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The orientation and disorientation of extended cell block boundaries that separate cell blocks
in model rate-independent grains accommodating imposed plastic deformation by the mech-
anism of slip is predicted on the basis of the following three hypotheses: (1) a uniform state
of stress prevails throughout the grain, (2) cell blocks are disoriented so as to minimize the
power of plastic deformation and (3) cell block boundaries are oriented so as to minimize
plastic incompatibility between neighboring cell blocks. Predicted orientations and disori-
entations compare favorably with those reported in the experimental literature for copper
and aluminum polycrystals deformed plastically in uniaxial tension. This suggests that the
assumed hypotheses may represent the physical principles that determine the preferred cell
block boundary orientation.
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1. Introduction

Texture and plastic anisotropy of grains together introduce anisotropy in the plastic
response of polycrystals [1–5]. Anisotropy at the grain level arises due to oriented
sub-structural features [6] called cell block boundaries (CBBs). CBBs are geomet-
rically necessary dislocation boundaries [7] that accommodate incompatibility in
the plastic deformation field. In medium to high stacking fault energy metals, like
copper and aluminum, approximately parallel CBBs are observed to separate re-
gions called cell blocks (CBs) only a few microns thick but several tens of microns
long [6]. CBBs render the plastic response of the grain anisotropic because greater
resolved shear stress is required to activate slip in systems that intersect CBBs
than in systems that are aligned parallel to CBBs. Existing sub-structure based
hardening models [3–5, 8, 9] can already account for such mechanical anisotropy
provided the correct CBB orientation is supplied to them. Predicting the crystal-
lographic orientation of CBBs is therefore an important step toward developing
improved physically based models of single crystal and polycrystal plasticity.
The orientation of CBBs relative to the crystallographic slip planes has been the

subject of extensive experimental investigation [6, 10–21]. These investigations have
focused on tensile or rolling deformation of medium to high stacking fault metal
and alloy polycrystals. Under tensile deformation, there is widespread agreement
amongst the experimental studies [11, 13, 19–21] that a systematic classification
of grains into three types occurs: Type 1 grains, which show close coincidence of
one set of parallel CBBs with a crystallographic slip plane, Type 2 grains, wherein
the CBB structure does not form and Type 3 grains, in which the CBBs do not
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align with any crystallographic slip plane. Such a clear correlation between grain
orientation and sub-structure has not been found in rolled polycrystals [10, 14, 17].
Instead, CBBs are found to be inclined close to 35◦ – 40◦ with the rolling direction.
Although a comprehensive theoretical explanation of these experimental obser-

vations is not presently available, Winther and co-workers [12, 15, 16, 20, 21] have
demonstrated that the distribution of slip activity amongst the slip systems of
a grain and the type of dislocation wall structure that develops in it are highly
correlated. Winther et al [12] observed that crystallographic CBBs form in grains
in which two coplanar slip systems account for most of the slip activity in the
grain. They proposed that crystallographic CBBs are constituted of slip dislo-
cations generated from coplanar slip activity. Regardless of whether the CBB is
crystallographic or otherwise, Winther et al [15] and Winther [16, 21] have estab-
lished that CBB orientation is much more influenced by crystallographic, rather
than macroscopic influences, in that CBB planes are closely aligned with certain
crystallographic planes, while being widely scattered about the planes of maximum
shear stress. Winther and Huang [20] have classified slip system activity into slip
classes. They have associated specific types of dislocation structures with each slip
class. They have also shown that different types of imposed deformation that cause
the activation of slip systems within the same slip class result in the creation of
the same type of dislocation sub-structure. A different theoretical explanation, due
to Wert and Huang [22], holds that CBBs align with equivalent slip planes. This
explanation reasonably predicts the observed CBB alignment in four symmetric
crystal orientations. It has, however, not been more widely tested.
In uniaxial tension of polycrystals [6, 11, 13, 14], CBB orientation in each grain

is observed to depend only on its final lattice orientation. In experiments involving
a deformation path change [3–5], the CBB structure formed during the first path
is annihilated within a few percent of straining along the second path and replaced
with a structure that is consistent with the slip distribution of the latter. In a
copper polycrystal subjected to rolling deformation, Christoffersen and Leffers [23]
observed that CBB orientations do not evolve in accordance with the grain shape
evolution; their rotation toward the rolling plane occurs at a smaller rate than
that suggested by the grain shape evolution. These observations suggest that the
CBB structure in a grain at any instant of deformation is mostly governed by the
state of slip activity at that instant and not as much on the history of past defor-
mation [20, 21]. CBBs, at low accumulated strains (von Mises strain ≤ 0.5), thus
appear to be unstable dislocation boundaries that are continuously broken up and
restored or replenished [24] during deformation. At higher strains, Albou et al. [24]
have suggested that the development of immobile pinning points due to secondary
slip may result in further evolution of their orientation in conformity with the grain
shape.
The present work seeks to explain CBB orientation and disorientation at low ac-

cumulated strains within the framework of local rate-independent crystal plasticity
supplemented by three hypotheses pertaining to a grain modeled as a collection of
interacting material points, representing CBs. The internal variables of the model
are the disorientation angle between adjacent CBs and the hardness of its slip
systems. The modeling framework described in Section 2 determines not only the
deviatoric stresses and slip rates in the CBs but also the CBB orientation and
disorientation axis, the rate of evolution of geometrically necessary dislocation
densities associated with CBBs and CBB misorientation rates for a given imposed
deformation. Because the present local framework does not account for any in-
trinsic material length scales, the rate of change of CBB spacing is not predicted
presently. The predictions given in Section 3 compare favorably with experimental



December 28, 2011 17:46 Philosophical Magazine bit8

Orientation preferences of cell block boundaries 3

observations reported in the literature.

2. Model

2.1. Rate-independent crystal plasticity

2.1.1. Constitutive law

The constitutive response of every material point in the model grain is assumed
to follow standard rate-independent crystal plasticity [25]. Following the Taylor-
Bishop-Hill formulation [26, 27], the slip-rate tensor at a material point, Lss, is
given by

Lss =

S
∑

s=1

γ̇sbs ⊗ ns, (1)

where γ̇s denotes the slip rate in slip system s ∈ {1, 2, . . . , S} and where bs is
the Burger’s vector or unit slip directional vector of slip system s with slip plane
normal ns. The strain-rate at the material point, ǫ̇, is the symmetric part of Lss:

ǫ̇ =
Lss +LT

ss

2
=

S
∑

s=1

γ̇sms, (2)

where, ms denotes the Schmid tensor of slip system s:

ms = (bs ⊗ns + ns ⊗ bs)/2. (3)

Slip rates γ̇s are required to be non-negative: γ̇s ≥ 0. Positive and negative senses
of the slip direction, ±bs, are distinguished so that slip systems with Schmid ten-
sors +ms and −ms are considered distinct. Since tr ms = bs · ns = 0, plastic
deformation by the mechanism of slip is volume conserving, i.e.,

tr ǫ̇ = 0. (4)

If L denotes the imposed velocity gradient at the material point, its lattice spin
tensor Ẇ is given by [25]

Ẇ = L−Lss. (5)

The lattice spin tensor is skew-symmetric: Ẇ = −Ẇ T .
Let p ∈ {1, 2, . . . , P} denote the set of distinct crystallographic slip planes

amongst the slip systems. Let Np denote the normal to the p-th crystallographic

plane. Further, let Γ̇p denote the total slip rate in the p-th crystallographic slip
plane,

Γ̇p =
∑

s∈S

γ̇s, (6)

where, S denotes the set of slip systems associated with the p-th crystallographic
slip plane: Np = ±ns for s ∈ S .



