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Abstract

A rigid-plastic rate-independent crystal plasticity model capable of capturing band-

ing in single crystals subjected to homogeneous macroscopic deformation is pro-

posed. This model treats the single crystal as a ‘stack of domains’. Individual do-

mains deform homogeneously while maintaining velocity and traction continuity

with their neighbors. All the domains collectively accommodate the imposed de-

formation. The model predicts lattice orientation evolution, slip distribution, strain

localization and band orientation in copper single crystals with imposed plane strain

deformation. In quantitative agreement with experimental observations reported in

the literature, macroscopic shear banding and regular deformation banding are pre-

dicted in initially copper and rotated cube oriented single crystals, respectively,

while banding is not predicted in initially Goss oriented single crystals. The model

does not, however, predict the experimentally observed orientation of smaller scale

dislocation boundaries such as dense dislocation walls.
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1 Introduction

1.1 Banding

Polycrystal models that predict mechanical response and texture evolution

during plastic deformation commonly regard each grain of the polycrystal as

a homogeneously deforming entity (Taylor, 1938; Lebensohn and Tomé, 1993;

Van Houtte et al., 1999; Mahesh, 2009, 2010). However, an enormous body of

experimental metallurgical literature indicates that deformation of grains is

inhomogeneous. The inhomogeneity of deformation leads to grain subdivision

into misoriented domains called bands, which are demarcated by dislocation

boundaries. Dislocation boundaries are of two kinds: incidental and geometri-

cally necessary. Incidental dislocation boundaries are comprised of statistically

trapped dislocations. Geometrically necessary dislocation boundaries, on the

other hand, are necessary for accommodating incompatibility of plastic defor-

mation (Nye, 1953). The volumes delineated by these boundaries are called

bands. They are classified based on their size-scale and structure, e.g., Gil

Sevillano et al. (1980); Hansen and Juul Jensen (1999). The present work

focuses on the formation and evolution of two types of bands, viz., regular de-

formation bands (RDBs) and macroscopic shear bands (MSBs). The longest

dimension of RDBs and MSBs is comparable to the grain size. Smaller scale

geometrically necessary dislocation boundaries, which delineate regions whose

longest dimension is of the order of tens of dislocation mean free paths, called

dense dislocation walls/microbands (DDW-MBs) are also of interest presently.
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The constraint experienced by an individual grain in a polycrystal is medi-

ated by the grains surrounding it and generally differs from the macroscopic

constraint imposed upon the polycrystal. However, single crystals subjected

to plastic deformation experience the imposed macroscopic constraint. This

makes single crystals better suited for the study of banding under imposed

homogeneous deformation.

1.2 Models of banding

Van Houtte et al. (1979) and Dillamore et al. (1979) proposed that strain

localization occurs within MSBs when the effective hardening rate therein

becomes negative on account of the local geometrical softening due to lattice

rotation being in excess of the local hardening rate of the slip systems. A

rigorous analytical methodology embodying this physical notion was given by

Asaro (1979), formally based on the considerations of Biot (1965) and Hill and

Hutchinson (1975). In this approach, banding was identified with the existence

of inhomogeneous solutions of the equations governing the stress-rate fields in

the crystal. As the governing equations are not directly solvable, Asaro (1979)

considered a reduced problem wherein the inhomogeneity is confined within

a rectangular strip, or band, that cuts across the crystal. The inhomogeneous

fields that solve the reduced problem are obtained either directly (Asaro, 1979)

or by phrasing the problem in variational terms. The latter approach, which

also allows for the energetic contribution of band boundaries, has been taken

by Kratochv́ıl et al. (2007).

The analytical approach (Asaro, 1979; Kratochv́ıl et al., 2007) yields condi-

tions for the onset of banding in closed form at practically no computational
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cost for specific lattice orientations. It is ideally suited to lattice orientations

wherein only a few slip systems are activated and slip system hardening has

a simple form, as in Asaro (1979) and Kratochv́ıl et al. (2007). This approach

becomes highly laborious for lattice orientations undergoing general multi-slip

and non-uniform hardening.

Studies based on the crystal plasticity finite element method (CPFEM) have

sought to capture the development of grain-level deformation inhomogeneity

for grains of arbitrary crystallography undergoing general multi-slip with pos-

sibly non-uniform hardening (Pierce et al., 1982; Raabe et al., 2004; Rezvanian

et al., 2006; Kuroda and Tvergaard, 2007; Si et al., 2008; Groh et al., 2009;

Zhang et al., 2009; Kanjarla et al., 2010). An initial perturbation in model

single crystal sample geometry (Pierce et al., 1982; Zhang et al., 2009), local

lattice orientation (Raabe et al., 2004), shear imbalance (Rezvanian et al.,

2006) or slip system hardness (Kuroda and Tvergaard, 2007) triggers the de-

velopment of local slip and/or local lattice orientation inhomogeneities. Pierce

et al. (1982) predicted a band of higher plastic strain than the matrix and

associated it with shear banding observed experimentally. More recently, Rez-

vanian et al. (2006) and Si et al. (2008) have identified RDBs without intense

shear localization in their initially cube oriented simulated aluminum crystals.

Under imposed plane strain deformation, they find good agreement between

their predicted lattice orientation variation along the normal direction with

the experimental observations of Liu and Hansen (1998). Kanjarla et al. (2010)

predicted RDB formation in a nearly rotated cube oriented grain in a model

columnar polycrystal. They also found the RDB pattern in their model grain

to be affected by the inter-granular interactions.

CPFEM simulations, however, come at a high computational cost. Spatial
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resolution of the material response in millimeter scale single crystals wherein

much of the deformation is confined to shear bands, each only a few microns

wide (Wróbel et al., 1994; Wagner et al., 1995), requires a fine mesh (Pierce

et al., 1983; Anand and Kalidindi, 1993), higher order elements (Kuroda and

Tvergaard, 2007) or the explicit treatment of large strain gradients across

shear band boundaries (Anand et al., 2012). Spatial resolution of the defor-

mation field in single crystals undergoing homogeneous deformation or those

forming RDBs without intense shear localization is more computationally

tractable (Rezvanian et al., 2006; Si et al., 2008; Kanjarla et al., 2010), as

a coarser mesh suffices to resolve the smaller strain gradients.

Approaches to predict banding in single crystals that lie in between the com-

putationally light but laborious analytical approach and the computation-

ally intensive but general CPFEM approach are provided by crystal plasticity

based models. These are two to three orders of magnitude computationally

less intensive than CPFEM and yet sufficiently general to treat arbitrary slip

activity and hardening laws. A class of such models capable of predicting the

formation of arbitrarily oriented shear bands on the basis of existence of in-

homogeneous solutions to the governing equations is due to Needleman and

Rice (1978) and Kuroda and Tvergaard (2007). Another class of such models,

due to Chin et al. (1969), Lee and Duggan (1993), Lee et al. (1993), Ortiz and

Repetto (1999) and Ortiz et al. (2000) is based on experimental observations

of patchy slip in grains, whereby deformation by single slip in spatially sepa-

rate domains is observed in preference to homogeneous multi-slip. The model

of Lee and Duggan (1993) and Lee et al. (1993) predicts regular deformation

banding by seeking to reduce the work of plastic deformation. The variational

theory of Ortiz and Repetto (1999) seeks to minimize a functional that, in
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effect, depends on both plastic power and the rate of plastic power. The lat-

ter term incorporates the latent hardening. The variational theory predicts

banding because the functional can be reduced by lowering latent hardening,

which in turn is accomplished by replacing multislip activity in a homoge-

neously deforming crystal with single slip activity within spatially isolated

bands.

