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Abstract Monte-Carlo simulations of the fracture of
elastic unidirectional model fibre composites are an im-

portant tool to understand composite reliability. On ac-

count of being computationally intensive, fracture sim-

ulations reported in the literature have been limited to

composite patches comprised of a few thousand fibres.
While these limited patch sizes suffice to capture the

dominant failure event when the fibre strength vari-

ability is low (synthetic fibres), they suffer from edge

effects when the fibre strength variability is high (nat-
ural fibres). On the basis of recent algorithmic devel-

opments based on Fourier acceleration, a novel bisec-

tion based Monte Carlo failure simulation algorithm is

presently proposed. This algorithm is used to obtain

empirical strength distributions for model composites
comprised of up to 220 ≈ 106 fibres, and spanning a

wide range of fibre strength variability. These simula-

tions yield empirical weakest-link strength distributions

well into the lower tail. A stochastic model is proposed
for the weakest-link event. The strength distribution

predicted by this model fits the empirical distributions

for any fibre strength variability.

Keywords Composites; Fracture; Algorithm; Discrete
Fourier Transform; Numerical methods

1 Introduction

Randomness in fibre strengths causes variability in the
strengths of nominally identical unidirectional fibre com-

posite specimen (Hull and Clyne 1996). The relation-
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ship between the distribution of the fibre strengths, and
that of composite strength depends on the nature of

load redistribution from intact to broken fibres, termed

the load-sharing rule. Much work in the literature has

been directed toward understanding this relationship,

for various load-sharing rules (Smith 1980; Beyerlein
et al 1996; Zhou and Curtin 1995; Curtin 1998; Landis

et al 2000; Mahesh et al 1999, 2002; Habeeb and Ma-

hesh 2015). A commonality amongst these works is the

use of Monte Carlo simulations of composite fracture,
for deriving insight into the fracture of these materials.

Monte Carlo fracture simulations have established

that the distribution of strength per fibre, σ, of N -fibre

composites, GN (σ), obeys weakest-link scaling (Smith

1980; Beyerlein et al 1996; Curtin 1998; Landis et al
2000; Mahesh et al 1999, 2002; Gupta et al 2017b),

i.e., for large enough N , there exists a function W (σ),

independent of N , such that

GN (σ) = 1− (1−W (σ))N . (1)

When the variability of fibre strength is small, as in

the case of commercial synthetic fibres, Eq. (1) is al-

ready satisfied for relatively small composite sizes, N .
However, the fibre strength variability in natural fibre

composites and in hybrid composites, wherein two or

more types of fibre reinforcements are used, is typically

large (Jawaid and Khalil 2011; Fidelis et al 2013). In

this case, Eq. (1) is valid only for very largeN . Thus, for
such composites, Monte Carlo simulations of large com-

posite patch sizes (N) are necessary to obtain W (σ).

The number of fibres in a standard unidirectional

ASTM D3039 test coupon (ASTM 2017) is of the order
of N ∼ 106. Linear load sharing models (Hedgepeth

1961; Hedgepeth and Van Dyke 1967; Zhou and Curtin

1995) assume a linear elastic matrix, and a perfectly
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bonded interface. By virtue of the linearity of the gov-

erning equations, superposition of break influences is

permissible (Beyerlein et al 1996). This enables the sim-

ulation of the fracture of composite patches comprised

of several hundreds, to a few thousands of fibres (Curtin
1998; Landis et al 2000; Mahesh et al 2002). Linear

models neglect the material non-linearities present in

physical composites.