December 28, 2011 17:46 Philosophical Magazine bit8

4 Sivasambu Mahesh

Let σ denote the deviatoric part of the Cauchy stress at the material point.
Schmid’s law [25] states that slip system s may have non-zero slip-rate only if the
resolved shear stress, σ : ms ≡ tr(σms

T ), equals the critical resolved shear stress
on slip system s, τs. Thus,

γ̇s

{

≥ 0, if σ : ms = τs,

= 0, if σ : ms < τs.
(7)

Slip systems are assumed not to harden in the present work:

τ̇s = 0. (8)

Taylor’s principle [26] asserts that for given ǫ̇ of all possible slip-rate combinations
{γ̇s, s ∈ {1, . . . , S}} that obey the constraint given by Equation (2), only those
which minimize the plastic power density

P =

S
∑

s=1

τsγ̇s = σ : ǫ̇ (9)

are valid solutions. The equivalence between the second and third terms was shown
by Chin and Mammel [28].

2.2. Idealized geometry of the grain substructure

I

II

XY

x

y

ω

Figure 1. Schematic diagram of a small part of a grain located well away from the grain
boundaries showing two cell blocks, I and II.

A pair of neighboring interacting CBs, denoted I and II, which are equal in
volume is shown in Figure 1. Each CB is assumed to have a uniform lattice ori-
entation. The CBs are, however, mutually disoriented; the disorientation angle is
denoted by ω. In accordance with experimental observations [6, 14], the domain
of the entire grain, which is much larger than the section shown in Figure 1, is
assumed to be patterned repetitively by CBs of types I and II. The CBB sepa-
rating two CBs is idealized as a planar infinitesimally thin dislocation wall that
may move relative to the material of the CBs. Continuous break-up and restoration
of CBBs by stress-assisted dynamic recovery and dislocation migration across CBs
and trapping at CBBs have been proposed as possible mechanisms for the apparent
motion of CBBs relative to the material [8, 24].
Velocity gradient L̄, whose symmetric part is denoted ¯̇ǫ = (L̄ + L̄T )/2, is ex-

ternally imposed upon the grain. Each CB is assumed to deform homogeneously
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and can therefore be represented by a single material point. The velocity gradients
of material points in CB I and CB II will be denoted L(I) and L(II), respec-

tively. The corresponding strain-rates are denoted ǫ̇(I) = (L(I) + L(I)T )/2 and

ǫ̇(II) = (L(II) + L(II)T )/2, respectively. Equations (A2) and (A3) in Appendix A
relate the CB velocity gradient and strain-rate to those externally imposed as

L̄ = (L(I) +L(II))/2 and

¯̇ǫ = (ǫ̇(I) + ǫ̇(II))/2,
(10)

where the factor 1/2 is the volume fraction, ρ(i), assumed equal, of each of the two
CB types.

2.3. Continuity conditions across CBBs: Hypothesis 1

Hypothesis 1: The deviatoric stress state is uniform across both CB I and CB II:

σ(I) = σ(II) = σ̄, (11)

where σ̄ represents the uniform deviatoric stress state in both CBBs. Because of
the assumption of repetitious patterning of the entire grain by the two CB types
(Section 2.2), Hypothesis 1 amounts to assuming a uniform deviatoric stress over
the entire grain. Compatible deformation of CBs requires continuity of the velocity
field across the intervening CBB [29]. This is not enforced by Hypothesis 1 and
leads, in general, to misfit-strains across CBBs, which must be locally accommo-
dated to maintain material continuity across them [7, 30]. In the present model,
the plastic power density associated with local accommodation is assumed to be
negligible.
The problem of determining the deformation rates of the two CBs according to

Hypothesis 1 may be stated as follows: It is required to determine the slip-rates, γ̇
(I)
s

and γ̇
(II)
s , in slip systems s ∈ {1, 2, . . . , S} of the two CBs such that (i) Schmid’s

law, given by Equation (7),

γ̇(I)s

{

≥ 0, if σ̄ : m
(I)
s = τs,

= 0, if σ̄ : m
(I)
s < τs.

(12)

and

γ̇(II)s

{

≥ 0, if σ̄ : m
(II)
s = τs,

= 0, if σ̄ : m
(II)
s < τs

(13)

holds in each of the CBs and (ii) such that the strain-rates, ǫ̇(I) and ǫ̇(II) satisfy

Equation (10). m
(I)
s and m

(II)
s denote the Schmid tensors of the s-th slip system

in CB I and CB II, respectively. The strain-rates are given by

ǫ̇(I) =
∑

s

γ̇(I)s m(I)
s ,

ǫ̇(II) =
∑

s

γ̇(II)s m(II)
s ,

(14)
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according to Equation (2). The plastic power, P1, associated with grain deformation
that follows Hypothesis 1 is

P1 = ρ(I)σ̄ : ǫ̇(I) + ρ(II)σ̄ : ǫ̇(II)

= σ̄ : (ρ(I)ǫ̇(I) + ρ(II)ǫ̇(II))

= σ̄ : ¯̇ǫ,

(15)

using Equation (10). P1 of Equation (15) is thus the same as Pmin in Equation (A8)
of Appendix A. By the lower bound theorem, P1 can therefore be no greater than
the plastic power dissipated during the compatible deformation of the two CBs.

2.4. Disorientation axis of CBBs: Hypothesis 2

As stated in Section 2.2 neighboring CBs are assumed to be disoriented by a
small angle ω. This disorientation may, for instance, be introduced by statistically
trapped incidental dislocation boundaries formed during plastic deformation. The
unit disorientation axes µ̂ across incidental dislocation boundaries are known to
be uniformly distributed [31].
Hypothesis 2: Of all possible unit disorientation axes, µ̂, distributed over the

unit sphere, CBs disorient preferentially about the disorientation axis µ, which
minimizes the plastic power density of the grain, P1, given by Equation (15) subject
to the constraints of Equations (10), (12), (13) and (14).

For fixed disorientation angle ω, the Schmid tensors m
(I)
s and m

(II)
s of the two

CBs depend on the disorientation axis, µ̂. For, if R(ω, µ̂) denotes the orthonor-

mal tensor that represents a rotation of ω about the axis µ̂, {m(I)
s ,m

(II)
s : s ∈

{1, 2, . . . , S}} obey

[m(I)
s ] = [R(ω, µ̂)][m(II)

s ][R(ω, µ̂)]T . (16)

Together with Equations (12) and (13), this implies that the uniform stress tensor,
σ̄ also depends on µ̂ and justifies the notation σ̄(µ̂).
The identification of the CBB disorientation µ in accordance with the two hy-

potheses given above can be posed in the framework of a two-level optimization
problem. The upper-level optimization problem is simply the mathematical expres-
sion of Hypothesis 2 above and can be stated as:

µ = argmin
µ̂

σ̄(µ̂) : ¯̇ǫ. (17)

Note that argmin
x

f(x) denotes the value(s) of x at which the function f(x) is min-

imum. The determination of σ̄(µ̂) for fixed µ̂ through an extension of the Taylor-
Bishop-Hill [26, 27] formulation constitutes the lower-level optimization problem.
It follows from the Karush-Kuhn-Tucker theorem [28, 32, 33] that the lower-level
problem is solved by the uniform deviatoric stress field σ̂ that maximizes the ex-
ternal power of plastic deformation, i.e.,