Another class of crystal plasticity based models capable of predicting regular

deformation banding and macroscopic shear banding has been developed in

foregoing works (Mahesh and Tomé, 2004; Mahesh, 2006). In these works, a

banded single crystal is represented as a pair of regions that model a pair

of compatibly deforming bands. The lattice orientation of both regions are

initially identical apart from a small perturbation. The growth of this per-

turbation with deformation, called orientational instability (Mahesh, 2006), is

identified with banding, while its diminution with further deformation, called

orientational stability, points to the dominance of a homogeneous deformation

mode.

While the aforementioned models and the present model for the inhomoge-

neous deformation of a single crystal have an energetic basis, a non-energetic

reason for banding, viz., Taylor ambiguity, was suggested by Chin and Won-

siewicz (1969) and termed Type 1 banding by Chin (1971). Taylor ambiguity

refers to the possibility of accommodating the imposed deformation by acti-

vating different set of slip systems in different parts of the single crystal or

grain. Leffers (2001a,b) suggested that Taylor ambiguity may underlie the ex-

perimentally observed subdivision of grains by DDW-MBs. For two assumed

orientations of the band boundaries, he investigated the possible solutions for

the slip rates in a pair of compatibly deforming bands caused by Taylor am-
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biguity, subject to the constraint that a total of 8 slip systems must activate

in both bands to accommodate the imposed plane strain deformation.

1.3 Present work

A model capable of predicting the formation and evolution of MSBs and

RDBs during plastic deformation of copper single crystals is presently de-

veloped. This model is based on the recently proposed ‘stack of domains’

model (Arul Kumar et al., 2011). The single crystal is regarded as a one-

dimensional stack of domains that collectively accommodate the imposed de-

formation. The domains deform homogeneously and compatibly with their

neighbors. Notable differences with the ‘stack of domains’ model are: (1) sub-

structure based hardening of domain slip systems, (2) introduction of rules to

identify MSB and RDB domains and (3) accounting for mobility of domain

boundaries.

The present model is used to simulate plane strain compression of copper

single crystals. In agreement with experimental observations reported in the

literature, the model predicts the formation of MSBs and RDBs in the ini-

tially copper and rotated cube oriented single crystals, respectively, and the

formation of neither in the Goss oriented single crystal.

2 Experimental evidence

Relevant facts from the experimental literature about three types of bands,

viz., dense dislocation walls-microbands (DDW-MBs), macroscopic shear bands

(MSBs) and regular deformation bands (RDBs), are now presented.
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2.1 Dense dislocation walls and microbands (DDW-MBs)

Dislocation structures called dense dislocation walls (DDW) and microbands

(MBs) that bound regions a few dislocation mean free paths long have been

reported in plastically deformed copper. Bay et al. (1989) noted that DDWs

and MBs appear together as if forming one general feature, which they called

DDW-MBs. These structures, across which the lattice misorientation is of the

order of a few degrees, are mobile relative to the crystal material (Albou et al.,

2010).

Depending on the lattice orientation and the imposed deformation, DDW-MBs

may or may not lie parallel to active slip planes (Hughes and Hansen, 1993; Liu

et al., 1998). Winther et al. (1997) have attempted to correlate the formation

of crystallographic DDW-MBs with the coplanar slip fraction (CSF), which

they defined as the ratio of the largest accumulated slip in a crystallographic

slip plane to the total accumulated slip in a grain. They observed experimen-

tally that CSF ≥ 0.45 in about 75% of rolled aluminum grains, which form

crystallographic DDW-MBs parallel to the most active crystallographic slip

plane and that CSF < 0.45 in about 75% of the experimentally studied grains

forming non-crystallographic DDW-MBs. The CSF thus provides a good in-

dicator for the formation of crystallographic DDW-MBs. The CSF indicator,

however, misclassifies about 25% of the grains.

2.2 Macroscopic shear bands

Crystallographic DDW-MBs aligned with the dominant crystallographic slip

plane act as barriers to slip systems non-coplanar with the dominant crystallo-

8



graphic slip plane. Non-coplanar slip activity therefore concentrates in regions

where the crystallographic DDW-MBs barriers are few or weak and results

in severe localized deformation in these regions. The sub-structural elements

formed during such localized deformation are the long and narrow microscopic

shear bands (Nakayama and Morii, 1982; Duggan et al., 1978). In f.c.c. copper

single crystals deformed quasistatically at room temperature, the presence of a

single set of pre-existing DDW-MBs parallel to the dominant crystallographic

slip plane is a necessary condition for microscopic shear banding (Nakayama

and Morii, 1982).

A macroscopic shear band (MSBs) in a single crystal is comprised of a cluster

of microscopic shear bands. It typically extends across the crystal and under-

goes much more slip than the surrounding material, called the matrix (Duggan

et al., 1978; Morii and Nakayama, 1981; Nakayama and Morii, 1982; Hatherly

and Malin, 1984; Wagner et al., 1995; Jasienski et al., 1996). The typical mis-

orientation of an MSB with the matrix is of the order of tens of degrees.

Microscopic shear bands, once nucleated, propagate to their final dimensions

rapidly and remain inoperative thereafter (Duggan et al., 1978; Hatherly and

Malin, 1984; Wagner et al., 1995); nucleation and propagation of new micro-

scopic shear bands elsewhere within the MSB is required to accommodate

its subsequent deformation. The direction of propagation of microscopic shear

bands evolves gradually during the deformation resulting in apparent mobility

of the MSB boundaries (Jasienski et al., 1996). Both microscopic shear band

and MSB boundaries do not have simple crystallographic alignments (Wagner

et al., 1995; Jasienski et al., 1996).

Various types of dislocation structures have been reported within MSBs in cop-
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per single crystals deformed quasistatically at room temperature: microbands

parallel to the MSB walls (Wróbel et al., 1994), thin elongated cell struc-

ture (Morii and Nakayama, 1981), equiaxed cells (Paul et al., 2010), dynami-

cally recovered cell structure (Wróbel et al., 1996) and no apparent cell struc-

ture (Korbel and Szczerba, 1982). Korbel and Szczerba (1982) have suggested

that enhanced dynamic recovery (D.R.-2) occurs in the MSB due to the ac-

tivation of slip systems not coplanar with pre-existing dislocation structures.

Blicharski et al. (1995) have suggested that dynamic recovery enhancement

in MSBs may be aided by temperature rise, which may accompany rapid lo-

cal strain accumulation even in thermally conductive copper. Finally, Huang

et al. (2006) have reported deformation twinning within shear bands formed

in coarse-grained copper at room temperature deformed quasistatically. They

have suggested that the high resolved shear stress required for deformation

twinning under these conditions is realized within MSBs after substantial

hardening of the MSB material.

