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ABSTRACT

The two-dimensional stress fields induced by a set of infinitely many parallel edge
dislocations are difficult to estimate as those of individual dislocations decay slowly.
A simple numerical method to compute them is proposed. The method is based on
series summation using a convergence factor, exp(−sr

2) that decays rapidly with
radial distance r from the field point, and letting the positive parameter s ↓ 0
numerically through Richardson extrapolation. The present method is more general
than a lattice summation method with explicit spurious stress cancellation that
is widely used in the literature. Furthermore, the spurious long-range stresses are
cancelled in the present method without explicit evaluation.
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1. Introduction

Dislocation dynamics simulations have for long been used to bridge the atomistic and
continuum length-scales [1, 2]. These simulations can be performed in two or three
dimensions. While three dimensional simulations are more realistic, they are compu-
tationally tractable only under simple boundary conditions. Two dimensional discrete
dislocation dynamics is still widely used to study complex boundary value problems in-
volving free boundaries and internal interfaces, such as the deformation of thin films [3],
growth of cracks and voids [4], and thermally activated plasticity at elevated tempera-
tures [5, 6]. Although the physics of dislocation interactions is highly idealised in two
dimensions, the relative efficiency of the method allows the simulation of large disloca-
tion densities and image stresses due to free boundaries using commodity hardware, as
opposed to large computing clusters needed for three-dimensional dislocation dynamics
simulations.

The most computationally intensive part of dislocation dynamics simulations is the
calculation of the resolved shear stresses at all the dislocation segments due to their
mutual interaction [1, 7]. Two methods for performing this computation efficiently are
the fast multipole method [8, 9], and the particle-in-cell method [10, 11]. In three-
dimensional simulations, wherein the number of interacting slip systems is large, and
mixed dislocation segments are typical, the former method is faster, and yields computer
memory efficient implementations. Therefore, it has been implemented in a number
of three-dimensional dislocation dynamics codes [7]. In two-dimensional dislocations
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dynamics, however, the number of interacting slip systems seldom exceeds three. In this
case, the particle-in-cell method is the faster, and more memory efficient method [11].

Two-dimensional dislocation dynamics simulations are performed in a simulation cell
that lies in a plane normal to the common line direction of a set of dislocations. The
dislocations are regarded as points in the normal plane. In the two-dimensional particle-
in-cell method [10], the simulation cell is overlaid with a regular mesh. The method works
with a continuous dislocation density function derived from the discrete distribution.
Under periodic boundary conditions, the interaction forces between mesh elements can
be computed efficiently in Fourier space. The mesh forces are then interpolated to obtain
the resolved shear stresses at the individual dislocations.

As input, the particle-in-cell method requires the resolved shear stresses induced by
a dislocation and its infinitely many periodic images, at the centres of the mesh ele-
ments [12]. However, this computation is not straightforward because the resolved shear
stress field due to a dislocation decays slowly as the reciprocal of the distance from the
dislocation, r [13]. The gradual decay makes neglecting all but a finite number of image
dislocations inadmissible. A number of works [9, 14–16], have used an ingenious method
to obtain the stress fields without such truncation, which is summarised in Sec. 2.3.
This method is based on superposing the stress fields of one-dimensional arrays of dis-
locations [13]. Kuykendall and Cai [15] showed the importance of deducting linearly
varying ‘spurious’ stress components to obtain a unique solution. Gourgiotis and Stup-
kiewicz [16] showed that the spurious stresses arise from the eigenstrain associated with
the dislocations within the truncated domain.

In the sequel, a numerical procedure is developed to determine the stress fields in-
duced by a set of infinitely many discrete edge dislocations. The periodic lattice of
source dislocations, discussed above, is a special case of this general problem. The cen-
tral idea of the present method is to modify the contribution of each image dislocation
by a convergence factor, exp(−sr2), which renders the infinite sum for the stress fields
absolutely convergent. Evaluating the absolutely convergent sums for various positive
s, and taking the limit as s ↓ 0 yields an accurate estimate of the stress fields. It will
be shown that the stress fields thus obtained are immune to spurious components.

2. Numerical method

2.1. Stress fields due to a set of dislocations

Consider an infinite set I of discrete straight edge dislocations, each with with line
direction parallel to the z-axis, and with Burgers vector bxex + byey. Here, ex, and ey

denote unit vectors along the x, and y-axes respectively. Let the i-th dislocation be
located at (xi, yi). Let (xi, yi), i ∈ I be such that the number of dislocations in area A
scales as O(A) as A ↑ ∞. Two examples that satisfy this condition are shown in Fig. 1.