σ̄(µ̂) = argmax
σ̂

σ̂(µ̂) : ¯̇ǫ, (18)

where maximization is subject to the inequality constraints given by the yield
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conditions

σ̂(µ̂) : m(I)
s ≤ τs and σ̂(µ̂) : m(II)

s ≤ τs, (19)

for all slip systems s.
It is evident from Equations (17), (18) and (19) that the disorientation axis µ

across a CBB is independent of the orientation of the CBB plane. Also, according
to the Karush-Kuhn-Tucker theorem, even if certain components of ¯̇ǫ, say, ¯̇ǫlm
are left unspecified, the disorientation axis, µ can still be obtained by solving
the optimization problems given by Equations (17), (18) and (19), provided the
corresponding components of stress, σ̂lm = σ̄lm = 0.
The lower-level maximization problem is a standard linear program [32] and

is solved by the simplex method. The upper-level minimization problem is non-
smooth and non-linear and is solved by the section search method [34] applied over
the surface of the unit sphere.
The solution to the present two level optimization problem is comprised of the

deviatoric stress σ(I) = σ(II) = σ̄ in the two CBs, the slip-rates γ̇
(I)
s and γ̇

(II)
s in the

slip systems s ∈ {1, 2, . . . , S} of the two CBs and the optimal unit disorientation

axis µ. γ̇
(I)
s and γ̇

(II)
s obtained conform to the Schmid law, Equation (7). The

strain-rates, ǫ̇(I) and ǫ̇(II) in the two CBs can be deduced from the slip-rates using
Equation (2). The orientation of the CBBs between the CBs, however, is not part
of the solution of the two-level optimization problem of Equations (17) and (18);
its determination requires the additional hypothesis given below.

2.5. Plastic incompatibility across the CBB: Hypothesis 3

As noted in Sections 2.3 and 2.4, while the deviatoric stress in the model grain is
assumed uniform, the strain-rate exhibits a jump across CBBs. Furthermore, the
deformation of CBs is generally incompatible across CBBs. In the present model,
this incompatibility determines the CBB orientation. Two coordinate systems, the
reference system, xyz and the CBB fixed coordinate system, XY Z, wherein the
Y -axis is always aligned with the CBB normal are shown in Figure 1. In terms of
strain-rates given relative to the CBB-fixed XY Z coordinate system, compatibility
across the CBB [25] requires that

ǫ̇
(I)
XX = ǫ̇

(II)
XX ,

ǫ̇
(I)
ZZ = ǫ̇

(II)
ZZ and

ǫ̇
(I)
XZ = ǫ̇

(II)
XZ .

(20)

In terms of the jump in strain-rate across the CBB,

Jǫ̇K = ǫ̇(I) − ǫ̇(II), (21)

the compatibility conditions, Equation (20) may be expressed as

Jǫ̇XXK = Jǫ̇ZZK = Jǫ̇XZK = 0. (22)

Violation of Equation (22) indicates incompatibility of plastic deformation in CB
I and CB II across the CBB. An isotropic scalar measure of this incompatibility
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is

I = Jǫ̇XXK2 + Jǫ̇YYK2 + Jǫ̇ZZK
2 + 2Jǫ̇XZK2. (23)

Note that the term Jǫ̇YYK2 also appears in the measure of incompatibility although
compatibility in Equation (20) does not require continuity of ǫ̇YY. This is because,
according to Equations (4) and (21),

Jǫ̇YYK = −Jǫ̇XXK − Jǫ̇ZZK, (24)

which indicates the impossibility of enforcing Jǫ̇XXK = Jǫ̇ZZK = 0 without also
simultaneously enforcing Jǫ̇YYK = 0. It is now proposed that
Hypothesis 3: The CBB assumes the orientation that minimizes the incompatibility
I , given by Equation (23).
Hypothesis 3 thus requires the determination of a suitable orientation of the

CBB fixed coordinate system XY Z relative to the global system xyz, as shown in
Figure 1. Now, the Frobenius norm of the tensor Jǫ̇K is invariant with respect to
coordinate rotations [35], i.e.,

‖Jǫ̇K‖2 =Jǫ̇XXK2 + Jǫ̇YYK2 + Jǫ̇ZZK2 + 2Jǫ̇XYK2 + 2Jǫ̇YZK2 + 2Jǫ̇XZK2

=Jǫ̇xxK
2 + Jǫ̇yyK

2 + Jǫ̇zzK
2 + 2Jǫ̇xyK

2 + 2Jǫ̇yzK
2 + 2Jǫ̇zxK

2.
(25)

It follows from Equations (23) and (25) that minimization of I is equivalent to
maximization of

J = Jǫ̇XYK2 + Jǫ̇YZK
2. (26)

Physically, J is the square of the total normal shear discontinuity across the CBB.
The Tresca yield condition of classical isotropic plasticity (e.g. [36]) requires the

determination of the plane of maximum shear stress. This is analogous to the
present requirement to determine the plane across which the shear strain disconti-
nuity, J , is maximized. Using this analogy, it can be seen that J will be maxi-
mized provided the CBB is normal to either of the two vectors v1 ± v3, where v1
and v3 denote the unit eigenvectors corresponding to the maximum and minimum
eigenvalues of Jǫ̇K. The two planes normal to

ν1 = (v1 + v3)/
√
2 and

ν2 = (v1 − v3)/
√
2

(27)

thus satisfy Hypothesis 3. v1 ⊥ v3 implies that ν1 ⊥ ν2.
The two CBBs with normals ν1 and ν2 are distinguished based on their inclina-

tion to the primary slip plane. Without loss of generality, the CBB more closely
aligned with the primary slip plane will be assigned the unit normal ν1 and will
be called CBB 1. The other CBB, normal to ν2, will be called CBB 2. Thus, if np

denotes the normal to the primary slip plane,

min(∠{ν1,±np}) ≤ min(∠{ν2,±np}). (28)
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2.6. Remarks

As noted in Section 2.1 in connection with Equation (9), Taylor’s principle governs
the slip activity in a grain with a uniform lattice orientation. Hypotheses 1 and 2
may be regarded as a generalization of Taylor’s principle to the case of a grain
with a non-uniform, but periodically repeating, lattice orientation, as shown in
Figure 1. For, on the basis of minimum plastic power, as in Taylor’s principle,
these hypotheses provide a means to determine the optimal disorientation axis, µ,

in addition to the slip rates γ̇
(I)
s and γ̇

(II)
s for s ∈ {1, 2, . . . , S} in the two CBs.

