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Abstract

Grains in f.c.c. polycrystals deform non-uniformly even under imposed homoge-

neous deformation and subdivide into domains of different lattice orientations.

Intense non-uniformity of grain deformation produces substructural features

called deformation bands and shear bands, wherein large deviations from the

average lattice orientation and/or slip localization occur. Using a model of

grain banding, subdivision of pure copper grains initially oriented along the α,

β and τ fibers of the copper-type f.c.c. rolling texture under imposed homoge-

neous plane strain deformation is characterized. The microtexture developed in

grains of these lattice orientations is predicted. The predicted banding response

and microtexture quantitatively agree with experimental observations reported

in the literature.

Keywords: crystal plasticity, shear band, deformation band, dislocation

boundary, rolling texture

1. Introduction

During plastic deformation, grains of coarse-grained f.c.c. polycrystals may

sub-divide into highly misoriented domains, called bands. This process, termed

banding, is classified into two types: shear banding (Wagner et al., 1995; Jasien-

ski et al., 1996) and deformation banding (Heye and Sattler, 1971; Lee and Dug-
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gan, 1993; Hughes and Hansen, 1997; Liu and Hansen, 1998; Kulkarni et al.,

1998; Wu et al., 2011). In shear banded grains, long and narrow regions of in-

tense slip localization called shear bands, run through the grain matrix. Consid-

erable lattice misorientation develops between the shear bands and matrix (Wag-

ner et al., 1995; Jasienski et al., 1996). In deformation banded grains, on the

other hand, highly misoriented bands of approximately equal volume (Lee and

Duggan, 1993) develop, but intense slip localization does not occur. Following

the usage followed by Lee and Duggan (1993) and Wagner et al. (1995), the term

‘banding’ presently excludes grain subdivision into slightly misoriented volumes

such as cells, cell-blocks or microbands (Bay et al., 1989).

Both texture evolution and banding, which occur during plastic deformation,

determine the plastic anisotropy of the deformed material. Texture evolution

is well-characterized experimentally and well-predicted by models that assume

homogeneous grain deformation for a variety of materials and deformation paths

as detailed in Kocks et al. (1998) and references therein; the same cannot be said

of banding. Banding has been experimentally studied in ideally oriented single

crystals, e.g., Wagner et al. (1995); Liu and Hansen (1998); Paul et al. (2002,

2009, 2010) and in certain grains of polycrystals, e.g., Lee and Duggan (1993);

Hughes and Hansen (1997); Kulkarni et al. (1998); Paul and Driver (2008); Wu

et al. (2011). It is recognized that lattice orientation largely determines the

occurrence and type of banding (Hughes and Hansen, 1997; Wu et al., 2011).

However, a systematic experimental characterization of the lattice orientation

dependence of banding is presently prohibitively tedious and not presently avail-

able. Such a characterization may be obtained from banding models.

Deformation banding is driven by the tendency to minimize the plastic power

during plastic deformation. This principle, first recognized by Chin and Won-

siewicz (1969), has since been extended and phrased in terms of plastic work (Lee

and Duggan, 1993; Lee et al., 1993) and free energy (Kuhlmann-Wilsdorf, 1999)

minimization. Shear banding was explained by Van Houtte et al. (1979); Dil-

lamore et al. (1979); Asaro (1979) as resulting from load instability caused by

geometric and vertex softening. A more recent model (Mahesh, 2006) simul-
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taneously explains both deformation banding and shear banding as unstable

growth of small random lattice orientation perturbations during plastic power

minimizing grain deformation.

In recent years, the crystal plasticity finite element method (CPFEM) (Rot-

ers et al., 2010) has been extensively used to model deformation banding (Rezva-

nian et al., 2006; Si et al., 2008; Kanjarla et al., 2010) and shear banding (Anand

and Kalidindi, 1993; Kuroda and Tvergaard, 2007) in single crystals and grains.

The underlying variational principle of CPFEM ensures minimization of the

incremental plastic work over each time step. Also, material compatibility is

automatic because element deformations are interpolated from nodal displace-

ments.

In CPFEM simulations, deformation inhomogeneity and banding may emerge

spontaneously during simulated model deformation, obviating complex non-

linear constrained optimization procedures as in Mahesh (2006). However, the

number of degrees of freedom required to capture banding in a CPFEM model

is much larger than that in the models of Chin and Wonsiewicz (1969); Lee

and Duggan (1993); Lee et al. (1993); Kuhlmann-Wilsdorf (1999); Van Houtte

et al. (1979); Dillamore et al. (1979); Asaro (1979) and Mahesh (2006). CPFEM

calculations, therefore, typically involve several orders of magnitude more com-

putational effort than that required by these models.

A ‘stack of domains’ model of a grain, capable of capturing inhomogeneous

deformation and banding with far fewer degrees of freedom than CPFEM mod-

els was recently developed by Arul Kumar and Mahesh (2012). In this model,

banding may emerge spontaneously during simulated model grain deformation,

as in CPFEM. Continuity between each domain and its two neighbors is en-

forced, as between adjacent elements in CPFEM. However, in contradistinction

to CPFEM model elements, the shape of the domains in the model of Arul Ku-

mar and Mahesh (2012) resembles experimentally observed lath-shaped bands

that run across the grain (Lee and Duggan, 1993; Wagner et al., 1995). Also,

model domains are assumed to deform homogeneously. Further, ‘stack of do-

mains’ model boundaries may be mobile relative to the crystalline material, in
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accord with experimental observations (Wagner et al., 1995; Jasienski et al.,

1996). This contrasts with the immobility of CPFEM element boundaries. On

account of these assumptions, far fewer domains suffice to capture banding in the

‘stack of domains’ model than the number of elements required in CPFEM sim-

ulations for the same purpose. This translates into much lower computational

effort for the ‘stack of domains’ model compared to CPFEM (Arul Kumar and

Mahesh, 2012).

In Arul Kumar and Mahesh (2012), the ‘stack of domains’ analysis was re-

stricted to three special lattice orientations amenable to two-dimensional treat-

ment. In the present work, this model has been modified and applied to general

three-dimensional lattice orientations. The model is briefly described in Sec. 2.

Lattice orientations of present interest are described and a novel method for

succinct representation of their evolution during deformation is then developed

in Sec. 3. The central results of the present work follow in Sec. 4: Grain subdi-

vision and final microtexture in rolled pure copper grains, whose initial lattice

orientations fall along the standard copper-type f.c.c. rolling texture fibers are

predicted. Model predictions are then compared with experimental observations

available in the literature in Sec. 5.