2.3 Regular deformation bands

A single crystal may divide into lath-shaped regions called regular deforma-

tion bands, each several tens of dislocation mean free paths wide and extend-

ing across the entire crystal. The deformation and lattice orientation within

each region is approximately uniform and distinct from that of its neighbors.

Intense shear localization is not normally associated with such regular de-

formation banding. RDBs have been variously termed type-2 bands (Chin,

1971), deformation bands (Lee et al., 1993), matrix bands (Liu and Hansen,

1998), primary regular deformation bands (Kulkarni et al., 1998; Kuhlmann-
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Wilsdorf, 1999) and special bands of secondary slip (Wert et al., 2005).

In f.c.c copper and aluminum, RDBs develop from geometrically necessary dis-

location walls, which form along {110} planes perpendicular to the direction

of predominant slip (Cahn, 1951; Heye and Sattler, 1971; Cizek et al., 1995).

Misorientation between RDBs progressively increases with deformation (Bar-

rett, 1939; Barrett and Levenson, 1940) and may be of the order of tens of

degrees (Akef and Driver, 1991; Liu and Hansen, 1998). RDB boundaries also

deviate increasingly from the crystallographic {110} plane (Cahn, 1951) with

continuing deformation. Regular deformation banding of single crystals typi-

cally begins in the early stages of deformation and the number and volume of

bands does not change with further deformation (Cahn, 1951; Heye and Sat-

tler, 1971; Lee et al., 1993; Wert et al., 2005). Unlike DDW-MBs and MSBs,

RDB boundaries are immobile relative to the material (Wert et al., 2005).

Regular deformation banding is observed only in the absence of pre-existing

crystallographic DDW-MBs (Wróbel et al., 1994; Liu and Hansen, 1998). How-

ever, once formed, slip is predominantly confined to a single slip plane and

results in the formation of a set of crystallographic DDW-MBs (Wróbel et al.,

1988; Liu and Hansen, 1998).

3 Model

3.1 Standard rate-independent crystal plasticity

Every material point of a single crystal is assumed to follow the standard

rigid-plastic rate-independent volume preserving constitutive response (Tay-

lor, 1938; Bishop and Hill, 1951; Kocks et al., 1998). If the slip-rate tensor at
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the material point is denoted by Lss,

Lss =
S
∑

s=1

γ̇sbs ⊗ ns, (1)

where γ̇s denotes the slip-rate of slip system s ∈ {1, 2, . . . , S} and bs is the

Burgers vector or unit slip directional vector of slip system s with slip plane

normal ns. bs and ns depend upon the lattice orientation of the material

point described completely by the orthonormal tensor Ω, which transforms

the vectors Bs and Ns that describe the unit slip directional vector and slip

plane normal of slip system s in the crystal coordinate system into the bs and

ns in the reference coordinate system following

bs = ΩBs, and ns = ΩNs. (2)

The symmetric part of the slip-rate tensor, Lss, is the strain-rate tensor, ǫ̇,

ǫ̇ = (Lss +LT
ss)/2 =

S
∑

s=1

γ̇sms, (3)

where, ms denotes the Schmid tensor of slip system s

ms = (bs ⊗ ns + ns ⊗ bs)/2. (4)

If L denotes the velocity gradient at the material point, the lattice spin tensor,

Ẇc of the material point, is given by (Kocks et al., 1998)

Ẇc = skew (L−Lss) . (5)

The deformation gradient of a material point, F , describes the local shape

and evolves following the flow law (Gurtin, 1981),

Ḟ = LF . (6)
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Let σ denote the deviatoric part of the Cauchy stress at the material point.

Schmid’s law (Kocks et al., 1998) states that slip system s may have non-

zero slip-rate only if the resolved shear stress, σ : ms ≡ tr(σms
T ), equals the

critical resolved shear stress (CRSS) on slip system s, τs. Thus,

γ̇s























≥ 0, if σ : ms = τs,

= 0, if σ : ms < τs.

(7)

Taylor’s principle (Taylor, 1938) asserts that for given ǫ̇ of all possible slip-

rate combinations {γ̇s, s ∈ {1, . . . , S}} that respect the constraint given by

Eq. (3), those which minimize the plastic power of deformation

P =
S
∑

s=1

τsγ̇s (8)

are preferred. Chin and Mammel (1969) have shown that the set of slip-rates,

γ̇s, which minimize P subject to the constraint given by Eq. (3) automatically

satisfies Eq. (7). {γ̇s, s ∈ {1, . . . , S}} that minimizes P given by Eq. (8) sub-

ject to the constraint Eq. (3) may be non-unique. In this case, the consistency

condition and algorithm for its implementation given by Anand and Kothari

(1996) is invoked to ensure that γ̇s > 0 in the largest number of slip systems.

Slip systems harden with deformation. The evolution of the critical resolved

shear stress of the s-th slip system is taken to follow (Hill, 1966; Kocks et al.,

1998)

τ̇s =
dτ

dΓ

S
∑

s′=1

Hss′ γ̇s′, (9)

where [H ] is the latent hardening matrix,

Γ =
S
∑

s=1

γs, (10)
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is the total accumulated slip at the material point and γs is the accumulated

slip in the s-th slip system. In the present work, τ is taken to follow the

extended Voce law given by Tomé et al. (1984),

τ(Γ) = τ0 + (τ1 + θ1Γ)[1− exp(−Γθ0/τ1)], (11)

where τ0, τ1, θ0 and θ1 are material hardening parameters.

3.2 The ‘stack of domains’ model of a single crystal

3.2.1 Geometry

x

y

y

z

X
Y

Z

l =
1

l =
2

l =
N − 1

l =
N

ω̇∗

πkǫ̇vM
4
√
ǫvM

ν

Limp

Limp

Fig. 1. A single crystal modeled as a stack of N parallelepiped-shaped domains. XY Z is a domain boundary fixed

coordinate system; ν ‖ Y denotes the domain boundary normal. The sinusoidal lattice orientation perturbation rate of

individual domains is also schematically represented.

A model of a rigid-plastic rate-independent single crystal capable of represent-

ing banding is presently described. The single crystal, shown schematically in

Fig. 1, is represented as a stack of N parallelepiped-shaped domains each of

which is endowed with a uniform lattice orientation and is assumed to deform
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homogeneously. A single domain or a group of neighboring domains may rep-

resent a deformation band. The geometric shapes of the individual domains

are assumed to be identical, so that the volume fraction ρ[l] of the l-th domain

is simply ρ[l] = 1/N , for l = 1, 2, . . . , N . Stacking is assumed to be repeated

periodically so that neighbors of domain l in the stack are (l+ 1 mod N) and

(l − 1 mod N). Domain boundaries between adjacent parallelepiped-shaped

domains are assumed to be planar and identically oriented. For convenience,

the domain boundary between domains (l mod N) and (l+1 mod N) is num-

bered as the l-th domain boundary. Quantities with superscripts enclosed in

square brackets, e.g., {·}[l], are associated with domain l while, quantities with

superscripts enclosed in parentheses, e.g., {·}(l), are associated with domain

boundary l.