Hypothesis 3, on the other hand, is similar to the LEDS principle of Kuhlmann-
Wilsdorf [37]. For, elastic straining, accompanied by non-zero long-range elastic
stresses [38], is required for material continuity if the plastic strains of the two CBs
are incompatible. Hypothesis 3, which requires the minimization of the incompat-
ibility of plastic strain-rates across CBBs thus amounts to requiring minimization
of the long-range stresses produced by CBBs, as demanded by the LEDS principle.
The three present hypotheses are now compared with the hypotheses underlying

some of the models available in the literature. Chin and Wonsiewicz [39] proposed
that deformation banding, i.e., inhomogeneous deformation of a grain, will result
if the plastic power required for the inhomogeneous process is smaller than the
plastic power required for the homogeneous process1 . The inhomogeneous plastic
power is the sum of the power associated with plastic deformation of bands, the
energy-rate associated with band boundaries and the plastic power required to
correct shape differences between the banded and homogeneous deformation. Chin
and Wonsiewicz assumed constant lattice orientation and slip system hardness
during both inhomogeneous and homogeneous deformations. Thus, inhomogeneous
deformation of grains, according to the Chin-Wonsiewicz criterion, is not caused
by slip system hardening. The Chin-Wonsiewicz criterion has been extended and
applied to rolling deformation by Lee and Duggan [40].
A variational theory for the inhomogeneous deformation and accompanying sub-

division of a single crystal under imposed homogeneous deformation has been pro-
posed by Ortiz and co-workers [41, 42]. According to this theory, a non-homogenous
deformation mode will be preferred if a functional comprised of the plastic work
and the stored energy associated with the geometrically necessary interfaces dur-
ing inhomogeneous deformation is non-convex. In that case, the functional will be
minimized by an inhomogeneous deformation accompanied by sub-structure de-
velopment. Crystal sub-division occurs within this framework because plastic work
can be reduced by lowering latent hardening, which in turn can happen if multi-slip
activity in a homogeneously deforming crystal is replaced with single slip activity
within spatially isolated domains. The approach of Hackl and co-workers [43, 44]
to predicting microstructure formation is similar. In their thermodynamics-based
approach, which may qualitatively be regarded as a rigorous extension of the LEDS
theory of Kuhlmann-Wilsdorf [37], a free energy functional representing the stored
energy due to elastic deformation is minimized. Non-convexity of the functional
leads to inhomogeneous deformation and microstructure formation, as in [41, 42].
The reduction in the number of slip systems activated in each CB of an inhomoge-
neously deforming grain, relative to the number that must be activated in the course
of homogeneous deformation of the grain has also been taken by Leffers [30, 45] to
underlie experimentally observed sub-structure in grains.
The theory of Ortiz and co-workers [46, 47] is able to predict the scaling of mis-

orientation angle and the spacing of microstructural boundaries, in accord with

1Chin and Wonsiewicz [39] require the minimization of plastic work over an infinitesimal plastic strain
increment, which amounts to requiring the minimization of the plastic power.
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experimental observations, when infinite latent hardening is assumed. However,
the orientations and disorientation axes across microstructural boundaries pre-
dicted by the aforementioned theories have not been systematically compared with
experimental observations.
Hypotheses 1 and 2 of the present model are more akin to the Chin-Wonsiewicz

criterion [39] than to the criteria of [41–44]. The inhomogeneous deformation mode
predicted by Hypotheses 1 and 2 is based on minimization of the instantaneous
plastic power, P1, given by Equation (15) and is, therefore, independent of slip
system hardening. As noted above, the criteria of [41–44] predict inhomogeneous
grain deformation on the basis of a tendency to minimize latent hardening of slip
systems. However, the present hypotheses differ also from those given by [39, 40] in
two significant ways: (i) CBs in the present hypotheses, unlike those in [39, 40], are
assumed disorientated. (ii) CBB orientations are determined on the basis of Hy-
pothesis 3 presently, instead of being prescribed based on geometric considerations,
as in [39, 40].

2.7. Dislocation density and disorientation angle

The rate of change of the dislocation density tensor, α associated with the CBB
and the rate of change of the disorientation angle, ω of the CBB are now derived.
Let αV denote the volumetric dislocation density tensor; its components describe
the dislocation line length per unit material volume. Following Fleck et al. [48], the
rate of αV is given by

α̇V = ∇×Lss, (29)

or, in component form, α̇V
in = enkjLss ij,k, where, enkj are the components of the

alternating tensor. Let L
(I)
ss and L

(II)
ss denote the uniform slip rate tensors in CB

I and CB II, respectively. According to Equation (29), α̇V = 0 in the domain
of the two CBs. Let α denote the surface dislocation density tensor associated
with CBBs, whose components represent the dislocation line length per unit CBB
surface area. Its rate, α̇ is given by [41, 42]

α̇ = JLssK × ν, (30)

where, JLssK = L
(I)
ss − L

(II)
ss . In component form, α̇in = enkjJLss ijKνk. Following

Nye [49], the relation between α̇ and the network of dislocations is

α̇ =

T
∑

t=1

ρ̇(t)bb(t) ⊗ ξ(t), (31)

where the summation is over all the dislocation types t = 1, . . . , T . In Equation (31),
ρ̇(t) denotes the areal density, i.e., dislocation line length per unit CBB surface area,
of dislocation of type t, b denotes the magnitude of the Burgers vector and b(t) and
ξ(t) denote unit vectors in the direction of the Burgers vector and the line direction
of dislocations of type t, respectively. The scalar rate of the geometrically necessary
dislocation density may be defined following Sun et al. [50] as:

ρ̇GND =

T
∑

t=1

ρ̇(t). (32)
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Using the relation between the lattice curvature and dislocation density due to
Nye [49],

κ̇ = α̇T − (tr α)1/2, (33)

where 1 denotes the second rank identity tensor, the rate of change of the vector
lattice orientation, φ across the CBB can be obtained as

φ̇ = κ̇ν. (34)

The disorientation rate across the CBB, ω̇ is then

ω̇ = ‖φ̇‖ =

√

φ̇ · φ̇. (35)

Substituting Equations (30), (33) and (34) into Equation (35), followed by algebraic
manipulations yields

ω̇ =
√

‖ν × (JLT
ssKν)‖2 + (ν · axial skew(JLssK))2. (36)

3. Results and discussion

We now predict the disorientation axis µ and orientations ν1 and ν2 of CBBs
formed in the grains of an fcc polycrystal accommodating imposed uniaxial tensile
deformation along the z axis by {111}〈110〉 slip. 600 grains are analyzed. Their
lattice orientations fall in a regular grid within the standard stereographic triangle
whose vertices correspond to the [001], [011] and [111] crystallographic directions,
i.e., the tensile axis, z, is collinear with a crystallographic direction given by α[001]+
β[011] + γ[111], for some α ≥ 0, β ≥ 0 and γ ≥ 0. For grains oriented within this
stereographic triangle, the primary, conjugate, cross and critical slip planes, as
defined, e.g., in [51, Section 5.16], are np = (1̄11), nc = (11̄1), nx = (111̄) and
nr = (111), respectively. The only material parameter in the present model is the
critical resolved shear stress of all slip systems; these are taken to be equal:

τs = 1 for s ∈ {1, 2, . . . , 12}, (37)

without loss of generality.

3.1. Constraints

The constraint experienced by an individual grain in a polycrystal is mediated by
the grains surrounding it and will, in general, differ from the macroscopic constraint
imposed upon the polycrystal [25]. In the present work, the constraints imposed
upon a grain in a polycrystal undergoing uniaxial tension in the z-direction are

¯̇ǫzz = 1,

¯̇ǫxx + ¯̇ǫyy = −1,

¯̇ǫxz = ¯̇ǫyz = ¯̇ǫzx = ¯̇ǫzy = 0.