2. Model

2.1. The grain as a ‘stack of domains’

The grain is represented as a one-dimensional stack of N parallelepiped

shaped domains as shown schematically in Fig. 1 (Arul Kumar and Mahesh,

2012). The stacking is assumed to be repeated periodically so that domains l = 1

and l = N are neighbors. All the domains are assumed to have the same shape

and size and hence, the same volume fraction, ρ[l] = 1/N for l ∈ {1, 2, . . . , N}.
Domain boundaries are assumed to be planar and identically oriented perpen-

dicular to the normal vector ν. In the following, indices surrounded by square

brackets, e.g., [l], refer to domains, while those surrounded by round brackets,

e.g., (l), pertain to domain boundaries.
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Figure 1: Representation of the model grain as a stack of N parallelepiped-shaped domains.

Each domain is assumed to deform homogeneously following standard rigid-

plastic rate-independent crystal plasticity (Mahesh, 2010). A uniform lattice ori-

entation, denoted Ω[l], is assumed in each domain l. Let γ̇
[l]
s and τ

[l]
s denote the

slip-rate and critical resolved shear stress (CRSS) of slip system s ∈ {1, 2, . . . , S}
in domain l, respectively. Let b

[l]
s and n

[l]
s denote the unit slip direction and

unit slip plane normal. According to Schmid’s law (Kocks et al., 1998),

γ̇[l]
s











≥ 0, if σ[l] : b
[l]
s ⊗ n

[l]
s = τ

[l]
s

= 0, if σ[l] : b
[l]
s ⊗ n

[l]
s < τ

[l]
s ,

(1)

where σ[l] denotes the uniform deviatoric stress in domain l. The slip rate tensor

of domain l, L
[l]
ss , is then:

L
[l]
ss =

S
∑

s=1

γ̇[l]
s b

[l]
s ⊗ n

[l]
s , (2)

and its rate of deformation, ǫ̇
[l] = (L

[l]
ss + L

[l]
ss

T
)/2. The plastic power, P ,
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associated with the deformation of the ‘stack of domains’ is given by

P =

N
∑

l=1

ρ[l]σ[l] : ǫ̇[l] =

N
∑

l=1

S
∑

s=1

ρ[l]τ [l]s γ̇[l]
s . (3)

The velocity gradient of domain l, L[l], is the sum of its slip-rate tensor and

skew-symmetric lattice spin tensor, Ẇ [l]:

L
[l] = L

[l]
ss + Ẇ

[l]. (4)

The two conditions to be satisfied collectively by the domains are next con-

sidered. First, the velocity gradient imposed on the model ‘stack of domains’

grain, Limp, is to be accommodated collectively by all the domains:

L
imp =

N
∑

l=1

ρ[l]L[l]. (5)

In the present work, plane strain compression is the imposed macroscopic de-

formation. It follows from the Taylor (1938) model that each grain undergoes

plane strain compression, i.e.,

[Limp]RD−TD−ND =











1 0 0

0 0 0

0 0 −1











, (6)

where RD, TD and ND denote the rolling, transverse and normal directions

associated with plane strain compression. A scalar measure of the imposed

deformation is given by the von Mises strain:

ǫvM =

∫ t

0

√

2

3
ǫ̇imp : ǫ̇imp dt, (7)

where,

[ǫ̇imp]RD−TD−ND = [(Limp +L
impT )/2]RD−TD−ND =











1 0 0

0 0 0

0 0 −1











. (8)

Second, velocity and traction continuity is demanded across domain bound-

aries. Velocity continuity across the domain boundary (l) between domains [l]
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and [m] = l + 1 mod N is (Hill, 1961) demands:

L
[m] −L

[l] = λ
(l) ⊗ ν. (9)

where λ(l) is the Hadamard characteristic segment of domain boundary l. Trac-

tion continuity across domain boundary (l) oriented normal to ν requires (Arul Ku-

mar et al., 2011):

{

(σ[m] − σ
[l])− ν ⊗ (σ[m] − σ

[l])ν
}

ν = 0. (10)

The lattice spin of domain l, Ẇ [l], evolves according to Eqs. (5) and Eq. (9);

a closed-form expression applicable to the present ‘stack of domains’ model has

been given in (Arul Kumar et al., 2011; Arul Kumar and Mahesh, 2012). The

lattice orientation of domain l, Ω[l], evolves as

Ω̇[l] = Ẇ
[l]Ω[l]. (11)

The lattice misorientation across domain boundary (l) separating neighboring

domains [l] and [m] = l + 1 mod N is (Kocks et al., 1998)

ω(l) = arccos
[

(trace(Ω[l]TΩ[m])− 1)/2
]

, (12)

Differentiating this equation with respect to time, performing standard tensor

algebra operations using Eq. (11), and using sinω(l) =
√

1− cos2 ω(l) yields

ω̇(l) =
(Ẇ [l] − Ẇ

[m]) : (Ω[l]Ω[m]T )
√

4− (trace(Ω[l]TΩ[m])− 1)2
. (13)

ω̇(l) > 0 implies that the lattice mis-orientation between domains [l] and [m]

across the domain boundary (l) increases. In other words, ω̇(l) > 0 implies that

the lattice orientations of domains [l] and [m] diverge from each other. If so, the

domain boundary (l) between domains [l] and [m] is said to be orientationally

unstable. If, however,

ω̇(l) ≤ 0, (14)

domain boundary (l) is said to be orientationally stable. The set of domains

between two nearest orientationally unstable domain boundaries are regarded

as a band. Orientation gradients develop across orientationally unstable domain

boundaries.
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2.2. Slip system hardening

The critical resolved shear stress of the s-th slip system of domain l is taken

to evolve as (Kocks et al., 1998)

τ̇ [l]s =
dτ [l]

dΓ[l]

S
∑

s′=1

H
[l]
ss′ γ̇

[l]
s′ , (15)

where H
[l]
ss′ is an element of the hardening matrix and

Γ[l] =

S
∑

s=1

γ[l]
s (16)

denotes the slip accumulated in all the slip systems of domain [l]. τ [l] is taken

to follow the Swift law (Kanjarla et al., 2010),

τ [l](Γ[l]) = τ0

(

1 + Γ[l]/Γ0

)n

, (17)

where τ0, Γ0 and n are material parameters. H
[l]
ss′ depends on the substructure

of domain l, as described below.

