nl} - \lambda \underline{\underline{M}} \underline{\underline{u}} = \underline{0}$$
(2a)
$$\underline{\underline{u}}^{T} \underline{\underline{M}} \underline{\underline{u}} = q^{2}.$$
(2b)

Linear Modal Analysis (LMA)

For a system described by

$$\underline{\underline{M}}\,\underline{\ddot{u}} + \underline{\underline{K}}\,\underline{\underline{u}} = \underline{0},$$

LMA involves the solution of

$$\left(\underline{\underline{K}} - \lambda \underline{\underline{M}}\right) \underline{\underline{u}} = \underline{0} \tag{1a}$$

$$\underline{\underline{u}}^T \underline{\underline{M}} \underline{\underline{u}} = 1.$$
 (1b)

Courant-Fischer Theorem

Equation (1b) are the first order optimality conditions of $\min_{\underline{u}} \quad \underline{u}^T \underline{\underline{K}} \underline{u}$

s.t.
$$\underline{u}^T \underline{\underline{M}} \underline{u} - 1 = 0.$$

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

February 01, 2025

Background on Computational Implementation

Generalized Rayleigh Quotient Extremization (Balaji and Brake 2020)

For a system written as

 $\underline{\underline{M}}\,\underline{\underline{u}} + \underline{\underline{K}}\,\underline{\underline{u}} + \underline{\underline{f}}_{nl}(\underline{\underline{u}}) = \underline{0},$

RQ-NMA involves the solution of

$$\underline{\underline{K}}\underline{\underline{u}} + \underline{\underline{f}}_{nl} - \lambda \underline{\underline{M}}\underline{\underline{u}} = \underline{0}$$
(2a)
$$\underline{\underline{u}}^{T}\underline{\underline{M}}\underline{\underline{u}} = \underline{q}^{2}.$$
(2b)

Equation (2b) is only a slight modification of eq. (1b). \implies Most methods applicable for eq. (1b) can be used. Linear Modal Analysis (LMA)

For a system described by

$$\underline{\underline{M}}\,\underline{\ddot{u}} + \underline{\underline{K}}\,\underline{\underline{u}} = \underline{0},$$

LMA involves the solution of

$$\left(\underline{\underline{K}} - \lambda \underline{\underline{M}}\right) \underline{\underline{u}} = \underline{0} \tag{1a}$$

$$\underline{\underline{u}}^T \underline{\underline{\underline{M}}} \, \underline{\underline{u}} = 1. \tag{1b}$$

Courant-Fischer Theorem

Equation (1b) are the first order optimality conditions of $\underbrace{\underline{u}}^{T}\underline{\underline{K}}\,\underline{\underline{u}}$ s.t. $\underbrace{\underline{u}}^{T}\underline{\underline{M}}\,\underline{\underline{u}}-1=0.$

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

February 01, 2025

Background on Computational Implementation

- The RQ-NMA process returns amplitude-dependent natural frequency and mode-shape quantities.
- Compared to other NMA techniques, it provides a computationally cheap vet accurate framework.
- Recent studies have shown successful applications to assembled structures.

Lap-jointed beam (Balaji, Chen, and Brake 2020)

Background on Computational Implementation

- The RQ-NMA process returns <u>amplitude-dependent natural frequency</u> and mode-shape quantities.
- Compared to other NMA techniques, it provides a computationally cheap yet accurate framework.
- Recent studies have shown successful applications to assembled structures.

Lap-jointed beam (Balaji, Chen, and Brake 2020)

3. Numerical Results

Simplified lap-jointed beam model constructed with 1D beam element

(Figure from Balaji and Brake 2020)

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

3. Numerical Results

Simplified lap-jointed beam model constructed with 1D beam element

(Figure from Balaii and Brake 2020)

Balaji, N. N. (AE, IITM)

Nonlinear Modal Analysis in FEAST

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities.

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities. → Reasons purely logistical rather than technical!

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities. → Reasons purely logistical rather than technical!
- With FEAST, we may have a **unique opportunity** in including a general purpose implementation.

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities. \rightarrow Reasons purely logistical rather than technical!
- With FEAST, we may have a **unique opportunity** in including a general purpose implementation.

Thoughts on Implementation

Two choices exist:

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities. → Reasons purely logistical rather than technical!
- With FEAST, we may have a **unique opportunity** in including a general purpose implementation.

Thoughts on Implementation

Two choices exist:

$\mathbf{Conclusion}$

4. Conclusion

- Nonlinear Modal Analysis (NMA) is really catching up in the community - I have personally seen the interest grow at NASA and National Labs in the US.
- Till date, no commercial software is available that offers NMA capabilities. → Reasons purely logistical rather than technical!
- With FEAST, we may have a **unique opportunity** in including a general purpose implementation.

Thoughts on Implementation

Two choices exist:

- We piggy-back the solver on a nonlinear static solve step. This is how I've done my personal implementations
- We develop an approach generalizing Lanczos/Krylov iterations. This may be more computationally efficient

References I

- Gallery, URL: https://www.isro.gov.in/mission PSLV C35%20SCATSAT 1 Gallery.html (visited on 01/26/2025) (cit. on [1] DD. 5-7).
- [2] R. M. Lacavo and M. S. Allen, "Updating Structural Models Containing Nonlinear Iwan Joints Using Quasi-Static Modal Analysis". Mechanical Systems and Signal Processing, 118, (Mar. 2019), pp. 133-157. ISSN: 08883270, DOI: 10.1016/j.vmssp.2018.08.034, URL: https://linkinghub.elsevier.com/retrieve/pii/S0888327018305739 (visited on 08/28/2018) (cit. on pp. 13-17).
- [3] N. N. Balaji and M. R. Brake. "A Quasi-Static Non-Linear Modal Analysis Procedure Extending Rayleigh Quotient Stationarity for Non-Conservative Dynamical Systems", Computers & Structures, 230, (Apr. 2020), pp. 106184. ISSN: 00457949. DOI: 10.1016/j.compstruc.2019.106184. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794919315160 (visited on 01/16/2020) (cit. on pp. 13-17, 20, 21).
- [4] N. N. Balaji, W. Chen, and M. R. W. Brake. "Traction-Based Multi-Scale Nonlinear Dynamic Modeling of Bolted Joints: Formulation, Application, and Trends in Micro-Scale Interface Evolution". Mechanical Systems and Signal Processing, 139, (May 2020), pp. 106615. ISSN: 0888-3270. DOI: 10.1016/j.ymssp.2020.106615. URL: http://www.sciencedirect.com/science/article/pii/S0888327020300017 (visited on 07/19/2020) (cit. on pp. 18, 19).
- [5] M. S. Allen et al. "Application of Quasi-Static Modal Analysis to an Orion Multi-Purpose Crew Vehicle Test". In: Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7. Ed. by C. Walber, P. Walter, and S. Seidlitz. Cham: Springer International Publishing, 2021, pp. 65-75. ISBN: 978-3-030-47712-7 978-3-030-47713-4. DOI: 10.1007/978-3-030-47713-4_8. URL: http://link.springer.com/10.1007/978-3-030-47713-4_8 (visited on 01/15/2025) (cit. on pp. 18, 19).
- [6] C. Taslicay et al. "System Identification of Nonlinear Structures Through A Parametrically Varying Transfer Function Approach". Mechanical Systems and Signal Processing, (2025, Accepted) (cit. on p. 29).

Nonlinear Modal Analysis in FEAST

6.1. Experimental Observations on a Curved Beam

Experimental setup and Forced Response Functions (FRFs) estimated for a curved beam at different mid-point response levels (Figure from Taslicay et al. 2025, Accepted)

Back