(38)

¯̇ǫxx and ¯̇ǫyy are thus only partially constrained and ¯̇ǫxy = ¯̇ǫyx are left unconstrained.
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This set of constraints is motivated by the viscoplastic self-consistent polycrystal
plasticity model [25, Chap. 11, p. 484], which predicts that individual grains in
a polycrystal subjected to macroscopic uniaxial tension undergo approximately
plane strain deformation due to grain curling. Plane strain deformation involves
extension in a certain direction and equal contraction in a perpendicular direction.
The strain-rate in a grain undergoing plane strain deformation with extension along
the z-direction and compression along an arbitrary unit direction (ξ,±

√

1− ξ2, 0)
perpendicular to the z-direction can be shown to be

[¯̇ǫ]xyz =





−ξ2 ∓ξ
√

1− ξ2 0

∓ξ
√

1− ξ2 −(1− ξ2) 0
0 0 1



 , (39)

for arbitrary ξ, 0 ≤ ξ ≤ 1. In terms of components, Equation (39) can be written
as

¯̇ǫzz = 1,

¯̇ǫxx + ¯̇ǫyy = −1,

¯̇ǫxz = ¯̇ǫyz = ¯̇ǫzx = ¯̇ǫzy = 0,

¯̇ǫxy = ¯̇ǫyx = ∓
√

|¯̇ǫxx¯̇ǫyy|.

(40)

It is thus seen that the imposed constraints listed in Equation (38) are exactly those
required to enforce plane strain deformation of the grain given in Equation (40),
with the omission of the last non-linear constraint in Equation (40). The deviation
from plane strain deformation caused by the omission of the last constraint is
studied below.

3.2. Homogeneous deformation

If the disorientation between neighboring CBs in the model grain described in
Section 2.2, ω = 0, both CBs slip identically and the grain deforms homogeneously.
The plane strain character of the homogeneous deformation and the concentration
of slip activity in a single crystallographic slip plane are now considered.

001 011

111

q

r

s

0.05

0.10

0.15

0.20

0.25

0.30

|λ2/λ3|

Figure 2. Contour map over the standard stereographic triangle of |λ2/λ3|, the ratio of the intermediate eigenvalue to
the maximum eigenvalue of the strain-rate imposed on the grain, ¯̇ǫ, which quantifies the deviation of the grain deformation
from plane strain deformation. Equal angle projection is assumed.
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Let ¯̇ǫ denote the strain-rate of a grain whose CBs are identically oriented and
which is homogeneously deforming (ǫ̇(I) = ǫ̇(II) = ¯̇ǫ) under the imposed constraint
given by Equation (38). Let λ1, λ2 and λ3 denote the eigenvalues of ¯̇ǫ ordered as
λ1 ≤ λ2 ≤ λ3. A measure of the deviation of ¯̇ǫ from plane strain deformation is
given by |λ2/λ3|. For plane strain deformation, |λ2/λ3| = 0, while for axisymmetric
uniaxial tension, |λ2/λ3| = 0.5. Figure 2 shows the variation of |λ2/λ3| over the
stereographic triangle. It is seen that in both the main part of the triangle and
close to the [001], [011] and [111] poles, |λ2/λ3| ≤ 0.2, which indicates the plane
strain character of ¯̇ǫ to good approximation. In the region qrs of the stereographic
triangle of Figure 2, however, 0.2 ≤ |λ2/λ3| ≤ 0.34. In this region, the grain
deformation deviates more significantly from plane strain, although here too, the
grain deformation falls distinctly short of having the character of axisymmetric
uniaxial tension.

001 011

111

0.5

0.6

0.7

0.8

0.9

1.0

ℵ

Figure 3. Contour map of ℵ, defined in Equation (41), which quantifies concentration of slip in a single {111} plane.
Equal angle projection is assumed.

The concentration of slip activity in one crystallographic slip plane in a homoge-
neously deforming grain is considered next. Let Γ̇p denote the sum of the slip rates
γ̇s for slip systems s associated with the primary slip plane when the disorientation
angle across CBBs, ω = 0, as in Equation (6). Γ̇c, Γ̇x and Γ̇r, for total slip activity
in the conjugate, cross and critical planes, respectively, may similarly be defined.
The ratio

ℵ =
maxi∈{p,c,x,r} Γ̇i
∑

i∈{p,c,x,r} Γ̇i

; (41)

1/4 ≤ ℵ ≤ 1 quantifies the concentration of slip activity in one {111} plane. The
lower bound, ℵ = 1/4, signifies that slip activity is uniformly distributed amongst
all slip planes while the upper bound, ℵ = 1, signifies concentration of slip activity
in one plane. Figure 3 shows the contours of ℵ over the stereographic triangle. It is
seen that the highest ℵ, i.e., greatest slip concentration in one {111} plane, occurs
in grains oriented in the middle part of the triangle.

3.3. Inhomogeneous deformation

The following discussion is based on the model of Section 2.2 wherein grains are as-
sumed to be subdivided by a repetitive pattern of two types of mutually disoriented
CBs, separated by CBBs. The disorientation between the CBs, ω 6= 0.
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001 011

111

2

3

4

> 5

ℵ2

Figure 4. Contour map over the standard stereographic triangle of ℵ2, given by Equation (42), which quantifies the
ratio of slip activity in the CBs. ℵ2 = 1 implies equal total slip rate in both CBs, while ℵ2 = ∞ implies concentration of
slip in one of the two CBs. Equal angle projection is assumed.

3.3.1. Slip activity in CBs

The distribution of slip activity in each of the two types of CBs is first considered.
A measure of the concentration of slip activity in one of the CBs is given by

ℵ2 =
max

(

∑

i∈{p,c,x,r} Γ̇
(I)
i ,

∑

i∈{p,c,x,r} Γ̇
(II)
i

)

min
(

∑

i∈{p,c,x,r} Γ̇
(I)
i ,

∑

i∈{p,c,x,r} Γ̇
(II)
i

) . (42)

It is clear that 1 ≤ ℵ2 < ∞. ℵ2 = 1 implies equal distribution of slip activity
amongst both types of CBs, while ℵ2 = ∞ implies that only one of the two model
rigid-plastic CBs undergoes plastic deformation, while the other remains rigid.
Figure 4 shows the contours of ℵ2 over the standard stereographic triangle. While

slip activity and plastic deformation of both CBs is predicted in orientations close
to the [001], [011] and [111] corners of the triangle and all along the [001]-[111] line,
concentration of slip activity in one of the CBs is predicted in the middle part of
the triangle, corresponding to ℵ2 > 5.

3.3.2. Alignment of CBBs with {111} planes

Let θmin
1 and θmin

2 denote the smallest angular misalignment of CBB 1 and CBB 2
with any of the crystallographic planes, i.e.,

θmin
1 = min

i∈{p,c,x,r}
(∠{ν1,±ni}) and

θmin
2 = min

i∈{p,c,x,r}
(∠{ν2,±ni}).

