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Abstract Parameters of five popular continuum damage models are fit to match their creep

rate and time to rupture predictions with that of a validated micro-mechanisms based model

at a high nominal stress for an austenitic stainless steel. Their predictions are then compared

with that of the micro-mechanisms based model at lower stress levels. The creep-strain rate

and time to failure predictions of the model due to Wen et al. [1] best agrees with that of the

micro-mechanisms based model in the regime of dominance of creep deformation processes.

At still lower stress levels, where cavitation-rate is determined by diffusion processes, the

Wen et al. model predictions of creep lifetimes become excessively non-conservative. A

correction based on a formula due to Cocks and Ashby [2] is proposed for this regime.
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1 Introduction

Creep in austenitic stainless steels occurs by the interacting mechanisms of cavitation, and

wedge-cracking at grain boundary facets, whose rates are controlled both by diffusion and

deformation processes [3, 4]. The dominance of a particular mechanism depends on the load

and temperature levels. At homologous temperatures of about 0.4, at high stresses, creep

rupture under constant uniaxial tensile load occurs by transgranular necking under an ex-

ponentially increasing creep rate [5]. At intermediate loads, elongation at the point of creep

failure reduces, and failure switches to a brittle intergranular character [6]. Intergranular

cavitation at grain boundaries, linking up to form wedge cracks near triple junctions [7], and

possibly accelerated by grain boundary sliding [8] dominates in this regime. Even though

the failure in this regime is dominated by the growth of cavities by diffusion of atoms away

from cavities, the growth rate is itself constrained by the creep deformation of the surround-

ing material [9]. Finally, at very low loads, creep strains and grain boundary sliding become

negligible. This regime is of importance, because service conditions typically fall within this

regime [3, Fig. 6]. Cavity growth occurs in this regime by diffusional mechanisms only.

A detailed micro-mechanisms based model for an AISI 316 stainless steel is available in

the literature [10]. In this model, the polycrystalline material is assumed to be comprised of a

space-filling tiling of identical dodecahedral grains. Model grains creep following Norton’s

power-law. Additionally, grain boundary sliding, and accommodation of the interaction be-

tween slid neighbouring grains is considered. Cavitation and wedge-cracking on each of the

twelve facets of the dodecahedral grain is permitted. Cavitational damage on different facets

are allowed to interact, and promote, or inhibit each other. This model is able to accurately

capture the dependence of the time to rupture on applied load in a 316 stainless steel. It is
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also able to predict whether failure will be brittle or ductile, and the elongation at failure, in

good agreement with experiments [6].

The micro-mechanisms based model is computationally heavy and not naturally amenable

to parallelisation. It is computationally infeasible, therefore, to embed it within, say a com-

ponent level finite element simulation, in order to update the local damage state at each

integration point. Simple continuum damage mechanical (CDM) models, e.g., Saanouni et

al. [11], and Nikbin et al. [12], have long been used in this role. The CDM models are or-

ders of magnitudes lighter than the detailed micro-mechanisms based model, in terms of

the computational effort entailed. They represent material deterioration by a small number

of variables (often just one) without taking individual micro-mechanisms into account. The

value of this variable evolves irreversibly from zero to unity, where zero corresponds to the

virgin state, and unity to the fully damaged state. In these models, damage is a conceptual

variable, and cannot be correlated with experimentally measurable quantities.

A number of CDM models have been proposed in the literature, mostly on phenomeno-

logical considerations. Some of the more commonly used models are due to Kachanaov [13],

Rabotnov [14], Liu and Murakami [15], Wen et al. [1], and Hayhurst et al. [16, 17]. On

account of the simplicity of these models, and their different forms, they cannot all be ex-

pected to be good creep models of a particular material. It is the aim of this work to assess

the goodness of the various CDM models by comparing their predictions with that of the

detailed model, for austenitic stainless steel.

In the present work, it is assumed that the experimentally validated and detailed micro-

mechanisms based model gives the correct reference deformation and damage behaviour.

Five popular CDMs are summarised in Sec. 2. The deformation and damage parameters of

each of the aforementioned CDM models is fit to the predictions of the detailed model at a

high nominal stress level. CDM and micro-mechanisms based model predictions at interme-
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diate nominal stress levels are then compared in Sec. 3. However, in the diffusion dominated

low nominal stress regime, the Wen at al. [1] model also breaks down, and predicts highly

non-conservative times to creep rupture. The cause for this breakdown is analysed presently,

and a correction for the low nominal stress regime is proposed in Sec. 4.

