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Introduction

1. Introduction

Objectives

Make a case for Nonlinear Modal Analysis in general purpose FE Software.

Demonstrate that inclusion into an existing code can be done with
minimal effort.

Outline of the Talk

1 Introduction
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2 Background on Computational Implementation
The RQNM Approach

3 Numerical Results
4 Conclusion
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Introduction Why Nonlinear Modal Analysis?

1.1. Why Nonlinear Modal Analysis?
Introduction

Linear Modal Analysis has been the standard way of dynamical analysis
for more than a century now.
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Key Assumptions:

Linearity

Amplitude
independence.

No real system is just a beam!

(SCASAT-1 undergoing vibration test Gallery n.d.)

Sources of nonlinearity:

Joints!

Materials, environment, etc.
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Introduction Why Nonlinear Modal Analysis?

1.1. Why Nonlinear Modal Analysis?
Introduction

Let us now consider a simple
SDoF oscillator with friction

ẍ+ cẋ+ kx+ fnl(x) = F cosΩt.

Let’s use the elastic dry friction
element to model the friction:
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Background on Computational Implementation The RQNM Approach

2.1. The RQNM Approach
Background on Computational Implementation

Several computational approaches
exist, but quasi-static methods
have gained prominence in the
assembled structures context
(Lacayo and Allen 2019; Balaji
and Brake 2020).

Key here is that the
computational effort is identical to
a nonlinear static solve.

Linear Modal Analysis (LMA)

For a system described by

M ü+K u = 0,

LMA involves the solution of(
K − λM

)
u = 0 (1a)

uTM u = 1. (1b)

Courant-Fischer Theorem

Equation (1b) are the first order
optimality conditions of

min
u

uTK u

s.t. uTM u− 1 = 0.

Generalized Rayleigh Quotient
Extremization (Balaji and Brake
2020)

For a system written as

M u+K u+ fnl(u) = 0,

RQ-NMA involves the solution of

K u+ fnl − λM u = 0 (2a)

uTM u = q2. (2b)

Equation (2b) is only a slight
modification of eq. (1b).

=⇒ Most methods applica-
ble for eq. (1b) can be used.
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Background on Computational Implementation The RQNM Approach

2.1. The RQNM Approach
Background on Computational Implementation

The RQ-NMA process returns amplitude-dependent natural frequency
and mode-shape quantities.
Compared to other NMA techniques, it provides a computationally cheap
yet accurate framework.
Recent studies have shown successful applications to assembled structures.

Lap-jointed beam (Balaji, Chen, and Brake
2020)

Orion MPCV (Allen et al. 2021)
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Numerical Results

3. Numerical Results

Simplified lap-jointed beam model constructed with 1D beam element

(Figure from Balaji and Brake 2020)

Nonlinear Modal Analysis Results Compared
Against Near-Resonance Forced Response
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Conclusion

4. Conclusion

Nonlinear Modal Analysis (NMA) is really catching up in the community
- I have personally seen the interest grow at NASA and National
Labs in the US.

Till date, no commercial software is available that offers NMA
capabilities.

→ Reasons purely logistical rather than technical!

With FEAST, we may have a unique opportunity in including a
general purpose implementation.

Thoughts on Implementation

Two choices exist:

1 We piggy-back the solver on a nonlinear static solve step.

This is how I’ve done
my personal implementations

2 We develop an approach generalizing Lanczos/Krylov iterations. This may be
more computationally efficient
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6.1. Experimental Observations on a Curved Beam
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Experimental setup and Forced Response Functions (FRFs) estimated for a curved beam at
different mid-point response levels (Figure from Taslicay et al. 2025, Accepted)
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