The hardening law given by Eq. (17) differs from the extended Voce law

used in Arul Kumar and Mahesh (2012). This modification has the effect of

decreasing computational time. However, as already noted in Arul Kumar and

Mahesh (2012), the form of the hardening law, τ [l], hardly affects banding pre-

dictions. Of much greater importance is the hardening matrix Hss′ . For several

sample lattice orientations, it has been verified that banding predictions are

substantially similar regardless of whether the present Swift law or the previous

extended Voce law is used, if Hss′ is the same.

2.3. Substructure in f.c.c. domains

The present model takes into account two types of sub-structure in each f.c.c.

domain undergoing {111}〈110〉 slip: (i) dislocation cells or non-crystallographic

dislocation walls and (ii) crystallographic dislocation walls. Following Winther

and Huang (2007), it is assumed that type (ii) sub-structure forms only when

slip activity is predominantly confined to a single {111} plane. Additionally, it
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is recognized that the substructure within shear bands differs from that with-

out (Arul Kumar and Mahesh, 2012, §2.2), due to the activation of mechanisms

such as dynamic recovery (Korbel and Szczerba, 1982) and deformation twin-

ning (Huang et al., 2006) within shear bands, even at quasistatic strain-rates

in coarse grained material. The sub-structure within shear bands is therefore,

classified separately as type (iii).

The effective slip accumulated in each of the four {111} planes is defined

as the sum of the slips in the 〈110〉 slip systems associated with it, excluding

those slip systems whose cross-slip systems are also activated (Mahesh, 2006;

Arul Kumar and Mahesh, 2012). The latter slip systems are excluded because

screw dislocations gliding in one of a pair of simultaneously activated cross-slip

systems may cross-slip onto the other and are, therefore, unlikely to be trapped

in their original glide plane. Let ∆Γ
[l]
p∗ and ∆Γ

[l]
p∗∗ denote the largest and second

largest effective slips, respectively, amongst those accumulated in the four {111}
planes of domain [l] over a prescribed imposed von Mises strain increment ∆ǫvM.

The slip plane p∗ is said to be dominant if

∆Γ
[l]
p∗/∆Γ

[l]
p∗∗ ≥ R, (18)

where R is a prescribed constant. The condition for slip plane dominance,

Eq. (18), deviates from the condition given by Arul Kumar and Mahesh (2012),

which was in terms of a ratio of total accumulated slip. The present condition is

better in that it accounts for changes in slip activity during deformation caused

e.g., by lattice rotations or load-path changes.

If Eq. (18) is not satisfied, it is assumed following Winther and Huang (2007)

that the domain sub-structure is of type (i), which is assumed to produce neg-

ligible plastic anisotropy:

H
(i)
ss′ = 1, s, s′ ∈ {1, 2, . . . , S} (19)

On the other hand, if Eq. (18) is satisfied, a type (ii) substructure with crys-

tallographic dislocation walls is assumed to form parallel to p∗. The plastic

anisotropy produced by these barriers is accounted for by setting the hardening
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matrix, [H(ii)], as

H
(ii)
ss′ =











h ≥ 1, if ns 6= ±np∗ , ns′ = ±np∗ , s 6= s′,

1, otherwise.

(20)

It is experimentally known that shear bands in copper can only develop in

grains with a pre-existing type (ii) substructure (Nakayama and Morii, 1982).

The type (iii) substructure within shear bands may reasonably be assumed to be

comprised of partly recovered crystallographic dislocation walls. Accordingly,

the type (iii) hardening matrix is taken to be

H
(iii)
ss′ = χH

(ii)
ss′ , s, s′ ∈ {1, 2, . . . , S}, (21)

where, 0 ≤ χ ≤ 1 indicates a reduced hardening rate in domains representing

shear bands due to recovery effects. It is emphasized that Eq. (21) implies only

reduced hardening of the slip systems in the shear band, not softening.

2.4. Identification of bands

As noted above, a type (ii) substructure is experimentally known to be a

necessary pre-condition for the formation of a shear band (Nakayama and Morii,

1982). If all the domains of the model grain have a type (ii) substructure

with the same dominant slip plane p∗, any bands predicted following Eq. (14)

are identified as shear bands. Otherwise, the predicted bands are identified as

deformation bands.

2.5. Band boundary orientation

In Arul Kumar and Mahesh (2012), the orientation ν of the domain bound-

ary normal was determined using the criterion that it results in the minimization

of the plastic power P , Eq. (3). Following a similar procedure in the present

work is highly computationally intensive, as the space of possible ν in the present

work is one more than that in Arul Kumar and Mahesh (2012). In the present

work, for imposed plane strain compression Eqs. (6) and (8), the plastic power

P is calculated for each ν
∗ ∈ N , where

N = {(RD+ ND)/
√
2, (RD−ND)/

√
2, RD, ND}. (22)
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The ν
∗ that minimizes P is taken to be the model domain boundary normal,

ν. This methodology, which considerably reduces the computational effort of

calculating ν, is justified below.

In a shear banding grain, much of the deformation is known to be confined to

shear bands; plastic deformation of the matrix is relatively negligible (Wagner

et al., 1995). If the number of domains representing shear bands in the model is

nSB, if all such domains are assumed to deform identically, and if domains repre-

senting the matrix are assumed rigid, the rate of deformation of domain [l] repre-

senting a shear band would be ǫ̇[l] = (N/nSB)ǫ̇
imp in order to satisfy Eq. (5). The

jump in the rate of displacement across the boundary between domain [l], which

represents a shear band and its neighboring domain [m], which represents a part

of the matrix would be ǫ̇[l] − ǫ̇
[m] = (N/nSB)ǫ̇

imp − 0 = (N/nSB)ǫ̇
imp. Now, the

domain boundary (l) separating domains [l] and [m] must be so oriented that the

plastic deformation of the neighboring domains is compatible. Mahesh (2012)

has shown that this is achieved for ν = (v1 ± v2)/
√
2, where v1 and v2 are the

unit eigenvectors corresponding to the largest and smallest eigenvalues, respec-

tively, of ǫ̇
[l] − ǫ̇

[m] = (N/nSB)ǫ̇
imp. This yields ν = (RD±ND)/

√
2 for ǫ̇

imp

given by Eq. (8).

This conclusion about the orientation of shear band boundaries accords well

with experimental observations. In shear banded single crystals subjected to

plane strain deformation, band boundaries have been experimentally observed

to align approximately along ν = (RD±ND)/
√
2 (Nakayama and Morii, 1982;

Wagner et al., 1995; Jasienski et al., 1996).

