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Abstract The stress state in a shear-lag model of a
unidirectional linear fiber composite with an arbitrary

configuration of fiber breaks is obtained by the weighted

superposition of the stress state due to a single broken

fiber. In a periodic patch comprised of N fibers located

at the points of a regular lattice, a method to determine
the stress state due to a single break was proposed by

Landis et al., Micromechanical simulation of the fail-

ure of fiber reinforced composites. Journal of the Me-

chanics and Physics of Solids 2000; 48(3):621–648. This
method entails the determination of the eigenspace of

an N × N matrix, at a computational cost of O(N3).

In the present work, an alternative algorithm is pro-

posed. This algorithm exploits the circulant structure

of the matrix describing the inter-fiber interactions. The
asymptotic computational complexity of the present al-

gorithm equals that of the discrete Fourier transform:

O(N log N). Run times of the present method with the

eigensolution based method are compared, and shown
to be very favorable for the present method, even for

small N . Power-law scaling of the overloads due to a

single break to much larger distances than previously

possible has been verified using the present method.

Keywords Composites; Fracture; Discrete Fourier

Transform; Lattice models; Circulant matrix; Periodic

boundary condition

1 Introduction

The ultimate tensile strength of fiber reinforced poly-

mer matrix composites shows wide scatter. This derives
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from the stochastic variability in the strength of the
fibers (Hull and Clyne 1996). Monte-Carlo simulations

of composite failure are a fruitful approach (Smith 1980;

Beyerlein et al 1996; Zhou and Curtin 1995; Curtin

1998; Landis et al 2000; Mahesh et al 1999, 2002; Ma-

hesh and Phoenix 2004) to understand the relationship
between the strength distribution of the fiber, and that

of the composite. In this approach, the failure of a com-

posite comprised ofN fibers, whose strengths are drawn

from a known probability distribution are simulated on
a computer. From an initial break-free state, the com-

puter fibers are sequentially broken when the load car-

ried by them exceeds their random strength. Load is

redistributed amongst the surviving fibers at each stage

following a load sharing law.

Repeated simulation with different realizations of

fiber strengths drawn from the same probability distri-

bution yields a computer-generated empirical strength

distribution for the composite. This can be used to
validate stochastic models of composite fracture, and

scaling laws for composite strength with the number

of fibers, N (Smith 1980; Curtin 1998; Mahesh et al

2002). Monte-Carlo studies that are substantially sim-

ilar to those involving fiber composites have also been
used to understand the breakdown of random fuse net-

works (De Arcangelis et al 1985; Duxbury and Leath

1987), and in earthquake studies (Newman et al 1994).

A shear-lag model for a composite comprised ofN =

∞ fibers was proposed for one- and two-dimensional
patches by Hedgepeth (1961) and Hedgepeth and Van Dyke

(1967), respectively. These authors also determined an

analytical solution for the single break problem upto

numerical quadrature of a rapidly oscillating integrand.
Their solutions are, however, not suitable for Monte-

Carlo simulations, which must necessarily be performed

on finite patches. Using the N = ∞ , Hedgepeth (1961)
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or Hedgepeth and Van Dyke (1967) solutions in a finite

patch simulation causes a part of the load dropped by

a broken fiber in the patch to be transferred to fibers

outside the patch. Therefore the net patch load in such

simulations is not conserved with increasing number of
fiber breaks. This renders the empirical strength distri-

butions obtained from such simulations unrealistic.

An elegant method to overcome the problem of lost

load was proposed by Landis et al (2000). By imposing
periodic boundary conditions on their N -fiber patch,

they ensured conservation of the net load therein. Their

solution methodology involves the eigensolution of an

N ×N interaction matrix; the single break solution is

obtained as a weighted superposition of the N eigen-
vectors.

Computationally, the most intensive parts of a Monte-

Carlo failure simulation in a composite obeying an elas-

tic shear-lag model are (i) the determination of the sin-

gle break solution, and (ii) the determination of the
stress concentration due to the current set of breaks, in

order to determine the next new break. Calculation (i)

represents a one time analysis performed prior to the

failure simulations, while (ii) is performed at each stage
of the simulations. The focus of the present work is on

an algorithm for substantially speeding up (i).