(43)

Figures 5(a) and (b) show the predicted deviation, θmin
1 and θmin

2 , of CBB 1 and
CBB 2, respectively, from the nearest {111} plane and disoriented by ω = 0.32◦.
If this lattice disorientation is introduced by statistically stored dislocations, the
average lattice disorientation scales with von Mises strain as [31]

〈|ω|〉 = k
√
ǫvM, (44)

where k = 1◦ for aluminum. According to Equation (44), the disorientation angle
ω = 0.32◦ corresponds to von Mises strain-level ǫvM = 0.1. Figure 5 (a) predicts
close coincidence of CBB 1 with a {111} plane in the middle part of the stereo-
graphic triangle, labeled abcd. Coincidence to within θmin

2 ≤ 15◦ between CBB 2
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Figure 5. Inverse pole figures drawn using equal angle projection showing contours of (a) θmin
1

and (b) θmin
2

corre-
sponding to strain level ǫvM = 0.1. The {111} plane most closely aligned with CBB 1 and CBB 2 is shown in (c) and (d),
respectively.

and a {111} plane is also predicted in the part of the stereographic triangle labeled
efgh and in region a[011]b near the [011] pole, as shown in Figure 5(b).
The {111} planes most closely aligned with CBB 1 and CBB 2 are shown in

Figures 5(c) and (d). As seen from Figure 5(c), excepting small regions of the
orientation space near the [001] − [111] line, CBB 1 predominantly aligns most
closely with the primary slip plane, even in parts of the stereographic triangle
where θmin

1 is large. On the other hand, in the part of orientation space, efgh, where
there is close CBB 2 alignment with a {111} plane, it is seen from Figure 5(d) that
the {111} planes best aligned with CBB 2 are the critical slip planes.
The region of close alignment of CBB 1 with a {111} plane occurs for grain orien-

tations wherein the imposed tensile deformation is accommodated predominantly
by slip in a single crystallographic plane. The region of the stereographic triangle
in Figure 5 (a) corresponding to good alignment of CBB 1 with a {111} plane to
within θmin

1 ≤ 10◦, say, is approximately the same as the region of the triangle in
Figure 3 corresponding to high ℵ, ℵ ≥ 0.7, approximately. Parts of the region of
small θmin

2 in Figure 5(b), however, maps to a region of relatively small slip con-
centration ℵ in Figure 3. The region of close coincidence of CBB 1 with a {111}
plane is also approximately the same as the region of large ℵ2 in Figure 4. Thus,
deformation is predominantly confined to one of the CBs in grain orientations for
which θmin

1 is small. Deformation is more equitably distributed amongst the CBs
for grain orientations for which θmin

2 is small.

3.3.3. Insensitivity of CBB orientation to strain level

Figure 6 shows the lattice orientation dependence of θmin
1 and θmin

2 for the strain
level ǫvM = 0.01, which corresponds to ω = 0.1◦ according to Equation (44). Only
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Figure 6. Inverse pole figures drawn using equal angle projection showing contours of (a) θmin
1

and (b) θmin
2

at ǫvM =
0.01.

a slight difference is seen between (a) and (b) of this figure and Figures 5(a) and
(b), respectively. This suggests that CBB orientation predictions are not sensitive
to the strain level at least in the strain range ǫvM = 0.01 to 0.1. The predicted
insensitivity can be understood in the context of the present model by noting that
the distribution of slip activity is not altered significantly by small variations in

the disorientation angle across the CBBs, so that the strain-rates, ǫ̇(I) and ǫ̇(II),
of CBs and the CBB orientation are also left practically unaltered. The predicted
insensitivity agrees well with experimental findings [11, 13, 19].

3.3.4. Tilt/twist character of the predicted CBBs
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(a) CBB 1, ψ1 (b) CBB 2, ψ2

Figure 7. Inverse pole figures drawn using equal angle projection showing contours of (a) ψ1 and (b) ψ2. ǫvM = 0.1.

The tilt/twist character of the predicted CBBs for each of the 600 orientations
considered can be ascertained by considering the acute angle included between the
CBB disorientation axis, µ and the CBB normal, ν1 or ν2. These angles are

ψ1 = min(∠{±µ,ν1}) and ψ2 = min(∠{±µ,ν2}). (45)

0 ≤ ψ1, ψ2 ≤ 90◦. ψ1 ≈ 0◦ or ψ2 ≈ 0◦ indicates that that the boundary has a pre-
dominantly twist character, while ψ1 ≈ 90◦ or ψ2 ≈ 90◦ indicates a predominantly
tilt CBB. Figures 7 (a) and (b) show the distribution of ψ1 and ψ2, respectively,
over the entire orientation space. It is striking that there are no orientations for
which ψ1 or ψ2 is smaller than 40◦. Thus, the present calculations predict no pre-
dominantly twist CBBs anywhere in the orientation space. On the other hand,
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Figure 7(a) shows that CBB 1s in much of the stereographic triangle, barring
some regions near the [001]–[011], [011]–[111] and [111]–[001] lines, have a pre-
dominantly tilt character, corresponding to ψ1 ≥ 70◦. Parts of the region, labeled
abcd in Figure 5 (a), where CBB 1 coincides closely with the primary slip plane
thus have CBBs with a predominantly tilt character, while other parts have CBBs
with mixed character. Also, it can be seen from Figure 7(b) that the part of the
stereographic triangle where CBB 2 has a predominantly tilt character (ψ2 ≥ 70◦)
occurs only in the middle of the triangle. In the part of the orientation space, efgh
in Figure 5 (b), where CBB 2 aligns closely with a crystallographic {111} plane,
this CBB is of mixed type.
Not as much experimental data for the distribution of CBB disorientation axes

as for the distribution of CBB orientation is available for the case of polycrystals
deformed in uniaxial tension. Data is, however, available for the character of CBBs
in rolled polycrystals [52] at low rolling reductions. McCabe et al [52] have reported
the predominantly tilt character of a crystallographic CBB (disorientation axis
tilted 69◦ relative to the CBB normal) within a grain of a pure copper polycrystal
reduced 7.5% by rolling. As noted in Section 3.3.2, crystallographic CBBs occur in
the central part of the stereographic triangle under uniaxial tension. In this region
of orientation space, Figure 7 (a) predicts predominantly tilt CBB.

3.3.5. Dislocation density
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(a) CBB 1 (b) CBB 2

Figure 8. Inverse pole figures drawn using equal angle projection showing contours of non-dimensional ρ̇GNDb/ǫ̇vM in
(a) CBB 1 and (b) CBB 2 at ǫvM = 0.1. b denotes the magnitude of the Burgers vector.

Following Sun et al. [50], it is assumed that plastic deformation of an f.c.c.
grain deforming by {111}〈110〉 slip is accommodated by the motion of 12 types
of pure screw dislocations, whose Burgers vectors and line directions are aligned
along the 〈110〉 directions and 24 types of pure edge dislocations whose Burgers
vector lie along 〈110〉 and whose line directions along 〈112〉. A decomposition of
the 9 components of α̇ into dislocation density rates, ρ̇(t), t = 1, 2, . . . , T , for
T = 12+24 = 36 dislocation types in Equation (31) constitutes an underdetermined
problem. The lower-bound f.c.c. deconstruction of Sun et al. [50], which provides a
method to handle the indeterminacy, is employed presently for the determination
of ρ̇(t).
Figure 8 shows the lattice orientation dependence of the non-dimensional

ρ̇GNDb/ǫ̇vM, given by Equation (32), across CBB 1 and CBB 2. Comparing Fig-
ures 8 (a) and (b) with Figures 5 (a) and (b) shows that CBBs aligned closely
with a {111} plane have the smallest rates of dislocation density accumulation.
However, smallness of ρ̇GNDb/ǫ̇vM does not necessarily imply close coincidence of
the predicted CBB with a {111} plane: Orientations for which ρ̇GNDb/ǫ̇vM is small,
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but for which the predicted CBB 1 deviates significantly from {111} planes occur
fall the [433] pole. The highest ρ̇GNDb/ǫ̇vM is associated with CBB 2s in grains
oriented near the [111] pole.

3.3.6. Disorientation angle
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(a) CBB 1 (b) CBB 2

Figure 9. Inverse pole figures drawn using equal angle projection showing contours of ω̇/ǫ̇vM in (a) CBB 1 and (b)
CBB 2 at ǫvM = 0.1.