All the domain boundaries in the ‘stack of domains’ model are assumed to

be oriented identically with normal ν, as shown in Fig. 1. This is reasonable,

since only the boundaries enclosing domains representing MSBs or RDBs,

which are experimentally observed (Sec. 2) to be delineated by approximately

parallel boundaries, are physically significant. This assumption implies that

only one set of deformation bands can be predicted by the present model

even in crystals wherein deformation bands at different length scales simulta-

neously form. Moreover, the predicted deformation bands will necessarily be

the largest bands in the single crystal under consideration. Two sets of carte-

sian coordinates: the sample coordinate system xyz and a domain boundary

fixed coordinate system XY Z with the Y -axis always aligned with the normal

vector ν are also shown.

The present geometric arrangement of domains within a single crystal is similar

to the geometric arrangement of grains within a polycrystalline sub-aggregate
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studied by Arul Kumar et al. (2011).

3.2.2 Lattice orientation perturbation

If the lattice orientation in all the domains comprising the stack were identical,

the ‘stack of domains’ model would represent a perfect single crystal. In this

case, each domain would undergo the same deformation as the single crystal,

i.e., single crystal would deform homogeneously. However, even in an initially

perfect single crystal, lattice orientation perturbations arise during plastic

deformation. Across incidental dislocation boundaries, for instance, Hughes

et al. (1997, 1998) have observed that the average absolute misorientation

angle 〈|ω∗|〉 scales with von Mises strain ǫvM as

〈|ω∗|〉 = kǫ
1/2
vM . (12)

The misorientation rate follows from Eq. (12), and is given by,

〈|ω̇∗|〉 =
kǫ̇vM
2
√
ǫvM

, (13)

where, the von Mises strain-rate, ǫ̇vM, is given by

ǫ̇vM =

√

2

3
tr (ǫ̇2). (14)

Following Eq. (13), the lattice rotation rate in the l-th domain is prescribed

as

ω̇[l]
∗ =

πkǫ̇vM
4
√
ǫvM

sin

(

2πl

N

)

, (15)

as schematized in Fig. 1. This lattice rotation is about a unit misorientation

vector, m̂, uniformly distributed on the unit sphere. The tensorial lattice spin
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of the l-th domain caused by the lattice orientation perturbation is thus

Ẇ [l]
∗ = ω̇[l]

∗ (m̂×), (16)

where, m̂× denotes the skew-symmetric tensor whose axial is the vector m̂.

It turns out that the state evolution of the ‘stack of domains’ model is not

sensitive to the functional form assumed in Eq. (15). Even if the ω̇
[l]
∗ were

drawn from a uniform distribution of mean 〈|ω̇∗|〉 given by Eq. (13), the pre-

dictions of the present model, given in Sec. 4, remain practically unchanged.

The role of the lattice orientation perturbation is simply to trigger the initial

slip inhomogeneity amongst domains in the numerical calculation.

3.2.3 Kinematics

Let L̄ denote the macroscopic velocity gradient of the ‘stack of domains’ repre-

senting the model single crystal. L̄ is taken to be the volume fraction weighted

average of the velocity gradients, L[l], of individual domains, l, i.e.,

N
∑

l=1

ρ[l]L[l] = L̄. (17)

The shape of the model single crystal represented by stack of domains is

described by deformation gradient, F̄ . The flow law, which determines the

evolution of F̄ parallels Eq. (6) and is

˙̄F = L̄F̄ . (18)
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3.2.4 Boundary and continuity conditions

Let Limp be the velocity gradient imposed upon the single crystal that must

be collectively accommodated by its domains, i.e.,

L̄ = Limp. (19)

Let ǫ̇imp = (Limp +LimpT )/2 be the imposed strain-rate on the single crystal.

It then follows from Eqs. (3), (5), (17) and (19) that

N
∑

l=1

ρ[l]ǫ̇[l] = ǫ̇imp. (20)

Let p[l] denote the scalar hydrostatic pressure in domain l so that the Cauchy

stress therein is p[l]I + σ[l]. Traction continuity conditions between neighbor-

ing domains in the model in the XY Z coordinate system are then:

σ
[l mod N ]
XY =σ

[l+1 mod N ]
XY ,

σ
[l mod N ]
YZ =σ

[l+1 mod N ]
YZ ,

p[l mod N ] + σ
[l mod N ]
YY =p[l+1 mod N ] + σ

[l+1 mod N ]
YY .

(21)

It is not required to enforce the third equation of Eq. (21) explicitly be-

cause its satisfaction is automatic: It can be shown (Arul Kumar et al.,

2011) that the third equation of Eq. (21) can always be satisfied for arbi-

trary {σ[l]
YY : l ∈ {1, 2, . . . , N}} by suitable choice of the domain hydrostatic

pressure components {p[l] : l ∈ {1, 2, . . . , N}}. Moreover, p[l] does not affect

the rigid-plastic volume-preserving deformation of the domains.

Traction continuity and compatibility conditions between neighboring do-

mains that must be explicitly enforced in the model are thus (Arul Kumar

et al., 2011):
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σ
[l mod N ]
XY =σ

[l+1 mod N ]
XY ,

σ
[l mod N ]
YZ =σ

[l+1 mod N ]
YZ ,

ǫ̇
[l mod N ]
XX =ǫ̇

[l+1 mod N ]
XX ,

ǫ̇
[l mod N ]
ZZ =ǫ̇

[l+1 mod N ]
ZZ , and

ǫ̇
[l mod N ]
XZ =ǫ̇

[l+1 mod N ]
XZ ,

(22)

for l ∈ {1, 2, . . . , N}.

Following Hill (1961), the velocity continuity condition between domains l and

l + 1 can be written as

JL(l)K = L[l+1 mod N ] − L[l mod N ] = λ(l) ⊗ ν, (23)

where λ(l), Hadamard’s characteristic segment of domain boundary l, is given

by (Mahesh, 2006)

λ(l) = 2Jǫ̇(l)Kν + (Jǫ̇(l)Kν · ν)ν. (24)

Eq. (19) may be written using Eq. (5) as

N
∑

l=1

ρ[l]
(

L[l]
ss + Ẇ [l]

c

)

= Limp. (25)

Algebraic manipulation detailed in Arul Kumar et al. (2011) of Eqs. (23) and

(25) using Eqs. (24) and (5) yields

Ẇ [l]
c = skew

(

Limp −L[l]
ss +Φ[l] −Φimp

)

, (26)

where,

Φ[l] =
[

2ǫ̇[l]ν − (ǫ̇[l]ν · ν)ν
]

⊗ ν and

Φimp =
[

2ǫ̇impν − (ǫ̇impν · ν)ν
]

⊗ ν.

(27)
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By comparing Eqs. (26) and (5) it is seen that the lattice spin of domain l

in the ‘stack of domains’ model subjected to imposed velocity gradient Limp

differs from that of a material point subjected to the same velocity gradient

by skew(Φ[l] − Φimp). It also follows from Eq. (27) that
∑N

l=1 ρ
[l] skew(Φ[l] −

Φimp) = 0. Therefore, skew(Φ[l] −Φimp) represents the local deviation of the

lattice spin of domain l from that of the average (Kocks et al., 1998, § 11.4.2).

Parallel to Eq. (24), this deviation can be written as

skew(Φ[l] −Φimp) = Λ[l] ⊗ ν, (28)

where, Λ[l] = 2(ǫ̇[l] − ǫ̇imp)ν + ((ǫ̇[l] − ǫ̇imp)ν · ν)ν denotes the Hadamard

characteristic segment between two material points deforming with strain-

rates ǫ̇[l] and ǫ̇imp compatibly across an interface oriented normal to ν.