2 Continuum Damage Models

2.1 The Kachanov-Rabotnov Model

Uniaxial forms of the constitutive equations of creep deformation and damage, given by

Kachanov [13], and Rabotnov [14] are:

dε

dt
= B

(
σ

1−D

)n

, (1)

and

dD
dt

=
A

q+1

(
σ p

(1−D)q

)
. (2)

Here, ε denotes the uniaxial strain, t denotes time, σ denotes the tensile stress, and D denotes

the damage parameter which increases monotonically from 0 to 1 as the damage progresses.

B, n, A, p, and q represent material constants.

Eqs. (1) and (2) have been extensively used for analysing creep damage in structural

components. But the form of the stress-enhancement due to damage, which scale as, (1−D)−n

and (1−D)−q, is inaccurate [15]. In creep tests, instantaneous elastic-plastic damage, and

not creep damage, is the primary mode of fracture in the final stage of creep rupture [15].

Hence, Eqs. (1) and (2) end up in a position of representing elastic-plastic damage in terms

of the creep-damage variable D, as D→ 1. These equations are therefore, not applicable in

the tertiary creep regime.
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2.2 The Liu and Murakami Model

In order to eliminate the aforementioned shortcomings in the Kachanov-Rabotnov model,

Liu and Murakami [15] presented the following modification:

dD
dt

=
A
q
[1− exp(−q)]σ p exp(qD) . (3)

Here, A, p and q are material constants. In order to describe the creep deformation, Liu

and Murakami [15] also extended the micromechanics-based constitutive equation given by

Hutchinson [18]. In uniaxial form, this is given by:

dε

dt
= Bσ

n exp

 2(n+1)

π

√
1+ 3

n

D
3
2

 , (4)

where B and n are material constants.

2.3 The Wen, Tu, Gao and Reddy Model

Experimental studies [7, 19] on intergranular cavitation suggest that cavitational damage

occurs on a surface normal to the direction of maximum principal tensile stress. This type of

material degradation is modelled by a population of aligned penny-shaped cracks. Rodin et

al. [20] developed a generalised structure of constitutive equations to describe deterioration

of grain boundaries, by treating them as a non-dilute array of voids. Wen et al. [1] modified

the Rodin and Parks equation to obtain a novel damage coupled creep constitutive equation.

This modification brings the damage model predictions close to that of the finite element

model investigated by Sester et al. [21] for two representative unit cells viz. cylindrical

and body-centred cubic (BCC) cells, containing penny shaped micro-crack in the centre. In

uniaxial form creep deformation and damage are given by:

dε

dt
= Bσ

n−1
eq

[
(1+β )2

] n+1
2
, (5)
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and

dD
dt

= A
dε

dt
, (6)

where

β (n,ρ) =
2ρ

n+1
+

(2n+3)ρ2

n(n+1)2 +
(n+3)ρ3

9n(n+1)3 +
(n+3)ρ4

108n(n+1)4 ,

,

ρ =
n+1

2
√

1+ 3
n

D3/2,

and A is a material parameter.

2.4 The Hayhurst, Vakili-Tahomi and Zhou Model

This model additionally accounts for the power law hardening for the primary creep regime,

thereby describing the complete creep curve for low and high stresses [22]:

dε

dt
=

B
(1−D)n sinh(B∗σ (1−H))

dH
dt

=
h
σ

(
1− H

H∗

)
dε

dt

dD
dt

= A
dε

dt

(7)

Here, H, the strain hardness increases from zero to the value H∗ at beginning of secondary

creep. H∗, and h determine the response during primary creep. B and B∗ correspond to

secondary creep. A refers to the tertiary creep. The damage variable D evolves during tertiary

creep. It increases from 0 to 1/3.

2.5 The Hayhurst, Dyson and Lin Model

This model employs the skeletal stress technique for the prediction of creep lifetime. The

skeletal stress technique addresses the stress redistribution that results after completion of
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primary creep and during secondary creep in the absence of tertiary creep [17]. Othman

et al. [23] improved the model to account for the stress redistribution due to tertiary creep

which results in material weakening. Later, for application to nickel superalloy and many

other alloy systems, an extra damage parameter was introduced along with the proposition of

equations containing stress dependence of creep rate as following a hyperbolic sine function

[24]. The damage parameter D1 represents dislocation softening and evolves from 0 to 1. D2

represents nucleation controlled creep constrained and evolves from 0 to 1/3, as in Sec. 2.4.