Figure 9 shows the lattice orientation dependence of the non-dimensional disori-
entation angle rate, ω̇/ǫ̇vM, defined in Section 2.7, across CBB 1 and CBB 2. The
value of ω̇/ǫ̇vM across CBB 1 in Figure 9 (a) averaged over the entire stereographic
triangle, 0.98 rad, is smaller than the average value, 2.95 rad, across CBB 2 in
Figure 9 (b). Furthermore, comparison of Figure 9 with Figure 5 (a) and (b) shows
that the lattice orientations for which either CBB 1 or CBB 2 coincide closely with
a {111} plane approximately correspond to small values of ω̇/ǫ̇vM.
Figure 9 corresponds to a strain-level of ǫvM = 0.1, i.e., a disorientation an-

gle of ω = 0.32◦, according to Equation (44). The distribution of ω̇/ǫ̇vM over the
stereographic triangle shown in Figure 9 does not, however, appreciably vary with
ω at least up until ω = 2◦. If the lattice orientations of grains were fixed, this
observation would imply that the predicted disorientation angle ω across a CBB
scales linearly with strain, ǫvM. But, the lattice orientation of grains evolves during
tensile deformation, following a path in the stereographic triangle [53]. The disori-
entation angle, ω at the end of the deformation is predicted to be the integral of
the non-constant ω̇ over the path describing it.
Evolution of the disorientation angle with lattice rotation is deferred to future

work. Predicted microstructural features associated with the instantaneous dis-
tribution of slip activity in a grain, viz., CBB ν and µ are now compared with
experimental observations.

3.4. Comparison with experimental observations

Extensive experimental studies of the crystallographic alignment of CBBs have
been conducted in polycrystalline copper and aluminum subjected to uniaxial ten-
sile deformation [11–13, 15, 18, 19, 21]. In the experimental observations, CBBs are
found to be comprised of discontinuous segments separated by step like discontinu-
ities [19]. The crystallographic plane of a CBB has been experimentally identified
by measuring the crystallographic orientation of a few of continuous CBB segments
in several grains, as detailed by Huang and Winther [19].
The gross orientation of a CBB is the orientation of the single plane that best

fits all the dislocation segments comprising it. The distinction between the crystal-
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Figure 10. Schematic diagram showing the distinction between the orientation of individual continuous segments com-
prising the CBB (solid lines) and the gross orientation of the CBB averaged over the entire grain (dashed line). The
diagonal lines in the background represent the average lattice orientation of the grain.

lographic orientation of individual CBB segments and the gross CBB orientation is
illustrated schematically in Figure 10. The inclination of a CBB segment to a cer-
tain crystallographic plane and the inclination of the gross CBB to that plane have
been indicated as θsegment and θgross, respectively. It is clear that θsegment 6= θgross.
The present model predicts the gross CBB orientation, since it treats the CBB as
a planar boundary devoid of any discontinuities.
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Figure 11. Division of the stereographic triangle into Type 1, Type 2 and Type 3 regions based on the present calcu-
lations. Regions abcd and efgh are the same as those marked in Figures 5(a) and (b), respectively. Contour lines shown

correspond to those of θmin
1

= 15◦ and θmin
2

= 15◦ in Figures 5(a) and (b), respectively.

A division of the orientation space, following Huang [11], obtained on the basis
of the present calculations is shown in Figure 11. In the Type 1 region obtained
as the union of the regions abcd ∪ efgh ∪ a[011]b, shown in Figure 5, the gross
orientation of CBBs aligns to within 15◦ with a crystallographic slip plane. It is
seen that a part of the contour line cd overlaps approximately with a part of the
contour line ef . The Type 2 region is characterized by the unstable CBBs, while
the Type 3 region is characterized by stable non-crystallographic CBBs. Detailed
discussion of each of the three types follows.
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3.4.1. Type 1 grains

Huang and Hansen [11] observed CBBs aligned with {111} planes in the middle
part of the triangle, and termed such grains as Type 1 grains. The characteris-
tic crystallographic CBBs of Type 1 grains have since been found in copper and
aluminum of varying purity, grain size and strain levels [13, 16, 18–21]. In these
works, the angle between the CBB segments and the {111} plane is reported to be
less than 10◦, and even as close as 5◦ [11, 13]. Winther et al. [15] and Huang and
Winther [19] have reported that CBB segments in Type 1 grains usually align with
the primary slip plane, although for Type 1 grains oriented near the [001] corner
they may align with the conjugate or critical {111} planes.
In reasonable agreement with these experimental observations, Figure 5(a) shows

that the predicted CBB 1 aligns with the primary {111} plane to within 15◦ in
the middle part of the triangle, denoted by abcd, as shown in Figure 5 (b). Also,
the predicted CBB 2 aligns closely with the critical slip plane in the region efgh
shown in Figure 5 (d). It is also seen in the same figure that in region a[011]b, the
predicted CBB 2 aligns closely with conjugate plane.
Figure 11 shows the region abcd∪efgh∪a[011]b, which corresponds to the calcu-

lated Type 1 region. The calculated Type 1 region agrees well with the experimen-
tally observed Type 1 region of Huang, Winther and co-workers [13, 16, 18–21].
The observed agreement of the predicted and experimental CBB alignments are

found even though, as noted at the beginning of Section 3.4, it is the crystallo-
graphic orientation of CBB segments that is experimentally measured, while it is
the gross crystallographic CBB orientation that is predicted. This is perhaps be-
cause in Type 1 grains, the orientation relation of CBB segments to the lattice is
approximately the same as the gross orientation of the CBB to the lattice.
Although the present model predicts two sets of mutually orthogonal CBBs for

each lattice orientation, except in rare cases [11, 21], only one set of CBBs is
reported from experimental observations. This indicates a microscopic preference
for one of the predicted CBB orientations. Figure 8 suggests that the Type 1 CBB
observed experimentally is that corresponding to the smaller ρ̇GNDb/ǫ̇vM. Another
reason for the observed single CBB in Type 1 grains has been suggested by Winther
et al [15]. It holds that CBB formation requires dislocations from at least two
coplanar systems. The unavailability of sufficiently many suitable dislocations to
form both CBBs may be the reason for the observed absence of two CBBs.

3.4.2. Type 2 grains

In the region close to the [001] pole, Huang, Winther and co-workers [11, 13, 16,
18–21] have observed a diffuse cell structure instead of CBBs. Such grains have
been called Type 2 grains. The present model is unable to directly predict the
breakdown of the CBB structure. In fact, as seen in Figures 5 (a) and (b), the
present model predicts CBBs deviating substantially from any {111} planes in the
part of the orientation space near the [001] pole.
The present results, however, indirectly suggest the impersistence of the predicted

CBBs in Type 2 grains. The irregularity of the contour line nearest the [001] pole
in Figure 5 (a) and the high density of contours near the [001] pole in Figure 5
(b) suggests that the predicted CBB orientations are highly sensitive to the lattice
orientation of grains oriented with tensile axis near the [001] pole. This is more
clearly seen in Figure 12, which shows a large scatter in the orientation of the
predicted CBBs in 40 orientations near the [001] pole, for which the crystallographic
[001] direction deviates from the tensile z-axis by less than 6◦. For grains of these
orientations, one set of predicted CBBs are oriented from (100) to (1̄10) and another
set of predicted CBBs from (001) to (011). The variation of the CBB orientation
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in both sets is slightly over 45◦. It is proposed that the CBBs predicted in Type 2
grains do not persist with deformation because large changes in the optimal CBB
orientation accompany relatively small lattice rotations, such as those that occur
during deformation [21]. This may be the underlying reason for the experimentally
observed absence of CBBs in Type 2 grains.