The net lattice spin in the l-th domain is simply the sum of the lattice spins

imposed by the lattice orientation perturbation and by the requirement for

compatibility across domain interfaces. Thus,

Ẇ [l] = Ẇ [l]
∗ + Ẇ [l]

c , (29)

where, the individual terms on the right side are given by Eqs. (16) and (26).

An algorithm to solve for the slip rates, γ̇s, in all the domains subject to

the conditions imposed by Eqs. (7), (20) and (22), and consistency condi-

tions (Havner, 1992) has been developed previously (Arul Kumar et al., 2011).

3.3 Orientational stability

The notion of orientational stability proposed by Mahesh (2006) is now ex-

tended to the ‘stack of domains’ model. Let Ω[l mod N ] and Ω[l+1 mod N ] be the
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orthonormal lattice orientation tensor of the domains l mod N and l+1 mod N

separated by domain boundary l that transform vectors from the crystal co-

ordinate system to the sample coordinate system following Eq. (2). Then the

misorientation vector between these domains is given by (Kocks et al., 1998)

m̂(l) = axial (skew (Ω[l mod N ]Ω[l+1 mod N ]T )). (30)

The axial vector of the rate of misorientation between these neighboring do-

mains is

ŵ(l) = axial {Ẇ [l mod N ] − Ẇ [l+1 mod N ]}, (31)

where Ẇ [l mod N ] and Ẇ [l+1 mod N ] denote the lattice spin rates of domains

l mod N and l+1 mod N given by Eq. (26). The domain boundary l between

domains l mod N and l + 1 mod N is said to be orientationally unstable if

µ(l) = m̂(l) · ŵ(l) > 0, (32)

and orientationally stable otherwise.

Domain boundaries that remain orientationally stable throughout the defor-

mation separate domains of negligible misorientation. They, therefore, do not

correspond to physical geometrically necessary dislocation boundaries. On

the other hand, domain boundaries that are orientationally unstable, during

part or whole of the deformation process may separate misoriented domains

and may represent geometrically necessary physical deformation band bound-

aries. Also, because of the periodicity in the stacking of domains, assumed in

Sec. 3.2.1, exactly one domain boundary cannot be orientationally unstable;

the number of orientationally unstable domain boundaries can only be zero,

two or more.

21



3.4 Sub-structure

3.4.1 Slip system dominance

As noted in Secs. 2.2 and 2.3, the presence of crystallographic DDW-MBs

is a pre-requisite for macroscopic shear banding, while the absence of crys-

tallographic DDW-MBs is necessary for regular deformation banding. Sub-

structure is not directly represented in the present model; DDW-MBs are not

explicitly evolved in the course of the simulated deformation of the ‘stack of

domains’ model. The presence or absence of crystallographic DDW-MBs in a

domain is inferred from the dominance or non-dominance of slip activity of a

single crystallographic slip plane in that domain, respectively.

A quantitative criterion for the formation of crystallographic DDW-MBs based

on slip activity in crystallographic slip planes, suggested by Winther et al.

(1997), has been discussed in Sec. 2.1. This criterion is unable to discrimi-

nate between crystallographic and non-crystallographic DDW-MBs for about

25% of the grains studied by Winther et al. (1997). Another measure of slip

concentration in a crystallographic slip plane, which accounts for simultane-

ously activated cross-slip systems is, therefore, presently suggested. Two slip

systems s and t are said to be simultaneously activated cross-slip systems if

γ̇s > 0, γ̇t > 0, bs = bt and ns 6= ±nt. Screw dislocations gliding in one of a

pair of simultaneously activated cross-slip systems may readily cross-slip into

the other. They are therefore unlikely to get trapped in their original glide

plane. Let S p denote the set of slip systems in the crystallographic slip plane

p with normal np, whose cross-slip systems are not simultaneously activated.
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Thus,

S
p = {s : ns = ±np, γ̇sγ̇t = 0 if bs = bt and ns 6= ±nt} (33)

denotes the set of slip systems that may contribute dislocations to DDW-MBs

aligned parallel to the plane p. Even though the mechanism of cross-slip only

applies to the screw component of gliding dislocations, for simplicity, both

screw and edge dislocation contributions from simultaneously activated cross-

slip systems are neglected in Eq. (33).

The effective total slip activity, Γ̇p, contributing to DDW-MB formation in

the crystallographic slip plane p is then

Γ̇p =
∑

s∈S p

|γ̇s|. (34)

Let Γ̇p∗ and Γ̇p∗∗ be the total slip rates of the most active and second most

active crystallographic slip planes, p∗ and p∗∗, respectively. The criterion for

dominance of the crystallographic slip plane p∗, which is also taken to be

the criterion for the formation of DDW-MBs parallel to p∗ in pure copper

is (Mahesh, 2006)

Γ̇p∗

Γ̇p∗∗
≥ 1.2. (35)

3.4.2 Sub-structure based hardening

A sub-structure comprised of dislocation cells or non-crystallographic DDW-

MBs is referred to as type (i) and a sub-structure comprised of crystallographic

DDW-MBs as type (ii). Non-satisfaction and satisfaction of Eq. (35) in a do-

main of a model copper single crystal are taken to imply the formation of

type (i) and type (ii) sub-structures therein, respectively. It has been noted

in Sec. 2.2 that crystallographic DDW-MBs interrupted by microscopic shear
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bands is one type of sub-structure observed within MSBs. This is termed the

type (iii) sub-structure. Type (ii) and type (iii) sub-structures are schemati-

cally shown in Figs. 2(a) and (b), respectively. Plastic anisotropy is accounted

for by assigning different hardening matrices, [H(i)], [H(ii)] and [H(iii)] in Eq. (9)

to each of the three sub-structure types.

bp∗bp∗
np∗np∗

microscopic shear bandDDW-MB

(a) (b)

Fig. 2. Schematic representation of (a) type (ii) and (b) type (iii) sub-structures.

In a domain with type (i) sub-structure, plastic anisotropy is assumed negli-

gible, i.e., all slip systems are assumed to harden equally. Thus,

H
(i)
ss′ = 1, s, s′ ∈ {1, 2, . . . , S}. (36)

In a domain with type (ii) sub-structure, shown in Fig. 2 (a), DDW-MBs

parallel to plane p∗ act as directional barriers to slip and cause anisotropy

in the domain’s plastic response. In such domains, the CRSS of slip systems

intersecting p∗ will exceed that of slip systems parallel to p∗. To reflect this,

the elements of the hardening matrix, [H(ii)] are taken as

H
(ii)
ss′ =























α ≥ 1, if ns 6= ±np∗ , ns′ = ±np∗ and s 6= s′,

1, otherwise.