The deformation and damage evolution equations are:

dε

dt
=

B
(1−D1)(1−D)n sinh(B∗σ)

dD1

dt
=

CD1

(1−D)n sinh(B∗σ)

dD
dt

= A
dε

dt
.

(8)

2.6 The micro-mechanisms based model

In the micro-mechanisms based model [25], the initial microstructure is idealised as a space-

filling tiling of identical rhombic dodecahedral grains, shown in the Fig. 1. When subjected

to constant uniaxial nominal stress, σ , each grain creeps following Norton’s law [26]. Ad-

ditionally, grains can slide past each other. Damage takes the form of cavities and wedge

cracks developed along the grain boundaries. The extent of the damage is parameterised by

the cavity and wedge crack lengths. They evolve with time, following a law that aims to

minimise the free energy of the grain. The free energy expression accounts for grain bound-

ary sliding, and for the mechanical interaction between the facets of the dodecahedral grain.

Creep rupture corresponds to the complete damage of two adjacent facets of the grain.
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σ

σ

κ

Fig. 1: A rhombic dodecahaedral grain in the micro-mechanisms based model [25] under

uniaxial tension. The polycrystal is obtained by tiling this grain throughout space. κ is a

characteristic grain dimension.

3 Results

Material constants for AISI 316 steel, associated with each of the models described in Sec. 2

have been selected so that the minimum creep rate and time to rupture match those predicted

by the micro-mechanisms based model at nominal stress σ = 295 MPa. The temperature is

fixed at 873 K. The resulting values of the material constants are given in Table 1.

The models under study have been abbreviated as K-R, L-M, W-T-G-R, H-V-Z and

H-D-L for the Kachanov-Rabotnov, Liu-Murakami, Wen-Tu-Gao-Reddy, Hayhurst-Vakili

Tahami-Zhou and Hayhurst-Dyson-Lin models, respectively. All the models reasonably cap-
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Table 1: Material constants for various CDM models fit to capture the creep rate, and time to

rupture, predicted by the micro-mechanisms based model at nominal stress σ = 295 MPa.

parameter [units] K-R L-M W-T-G-R H-V-Z H-D-L

Creep exponent n 11 11 7.61 - -

Secondary Creep B [MPa−ns−1] 3.8×10−34 6×10−34 9×10−26 8×10−11 8.5×10−11

Primary creep
H∗ - - - 4.26×10−1 -

h - - - 4×104 -

Damage
A [MPa−ps−1] 3.1×10−13 1.5×10−13 4.545 9.1 3.8

C - - - - 1.06×10−8

Other

p 2.6 2.74 - - -

q 5 6 - - -

B∗ [MPa−1] - - - 4.24×10−2 2.5×10−2

ture both the minimum creep rate, and the creep lifetime predicted by the micro-mechanisms

based model, as shown in Fig. 2.

Keeping the material parameters fixed, Fig. 3 compares the predictions of the micro-

mechanisms based model and the CDM models at the higher applied stress level of 350 MPa.

It is seen that the K-R, L-M, and W-T-G-R models still agree well with the micro-mechanisms

based model’s predictions. This not surprising considering that both 295 MPa, and 350 MPa

fall within the regime of ductile fracture at the temperature of interest. In this regime, the

creep lifetime is determined by the secondary creep rate [5], which are similarly represented

in the micro-mechanisms based model, and in the K-R, L-M, and W-T-G-R CDM models.

The H-V-Z and H-D-L models, however, represent the creep rate, dε/dt using a hyperbolic

sine functional form. This makes the creep rate predicted by the latter models less sensitive

to the applied stress level, and causes the H-V-Z and H-D-L models to under-predict the

creep rates. Nevertheless they too predict the creep lifetimes fairly accurately.
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Fig. 2: Time history of the strain-rate predicted by the five CDM models at a nominal uni-

axial stress of σ = 295 MPa. Material parameters are fit to values given in Table 1 so that

all models predict approximately the same creep rate histories, and time to failure.

Attention is next turned to the nominal uniaxial stress level of 125 MPa, which is lower

than that used for fitting the parameters of the CDM models. The predictions of the five

CDM models and that of the micro-mechanisms based model are shown in Fig. 4. Among

the five models considered, the prediction of the Wen et al. [1] model agrees best with that

of the micro-mechanisms based model. The H-D-L and the H-V-Z models overestimate the

minimum creep strain rate, and underestimate the time to failure. Again, this is because the

hyperbolic sine functional form of the creep rate in the H-D-L and H-V-Z models makes the

creep rate less sensitive to the applied stress. The K-R and L-M models underestimate both
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Fig. 3: Time history of the strain-rate predicted by the five CDM models at a nominal uni-

axial stress of σ = 350 MPa. Material parameters are fixed at the values given in Table 1.

the creep rate, and the time to failure by far. Although not shown, these observations hold

for all nominal stress levels between 295 MPa and 125 MPa.