100

010

001

∠{z, [001]} ≤ 6◦

Figure 12. Pole figure showing the predicted inclination of CBBs in the crystallographic coordinate system, [100]-[010]-
[001] for Type 2 grains whose [001] axis is inclined less than 6◦ from the tensile axis. ǫvM = 0.1.

3.4.3. Type 3 grains

In grains oriented near the [111] pole, termed Type 3 grains, Huang, Winther and
co-workers [11, 13, 15, 19–21] have observed non-crystallographic CBBs deviating
10◦–35◦ from the nearest {111} plane. The nearest {111} plane was identified
as the cross-slip plane by Winther et al [15]. Further, Huang and Winther [19]
have reported observing CBBs aligned with {115} planes in grains closest to the
[111] pole. In grains oriented further away from the [111] pole in the stereographic
triangle, they have reported observing CBB segments within 10◦ of {351̄}-type
planes.
In agreement with the experimental observations, the present calculations pre-

dict misalignment in excess of 15◦ between the predicted CBBs and any of the
{111} planes, as seen from Figures 5 (a) and (b). The calculated part of the orien-
tation space that corresponds to Type 3 grains is also shown in Figure 11. Also in
agreement with experimental observations, CBB 2 in grains oriented near the [111]
pole are most closely aligned with the cross slip plane, as seen from Figure 5 (d).
It can also be seen from the same figure that some orientations located near [111]
also show closest alignment of their CBB 2s with the critical slip plane. It thus ap-
pears that the single CBBs that form in Type 3 grains experimentally corresponds
to CBB 2s in the present calculations even though, the ρ̇GNDb/ǫ̇vM of CBB 2s is
larger than that of the corresponding CBB 1s, as shown in Figure 8.
In Type 3 grains oriented near the [001]-[111] line the predicted CBBs align

along (110) and (1̄10). This prediction diverges from the experimentally measured
crystallographic planes ({351̄} and {115}). Cahn [54] noted that rotation with the
grain shape of CBBs formed along {110} planes about a 〈112〉 direction lying in the
{111} slip plane will result in their coincidence with a {351̄} plane after about 30%
tensile strain. Together with the experimental observations, this suggests that CBB
segments in Type 3 grains may be getting pinned at points along their length [24],



December 28, 2011 17:46 Philosophical Magazine bit8

22 REFERENCES

so that their orientation evolves following the grain shape. CBB pinning along the
lines of intersection of two sets of CBBs has been observed by Wrobel et al. [55] in
rolling deformation.
Another reason for the difference in the orientation of the predicted and observed

CBBs, as noted at the beginning of Section 3.4, may be that the experimental ob-
servations pertain to the alignment of CBB segments with crystallographic planes,
whereas the present calculations predict the gross orientation of CBBs relative
to the average lattice orientation. The divergence of the predicted and measured
crystallographic planes aligned with the CBBs suggests that the local crystallo-
graphic orientation of CBB segments that form the wavy and irregular Type 3
CBBs [11, 13, 15, 19] deviates substantially from the gross orientation of CBBs,
unlike in Type 1 grains.

4. Conclusion

A general method to identify CBB disorientation and orientation in an arbitrarily
oriented rigid-plastic rate-independent grain, which accommodates arbitrary im-
posed deformation by slip and whose slip systems are in an arbitrary but uniform
state of hardness, is given on the basis of three physical hypotheses. The optimal
CBB disorientation and orientation are obtained as those which minimize the plas-
tic power of the grain and the incompatibility of plastic deformation across the
CBB. Despite the uncertainties in the constraint experienced by individual grains,
the predicted CBB orientations agree reasonably well with experimental observa-
tions in f.c.c. polycrystals subjected to uniaxial tensile deformation; the predicted
subdivision of the orientation space into Types 1, 2 and 3 is comparable with the
experimentally observed subdivision. This suggests that the assumed hypotheses
may represent the physical principles underlying CBB orientation and disorienta-
tion preferences.
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Appendix A. The lower bound theorem

Let σ∗(x) be a “trial” deviatoric stress field in a rigid-plastic body which, (i)
satisfies the equilibrium equations everywhere and (ii) does not violate the yield
criterion anywhere. The strain-rates associated with the trial field, σ∗(x), need not
be compatible. Let σ(x) denote the true deviatoric stress field in the body, i.e.,
which in addition to (i) and (ii) above, also satisfies the compatibility conditions
everywhere. Let the true compatible strain-rate field in the body be ǫ̇(x). The
principle of maximum plastic power [36] maintains that the plastic power of the
trial field, σ∗(x), can be no greater than that of the true field, σ(x), i.e.,

∫

σ(x) : ǫ̇(x) dx ≥
∫

σ∗(x) : ǫ̇(x) dx, (A1)

where both integrals range over the volume of the body.
Consider a collection of standard rate-independent material points of volume

fractions ρ(1), ρ(2), . . . such that
∑

i ρ
(i) = 1. Each material point is assumed to

deform homogeneously. The s-th Schmid tensor associated with the i-th material
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point will be denoted m
(i)
s . In general, m

(i)
s 6= m

(j)
s for distinct material points i

and j, i 6= j.
The material points are said to collectively accommodate the imposed velocity

gradient L̄ if

L̄ =
∑

i

ρ(i)L(i), (A2)

where L(i) denotes the velocity gradient of the i-th material point. Taking only the
symmetric part of both sides in Equation (A2),

¯̇ǫ =
∑

i

ρ(i)ǫ̇(i), (A3)

where, ǫ̇(i) denotes the strain-rate of the i-th material point and ¯̇ǫ = (L̄ + L̄T )/2
denotes the imposed strain rate. Together with a consistent set of compatibility
conditions, Equation (A3) determines the state of stress, σ(i), in each material
point i [56, 57].
The principle of maximum plastic power is now applied to the collection of

discrete material points. The integrals in Equation (A1) now reduce to sum-
mations. For any set of trial deviatoric stresses σ∗,(1),σ∗,(2), . . ., at the material
points, which are in equilibrium and do not violate the yield condition (i.e., satisfy

σ∗,(i) : m
(i)
s ≤ 0, for all i, and s), Equation (A1) becomes

∑

i

ρ(i)σ(i) : ǫ̇(i) ≥
∑

i

ρ(i)σ∗,(i) : ǫ̇(i). (A4)

If the trial stress field is further required to be uniform, i.e.,

σ∗,(1) = σ∗,(2) = . . . = σ̄∗, (A5)

where, σ̄∗ denotes the uniform stress over all the material points, equilibrium
follows trivially [25] and the yield condition takes the form

σ̄∗ : m(i)
s ≤ τs, ∀i, s. (A6)

Equation (A4) becomes

∑

i

ρ(i)σ(i) : ǫ̇(i) ≥
∑

i

ρ(i)σ̄∗ : ǫ̇(i),

= σ̄∗ :
∑

i

ρ(i)ǫ̇(i),

= σ̄∗ : ¯̇ǫ,

(A7)

where, Equation (A3) has been used in the last step. It has thus been shown that

Pmin = σ̄∗ : ¯̇ǫ ≤
∑

i

ρ(i)σ(i) : ǫ̇(i) ≡ P, (A8)

where, σ̄∗ satisfies Equation (A6) and ǫ̇(i) obey Equation (A3). This result is used
in the sequel, with the identification of material points with cell blocks.