(37)

As noted in Sec. 2.2, enhanced dynamic recovery and/or deformation twinning

may occur within MSBs. This may reduce the hardening rate of slip systems

and alter the plastic anisotropy in the MSB material. Neglecting the latter
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effect for simplicity, it is presently assumed that the hardening rate [H(iii)] in

an MSB domain is proportional to [H(ii)]:

H
(iii)
ss′ = χH

(ii)
ss′ , s, s′ ∈ {1, 2, . . . , S}, (38)

where, 0 ≤ χ ≤ 1 indicates a reduced hardening rate in MSB domains. It is

emphasized that Eq. (38) does not imply softening of the MSB domain; only

a reduction in the hardening rate is proposed. Also, the reduced hardening

rate given by Eq. (38) is applied only after MSB nucleation; it is not therefore

responsible for MSB nucleation. Finally, it is assumed in Eq. (38) that the

mechanisms responsible for reduced hardening of MSB material become active

immediately upon MSB nucleation; in reality, these may only be activated after

substantial MSB deformation.

3.5 Identification of banding

A contiguous set of domains D = {l, l + 1, . . . , m} is taken to represent a

band if their slip pattern and lattice rotations are similar, but differ from that

in other domains, denoted Dc. A robust and reliable indication of divergence

of the slip pattern and lattice rotations of D from that of Dc is provided by

orientational instability of the two domain boundaries separating D from D
c,

i.e., µ(l−1) > 0 and µ(m) > 0. Orientationally unstable domain boundaries thus

represent band boundaries and the set of domains contained between a pair

of nearest orientationally unstable domain boundaries represent a band.

The decision tree followed to identify a set of contiguous domains D as a

particular type of band is shown in Fig. 3. Domains identified as constituents

of a band are assumed to remain so during subsequent deformation.
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D = {l, l + 1, . . . , m}

µ(l−1) > 0,
µ(m) > 0

Is
Eq. (35)
satisfied?

D is not
a band.

D is
an RDB.

D is either
an MSB or a
matrix band.

No

No

Yes

Yes

Fig. 3. Flow chart detailing the identification of a set of contiguous domains, D = {l, l + 1, . . . , m}, as a particular type

of band. The domains comprising D are not part of a pre-existing band.

3.6 Domain boundary orientation

In order to capture the experimentally observed mobility of band boundaries

noted in Secs. 2.1 and 2.2, domain boundaries are assumed be mobile relative

to the crystal material. Following Mahesh (2006), their orientation ν is taken

to be that which minimizes the plastic power of the model crystal, i.e.,

ν = argmin
ν
∗

N
∑

l=1

ρ[l]
S
∑

s=1

τ [l]s γ̇[l]
s (ν

∗), (39)

subject to the constraints given by Eqs. (3), (20) and (22). Since the objective

function in Eq. (39) is non-smooth, a section search method (Chang, 2009)

is employed for minimization over the unit hemispherical surface spanned by

ν∗. Predicted domain boundaries need not coincide with {111} planes.

It was noted in Sec. 2.3 that RDB boundaries are not mobile relative to the
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crystal material and therefore, evolve in conformity with the shape of the

crystal. Eq. (39) therefore, is not applied to model crystals containing RDB

bands. Instead, if ν0 is the domain boundary normal and F̄0 the deformation

gradient at the instant of RDB formation, the domain boundary orientation

ν when the crystal deformation gradient becomes F̄ is (Gurtin, 1981)

ν =
F̄0

T
F̄−Tν0

‖F̄0
T
F̄−Tν0‖

. (40)

In crystal orientations forming RDBs, Eq. (39) applies until the instant of

banding and Eq. (40) thereafter. ν0 is, therefore, given by Eq. (39).

4 Results

4.1 Initial lattice orientation

The banding response of copper single crystals subjected to plane strain com-

pression in the plane containing the rolling direction (RD) and the normal

direction (ND) is studied. The specimen dimension along the transverse di-

rection (TD) is maintained constant. Three experimentally well-studied crys-

tal orientations are analyzed: copper: ND/RD= (112)/[111̄] (Bunge angles:

(φ1, ϕ, φ2) = (−90◦, 35.26◦, 45◦)), rotated cube: ND/RD= (001)/[110]: (Bunge

angles: (φ1, ϕ, φ2) = (90◦, 0◦,−135◦)) and Goss ND/RD= (110)[001] (Bunge

angles: (φ1, ϕ, φ2) = (90◦, 90◦, 45◦)). For brevity, these will henceforth be re-

ferred to as the C crystal, the RC crystal and the G crystal.

Figs. 4 (a1), (b1) and (c1) show the initial orientation of these crystals together

with the four {111}〈110〉 slip systems activated during full constraints plane

strain compression, following the Schmid-Boas notation (Ortiz and Repetto,
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RD = [111̄]

TD = [1̄10]ND = [112]

CP

CD

35.3◦ 19.5◦

(a1)

RD

ND

CD
CP

(a2)

2φ

ω

2φ = 125.3◦

ω = 97.9◦

RD = [110]

TD = [1̄10]ND = [001]

CP1CP2 54.7◦
54.7◦

(b1)

RD

ND

CP1

CP2

(b2)

2φ
2φ = 109.5◦

ω = 0.0◦

RD = [001]

TD = [11̄0]ND = [110]

CP1

CP2

35.3◦35.3◦

(c1)

RD

ND

CP1

CP2

(c2)

2φ 2φ = 70.5◦

ω = 0.0◦

Fig. 4. Crystallography of the three initial lattice orientations of present interest: (a1) copper (C), (b1) rotated cube

(RC) and (c1) Goss (G), and their respective, equivalent 2D representations, (a2), (b2) and (c2).

1999). In the C crystal, potential slip activity is divided between two coplanar

(CP: b2 = (111)[01̄1] and b4 = (111)[1̄01]) and two co-directional slip systems

(CD: a6 = (1̄11)[110] and d6 = (11̄1)[110]). The RC crystal can potentially

activate slip on two pairs of coplanar slip systems (CP1: b2 = (111)[01̄1] and

b4 = (111)[1̄01]; CP2: c1 = (1̄1̄1)[011] and c3 = (1̄1̄1)[101]). Likewise, in

the G crystal two pairs of coplanar slip systems (CP1: b2 = (111)[01̄1] and

b4 = (111)[1̄01]; CP2: c1 = (1̄1̄1)[011] and c3 = (1̄1̄1)[101]) are activated.
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It is evident from Fig. 4 that all three crystals considered are crystallograph-

ically symmetric about the RD–ND plane. In view of the symmetry of the

imposed plane strain deformation also about the TD, two dimensional analy-

ses of these orientations with two slip systems each, as shown in Figs. 4 (a2),

(b2) and (c2), will suffice. Crystal symmetry about the RD–ND plane also

ensures that all lattice rotations occur about TD. Thus, a scalar ω, related to

the second Bunge angle ϕ through

ω =







































ϕ + 62.64◦, for the C crystal,

ϕ, for the RC crystal and

ϕ− 90◦, for the G crystal,

(41)

and representing the inclination of the angle bisector of the projection of the

two slip directions onto the RD–ND plane, together with the included angle

2φ between these projections, suffices to represent the lattice orientations of

the two-dimensional crystals (Figs. 4 (a2), (b2) and (c2)).

A two-dimensional ‘stack of domains’ model of a single crystal, which accom-

modates the plastic slip and lattice rotation within the RD-ND plane is shown

in Fig. 5. The sample coordinate system, xy, coincides with the RD-ND sys-

tem. The domain boundary coordinate system, XY , with Y -axis always nor-

mal to the domain boundaries, is confined to the RD-ND plane. A scalar θ, also

shown, specifies the domain boundary orientation relative to the xy-system.