At the still lower nominal uniaxial stress level of 55 MPa, the strain history predicted by

the Wen et al. [1] and by the micro-mechanisms based model are compared in Fig. 5. While

the strain-rates predicted by both models are small, the time to failure predicted by the Wen

et al. model is non-conservative by over two orders of magnitude.

The times to failure predicted by the Wen et al. [1] model are compared with that pre-

dicted by the micro-mechanisms based model at various nominal uniaxial stress levels in

Fig. 6. The model predictions agree well for σ ≥ 125 MPa. At lower stress levels, though,
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Fig. 4: Time history of the strain-rate predicted by the five CDM models. Model parameters

are held fixed at the values given in Table 1. The nominal uniaxial stress is σ = 125 MPa.

The predictions of the Wen et al. [1] model agree well with that of the micro-mechanisms

based model.

the time to failure predicted by the Wen et al. model is progressively greater than that pre-

dicted by the micro-mechanisms based model.

4 Discussion

Of the five continuum damage models considered, the Wen et al. [1] model predicts the

creep-rate and time to failure of AISI 316 specimens at 873 K in best agreement with a
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Fig. 5: Time history of the strain-rate predicted by the Wen et al. [1] and micro-mechanisms

based models. Model parameters are held fixed at the values given in Table. 1. The nominal

uniaxial stress is σ = 55 MPa. The Wen et al. model overestimates the time to failure by far.

validated micro-mechanisms based model. This agreement is good for nominal uniaxial

stress levels ≥ 125 MPa. At lower stress levels, though, the Wen et al. model overestimates

the time to failure significantly. This is because, failure in the Wen et al. model occurs by

creep-ductility exhaustion. In the micro-mechanisms based model, however, failure occurs

due to constrained diffusional cavity growth.

For constrained cavity growth at low stress levels, Cocks and Ashby [2] have proposed:

dD
dt

=
K√

D log(1/D)
σ . (9)
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Fig. 6: Time to rupture predicted by the five models of present study at various stress levels

σ . Note that the W-T-G-R model agrees best for σ ≥ 125 MPa, but overestimates the time

to failure at σ = 55 MPa by two orders of magnitude.

Here, the damage variable D is identified with the area fraction of voids, and defined as

D = r2
h/l2. rh and l are the radius of growing voids and half of the centre-to-centre distance

between two voids, respectively. Setting K = 1.4223× 10−5 / MPa-s, matches the time to

failure predicted by the micro-mechanisms based model in the uniaxial stress-range of 55

to 95 MPa. This is shown in Fig. 7. It is also seen that the lower envelope of the times to

rupture predicted by the Wen et al. [1] model and the Cocks-Ashby models captures the full

range of the times to ruptures obtained from the micro-mechanisms based model.
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Fig. 7: Time to rupture predicted by the Wen et al. [1] model, based on creep ductility

exhaustion and by the Cocks and Ashby [27] model, based on diffusional cavity growth. The

micro-mechanisms based model’s time to rupture is well captured by the more conservative

of these two models.

The present study has focussed on the regime of nominal stresses less than 295 MPa. It

is natural to ask about how the predictions of the micro-mechanisms based and continuum

damage models may compare at nominal stresses in excess of 295 MPa.

5 Conclusions

Finite element based creep simulations on macroscopic components require a computation-

ally light creep deformation and damage model to implement at integration points. It is in-
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feasible to use a computationally intensive model such as the validated micro-mechanisms

based model [25] for this purpose. Instead, it is preferred to use a continuum damage model

(CDM).

The most appropriate CDM model must be able to capture the principal damage mech-

anisms over the temperature and stress range, for the material of interest. Five CDM models

have been evaluated against the predictions of a detailed micro-mechanisms based model,

for AISI 316 steel. The model due to Wen et al. [1] best captures the times to rupture ob-

tained from the micro-mechanisms based model in the stress regime wherein creep ductility

exhaustion is a valid assumption. At lower stresses, the Cocks and Ashby [2] model serves

as a good approximation. It is recommended to take the lower envelope of these two mod-

els in component level simulations as a good computationally light approximation of the

material creep response.
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