In a deformation banding grain under plane strain compression, Lee and

Duggan (1993); Lee et al. (1993) and Wert and Huang (2003) have suggested

that the rate of deformation of neighboring bands differs by a redundant shear

in the RD–ND plane, i.e.,

[ǫ̇[l] − ǫ̇
[m]]RD−TD−ND =











0 0 X

0 0 0

X 0 0











, (23)
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for non-zero X. Applying the criterion of Mahesh (2012), it can be seen that

compatibility requires either ν = RD or ν = ND. This conclusion accords with

experimental observations: in deformation banded grains, band boundaries have

been observed to align with the rolling plane, ν = ND (Heye and Sattler, 1971;

Liu and Hansen, 1998).

3. Lattice orientations

3.1. Texture fibers

Table 1: Texture fibers under study. Values of a1, b1, c1, a, b and c are given in the text.

Fiber Free parameter Fixed parameters

F ξ ∈ [ξ0, ξ1]

α Φ1 ∈ [0◦, 90◦] Φ = 45◦, Φ2 = 0◦

β Φ2 ∈ [45◦, 90◦]
Φ1 = a1Φ

2
2 − b1Φ2 + c1

Φ = aΦ2
2 − bΦ2 + c

τ Φ ∈ [0◦, 90◦] Φ1 = 90◦, Φ2 = 45◦

Simulations of plane strain deformation are performed on grains whose lat-

tice orientations are drawn from the standard copper type f.c.c. rolling texture

fibers (Engler and Randle, 2010). A texture fiber is a collection of lattice orien-

tations, which describe a continuous curve in the space of lattice orientations:

F = {Ωξ : ξ ∈ [ξ0, ξ1]}. Ωξ may be specified by Euler angles (Φ1,Φ,Φ2).

The Euler angles that describe the three standard texture fibers of present in-

terest are listed in Tab. 1, following Bunge convention (Engler and Randle,

2010). The curve of maximum intensity, which defines the β fiber (Hirsch and

Lucke, 1988), is well-approximated by a quadratic polynomial. Its coefficients,

a1 = 1.76 × 10−2/◦, b1 = 0.4876, c1 = 46.645◦, a = 5.2 × 10−3/◦, b = 3.5861

and c = 215.83◦, are obtained by least-squares fitting.

12



Ω[l]

Ω
[l]
F

ω
[l]
F

ξ

Figure 2: Schematic diagram of lattice orientation space showing the dash-dot line indicating

fiber F , domain lattice orientation, Ω[l], and its projection onto the fiber, Ω
[l]
F

.

3.2. Projection of lattice orientations onto fibers

The misorientation between the lattice orientation of domain l, Ω[l] and

another lattice orientation Ω ∈ SO(3) is given by the formula (Kocks et al.,

1998)

θ(Ω,Ω[l]) = arccos
[

(trace(ΩTΩ[l])− 1)/2
]

, (24)

where 0 ≤ θ(Ω,Ω[l]) ≤ 180◦ without loss of generality. The projection of Ω[l]

onto fiber F is defined as a fiber orientation, Ω
[l]
F
, that is minimally misoriented

with respect to Ω[l], as shown in Fig. 2:

Ω
[l]
F

= argmin
Ω∈F

θ(Ω,Ω[l]). (25)

Also, the misorientation between Ω[l] and its projection, Ω
[l]
F
, is

ω
[l]
F

= θ(Ω
[l]
F
,Ω[l]) = min

Ω∈F

θ(Ω,Ω[l]). (26)

Parameter ξ corresponding to Ω
[l]
F

in the fiber is denoted ξ
[l]
F
. The scalars ξ

[l]
F

and ω
[l]
F

locate Ω[l] in relation to F , on a circle of radius ω
[l]
F

centered at ξ
[l]
F
,

as shown schematically in Fig. 2. Variation of ξ
[l]
F

and ω
[l]
F

with deformation

provides a concise description of the lattice rotation of domain l along the fiber

and out of the fiber, respectively. This description will be used in Sec. 4.
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3.3. Euclidean average lattice orientation

The Euclidean average of a set of lattice orientations {Ω[l], l = 1, 2, . . . , N}
is defined as (Moakher, 2002)

ΩE = argmin
Ω∈SO(3)

N
∑

l=1

‖Ω[l] −Ω‖F , (27)

where, ‖ · ‖F denotes the Frobenius norm. Moakher (2002) has also provided an

elegant algorithm for the computation of ΩE. The projection of ΩE onto fiber

F is denoted ΩE
F

= argmin
Ω∈F

θ(Ω,ΩE). The scalar parameter that identifies

ΩE
F

on the fiber is denoted ξE
F
. Further, paralleling Eq. (26), ωE

F
= θ(ΩE

F
,ΩE)

is also defined.

3.4. Scalar measures of banding

Groups of neighboring domains in a model grain that are bounded by ori-

entationally unstable domain boundaries have been recognized as shear bands

or deformation bands in the present model, as described in Sec. 2.4. This clas-

sification methodology, however, differs from that used for the experimental

identification of these bands from micrographs. Experimentally, deformation

bands are recognized by observing a repetitive pattern of highly misoriented

regions in micrographs (Lee and Duggan, 1993; Kulkarni et al., 1998). Likewise,

shear bands are recognized in micrographs as narrow regions that have high

shear relative to the matrix (Wagner et al., 1995). Anticipating the comparison

with experimental data in the next section, two scalar measures of banding in a

grain are now introduced, on the basis of which, shear banding and deformation

banding of model grains can be identified as in the experimental approach.

The average deviation of domain lattice orientations from ΩE is defined as

µ̄ =

N
∑

l=1

θ(Ω[l],ΩE)/N. (28)

A large value of µ̄ indicates that the typical domain in the model grain deviates

substantially from the average lattice orientation of the model grain. This will

be taken to indicate deformation banding. A small value of µ̄ is inconclusive by
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itself; it may indicate either shear banding or homogeneous grain deformation.

Since deformation band boundaries are observed to be large angle dislocation

boundaries in experimental observations (Heye and Sattler, 1971; Bauer et al.,

1977; Wróbel et al., 1988, 1993, 1994; Liu and Hansen, 1998; Liu et al., 2000;

Wert, 2002), model grains for which µ̄ ≥ 10◦ are taken to be deformation banded

presently.

Likewise, a parameter to identify shear localization based on instantaneous

observation of the model grain, as in experiments is introduced. Localization of

slip in a few domains is quantified using the parameter

L = max
l=1,2,...N

Γ[l]/median
l=1,2,...N

Γ[l] ≥ 1. (29)

In a shear banding grain, it is expected that maxl=1,2,...N Γ[l] is realized in the

domain representing the shear band and median
l=1,2,...N

Γ[l] is realized in a typical

domain of the matrix. A large value of L indicates substantial slip localization,

i.e., shear banding, while a small value of L indicates a lack thereof.

