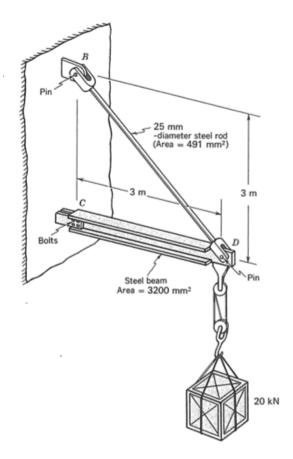

Name:	Roll no.								
Departm	ent c	of Aerospace	Engineering,	Indian	Institu	ite of	Techno	ology.	Madras.

AS 2010: Basic strength of materials. Quiz 2

1. A window air-conditioning unit is supported by a rod of circular cross-section, as shown. The unit rests on the window sill, so that the window sill exerts no moment on the unit. For what value of θ will the volume of the supporting rod be minimised. 50% weightage for correct and useful free body diagrams.



Name:				Roll no.		
				_		

Department of Aerospace Engineering, Indian Institute of Technology, Madras.

AS 2010: Basic strength of materials. Quiz 2

2. A triangular frame supports a load of 20 kN, as shown. Determine the horizontal and vertical components of the displacement of point D due to the 20 kN load carried by the frame. Assume that the modulus of steel is $E_{\rm steel} = 200$ GPa. 50% weightage for correct and useful free body diagrams.