It is presently only feasible to perform Monte-Carlo

simulations on patches that are much smaller than real-

istic composites. In such simulations, even with periodic
boundary conditions (Landis et al 2000), patch size ef-

fects can obscure the connection between the empirical

strength distribution obtained from Monte Carlo sim-

ulations, and the strength distribution of the realistic
composite. For example, from simulations of composite

patches comprised of upto N = 900 fibers, Mahesh et al

(2002) found that at large fiber Weibull moduli, the em-

pirical strength distribution clearly displayed a weakest-

link scaling character. With decreasing fiber Weibull
modulus, they found that the composite strength dis-

tribution approached the normal distribution. Simulta-

neously, the cluster of breaks at the point of fracture

became comparable to the patch size. It was thus not
clear if the qualitative switch in the character of the

empirical composite strength distribution was caused

by decreasing Weibull modulus, or was merely an arti-

fact due to the limited patch size. As another example,

Curtin (1998) proposed that the composite strength
distribution follows a weakest-link structure, with the

weakest link obeying the normal distribution. He val-

idated this model using Monte-Carlo simulations for

patch sizes up to N = 2500. In another study assuming
local load sharing, Habeeb and Mahesh (2015) found

that Curtin’s scaling could explain the Monte-Carlo

generated empirical strength distributions in patches
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Fig. 1: (a) A rhombus-shaped periodic patch of ν × ν
fibers arranged in a hexagonal lattice showing the m–n

coordinate system (Sec. 2.1). (b) A linear periodic patch

of ν fibers showing the m coordinate system (Sec. 2.5).

comprised of a few thousand fibers well. The agree-
ment, however, ceased when applied to Monte-Carlo

generated empirical strength distributions from larger

patches comprised of N = 105 fibers.

It is clear from the foregoing example that it may

be necessary to perform Monte-Carlo simulations using
patches comprised of orders of magnitude more fibers

than in the aforementioned literature. One impediment

to this is the determination of the single break solution

for large N following Landis et al (2000), on account
of the O(N3) complexity of eigenspace extraction. In

the present work, an alternative algorithm based on the

discrete Fourier transform (DFT) and involving only

O(N log N) computational effort is proposed. The present

algorithm is much faster: for example, it yields the so-
lution for the unit break problem for an N = 220 ≈ 106

patch, in less than one second on a workstation com-

puter.

2 Model and algorithm

2.1 Governing equations

A rhombus-shaped finite ‘patch’ comprised of N = ν2

fibers arranged in a hexagonal lattice is taken to repre-

sent the cross-section of the unidirectional composite.
This patch is depicted in Fig. 1 (a). The greatest fiber

volume fraction is obtained when fibers are located at

the points of a regular close packed lattice. Accordingly,
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fibers are assumed to occupy the points of a hexagonal

lattice in Fig. 1 (a). Two edges of the rhombus define

the m, and n coordinate axes. The following periodicity

conditions are imposed: fibers (0, n) and (ν − 1, n) (the

left and right edges of the patch) are assumed adjacent
for all n ∈ {0, 1, . . . , ν − 1}. Similarly, fibers at the top

(n = ν − 1) and bottom (n = 0) edges are also con-

sidered adjacent. On account of periodicity, only fiber

indices modulo ν are significant. For any integer a, these
are defined as

[a] := a− ν ⌊a/ν⌋ . (1)

Here, ⌊a/ν⌋ denotes the largest integer no greater than

a/ν.
Hedgepeth (1961) showed that by suitably non- di-

mensionalizing the fiber-wise positional coordinate, and

the axial displacements, the governing equations may

be freed of all material parameters, in the linear elas-
tic case. This approach has been adopted in the liter-

ature since (Hedgepeth and Van Dyke 1967; Mahesh

et al 1999; Landis et al 2000). Let umn(ζ) denote the

normalized displacement of fiber (m,n) in the fiber di-

rection, at normalized fiber-wise positional coordinate,
ζ. The governing equilibrium equations along the fiber

direction, in Hedgepeth’s framework are

d2umn

dζ2
(ζ) +Amnpqupq(ζ) = 0. (2)

Here and elsewhere, summation over repeated Latin in-

dices over the range {0, 1, . . . , ν − 1} is implied, unless

otherwise noted. Let all the fibers, except the one at
(0, 0) be intact. The boundary conditions correspond-

ing to unit normalized opening displacement at the bro-

ken fiber, and no displacement of the intact fibers are

expressed as

umn(ζ = 0) =

{

1, if m = n = 0,

0, otherwise.
(3)

The fourth-order constant coefficient matrix Amnpq

in Eq. (2) contains information about interactions be-

tween fibers. Zero values of Amnpq indicate no inter-
action between fibers (m,n) and (p, q), while non-zero

values indicate direct interaction. It is assumed that

Amnpq satisfies the translation invariance property, viz.,

Amnpq = A[m−a], [n−b], [p−a], [q−b], (4)

where [·] is defined in Eq. (1). This implies that the

governing equations are translation invariant with re-

spect to arbitrary lattice translations (a, b). In partic-

ular, if the displacement field umn due to a break lo-
cated at (0, 0) were available, the displacement field in-

duced by a fiber break located at (a, b) would simply

be u[m−a],[n−b].