To overcome this deficiency, non-linear load sharing
models that account for matrix plasticity, matrix frac-

ture, interfacial debonding and sliding are available in

the literature, e.g., Landis and McMeeking (1999); Ok-

abe et al (2001); Okabe and Takeda (2002), and Mishra

and Mahesh (2017). The non-linear character of these
models disallows the superposition of solutions due to

individual failure events (Mahesh and Mishra 2018). As

a consequence, fracture simulations must be restricted

to small composite patches (Zhang andWang 2009; Ma-
hesh and Mishra 2018), comprised of several tens, to

a few hundred fibres. Unsurprisingly, the problem of

achieving realistic composite sizes in fracture simula-

tions is much more challenging for the case of non-linear

models, than for linear models. The latter is therefore
the focus of the present work.

Enhancements in computer technology, particularly,

processor speeds, and the multi-core architecture of the

present processors, help in reaching larger patch sizes,
to some extent. Presently, one Monte Carlo simulation

of a composite patch comprised of about N = 104 fi-

bres can be performed by a generic four-core proces-

sor, in a day. But this is still two orders of magnitude

smaller than the typical number of fibres in a standard
test coupon. Simulations of larger patches is difficult

because, the computational complexity of the Monte-

Carlo simulation even in a linear model composite is

O(N3), as shown later.

The foregoing reasons motivate improvements in the
algorithms for performing Monte Carlo simulations. In

a model linear composite, Gupta et al (2017b) observed

that the most computationally intensive step in the

Monte Carlo simulations is the computation of the in-
teractions amongst breaks. They sought to reduce the

computational cost of this step by accounting exactly

for the interactions amongst nearby breaks, but only

approximately for that between distant breaks. They

implemented this notion using a tree code algorithm.
Using this devise, Gupta et al (2017b) could simulate

the failure of composite patches comprised of up to

N = 216 ≈ 65000 fibres.

A limitation of the tree code algorithm of Gupta
et al (2017b) is that an approximation error is intro-

duced when accounting for the interactions between

distant breaks. This error is difficult to mathematically

bound; Gupta et al (2017b) demonstrated the small-

ness of the approximation error by considering several

critical test cases. Another limitation is that simulation

patches with N > 216 were inaccessible to the quadtree

algorithm. For this reason, Gupta et al (2017b), could
not establish the validity of Eq. (1) for a case of very

large fibre strength variability. A numerically exact al-

gorithm, capable of simulating even larger composite

patches would be desirable. The building blocks of such
an algorithm, based on the notion of Fourier acceler-

ation (Batrouni et al 1986), have been developed by

Gupta et al (2017a) and Gupta et al (2018).

The present work summarises this development and

proposes a novel Monte Carlo simulation algorithm that
exploits their computational features. The developed al-

gorithm has a computational complexity ofO(N logN).

That is, keeping all other model parameters fixed, the

computational effort associated with obtaining the com-

posite strength for a given set of fibre strength scales
with N as N logN (Cormen et al 2001). It is used to

simulate the failure of model composite patches com-

prised of up to N = 220 ≈ 106 fibres. From these simu-

lations, the empirical W (σ) can be readily derived from
Eq. (1), for all the fibre strength variabilities studied.

A two-parameter stochastic model of the weakest-link

event is also proposed. The model W (σ) is shown to

fit the empirically obtained W (σ) very well, for all fi-

bre strength variabilities. The proposed model can be
used to calculate the strength distribution GN (σ) of the

composite to very high reliability levels.

2 Model and algorithm

2.1 Fibres
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Fig. 1: A rhombus-shaped periodic patch of ν×ν fibers

arranged in a hexagonal lattice showing the m–n coor-

dinate system.
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The model composite is comprised of N = ν × ν

infinitely-long aligned fibres, arranged in a hexagonal

lattice, as shown in Fig. 1. Fibres are located by their

(m,n) coordinates, as shown. Periodic boundary con-

ditions are imposed in the transverse direction at the
edges of the patch, as detailed in Gupta et al (2017a,

2018).

Following Gücer and Gurland (1962), Smith (1980),

and Smith et al (1983), the composite is divided in the
fibre-direction into a chain-of-bundles. The length of

each bundle is assumed to be the ineffective length, δ,

given by Hedgepeth (1961).