The in-plane Volterra stress components at (x, y) due to an edge dislocation at the
origin are [13]:

σO
xx(x, y) = (κ/π)

{

−bxy(3x2 + y2) + byx(x2 − y2)
}

/(x2 + y2)2, (1)

σO
yy(x, y) = (κ/π)

{

bxy(x2 − y2) + byx(x2 + 3y2)
}

/(x2 + y2)2, and

σO
xy(x, y) = (κ/π)

{

bxx(x2 − y2) + byy(x2 − y2)
}

/(x2 + y2)2,

where κ = µ/2(1−ν), and where µ and ν denote the shear modulus and Poisson’s ratio
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Figure 1. Two examples of infinite sets of discrete dislocations. (a) Dislocations arranged on a spiral with
equal arc-wise spacing D, and (b) a square lattice of dislocations with lattice constant D.

of the isotropic material, respectively.
Consider a slip system with slip direction sin θex + cos θey, and slip plane normal

− cos θex +sin θey. The Schmid tensor components in the xy coordinate system are [13]:

(

Sxx Sxy

Sxy Syy

)

= −1

2

(

sin 2θ cos 2θ
cos 2θ − sin 2θ

)

. (2)

The relevant function of the stress field that governs dislocation motion by slip is the
resolved shear stress, τO(x, y) [13]:

τO(x, y) = σO
xx(x, y)Sxx + σO

yy(x, y)Syy + 2σO
xy(x, y)Sxy. (3)

The resolved shear stress at (x, y) due to all the dislocations in I can be obtained by
superposing the individual contributions:

τ(x, y) =
∑

i∈I

τO(x − xi, y − yi). (4)

Let the Euclidean distance of the field point (x, y) from dislocation i ∈ I be ri. Let

τ(x, y; R) =
∑

{i∈I :ri≤R}

τO(x − xi, y − yi). (5)

Then, Eq. (4) may be written as τ(x, y) = limR→∞ τ(x, y; R). However, τ(x, y; R) does
not estimate τ(x, y) well for any finite R because σO

ij does not decay rapidly with ri.
This will be demonstrated in Sec. 3.
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2.2. Convergence factor

The present use of a convergence factor to obtain a numerical estimate of τ(x, y) follows
de Leeuw et al. [17], who used this method to sum a conditionally convergent series
representing the Hamiltonian of a lattice of electrostatic charges. As the potential of a
point charge is isotropic, de Leeuw et al. [17] could obtain an analytical expression for
the series sum. However, as the anisotropic resolved stress field of a dislocation is not
amenable to analytical summation, the present treatment is numerical.

Presently, the terms of Eq. (4) are modified by the convergence factor exp(−sr2
i ):

τ(x, y; s) =
∑

i∈I

τO(x − xi, y − yi) exp(−sr2
i ), (6)

where s > 0 is the convergence parameter. The convergence factor renders the sum
Eq. (6) absolutely convergent. This is seen by recalling that σO

ij , and therefore, τO,
decay as O(1/r) with distance from the source dislocation. Consider an annulus of
width dr at radius r from the field point (x, y). By assumption, the number of source
dislocations within this annulus scales with its area, i.e., as O(r)dr. Therefore, the
sum of the absolute values of all the terms in Eq. (6) with ri > R is of the order of
∫ ∞

R exp(−sr2)r(1/r)dr ≈ erfc(
√

sR)/
√

s, which decays exponentially fast. erfc(·) here
denotes the complementary error function.

Requiring that the contribution of all the neglected summands in Eq. (6) be smaller
than a prescribed tolerance, ε > 0, yields an expression for the cut-off radius:

R(s) =
1√
s

erfc−1(
√

sε). (7)

Thus, to O(ε) accuracy, the resolved shear stress may be expressed as:

τ(x, y; s) =
∑

{i ∈I :ri≤R(s)}

τ(x − xi, y − yi) exp(−sr2
i ). (8)

The limiting value, τ ∗(x, y) = lims↓0 τ(x, y; s), can be obtained using Richardson ex-
trapolation [18], as follows. Let

τ(x, y; s) = τ ∗(x, y) + csp + O(sp+1), (9)

where c is an unknown constant, and p denotes the rate-of-convergence exponent. p can
be estimated from τ(x, y; s), τ(x, y; s/2), and τ(x, y; s/4) as [19]:

p ≈ log2((τ(x, y; s) − τ(x, y; s/2))/(τ(x, y; s/2) − τ(x, y; s/4))). (10)

p > 0, and p < 0 signify convergence, and divergence, respectively. Given τ(x, y; s),
τ(x, y; s/2), and p > 0, Richardson’s extrapolation [19, Chap. 7] estimates τ ∗(x, y) as:

τ ∗(x, y) =
2pτ(x, y; s/2) − τ(x, y; s)

2p − 1
+ O(sp+1). (11)
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2.3. Array summation

The array summation approach used in the literature [9, 14–16] to obtain the stress fields
due to the dislocation lattice shown in Fig. 1 (b) is now summarised. Let σ

array(x, y; m)
denote the stress due to an array of dislocations parallel to the y-axis at x = mD,
m ∈ {. . . , −2, −1, 0, 1, 2, . . .} with dislocation spacing D. Closed form expressions for
the stress components induced at (x, y) are given in Hirth and Lothe [13, Sec. 19.6] as:

σarray
xy (x, y; m) = σ0 (bxX (cosh X cos Y − 1) − by sin Y (cosh X − cos Y − X sinh X));

σarray
xx (x, y; m) = σ0 (−bx sin Y (cosh X − cos Y + X sinh X) + byX(cosh X cos Y − 1)); and

σarray
yy (x, y; m) = σ0 (−bx sin Y (cosh X − cos Y − X sinh X)+

by(2 sinh X(cosh X − cos Y ) − X(cosh X cos Y − 1))),
(12)

where σ0 = κ/(D(cosh X − cos Y )2), X = 2π(x − mD)/D, and Y = 2πy/D. Corre-
spondingly, τ array(x, y; m), can be obtained by replacing σO in Eq. (3) with σarray.

Summation of contributions τ array(x, y; m) from the dislocation arrays yields the re-
solved shear stress, τ(x, y), induced by the square lattice. However, this sum suffers from
spurious stress components. Kuykendall and Cai have determined explicit formulae [15,
Eqs. (46), and (51)] for the spurious components, which must be deducted from the
direct sum. For the dislocation arrangement of Fig. 1 (b) the corrected sum is:

τ(x, y) = lim
Nc→∞

Nc
∑

m=−Nc

τ array(x, y; m) − 4κ
by

D

x

D
Syy. (13)

As the short-range part of τ array(x, y; m) decays exponentially fast with distance from
the wall, it suffices to limit Nc to small integers in order to obtain τ(x, y) to within
machine precision.

3. Results

The resolved shear stress on a slip system with θ = π/6 in Eq. (2), due to the two
dislocation arrangements shown in Fig. 1 are now presented. The first arrangement,
shown in Fig. 1 (a), corresponds to an Archimedean spiral, which obeys the equation
r = Dφ, where r =

√

x2 + y2 and φ = tan−1(y/x) represent polar coordinates. D here
represents a characteristic dimension, taken to be unity. Dislocations are positioned
in the spiral so that the arc length-wise distance between neighbouring dislocations is
also D. In the second arrangement, shown in Fig. 1 (b), the dislocations are arranged
in a square lattice with lattice constant D. Presently, the resolved shear stresses are
computed at the point (x, y) = (0, D/32), assuming bx/D = 0, and by/D = 1.

Fig. 2 shows the resolved shear stresses computed according to Eq. (5) for various R.
With increasing R, τ(x, y; R) does not approach a limiting value following the scheme
of truncated summation, demonstrating the comment following Eq. (5).

Assuming ε = 10−16 in Eq. (7), which is approximately the computer floating point
precision, τ(x, y; s) is computed from Eq. (8), for various R(s). This variation is also
shown in Fig. 2, for s ∈ {1/20, 1/21, . . . , 1/210}. With decreasing s, R(s) increases. For
the spiral arrangement shown in Fig. 2 (a), τ(x, y; s) is seen to vary non-monotonically
for large s, or small R(s). However, for s ≤ 1/23, it increases monotonically and ap-
proaches a limiting value. Thus, on one hand, Eq. (8) converges only for s ≤ 1/23 for
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Figure 2. Resolved shear stress calculated at (x, y) = (0, D/32) using the summation schemes with, and
without the convergence factor. The dashed line represents the s ↓ 0 limiting values obtained from Eq. (11) for
various s ∈ {1/20, 1/21, . . . , 1/210}.
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the spiral arrangement, indicating that the domain of summation must be large enough
for the summation scheme to ‘see’ the spiral pattern. On the other hand, for the square
lattice, Fig. 2 (b) shows that Eq. (8) converges for s ≤ 1/20, i.e., for all s presently
considered.