Plane strain deformation under fully constrained imposed velocity gradient

[L]RD−ND =

















1 0

0 −1

















(42)

in the [RD-ND] system is simulated following the procedure detailed in Sec. 3.
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X

Y

x

y

θ

LRD−ND

LRD−ND

l = 1

l = 2

l = N

l = N − 1

.

.

.

ν

Fig. 5. The two-dimensional ‘stack of domains’ model comprised of N domains. XY , xy and θ are described in the text.

The single crystal is discretized into a stack of N = 16 domains.

4.2 Hardening parameters

Three sets of hardening parameters, τ0, θ0, τ1 and θ1 (Eq. (11)) were obtained

by Tomé et al. (1984) by fitting experimental stress-strain curves for uniaxial

tension, compression and torsion in polycrystalline OHFC copper. The re-

sponse predicted by the present simulations using all three parameter sets are

qualitatively similar. Therefore, in the following, predictions corresponding to

only one of the parameter sets of Tomé et al. (1984): τ0 = 12 MPa, θ0 =

160 MPa, τ1 = 98 MPa and θ1 = 7 MPa, is discussed. The hardening matrices

corresponding to type (i), type (ii) and type (iii) sub-structures, discussed in
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Sec. 3.4.2, are taken to be

[H(i)] =

















1 1

1 1

















, [H(ii)] =

















1 α

α 1

















and [H(iii)] = χ

















1 α

α 1

















, (43)

respectively, where, α = 3.1 and χ = 0.5. These numbers represent limiting

values for these parameters in that for α < 3.1 or χ > 0.5, macroscopic shear

banding in the C crystal, reported below, is not predicted. α ≫ 1 signifies

a substantial anisotropic hardening in domains with types (ii) and (iii) sub-

structure, while χ significantly smaller than 1 indicates substantial reduction

of the hardening rate in MSB domains.

The predicted lattice rotations, localization response, domain boundary ori-

entation evolution and CRSS evolution in all three crystals are now described.

4.3 Lattice rotation

The evolution with strain of the lattice orientation, ω[l], in individual domains,

l = 1, 2, . . . , N = 16 of the C, RC and G crystals is shown in Figs. 6(a), (b) and

(c), respectively. It is seen from Fig. 6(a) that in the C crystal, for ǫvM < 0.29,

the lattice orientations of all domains evolve similarly toward the D-orientation

(Bunge angles: (φ1, ϕ, φ2) = (−90◦, 27.22◦, 45◦)). For ǫvM ≤ 0.29, Eq. (35) is

satisfied in all domains of the model crystal, as shown below. At ǫvM = 0.29

the domain boundaries of a certain domain become orientationally unstable.

Following Sec. 3.5, this domain is therefore identified as an MSB. The lattice

orientation of the MSB domain increasingly deviates from that of the other

N − 1 = 15 domains with strain.
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Fig. 6. Evolution with strain of the lattice orientation, ω, in the (a) C, (b) RC and (c) G crystals.
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For ǫvM ≤ 0.29, in all the domains of the C crystal, as noted in Sec. 4.1,

two coplanar (b2 and b4) and two co-directional slip systems (a6 and d6)

are activated. The co-directional slip systems a6 and d6 are simultaneously

activated cross-slip systems, defined in Sec. 3.4 and therefore, their activities

do not enter into the summation of Eq. (34). Identifying the crystallographic

b-plane with p∗ for which, Γ̇p∗ > 0 and any of the other crystallographic

planes with p∗∗ for which, Γ̇p∗∗ = 0, the ratio between two largest slip-rates,

Γ̇p∗/Γ̇p∗∗ = ∞, which implies the satisfaction of Eq. (35).

Fig. 6(b) shows the evolution of the lattice orientation in all domains of the

model RC crystal. Starting already at ǫvM = 0, two orientationally unstable

domain boundaries separate the model crystal into two sets of contiguous

domains. One set of 7 domains rotate clockwise and the other set of 9 domains

rotate counter-clockwise about TD. At ǫvM = 0, Eq. (35) is not satisfied in

any of the model domains, as shown below. Following Sec. 3.5, therefore, these

two sets of domains are identified as RDBs and denoted B1 and B2.

In the RC crystal, as noted in Sec. 4.1, two sets of coplanar slip systems (CP1:

b2 and b4, and CP2: c1 and c3) are activated. If the crystallographic b-plane is

identified with p∗ and the crystallographic c-plane with p∗∗, Γ̇p∗/Γ̇p∗∗ ≈ 1, so

that Eq. (35) for the dominance of a single crystallographic slip plane is not

satisfied at the instant of banding.

Finally, Fig. 6(c) shows the lattice orientation evolution in all domains of the

G crystal with deformation. It is clear that no domain is predicted to rotate

significantly away from the initial Goss orientation. Thus, the G crystal is

predicted to form neither MSBs or RDBs.
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4.4 Slip accumulation

The total accumulated slip, Γ[l], in each of the N = 16 domains of the C, RC

and G crystals is shown in Fig. 7. In the model C crystal it is seen from Fig. 7(a)

that one domain, which was identified as an MSB in Sec. 4.3, accumulates

one order of magnitude more slip compared to the other 15 domains, which

were identified as the matrix band by ǫvM = 1. The latter set of domains are

seen to undergo relatively little slip once macroscopic shear banding begins

at ǫvM = 0.29, as evidenced by the nearly constant value of Γ[l] in Fig. 7(a)

for ǫvM > 0.29. No such separation of domains on the basis of slip activity is

observed in the case of the RC or G crystals in Figs. 7(b) and 7(c).

To quantify the concentration of slip in a single domain, a localization param-

eter, L, is defined as

L =
max1≤l≤N Γ[l]

(
∑N

l=1 Γ
[l] −max1≤l≤N Γ[l])/(N − 1)

. (44)

L is thus the ratio of the maximum accumulated slip in a domain to the

average accumulated slip, where the average is calculated by excluding the

contribution of the domain with the maximum accumulated slip. Fig. 8 shows

that L in the macroscopic shear banding C crystal at ǫvM = 1 is one order

of magnitude greater than that in either the regular deformation banding

RC or homogeneously deforming G crystals. Intense shear localization in the

C crystal occurs even though macroscopic shear banding was identified only in

terms of lattice orientation deviation and pre-existing type (ii) substructure.

Slip localization is thus orientation dependent.

The distribution of slip activity between the coplanar and co-directional slip

systems in the domains of the C crystal is shown in Fig. 9. The slip accu-
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Fig. 7. Evolution with strain of the total accumulated slip Γ[l] in all the domains (l = 1, 2, . . . , N = 16) of the (a) C,

(b) RC and (c) G crystals.
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Fig. 9. Evolution with strain of slip (γ) in the individual slip systems of the MSB and the evolution with strain of slip

averaged over the domains constituting the matrix band of the C crystal.

mulated in the coplanar and co-directional slip systems of the MSB domain

are labeled γ
CP,MSB

and γ
CD,MSB

, respectively. The coplanar and co-directional

slip activity, averaged over the 15 domains comprising the matrix region are

also shown, labeled as 〈γ
CP,M

〉 and 〈γ
CD,M

〉, respectively. It is noteworthy that

the bulk of the deformation in the C crystal is accommodated by slip in the

coplanar systems of the domain representing the MSB.
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RC crystal.