The random strength, Σ, of a fibre element depends

on its length, l, and follows the Weibull (1951) distri-
bution (Hull and Clyne 1996):

Pr {Σ ≤ σ} = 1− exp (−(l/l0)(σ/σ0)
ρ) , (2)

where l0 is a reference gage length, and ρ denotes the

Weibull exponent. The exponent ρ determines the vari-

ability of fibre strength: with increasing ρ, the fibre

strength variability decreases. The fibre gage length of

present interest is that contained in a bundle. Thus,
l = δ. Defining normalised versions of Σ, and σ as:

X = Σ (δ/l0)
1/ρ/σ0, and x = σ (δ/l0)

1/ρ/σ0, (3)

allows rewriting Eq. (2) as:

F (x) := Pr {X ≤ x} = 1− exp (−xρ) . (4)

Here, the notation ‘:=’ indicates the definition of F (x).
By suitably non-dimensionalising the fiber-wise po-

sitional coordinate, and axial displacements, Hedgepeth

(1961) showed that the governing equations may be

freed of all material parameters. This approach has
been adopted in the literature since (Mahesh et al 1999;

Landis et al 2000). Let umn(ζ) denote the normalised

displacement of fibre (m,n) in the fiber direction, at

normalised fibre-wise positional coordinate, ζ. The gov-

erning equilibrium equations along the fibre direction,
following Hedgepeth (1961) are

d2umn

dζ2
(ζ) +

∑

p

∑

q

Amnpqupq(ζ) = 0. (5)

All the indices in Eq. (5) range over {0, 1, . . . , ν}, and

Amnpq =































−6, if p = m, and q = n,

1, if p = [m± 1], and q = n,

1, if p = m, and q = [n± 1],

1, if p = [m± 1], and q = [n∓ 1],

0, otherwise.

(6)

In Eq. (6), the notation [m] is defined as [m] := m −

ν ⌊m/ν⌋.

2.2 Interacting fibre breaks

Consider the bundle containing the plane ζ = 0. Let Nb

of the N fibres be broken. Indexing the fibre at (m,n)

as i = mν + n + 1, let the indices of the broken fibres

be {i1, i2, . . . , iNb
}. Let these fibre breaks be confined

to the plane ζ = 0. This is a conservative assumption,
as the stress concentration due to breaks in a trans-

verse plane always exceed that due to axially staggered

breaks (Smith 1980; Mahesh et al 1999).

The overloads in the N − Nb intact fibres due to
the breaks is determined in three steps (Landis et al

2000; Mahesh et al 1999). First, the overloads due to a

single break are determined, using the fast O(N logN)

algorithm due to Gupta et al (2017a). Second, for the
case that multiple breaks are present, their weights,

wik , k ∈ {1, 2, . . . , Nb}, which physically represent their

opening displacements are determined by solving a sys-

tem of Nb linear equations at a cost of O(N3
b ). This

cost can be reduced to O(N2
b ) if the inverse of the coef-

ficient matrix corresponding to Nb − 1 breaks is stored

(Landis et al 2000). An alternate algorithm, based on

the iterative conjugate gradient method, and Fourier

acceleration, was proposed to solve this problem. The
method has a computational complexity of O(N logN)

(Gupta et al 2018). It was found that the latter method

was faster than the former for Nb in excess of a few hun-

dred fibre breaks. Third, the overloads due to the in-

dividual breaks are weighted and superposed to obtain
the overloads in all the intact fibres. The classical com-

putational cost of this operation, O(NNb), is reduced

to O(N logN) using Fourier acceleration (Gupta et al

2018).

Thus, the algorithm proposed by Gupta et al (2018)

replaces the O(N2
b + NNb) complexity of determining

the overloads on the intact fibres due to a system of

breaks, by one with O(N logN) complexity.