The following interaction matrix, which represents

interactions of each fiber with its first ring of neigh-

bors (Hedgepeth and Van Dyke 1967), satisfies the trans-

lation invariance property, Eq. (4):

Amnpq =































−6, if p = m, and q = n,

1, if p = [m± 1], and q = n,

1, if p = m, and q = [n± 1],

1, if p = [m± 1], and q = [n∓ 1],

0, otherwise.

(5)

2.2 Diagonalization of the interaction matrix

The fast algorithm proposed in the present work to

solve Eq. (2) hinges on the observation that the fourth

order matrix Amnpq is circulant along two disjoint pairs
of modes, following the terminology of Rezghi and Eldén

(2011). Consider the second order matrix AMnPq , ob-

tained by fixing m = M , and p = P , for some 0 ≤
M,P ≤ ν − 1. Then, following the definition of Rezghi

and Eldén (2011, Def. (4.2)), Eq. (4) implies that AMnPq

is circulant in the pair of modes {2, 4}, as it satisfies the
property:

AMnPq = AMn′Pq′ , if [n− q] = [n′ − q′] (6)

Similarly, it can be shown that AmNpQ obtained by
fixing n = N and q = Q for some 0 ≤ N,Q ≤ ν − 1, is

also circulant in the pair of modes {1, 3}.
Circulant matrices, AMnPq and AmNpQ, can be di-

agonalized by the unitary Fourier matrix Davis (2012),

Fν . In terms of ων = exp(2πi/ν), the Fourier matrix is
defined as

Fν =
1√
ν



















1 1 1 . . . . . . 1

1 ων ω2
ν . . . . . . ων−1

ν

1 ω2
ν ω4

ν . . . . . . ω
2(ν−1)
ν

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

1 ων−1
ν ω

2(ν−1)
ν . . . . . . ω

(ν−1)2

ν



















. (7)

Numbering the rows and columns in the range i, j ∈
{0, 1, . . . , ν − 1}, it is clear from Eq. (7) that Fν; ij =

ωij
ν /

√
ν.

Rezghi and Eldén (2011, Theorem 5.2) have shown

that the higher order matrix Amnpq can also be diago-

nalized in the disjoint modes {1, 3} and {2, 4}. Thus, if
F ν;ij denotes the complex conjugate of Fν;ij ,

Dabcd = F ν;am F ν;bn Amnpq Fν;pc Fν;qd

= ω−am
ν ω−bn

ν Amnpq ωpc
ν ωqd

ν /ν2
(8)
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represents a diagonal matrix, whose potentially non-

zero diagonal entries are

Dabab = νFν;amFν;bnAmn00,

= ωam
ν ωbn

ν Amn00.
(9)

2.3 Solution of the governing equations

Following Briggs and Henson (1995, p. 146), the two-
dimensional discrete Fourier transform of umn(ζ) is de-

fined as

Urs(ζ) =
1

ν2
umn(ζ)ω

−mr
ν ω−ns

ν . (10)

Its inverse is given by Briggs and Henson (1995, p. 146),

umn(ζ) = Urs(ζ)ω
mr
ν ωns

ν . (11)

Premultiplying Eq. (2) by ω−mj
ν ω−nk

ν /ν2, and using

Eq. (10) in the first term yields

d2Ujk

dζ2
(ζ) +

1

ν2
ω−mj
ν ω−nk

ν Amnpqupq(ζ) = 0. (12)

Substituting Eq. (11) into the second term results in

d2Ujk

dζ2
(ζ) +

1

ν2
ω−mj
ν ω−nk

ν Amnpq ωpr
ν ωqs

ν Urs(ζ) = 0.