The critical value of L for shear banding is obtained using an approximate

calculation based on data reported by Wagner et al. (1995, Sec. 3.2, 5.1) in

Al 1.8%Cu; they found that microshear bands of typical thickness d = 2.5 µm

separated by a typical distance of l = 125 µm undergo shear of∼ 3 over a macro-

scopic strain increment of about 0.02. This gives a value of ∼ 3d/l = 0.06 for

the shear band strain. The value of L in the shear banding crystal of Wagner

et al. (1995) is therefore estimated as 0.06/0.02 = 3. Accordingly, in the sequel,

grains for which L ≥ 3 will be taken to shear band.

4. Results

Each of the fibers described above is discretized in steps ∆ξ = 1◦ to obtain

nominal initial lattice orientations of the presently studied grains. Each model

grain is discretized into N = 22 domains. For certain representative lattice

orientations, it has been verified that the predictions assuming discretization

into 22 domains agrees closely with that assuming finer discretization into 44

domains.
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It is necessary to supply an initial numerical perturbation to the domains

in order that inhomogeneity may develop during the simulated deformation.

Accordingly, the initial lattice orientation of each domain is perturbed from the

nominal grain lattice orientation by 0.5◦ about a rotation axis chosen randomly

from a uniform distribution over the unit sphere.

Table 2: Parameter values.

Parameter Reference Value

τ0 Eq. (17), Kanjarla et al. (2010) 16 MPa

Γ0 Eq. (17), Kanjarla et al. (2010) 0.0275

n Eq. (17), Kanjarla et al. (2010) 0.5

∆ǫvM Sec. 2.3 0.05

R Eq. (18) 130

h Eq. (20) 3.1

χ Eq. (21) 0.4

Deformation of grains by plane strain compression following Eq. (6) to ǫvM =

0.5 is simulated. Values of the various model parameters for pure copper are

given in Tab. 2.

4.1. Banding

The variation of the two scalar measures of banding, µ̄ and L, defined in

Sec. 3.4 along the three texture fibers is shown in Fig. 3. The horizontal axis

in these figures indicates ξ(0), the nominal initial lattice orientations along the

fibers. Standard named lattice orientations – G (Goss), B (Brass), A, P, RG

(rotated Goss), C (copper), S, NRC (normal rotated cube) and D (Dillamore)

– are marked in the upper horizontal axis.

Taking µ̄ ≥ 10◦ to indicate deformation banding and L ≥ 3 to indicate shear

banding for reasons given in Sec. 3.4, the three texture fibers are subdivided into

distinct homogeneously deforming (H), deformation banding (DB) and shear

banding (SB) segments in Fig. 3. Shear banding is not predicted in the α fiber
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Figure 3: Variation of µ̄ (Eq. (28)) and L (Eq. (29)) along the (a) α, (b) β and (c) τ fibers.

Pole figures of lattice orientations labeled with numbers are shown in Fig. 4. Standard named

orientations are marked on the upper horizontal axis.
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and deformation banding in not predicted in the β fiber. A rich variation of

banding response is predicted in the τ fiber.

4.2. Microtexture

The microtexture after plane strain deformation to ǫvM = 0.5 of selected

orientations marked in Fig. 3 and tabulated in Tab. 3 is now studied in detail.

Initial orientations and the Taylor factor (Hosford, 1966) calculated as

M =

∑S
s=1 γ̇s

ǫ̇imp
RD−RD

, (30)

for the selected orientations are listed in Tab. 3. In Eq. (30), γ̇s denotes the

slip-rate in the s-th slip system obtained by solving the Taylor model of the

grain with N = 1 domain.

Table 3: The initial crystal orientations in Bunge angle and Miller indices notation and the

Taylor factor of grains whose post-deformation {111} pole figures are shown in Fig. 4.

Grain Initial Euler angles (ND)/[RD] Taylor factor

(Φ1(0),Φ(0),Φ2(0)) M

➀ : G (0.0◦, 45.0◦, 0.0◦) (011)[100] 2.45

➁ (23.0◦, 45.0◦, 0.0◦) (011)[10 3̄ 3] 3.97

➂: B (35.2◦, 45.0◦, 0.0◦) (011)[21̄1] 3.26

➃: P (70.5◦, 45.0◦, 0.0◦) (011)[12̄2] 5.24

➄: C (90.0◦, 35.2◦, 45.0◦) (112)[1̄1̄1] 3.67

➅: S (59.0◦, 36.7◦, 63.4◦) (213)[3̄6̄4] 3.49

➆: NRC (90.0◦, 0.0◦, 45.0◦) (001)[1̄1̄0] 2.45

➇ (90.0◦, 10.0◦, 45.0◦) (118)[4̄4̄1] 2.34

➈: D (90.0◦, 27.2◦, 45.0◦) (4 4 11)[1̄1 1̄1 8] 3.53

➉ (90.0◦, 60.0◦, 45.0◦) (554)[2̄2̄5] 3.61

The microtexture before and after plane strain deformation to ǫvM = 0.5 of

the selected orientations are shown in Fig. 4 using the standard {111} equal-area

18



TD

RD

(111)

➀ : G (0◦, 45◦, 0◦)

TD

RD

(111)

➁: (23◦, 45◦, 0◦)

B1

B2

TD

RD

(111)

➂: B (35.2◦, 45◦, 0◦)

TD

RD

(111)

➃: P (70.5◦, 45◦, 0◦)

B1

B2

TD

RD

(111)

➄: C (90◦, 35.2◦, 45◦)

M

SB

TD

RD

(111)

➅: S (59◦, 36.7◦, 63.4◦)

TD

RD

(111)

➆: NRC (90◦, 0◦, 45◦)

B1

B2

TD

RD

(111)

➇: (90◦, 10◦, 45◦)

M

SB

TD

RD

(111)

➈: D (90◦, 27.2◦, 45◦)

TD

RD

(111)

➉: (90◦, 60◦, 45◦)

B1

B2

Figure 4: Pole figure representation of domain lattice orientations of model grains at ǫvM = 0.0

(⊙) and ǫvM = 0.5 (+, N, `). The location of all grains in the fibers are marked in Fig. 3.
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Figure 5: Pole figure representation of domain lattice orientations of model grains at ǫvM = 0.0

(⊙) and ǫvM = 0.5 for (a) E and (b) cube oriented copper grains. These orientations do not

fall on any of the texture fibers considered.

pole figure representation. Each pole figure shows 92 poles: four {111} poles

corresponding to the nominal initial orientation and four {111} poles for each of

the N = 22 domains after deformation. The number of distinctly visible poles

is, however, much smaller on account of overlap amongst the predicted poles.