2.3 Monte Carlo simulation

The classical algorithm of the Monte Carlo simulations

have been described by a number of authors, e.g., Lan-

dis et al (2000). In this algorithm, fibre strengths are

randomly drawn from Eq. (4). The far-field load is in-

creased just enough to break the weakest fibre. The
stress overloads on the remaining N − Nb = N − 1

fibres are computed. The far-field load is updated (in-

creased or decreased) so that exactly one more fibre will

fail, but this time, under the influence of the stress con-
centrations produced by the pre-existing broken fibre.

The weights of the Nb = 2 interacting breaks are deter-

mined, and the stress overloads on the N −Nb = N − 2
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intact fibres is updated to reflect their stress concen-

tration. This process is repeated until all the fibres are

broken, i.e., Nb = N .

Since the computational effort of evaluating the stress

overloads after the breakage of each fibre, using the clas-
sical Monte Carlo algorithm, is O(N2

b +NNb), the com-

putational effort associated with a Monte Carlo sim-

ulation would be O(N3). If, instead, the stress over-

loads were updated following the Fourier accelerated
algorithms (Sec. 2.2), the computational effort of the

resulting Monte Carlo simulation algorithm would be

O(N)O(N logN) = O(N2 logN). This would improve

upon the classical O(N3) algorithm, but it is possible

to do even better.

The present algorithm tests whether or not the model

composite will break under a constant imposed nor-

malised far-field load per fibre, x, given by Eq. (3). In

the first step, all the fibres whose normalised strengths
X are smaller than x are broken. The set of all broken

fibres at this step constitutes the first ‘burst’, in the

terminology of Alava et al (2006). The overloads on the

intact fibres is determined using the O(N logN) com-

putation of Sec. 2.2. If the overload causes of any of the
intact fibres to fail as part of the second burst, those

breaks are added. This process is repeated through the

third burst, fourth burst, and so on, until no more fibres

fail. If the process terminates with intact fibres remain-
ing in the patch, the constant force applied per fibre,

x, is smaller than the strength of the composite. If, on

the other hand, the application of x produces breaks

in all the fibres, the composite strength is smaller than

x. The computational effort associated this test is still
O(N logN), with a pre-factor proportional to the num-

ber of bursts.

The actual strength of the composite is determined

using successive bisection. The strength per fibre of the

composite is initially bracketed to lie in the interval
[x, x]. x and x can be taken as the normalised strengths

of the weakest and strongest fibres in the simulation

patch, respectively. Alternately, a tighter bracket is ob-

tained if x and x were taken to correspond to the strength
per fibre of a 1D local load sharing tape, and that of

an equal load sharing bundle. The fibres in these two

‘bounding composites’ are assigned the same strengths

as the fibres of the present simulation. An efficient al-

gorithm for determining x was given by Mahesh and
Phoenix (2004). As for the strength x of the equal load

sharing bundle, even a naive algorithm is adequate.

After the bracket is constructed, the composite is

tested for failure at its mid-point, which corresponds to
an applied normalised far-field load per fibre of (x +

x)/2. If the composite fails, x is updated to (x + x)/2;

otherwise, x is updated to (x + x)/2. This process is

repeated until the size of the bracket becomes smaller

than a prescribed tolerance, ε:

x− x < ε. (7)

For sufficiently small ε, it has been verified that the

set of broken fibres formed before the final burst, fol-

lowing the present algorithm, coincides with the set of

fibres broken just before the peak load is achieved, as
predicted by the classical simulation algorithm.

The computational effort of this algorithm is the

number of successive bisections times the computational

effort of one test. The number of successive bisection

steps depends on the ratio of the width of the initial
bracket and ε, and not on the number of fibres, N .

That is, if the initial bracket is wider, it can, at worst,

slow down the composite strength computation by a

constant factor independent of N . Therefore, the com-
putational complexity of the Monte Carlo algorithm is

also only O(N logN).