The total slip averaged separately over the domains of RDBs B1 and B2 in

the RC crystal is shown in Fig. 10. 〈γ
CP1,B1

〉, 〈γ
CP2,B1

〉, 〈γ
CP1,B2

〉 and 〈γ
CP2,B2

〉

represent the average accumulated slip of the two coplanar slip systems CP1

and CP2, in bands B1 and B2, respectively. In band B1, CP1 dominates CP2,

while in band B2, CP2 dominates CP1. The quantitative condition for the

dominance of one slip system in each of the two bands, Eq. (35), is satisfied

for ǫvM ≥ 0.06 in all the domains of both bands. Macroscopic shear banding

may thus occur within the RDBs, as indeed observed by Wróbel et al. (1988).

This secondary banding is not captured by the model.

4.5 Domain boundary orientation

The domain boundary orientation, θ, for the macroscopic shear banding C crys-

tal evolves from about 15◦ to 45◦ following Eq. (39), as shown in Fig. 11(a).

According to Eq. (39), the initial orientation of the domain boundaries in

the RC crystal is θ = −3.75◦ and evolve with crystal shape (Sec. 3.6) into
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Fig. 11. Evolution with strain of the domain boundary orientation θ, defined in Fig. 5, in the (a) C and (b) G crystals.

alignment with the rolling plane. The predicted evolution of the very slightly

misoriented domain boundaries in the G crystal is shown in Fig. 11 (b). As in

the C crystal, these boundaries also align close to θ = 45◦ eventually.

4.6 Evolution of the critical resolved shear stress

The evolution of the normalized CRSS, τ̂ = τ/τ0, of the CP and CD slip

systems in all the domains of the model C crystal is shown in Fig. 12. It is

seen that the CRSS in all the domains evolve similarly, following [H(ii)] of
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Eq. (43), until ǫvM = 0.29. At ǫvM = 0.29, as noted in Sec. 4.3, the MSB

forms. Accordingly, further hardening of the MSB domain is governed by the

latent hardening matrix, [H(iii)] of Eq. (43). This, together with the favorable

orientation of the MSB, results in slip concentration in the CP system of the

MSB, as seen in Fig. 9. This causes substantial latent hardening of the CD

slip system in the MSB domain, as shown in Fig. 12. It is found that if χ > 0.5

in Eq. (43), deformation localization does not occur.

RDBs form in the RC crystal already at ǫvM = 0, as noted in Sec. 4.3. At

ǫvM = 0, Eq. (35) is not satisfied in the domains of either RDB, so that the

hardening follows [H(i)] of Eq. (43). For ǫvM ≥ 0.06, however, Eq. (35) is

satisfied in all the domains of both RDBs and [H(ii)] represents the hardening

matrix thereafter. In the G crystal, Eq. (35) is not satisfied throughout the

deformation so that hardening follows [H(i)] of Eq. (43) throughout.
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crystal tstack [s] tTaylor [s] tdomain/tTaylor

C 685 24 1.78

RC 423 21 1.26

G 435 22 1.24

Table 1
Simulation time, in seconds, of the C, RC and G crystals with N = 16 domains (tstack) and N = 1 domain (Taylor model,

tTaylor). It is seen that tstack ∼ NtTaylor.

4.7 Computational time

The wall clock computational time tstack, in seconds, required to simulate plane

strain deformation to ǫvM = 1 of the C, RC and G crystals comprised ofN = 16

domains is given in Tab. 1 . The time, in seconds, required for the correspond-

ing Taylor model (Taylor, 1938), tTaylor, is also given. The simulations are

carried out in a standard 2.6GHz processor PC. It is seen from Tab. 1 that

tstack = βNtTaylor, where 1 < β < 2. The present calculations are thus only

slightly slower than Taylor calculations and therefore, significantly faster than

CPFEM simulations (Pierce et al., 1983; Anand and Kalidindi, 1993).

5 Discussion

5.1 C crystal

In agreement with experimental observations (Wagner et al., 1995; Jasienski

et al., 1996) the model C crystal undergoes macroscopic shear banding. Model

MSBs form only after considerable rolling reduction, as in the experiment of

Wagner et al. (1995). Also in accord with experimental observations (Wag-
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ner et al., 1995; Jasienski et al., 1996), model domains rotate toward the D-

orientation prior to macroscopic shear banding. After banding, while the MSB

domain rotates progressively toward the Goss orientation, the matrix domains

rotate back toward the C orientation. Quantitative comparison of the present

predictions with experimentally measured orientations (Wagner et al., 1995;

Jasienski et al., 1996) is shown in Fig. 6(a) at three rolling reductions and

agreement to within a few degrees is found. Finally, the predicted θ = 45◦ in-

clination of the macroscopic shear band boundary, shown in Fig. 11(a), is close

to the experimentally observed MSB inclination of 42◦ after 27% reduction in

channel die compression, reported by Jasienski et al. (1996).

5.2 RC crystal

For the model RC crystal, quantitative agreement of the predicted lattice ori-

entations of RDBs, B1 and B2, with the experimental measurements from the

literature (Heye and Sattler, 1971; Bauer et al., 1977; Butler and Hu, 1989;

Wróbel et al., 1994) at different strain-levels is shown in Fig. 6(b). In agree-

ment with experimental observations (Heye and Sattler, 1971), localization is

not observed and RDB formation occurs already at ǫvM = 0. The experimen-

tally observed alignment of RDB boundaries with the rolling plane (Heye and

Sattler, 1971) is also captured by the present model, as noted in Sec. 4.5.

5.3 G crystal

In the G crystal, in agreement with experimental observations (Bauer et al.,

1977; Wróbel et al., 1994; Lee et al., 1999) to within a few degrees, no domain
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is predicted to rotate significantly away from the initial Goss orientation, as

shown in Fig. 6(c). The predicted domain boundaries in the G-crystal, which

separate only slightly misoriented domains, represent neither MSB nor RDB

boundaries. It may be supposed that they represent smaller scale dislocation

boundaries such as DDW-MBs. However, the predicted boundary orientation

is not in accord with this supposition. Because, while θ ≈ 45◦ boundaries are

predicted in Fig. 11(b), it is experimentally observed (Ananthan et al., 1991)

that DDW-MBs in Goss oriented grains in a copper polycrystal align with the

active slip planes, which are inclined approximately 35◦ to RD. It is thus clear

that the present approach is unsuccessful in predicting DDW-MB orientations.

6 Conclusions

A computationally efficient crystal plasticity model of a single crystal, based

on the ‘stack of domains’ model of Arul Kumar et al. (2011) and capable of pre-

dicting experimentally observed regular deformation banding and macroscopic

shear banding has been developed. Predicted macroscopic banding response,

lattice orientation evolution, slip distribution and band boundary evolution

during plane strain compression in three copper single crystals initially in the

copper, rotated cube and Goss orientations compare well with experimental

observations reported in the literature. The present model is unable to pre-

dict the alignment of smaller scale dislocation boundaries such as DDW-MBs,

however.
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