The microtexture before and after plane strain deformation to ǫvM = 0.5 of two

grain orientations, E ((ND)/[RD] = (111)[11̄0], Euler angles = (0◦, 54.7◦, 45◦)

and Taylor factor M = 4.08) and cube ((ND)/[RD] = (001)[100], Euler angles

= (0◦, 0◦, 0◦) and Taylor factor M = 2.45), which do not fall in any of the three

texture fibers under present consideration are also shown in Fig. 5.

Fig. 4 shows that the lattice orientation in the domains of the ➀ B, ➂

G and ➈ D orientations do not rotate during deformation. Such orientations

are said to be stable (Kocks et al., 1998). The domain lattice orientations

of the initially ➁ and ➅ S oriented grains develop only a small spread with

deformation, which results in their classification as homogeneously deforming

grains in Sec. 4.1. Other orientations in Fig. 4 and both orientations in Fig. 5
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develop a pronounced spread of lattice orientations in the course of deformation,

which implied banding.

The pole figure representation of Fig. 4 provides insight into domain rotations

in selected orientations along the texture fibers. It is, however, not conducive to

a concise representation of the variation of the microtexture all along the fibers.

An alternate representation of the microtexture after deformation is therefore

given in Fig. 6, where the lattice orientations of all domains l in all model grains

are shown.

Let ξ
[l]
F

and ω
[l]
F

(Sec. 3.2) denote lattice orientation parameters after defor-

mation to ǫvM = 0.5. Let ξ(0) denote the nominal initial lattice orientation.

Figs. 6 (a1)–(a3) and Figs. 6 (b1)–(b3) show ξ
[l]
F

and ω
[l]
F

variation with ξ(0),

respectively. Besides conciseness, this representation allows (i) a simpler de-

scription of lattice rotations in the fiber-fixed (ξ
[l]
F
, ω

[l]
F
) coordinate system than

in the sample RD-TD-ND system and (ii) easy identification of fiber segments

with similar banding behavior.

4.2.1. α fiber

In the α fiber, F = α and ξ
[l]
F

= Φ1
[l]
α (Tab. 1). Stable lattice orientations

must satisfy Φ1
[l]
α ≈ Φ1(0) and ω

[l]
α ≈ 0, ∀l ∈ {1, 2, . . . , N} and should thus plot

on the 45◦ line in Fig. 6 (a1) and on the horizontal axis in Fig. 6 (b1). As

these conditions are satisfied by the G and B orientations, they are classified as

stable. Also, all lattice orientations in the α-fiber, except G, have a component

of lattice rotation toward B, as seen in Fig. 6 (a1). Lattice orientations, except

those in the vicinity of G and B, undergo significant out of fiber lattice rotations.

This lattice rotation can be as large as ω
[l]
α = 20◦ near P (Fig. 6 (b1)).

Figs. 6 (a) and (b) also show the Φ1
E
α corresponding to the projection of the

Euclidean average lattice orientation onto the α fiber, after deformation and its

deviation ωE
α from the α fiber, respectively. Except in the vicinity of the defor-

mation banding RG orientation, Φ1
E
α ≈ Φ1

[l]
α , ∀l ∈ {1, 2, . . . , N}, which suggests

that the in fiber rotations of all domains are comparable. However, ωE
α ≈ 0

(Fig. 6 (b)). Thus, even though the lattice orientations of individual domains
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Figure 6: Representation of the deformed microtexture of grains initially oriented along the
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may deviate substantially from the α fiber, the Euclidean average lattice ori-

entation remains on the fiber. This indicates that domain lattice rotations are

symmetrical about the fiber.

4.2.2. β fiber

In the β fiber, F = β and ξ
[l]
F

= Φ2
[l]
β (Tab. 1). B is the only stable

orientation in the β fiber. Other orientations undergo lattice rotations both

along and out of the fiber, as indicated by Φ2
[l]
β 6= Φ2(0) in Fig. 6 (a2) and

ω
[l]
β > 0 in Fig. 6 (b2). The out of fiber rotations are larger than the in fiber

rotations.

In grains near the shear banding C orientation a few domains (one or two)

undergo large out of fiber rotations, as indicated by ω
[l]
β > 10◦ in Fig. 6(a2).

Other domains in these grains undergo much smaller out of fiber rotations. Slip

localizes in domains undergoing significant rotations so that these domains do

indeed comprise the shear bands.

In the range 50◦ < Φ2 ≤ 90◦, the maximum out of fiber domain rotation,

maxl ω
[l]
β < 10◦. This deviation diminishes and vanishes in the range 70◦ <

Φ2 ≤ 90◦ as the stable B orientation is approached. This accords with the

observation in Sec. 4.1 that in the range 50◦ < Φ2 ≤ 90◦, grains undergo

neither shear banding nor significant deformation banding.

4.2.3. τ fiber

In the τ fiber, F = τ and ξ
[l]
F

= Φ
[l]
τ (Tab. 1). D (Φ = 27.2◦) and G

(Φ = 90◦) are the only stable orientations in the τ fiber because they satisfy

Φ
[l]
τ ≈ Φ(0) and ω

[l]
τ ≈ 0, ∀l ∈ {1, 2, . . . , N} (Figs. 6 (a3) and (b3)).

Lattice orientations other than D and G undergo rotation during deforma-

tion. Unlike in the foregoing α and β fibers, domain lattice rotations in the τ

fiber are predominantly along the fiber. Out of fiber rotations are negligible, as

indicated by ω
[l]
τ ≈ 0, ∀l ∈ {1, 2, . . . , N} in Fig. 6 (b3).

Fig. 6 (a3) shows that grains in the vicinity of D (20◦ ≤ Φ ≤ 32◦) rotate

toward D (Φ = 27.2◦) and grains in the vicinity of G (80◦ ≤ Φ ≤ 90◦) rotate
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toward G. Also, grains with 43◦ ≤ Φ ≤ 56◦ rotate toward the C orientation (Φ =

35.2◦). Moreover, Φ
[l]
τ = ΦE

τ and ω
[l]
τ = ωE

τ = 0 for these lattice orientations. It

follows that these grains deform homogeneously.