The presently proposed approach to determine the

strength of a computer composite specimen is only effi-

cient if paired with the O(N logN) Fourier accelerated
algorithm for the computation of overloads (Gupta et al

2018). The classical simulation algorithm (Mahesh et al

1999; Landis et al 2000) is more efficient with the clas-

sical O(N2
b ) algorithm for overloads computation.

3 Results and discussion
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Fig. 2: Empirical strength distributions of Hedgepeth
and equal load sharing composite patches comprised of

N = 220 fibres obtained from nsim = 256 simulations.

Distributions corresponding to ρ = 0.5, 1, 3, and 10 are

shown.
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Fig. 3: Weakest-link strength distributions, calculated

according to Eq. (1), for all the (ρ,N) pairs simu-
lated. From left to right, the distributions correspond

to ρ = 0.5, 1, 2, 3, 5, and 10. It is seen that for large

enough N , the weakest-link strength distribution be-

comes independent of N , indeed. Γ (1+ 1/ρ), the mean

strength of the normalised distribution, Eq. (4), is used
to normalise the abscissae.

The above algorithm is implemented in GNU octave

(Eaton et al 2015), and run on a computer assembled
by pairing a six-core Intel CoreTM i7 8700 processor

with a compatible motherboard, and 8 gigabytes of

RAM. Five Monte-Carlo simulations are run simulta-

neously using GNU parallel (Tange 2011). For each

ρ ∈ {0.5, 1, 2, 3, 5, 10}, nsim = 256 simulations are run.
Simulation time increases with decreasing ρ. This is be-

cause more numerous, albeit smaller, bursts of breaks

occur at smaller ρ. Even so, the typical ρ = 0.5 sim-

ulation of the largest patch comprised of N = 220 fi-
bres takes only about two hours of wall-clock time to

complete. The strength of each simulated composite is

determined to an accuracy of ε = 10−3 in Eq. (7).

Fig. 2 shows the empirical strength distributions,

GN (x), obtained from nsim = 256 Monte Carlo simula-

tions for N = 220 fibre composites with ρ = 0.5, 1, 3,

and 10. Empirical strength distributions for two types

of load sharing as shown: the Hedgepeth load sharing
of Sec. 2.1 and equal load sharing. For all ρ, the latter

results in stronger composites than the former. This is

to be expected because in equal load sharing, the fi-

bres near a break are not overloaded as severely as in
Hedgepeth load sharing.

It is also seen that as ρ decreases, the empirical

strength distribution obtained from equal load shar-
ing approaches that obtained assuming Hedgepeth load

sharing. Again, this is to be expected, as in the limit

ρ → 0, composite strength will be determined by the

strength of the strongest fibres, regardless of the load

sharing scheme.

The empirical weakest-link distributions,

WN (x) = 1− (1−GN (x))1/N , (8)

are deduced from the empirical strength distributions,
GN (x) for N = 28, 210, . . . , 220. These are plotted in

Fig. 3. For ρ = 10, 5, 3, and 2, WN (x) are seen to

be independent of N , for N ≥ 28. That is, WN (x) is

independent of N , in accord with Eq. (1), already at

N = 28. However, for ρ = 1, WN (x) becomes indepen-
dent of N , only for N ≥ 212. For ρ = 0.5, the critical

threshold for N -independence increases to N ≥ 216.

This result was not accessible to Gupta et al (2017b)

as their largest simulation patch consisted of N = 216

fibres.
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➎
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➑

➒

➓

Fig. 4: Schematic representation of the failure event hy-

pothesised to be the weakest-link event. The composite

cross-section is viewed as a patch-work of bundles. In

this figure, each bundle is comprised of 19 fibres, obey-
ing equal-load sharing. The failure of a bundle, labelled

➊, causes an overload in its six neighbours. Under this

overload, one of them, say ➋ fails. The overloads due

to a pair of failed bundles leads to the failure of, say ➌,
and so on.