For both dislocation arrangements, Eq. (10) yields a linear rate of convergence (p = 1)
for sufficiently small s. Fig. 2 shows the limiting τ ∗(x, y)/κ calculated using Eq. (11) as a
dashed line for the two arrangements in the asymptotic s-domain of series convergence.
Although not evident from the figure, τ ∗(x, y)/κ for the spiral arrangement converges to
three decimal places at s = 1/26, and to six decimal places at s = 1/29. The convergence
for the square lattice is much more rapid: Already at s = 1/20, τ ∗(x, y)/κ has converged
to six decimal places.
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Figure 3. Comparison of the resolved shear stress fields calculated using the present method with those
using the method of array summation. Computed resolved shear stresses are shown along four vertical lines,
x/D ∈ {0, 1/4, 1/2, 3/4}.

Fig. 3 plots the variation of τ ∗/κ obtained using the present convergence factor based
formula, Eq. (11), and using the array summation formula, Eq. (13), for the dislo-
cation arrangement of Fig. 1 (b). The variations are shown along four vertical lines
x/D ∈ {0, 1/4, 1/2, 3/4}, 0 ≤ y/D ≤ 1. The plots along the x/D = 0 line exclude the
end points, as the resolved shear stresses there are infinite. It is seen that the resolved
shear stresses calculated using the two methods agree exactly. However, the present
method offers the advantage of not requiring an explicit correction for the spurious
components.

The stress fields corresponding to the square lattice of Fig. 1 (b) satisfy the property
τ ∗(x, y) = −τ ∗(D − x, D − y), for 0 ≤ x, y ≤ D. This property can be verified in Fig. 3.
Therefore, the volume average of τ ∗(x, y) over the region {(x, y) : 0 ≤ x, y ≤ D} is zero.

Consider next, a square lattice of dislocation dipoles, following Gourgiotis and Stup-
kiewicz [16]. Such a distribution of dislocations may be regarded as two square lattices of
single dislocations translated with respect to each other. The Burgers vectors of the dis-
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locations in the second lattice are oppositely oriented as those of the first. Let τ ∗
1 (x, y),

and τ ∗
2 (x, y) denote the resolved shear stress fields due to these two lattices, each of

which has a zero volume average. The stress field of both lattices is then given by su-
perposition as τ ∗

1 (x, y) + τ ∗
2 (x, y), which must also have a zero volume average over the

region {(x, y) : 0 ≤ x, y ≤ D}. This result is consistent with a key finding of Gourgiotis
and Stupkiewicz [16].

4. Discussion

A method based on convergence factors has been proposed to compute the stress fields
due to an infinite collection of discrete dislocations. The method does not require the
dislocations to be grouped into straight arrays, and is thus more general than the array
summation method [9, 14–16].

Spurious stresses arise from long-range fields of the set of dislocations. They can be
explicitly calculated when they are arranged in a lattice [15], as shown in Fig. 1 (b).
But other dislocation arrangements, e.g., Fig. 1 (a) also generate long-range stresses, as
a consequence of the eigenstrains associated with the region of summation [16]. In this
case, there is no analytical formula for the spurious stress fields. The spurious stresses
underlie the non-convergence of summation in Eq. (5), as illustrated in Fig. 2.

The present method assumes that the spurious contribution is of the form csp in
Eq. (9). In canceling away this term, Richardson extrapolation, Eq. (11), essentially
eliminates the spurious contributions to order p. The present method thus eliminates
the spurious stresses without explicitly evaluating them.

Summation using the convergence factor only yields a finite solution when the infinite
series of Eq. (4) converges. Suppose in Eq. (4), τO(x − xi, y − yi) = C/ri, where C is a
constant. τO(x − xi, y − yi) may then represent the isotropic electrostatic potential of
a point charge. If the summation were carried out over the square lattice of Fig. 1 (b),
the series is known to diverge [20]. In agreement with this result, Eq. (10) of the present
method yields a negative order of convergence, p = −0.5, indicating divergence to ±∞.

Alternately, the infinite series of Eq. (4) may neither converge to a finite value nor
diverge to ±∞. This happens, for instance, when the dislocations of I are randomly
located. In this case, the exponent p in Eq. (10) also fluctuates with s, i.e., it does not
approach a limiting value even as s ↓ 0.

5. Conclusion

A fast and simple numerical method is proposed to sum the conditionally convergent
series representing the stress fields induced by a two-dimensional countably infinite set
of edge dislocations. The method cancels away long range spurious stresses without
explicitly evaluating them.
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