Domains of the NRC orientation (Φ = 0◦) undergo large rotations in opposite

directions along the τ fiber (Fig. 6 (a3)). This behavior, however, persists only

over 0◦ ≤ Φ ≤ 1◦.

In the range 57◦ ≤ Φ ≤ 70◦, approximately half the domains of the grain

rotate toward C (Φ = 35.2◦) and the other half rotate toward G (Φ = 90◦)

along the τ -fiber (Fig. 6 (a3)). This produces pronounced deformation banding

(Sec. 4.1).

In 71◦ ≤ Φ ≤ 79◦ the lattice rotation of the domains is qualitatively similar

to that of the deformation banding grains in 57◦ ≤ Φ ≤ 70◦, except that lattice

rotations toward G are more pronounced than those toward C. In this range of

lattice orientations a smooth transition from pronounced deformation banding

of the preceding range 57◦ ≤ Φ ≤ 70◦ to homogeneous deformation of the

succeeding range 80◦ ≤ Φ ≤ 90◦ appears to be underway.

Finally, in 3◦ ≤ Φ ≤ 17◦ and 33◦ ≤ Φ ≤ 40◦, a few domains (one or

two) rotate significantly away from the remaining domains (Fig. 6 (a3)). These

domains undergo intense slip localization and constitute the model shear band,

noted in Sec. 4.1.

5. Discussion

The ‘stack of domains’ model of a grain has been been employed to study

the banding response and microtexture development in pure copper subjected

to rolling deformation to von Mises strain ǫvM = 0.5. Lattice orientations along

the α, β and τ fibers have been analyzed. The present model does not ad-

dress or model the dislocation rearrangement necessary to form deformation

or shear bands; it assumes that the necessary rearrangement of the dislocation

sub-structure will occur if the energetics of grain deformation makes banding

more favorable than homogeneous deformation.
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5.1. Comparison with experimental observations in single crystals

The predicted banding response of the G, B, NRC, C and S oriented grains

that fall in one of the three fibers are now compared with experimental obser-

vations for pure copper in the literature. This comparison is also carried out for

the E and cube orientations, which do not fall on the fibers considered above.

5.1.1. Homogeneous deformation

G (Bauer et al., 1977; Malin et al., 1981; Nakayama and Morii, 1982; Wróbel

et al., 1993, 1994, 1996) and B (Jago and Hatherly, 1975; Grewen et al., 1977;

Bauer et al., 1977; Malin et al., 1981; Nakayama and Morii, 1982; Wróbel

et al., 1993, 1994) oriented copper single crystals are experimentally observed

to deform homogeneously and to remain stable with deformation. The present

‘stack of domains’ model also predicts homogeneous deformation as indicated

by µ̄ = 0.15◦ and L = 1.001 for G and µ̄ = 0.65◦ and L = 1.007 for B.

In an initially coarse grained copper polycrystal rolled 85%, Lee and Duggan

(1993) report frequent observations of the S orientation. This suggests that S

oriented grains do not deformation band. In accord with this observation, the

present calculations predict no deformation banding in the S grains, as indicated

by µ̄ = 3◦.

5.1.2. Deformation banding

NRC copper single crystals are known experimentally to deformation band

during plane strain compression (Heye and Sattler, 1971; Bauer et al., 1977;

Wróbel et al., 1988, 1993, 1994). This is also predicted presently by the high

value of µ̄ = 14.6◦ and the low value of L = 1.03. Deformation banding ini-

tiates in this grain right from the outset of deformation. Individual domains

rotate about TD and the predicted lattice orientation of all domains are shown

in both Fig. 4 ➆ and Fig. 6 (a3). In the N = 22 domain model grain, as

shown in Fig. 4 ➆, 13 domains rotate 17.5◦ about +TD (N) and 7 domains

rotate 17◦ about −TD (`). Two domains remain oriented close to the initial

crystal orientation (+). The predicted lattice rotations are consistent with the
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experimental observations of Bauer et al. (1977), who observed band lattice

rotations of 35◦ about ±TD at ǫvM = 0.92. The predicted deformation band

aligns with the rolling plane in agreement with the experimental observation

of Heye and Sattler (1971).

Heye and Sattler (1971) have reported that E oriented copper single crys-

tals undergo deformation banding during plane strain compression. The present

model also predicts deformation banding in the E grain (high µ̄ = 18.93◦ and

low L = 1.04). As seen from Fig. 5(a), out of the N = 22 domains, 9 domains

rotate about +TD (N) and the remaining 13 domains rotate about −TD (`).

The angle of both rotations is approximately 19◦. Moreover, the model defor-

mation bands align with the rolling plane. The predicted lattice rotation and

band boundary orientation agrees with the experimental observation of Heye

and Sattler (1971). Unlike in the NRC grain, banding in the model E grain

initiates only at ǫvM = 0.15.

The model cube oriented copper grain also deformation bands as indicated

by µ̄ = 11.53◦ and L = 1.02. The lattice orientation of all the domains before

and after deformation is given in Fig. 5(b). It is seen that the N = 22 domain

model grain divides into 5 different bands, viz., B1, B2, B3, B4 and B5 marked

in Fig. 5(b). Lattice rotation of the original cube orientation about +RD gives

band B1 comprised of 7 domains. The −RD lattice rotation corresponds to

band B2 comprised of 9 domains. The lattice rotation about +TD and −TD

give bands B3 and B4, respectively, comprised of 2 domains each. The remaining

2 domains comprising band B5 undergo almost no lattice rotation. Deformation

banding in the model grain initiates at ǫvM = 0.11.

The above predictions agree with the experimental observations of Wróbel

et al. (1994) that a cube oriented copper single crystal deformation bands. They

report that up to a strain of ǫvM = 0.92, i.e., 60% reduction, the lattice rotation

about RD is significant and further deformation gives lattice rotation about TD

also. Interestingly, rotation about RD is not reported in the literature on cube

oriented aluminum single crystals (Akef and Driver, 1991; Wert et al., 1997; Liu

and Hansen, 1998; Liu et al., 2000). In the present model for copper, tendencies
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for lattice rotation about both RD and TD are observed. The former tendency,

however, clearly dominates, in accord with observations in copper by Wróbel

et al. (1994) .

5.1.3. Shear banding

According to the experimental literature, C oriented copper single crystals

undergo intense shear localization (Grewen et al., 1977; Morii and Nakayama,

1981; Nakayama and Morii, 1982; Wagner et al., 1995; Jasienski et al., 1996).