A stochastic model, developed by Habeeb and Ma-
hesh (2015), and Gupta et al (2017b), is now modi-

fied to explain the empirical weakest-link distributions,

W (x). In this model, the composite cross-section is viewed
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as a non-overlapping patch-work of equal load sharing

bundles, each comprised of M fibres. This is shown in

Fig. 4. It is proposed that W (x) is the probability of se-

quential failure of neighbouring fibre bundles, wherein

the next bundle to fail is one of those most severely
overloaded by the present collection of failed bundles.

This is illustrated in Fig. 4 up to the failure of the tenth

bundle.

To obtain an expression for W (x), expressions are

required for the stress concentration due to broken bun-

dles on their neighbours, and the number of most over-

loaded neighbours of a cluster of bundles. To this end,
bundles are regarded as being arranged in ‘rings’, fol-

lowing Smith et al (1983), around a central bundle. The

first ring is taken to contain only the central bundle.

The second ring contains 6 bundles, the third ring, 12
bundles, and so on. The total number of bundles in r

rings is given by k = 1+6+. . .+6(r−1) = 3r(r−1)+1.

Inverting this gives the number of rings corresponding

to k bundles as

r =
(

1 +
√

1 + 4(k − 1)/3
)/

2. (9)

Eq. (9) is strictly valid only when the rings are filled,

e.g., for k ∈ {1, 7, 19, . . .}. However, it is taken to be

approximately valid for all k. The number of most over-

loaded neighbouring bundles around a cluster of r rings,

comprised of k bundles, is given byNk = 6r. These bun-
dles are located at the size mid-sides of the outer most

hexagonal ring. Again, although this formula is strictly

true only for k ∈ {1, 7, 19, . . .}, its approximate validity

is assumed for all k.

The stress concentration due a tight cluster of k bro-

ken fibres on its most overloaded neighbours is given

by (Mahesh et al 1999)
√

r/π + 1, where r is given by
Eq. (9), in terms of k. The stress concentration,Kk, due

to a cluster of k broken bundles on its most overloaded

neighbouring bundle is also taken to follow the same

scheme. In this view, the spatial variation of stess con-
centrations within a bundle is neglected. To account for

this, a ρ-dependent scaling parameter, C is introduced:

Kk = C

√

r

π
+ 1. (10)

Let EM (x) denote the strength distribution of an

equal load sharing bundle of M fibres under imposed
far-field normalised load x per fibre. A recursive ex-

pression for EM (x) has been given by McCartney and

Smith (1983). This expression can be used up to about

M = 1000. For M > 1000, round-off errors affect the
recursion calculation. In this regime, the asymptotic ex-

pression for EM (x) as M → ∞, due to Daniels (1945),

provides a good approximation for EM (x).
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Fig. 5: Comparison of the empirical weakest link

strength distribution with the model predicted Wk(x)
for k = 1, 2, . . . , 40. Wk(x) converges at about k = 10.

Table 1: Parameters of the probabilistic model used to

obtain Wmodel(x), in Fig. 3.

ρ Cρ Mρ

0.5 0.85 12000
1 0.87 200
2 0.89 20
3 0.94 20
5 0.95 3
10 1.075 1

In terms ofEM (x), the probability of forming a tight
cluster of (k+1)-bundles can be written as (Habeeb and

Mahesh 2015; Gupta et al 2017b):

Ŵk+1(x) = EM (x)
(

1− (1− EM (K1x))
N1

)

× . . . (11)

. . .×
(

1− (1− EM (Kkx))
Nk

)

.

Here, EM (x) is the probability of failure of the first

bundle, and 1− (1−EM (Kkx))
Nk is the probability of

failure of at least one of the Nk most overloaded neigh-

bours of a tight cluster of k bundles, each experiencing
a stress concentration of Kk due to the tight cluster.