(13)

The coefficient matrix in the second term has been ob-

tained previously in Eq. (8). Substituting that expres-

sion in Eq. (2) yields

d2Ujk

dζ2
(ζ) +DjkrsUrs(ζ) = 0. (14)

The simplification effected in going from Eq. (2) to

Eq. (14) is that Djkrs in the latter equation is diagonal

in modes {1, 3} and {2, 4}. In other words, Djkrs = 0,

unless j = r and k = s. Substituting the boundary

conditions corresponding to the single break problem
in Eq. (3) into Eq. (10) gives the following boundary

conditions in Fourier space

Ujk =
1

ν2
, ∀j, k ∈ {0, 1, . . . , ν − 1}. (15)

For visualization as second-order matrices and vec-

tors, consider the contracted indices: α = j + kν, and

β = r + sν. Denoting Ûα = Ujk, Ûβ = Urs, and D̂αβ =
Djkrs, α, β ∈ {0, 1, . . . , ν2− 1}, Eq. (14) can be written

as

d2Ûα

dζ2
+ D̂αβÛβ = 0. (16)

Here, repeated Greek indices imply summation over

the range {0, 1, . . . , ν2 − 1}. The boundary conditions

Eq. (15) become

Ûα(ζ = 0) = 1/ν2, ∀α ∈ {0, 1, . . . , ν2 − 1}. (17)

D̂ is a diagonal matrix: D̂αβ = 0, unless α = β. Its

eigenvalues are its diagonal elements and its eigenvec-

tors are the unit vectors along each of the ν2 coordi-

nate axes. Eq. (16) therefore represents an uncoupled

system of ν2 second-order equations. The solution to
the present system of equations that remains bounded

at ζ = ∞ is

Ûα = cα exp

(

−
√

−D̂ααζ

)

, (18)

where no summation over α is to be assumed in the

right hand side. The scalars cα are easily determined

using the boundary conditions, Eq. (17):

cα = 1/ν2, ∀α ∈ {0, 1, . . . , ν2 − 1}. (19)

Substituting Eq. (19) into Eq. (18) yields a closed-form

displacement solution in Fourier space:

Ûα(ζ) = exp

(

−
√

−D̂ααζ

)

/ν2. (20)

Ujk(ζ) = Ûα(ζ) represents the solution for the nor-

malized displacement in Fourier space. Straightforward

differentiation with respect to ζ yields the strain in

Fourier space. Inverse discrete Fourier transformation
using Eq. (11) will yield the displacement and strain

fields in physical space. The stress concentration in fiber

(m,n) is then (Hedgepeth 1961):

Kmn := 1− dumn

dζ
(ζ = 0)

/

du00

dζ
(ζ = 0). (21)

The stress overload in fiber (m,n) is Kmn − 1.

2.4 Computational effort

Computational effort to implement the above proce-

dure must be expended in obtaining Dabcd in Eq. (8)

by the sequential application of two fast Fourier trans-
forms (Frigo and Johnson 2005). The asymptotic com-

putational complexity of this operation is O(ν2 log ν2).

SinceN = ν2, the computational complexity isO(N logN).

Inversion into physical space of the solution given by
Eq. (20) using Eq. (11) again costs O(ν2 log ν2). It fol-

lows that the asymptotic computational cost of the

present methodology is O(N logN).
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2.5 Special case: A linear patch

A considerably simpler special case corresponds to the

linear array shown in Fig. 1 (b). The N = ∞ version

of this problem was originally analyzed by Hedgepeth

(1961). A periodic patch comprised of N = ν fibers is

considered, with fibers m = 0 and m = ν − 1 being
considered adjacent to each other. The interaction be-

tween fibers can be described by a second-order matrix

Amp, which is assumed to obey the translation invari-

ance condition

Amp = A[m−a], [p−a], ∀a ∈ {0, 1, . . . , ν − 1}. (22)

For example, equal interaction of a fiber with its two
neighbors,

Amp =











−2, if p = m,

1, if p = [m± 1],

0, otherwise,

(23)

satisfies Eq. (22). Eq. (22) implies that Amp is a circu-

lant matrix, which can be directly diagonalized (Rezghi

and Eldén 2011, Prop. 4.1) by the Fourier matrix, Eq. (7).
In terms of the eigenvalues,

D̂αα =
√
νFν;αmAm0 = ωαm

ν Am0, (24)

the displacement solution in Fourier space, paralleling

Eq. (20), is expressible as

Ûα(ζ) = exp

(

−
√

−D̂ααζ

)

/ν. (25)

Details of the derivation follow those in the preceding
sections, and are omitted here in the interest of brevity.