The model grain also undergoes shear banding, as indicated by the high value

of L = 9.95. In the N = 22 domain model C grain at ǫvM = 0.31, 21 domains

are oriented close to the initial lattice orientation Φ ≈ 33◦ and only one domain,

which undergoes intense slip activity, is oriented at Φ = 14.6◦. This compares

well with the experimental observation of Jasienski et al. (1996), who report

13.3◦ ≤ Φ ≤ 19.5◦ in the shear band and Φ ≈ 35◦ in the matrix, after plane

strain compression to ǫvM = 0.31. The division of model grain into shear bands

and matrix occurs at ǫvM = 0.22. The predicted shear band in the C-grain is

inclined 45◦ to RD and parallel to TD, as stated in Sec. 2.5. This closely agrees

with the experimental observations of Jasienski et al. (1996), who reported shear

bands parallel to TD and inclined 42◦ with RD.

5.1.4. Applicability to other materials

The present results are based on hardening parameters that are specific to

pure copper. Markedly different banding responses occur in other medium or

high stacking fault energy f.c.c. metals and alloys. For example, unlike the cop-

per C oriented grain, the aluminum C grain is known not to develop shear

bands (Driver et al., 1994; Wagner et al., 1995; Godfrey et al., 1998); only mi-

croshear bands that do not propagate across the crystal have been reported.

Similarly, although both copper and aluminum cube oriented single crystals

have been observed to deformation band, the deformation bands have been re-

ported to rotate about RD at rolling reductions < 60% (Wróbel et al., 1994) in

copper, and about TD in aluminum in the same strain range (Liu et al., 1998),
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as noted above.

5.2. Comparison with previous model predictions

The predicted banding results are now compared with results obtained from

banding theories or crystal plasticity finite element method (CPFEM) simula-

tions available in the literature.

The deformation banding criterion of Lee et al. (1993) and Lee et al. (1995)

is based on minimizing the work of plastic deformation. This simple criterion,

which neglects lattice rotation during grain deformation, predicts that S, G and

C grains will not deformation band, and that the cube grain will deformation

band. Despite its simplicity, predictions based on this criterion agree with ex-

perimental observations. The present model predictions agree with those of Lee

et al. in the case of grains common to both studies: the small values of µ̄ = 1.2◦

(S), µ̄ = 0.15◦ (G) and µ̄ = 2.1◦ (C) obtained from the present calculations indi-

cate no deformation banding, while µ̄ = 11.53◦ for the present cube model grain

indicates deformation banding.

Raabe et al. (2002) have performed CPFEM simulations of plane strain com-

pression of a generic f.c.c. material deforming by {111}〈110〉 slip. They predict

homogeneous deformation in the G, S and C orientations, and banding in the B

and NRC orientations. The predictions for the G, S and NRC orientations agree

with the present results, while those for the B and C orientations disagree with

experimental data noted in Sec. 5.1 above and with the present predictions. The

absence of a sophisticated material point hardening scheme and the coarse finite

element mesh used in the calculations of Raabe et al. (2002) may underlie these

deviations.

The CPFEM results of Kanjarla et al. (2010) shows that the grain in a colum-

nar f.c.c. multicrystal with initial orientation close to NRC forms deformation

bands. The predicted results of the present model for NRC grains also shows

the formation of deformation bands as discussed in the previous section. The

banding pattern in the CPFEM study is, however, inhomogeneously distributed,

a feature that cannot be captured by the present model.
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A detailed set of shear band predictions for typical texture components (C,

B, S, G and cube) has been given recently by Kuroda and Tvergaard (2007,

Fig. 6b) Their predictions are based on both simplified analysis and CPFEM

simulations. In agreement with their predictions, shear banding in predicted in

the present model in the C grains, while no banding is predicted presently in

the G grain. However, the orientation of the predicted shear bands in present

study deviate from those predicted by them. Also, their model predicts shear

banding in the B and S orientations, which are known experimentally not to

band in copper and are predicted not to band by the present model.

The predictions of Kuroda and Tvergaard (2007) pertain to an aluminum

alloy assumed to harden isotropically. The sub-structure based hardening law

in the present model is more complex and specifically pertains to pure copper.

Banding predictions are sensitive to material hardening as noted in Sec. 5.1.4;

this may partly explain the deviations of the present predictions from those of

Kuroda and Tvergaard (2007). Also, while Kuroda and Tvergaard (2007) as-

sumed that shear band boundaries are immobile relative to the material, the

present shear band boundaries are assumed mobile. This likely explains the dif-

ferences in the shear band orientations predicted by Kuroda and Tvergaard

(2007) and those predicted presently. Another cause for the disparate predic-

tions may be the constraints imposed on the grain: while full constraints are

imposed in the present work, Kuroda and Tvergaard (2007) relaxed two shear

constraints.

5.3. Role of surrounding grains

The focus of this study has been deformation inhomogeneity at the length

scale of the grain that arises from the intrinsic instability of the grain’s lattice

orientation. That grain deformation inhomogeneity may also result from the

extrinsic influence of inter-grain interactions has been shown both experimen-

tally (Ørsund et al., 1989) and by CPFEM simulations (Beaudoin et al., 1996).

Large lattice rotations of the order of 25◦ have been reported in intrinsically sta-

ble brass oriented aluminum alloy grains in a polycrystal, which suggests that
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even when the lattice orientation of a grain is intrinsically stable, the interaction

of a grain with its neighbors in a polycrystal may produce bands (Ørsund et al.,

1989). Likewise, G grains, which have been shown above to have an intrinsic

tendency to deform homogeneously, develop deformation bands when they are

a constituent part of a bicrystal (Raabe et al., 2002) or a polycrystal (Delannay

et al., 2008). Finally, extrinsic factors may also modify the banding pattern in

an intrinsically unstable grain (Kanjarla et al., 2010).

The effect of the extrinsic interactions on banding in a grain can be deter-

mined using an extension of the present model; this is, however, deferred to

future work.

6. Conclusions

A ‘stack of domains’ model of a grain has been used to simulate plane strain

deformation of model copper grains initially oriented along the standard copper

type f.c.c. rolling texture fibers: α, β and τ . Model predictions are used to

characterize the intrinsic nature of banding along these fibers and the result-

ing microtexture that develops. Banding predictions have been compared with

experimental observations reported in the literature. Quantitative agreement

of the predicted microtexture with experimental observations is obtained. This

suggests that it is important for banding models (i) to sufficiently capture the

actual hardness evolution of material points within the grain and (ii) to account

for mobility or immobility of band boundaries.
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