Catastrophic failure corresponds to the continuous ex-

tension of the tight cluster, so that the probability of

failure of the composite patch beginning with the fail-
ure of a fixed initial bundle is given by

Ŵ (x) = lim
k→∞

Ŵk(x). (12)

The first bundle to fail can be any one of the N/M

such bundles in the composite patch. Accordingly, the

probability of failure of the composite patch is:

GN (x) = 1− (1− Ŵ (x))N/M . (13)

Comparing Eqs. (1), and (13) reveals that

Ŵ (x) = 1− (1−W (x))M . (14)
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Analogously,

Ŵk(x) = 1− (1−Wk(x))
M (15)

is also defined.

Fig. 5 compares Wk(x), k ∈ {1, 2, . . . , 40} with the
empirical weakest-link strength distribution obtained

from Monte Carlo simulations, for the ρ = 1 composite

patch. It is seen that W40(x) captures the empirical dis-

tributions very well. Two parameters are fit to obtain

this coincidence: the bundle size, M1 = 200 fibres, and
C1 = 0.87, in Eq. (10). Increasing Mρ increases the cur-

vature of Wk, while increasing Cρ shifts Wk upward. It

is seen from Fig. 5 that over the stress-range of interest,

Wk(x) has already converged to W (x) for k < 40.

W (x) can be determined for all the ρ by fitting the
two ρ-dependent parameters Mρ, and Cρ, as listed in

Table 1. The predicted W (x) distributions are plotted

in Fig. 3. These are seen to agree well with the empiri-

cal distributions obtained from the Monte Carlo simula-
tions. The present model fits the empirical distributions

well even in the upper tail, which is not true of the fits

obtained by Gupta et al (2017b, Fig. 9). This suggests

that the present approach to accounting for the stress

concentrations due to failed equal load sharing bundles
on their neighbours and the number of severely over-

loaded neighbours is more realistic. The present values

of Cρ and Mρ are also considerably greater than those

reported by Gupta et al (2017b).
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Fig. 6: The size of the equal load sharing bundle, Mρ,

scales as a power of the fibre strength variance, s2ρ.

It has been attempted to understand the physical

basis for the variation of Mρ with ρ. The hypothesis
that the variance in the strength of Mρ bundles would

be approximately constant with ρ was found to be false.

However, the variance associated with the fibre strength

distribution, F (x) (Eq. (4)),

s2ρ = Γ (1 + 2/ρ)− Γ 2(1 + 1/ρ), (16)

where Γ (·) denotes the gamma function is found to be

related to Mρ. Fig. 6 compares the bundle size, Mρ

with the fibre strength variance, s2ρ. It is seen that the

bundle size, Mρ, scales as a power of the fibre strength

variance:Mρ ∼ (s2ρ)
1.36. A physical basis for this scaling

is, however, not presently understood.

4 Conclusion

A computationally efficient bisection based O(N logN)

Monte Carlo simulation algorithm for the failure of a

composite patch obeying a realistic linear load sharing
rule has been proposed. The algorithm is used to simu-

late the failure of composite patches comprised of up to

N = 220 fibres for a range of fibre Weibull exponents ρ.

The simulations reveal that the composite strength dis-
tribution obeys weakest-link scaling regardless of fibre

strength variability. A model that explains the weakest-

link strength distribution has also been proposed. This

model regards the composite patch as a patch-work of

equal load sharing bundles, each comprised of Mρ fi-
bres, which fail in response to overloads due to the fail-

ure of their neighbouring bundles. This model improves

upon the model of Gupta et al (2017b), in that it cap-

tures the entire empirical distribution of the weakest-
link strength. However, a simple physical basis for the

dependence of Mρ on ρ is not understood.

The present development has the limitation that fi-

bre breaks are assumed to be confined in a plane trans-

verse to the fibre direction. Curtin (2000) has suggested
that this assumption may lead to over-conservative pre-

dictions of composite strength. It is left to future work

to extend the present approach to accommodate out-

of-plane fibre breakage.
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