Paralleling Eq. (21), the stress concentration in fiber m

is:

Km := 1− dum

dζ
(ζ = 0)

/

du0

dζ
(ζ = 0). (26)

3 Results and discussion

The overloads due to a single break in a rhombus-shaped

patch were determined using both the present DFT

based method, and the eigenspace method (Landis et al

2000). Both simulations were implemented in the Python

language, and run on the same workstation computer.
The Numpy library was invoked for standard numerical

routines in both cases. Using the DFT method, simula-

tions up to N = 230 (approximately one billion fibers)

were realized within a few hundred seconds of computer
time. It was only possible to simulate much smaller

composite patches using the eigenspace method within

a reasonable time cap of 105 s. The results of both runs,

10-4
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100
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101 102 103 104 105 106 107 108 109 1010

N

t
(s
)

Eigenspace

method

DFT method

Fig. 2: Scaling of processor time, t, with the number

of fibers in the simulation patch N for the eigenspace

method of Landis et al (2000) and the present DFT

method. The red and violet solid lines indicate t ∼ N3,
and t ∼ N logN , respectively.

when available, were compared for accuracy, and agree-

ment of stress overloads to 10 decimal places or more
was obtained.

Fig. 2 compares the processor times t correspond-
ing to both methods. It is clearly seen that the present

method is much faster than the eigensolution based

method for all N studied, not just for large N . As ex-

pected (Sec. 2.4), at larger N , the processor time using

the DFT method approaches t = 10−8N logN , indi-
cated by a solid line in Fig. 2. The processor time using

the eigenspace method approaches t ∼ N3, also shown

in Fig. 2.

The scaling of the stress concentrations with Euclid-

ian distance r from the break is considered next, nor-

malized by the spacing between neighboring fibers in

the hexagonal lattice, r0. The scaling is studied for the
rhombus-shaped, and linear patches shown in Fig. 1.

Three patch sizes, N = 28, 214, and 230, are considered

in each case. Stress concentrations only in the fibers

that satisfy r/r0 ≤ ν/2 are shown. In the case of the

N = 230 linear patch, however, the stress overloads
drop below the computer floating point precision at

r/r0 = ν/2. In this case, therefore, only the overloads

greater than the maching precision are shown.

Except when r/r0 ≈ ν/2, the stress overload scales

as a power law with Euclidian distance from the break:

Kmn−1 ∼ rλr for the rhombus-shaped patch, andKm−
1 ∼ rλl , for the linear patch. The power-law exponents,
λr and λl, obtained by fitting, are indicated in the inset

tables. It is clear that as N → ∞, λr → −3, and λl →
−2. When r/r0 ≈ ν/2, the influences of the break in the
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Fig. 3: Power-law scaling of the stress concentration

due to a single break with normalized Eucledian dis-

tance r/r0 from the break. r0 is the distance between
two neighboring fibers. Various (a) 2D and (b) 1D patch

sizesN have been studied.K10 andK1 denote the stress

concentrations in the fibers adjacent to the broken fiber

in cases (a) and (b), respectively.

patch and one or more of its periodic images become

comparable. This causes the deviation from power-law
scaling when r/r0 ≈ ν/2.

The exponent λr = −3 was originally noted by Sue-
masu (1982), in an infinite composite with a hexag-

onal lattice. His observation was based on fitting the

stress concentrations up to r/r0 = 15. The present

method allows the verification of this scaling to much
larger r/r0 = 214. Similarly, the power-law scaling with

λl = −2 for the linear patch follows that originally

shown analytically by Hedgepeth (1961).

4 Conclusion

A fast O(N logN) algorithm has been described to de-

termine the overloads in a periodic lattice patch due
to a single break. The methodology exploits the cir-

culant structure of the matrix Amnpq describing the

interaction between fibers. While the overloads them-

selves have been computed only for two specific interac-

tions matrices, arbitrary lattices, e.g., Hedgepeth and
Van Dyke (1967); Landis et al (1999) that respect the

translational invariance conditions, Eq. (4) or Eq. (22),

can be addressed by the present method.

Of the two computational challenges associated with

performing Monte-Carlo failure simulations in a large

patch, numbered (i) and (ii) in Sec. 1, the present solu-
tion eliminates the first. The second difficulty, viz., the

determination of the overloads in intact fibers by effi-

ciently superposing the single break solution, remains.

This latter problem will be addressed in future work.
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