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A fast algorithm for fracture simulations representing

fibre breakage and matrix failure in three-dimensional

fibre composites

Sivasambu Mahesh

Abstract A linear, periodic, three-dimensional shear-lag model of unidirectionally-
reinforced composites that allows for fibre breakage, and matrix failure is proposed.
Matrix failure can take the form of matrix splitting or interfacial debonding. A
computationally efficient scheme for its solution is developed. This scheme exploits
the translation invariance of the elastostatic fields due to failed elements in the
periodic cell, and is asymptotically faster than the classical eigensolution-based ap-
proach. The new computational scheme is used to illustrate the influence of matrix
failure on the elastostatic fields induced by small clusters of fibre breaks in several
test problems. Monte Carlo simulations of fracture in model three-dimensional
composite specimen with Weibull-distributed fibre segment strengths are also per-
formed. Matrix failure is found to considerably alter fracture development, to
weaken the median specimen, and to reduce the variability in composite strength.

Keywords Shear-lag models; Influence function; Fast Fourier transform;
Interacting damage; Stress redistribution

1 Introduction

Shear-lag models of unidirectional fibre composites loaded uniaxially along the
fibre direction assume that fibres carry the applied tension, while matrix elements
conduct loads from fibre breaks to nearby fibres by deforming in simple shear
(Cox 1952; Hedgepeth 1961; Hedgepeth and Van Dyke 1967). When the fibre, and
matrix materials are linear elastic, and the interface between them is perfectly
bonded, the elastostatic state in the composite can be computed by weighted
superposition of the elastostatic states due to individual fibre breaks (Sastry and
Phoenix 1993; Beyerlein et al 1996). Computationally, this approach is much more
efficient than full domain solutions using e.g., the finite element method (Xia et al
2002; Mishnaevsky Jr and Dai 2014; Swolfs et al 2013). For this reason, shear-lag
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analyses are the preferred stress analysis tool in fracture simulations of linear fibre
composites (Beyerlein and Phoenix 1997).

Because of their utility in fracture simulations, shear-lag models have been
extended in various ways. Some of these developments, most relevant to the
present work, are now briefly reviewed. The Hedgepeth (1961) and Hedgepeth
and Van Dyke (1967) shear-lag models apply to an infinite composite comprised
of infinitely many, infinitely long fibres. However, fracture simulations can only
be performed on finite simulation cells. Using the Hedgepeth (1961) or Hedgepeth
and Van Dyke (1967) model in a finite simulation cell causes load leakage from the
simulation cell, i.e., some of the load dropped by every broken fibre goes to un-
breakable fibres outside the simulation cell. This spuriously strengthens the model
composite represented in the simulation cell.

Addressing this issue, Fukunaga et al (1984) and Landis et al (2000) considered
a composite domain periodic in the directions transverse to the fibre direction. In
the mathematical formulation of their model, a matrix describes the interactions
amongst the fibres in the periodic cell. This interaction matrix is augmented to
represent interactions across periodic boundaries. The eigenvalues and eigenvectors
of the interaction matrix determine the elastostatic state in the periodic cell with
a single fibre break. The computational cost of the eigenvalue problem is O(N3),
where N is the number of fibres in the simulation cell. A further calculation, also
costing O(N3) is required to compute the elastostatic state due to multiple fibre
breaks.

Shear-lag models predict that load dropped by broken fibres redistribute pref-
erentially amongst nearby intact fibres. This causes fibre breaks to cluster together
in fracture simulations. The transverse periodicity of the shear-lag model of Fuku-
naga et al (1984) and Landis et al (2000) ensures that clusters of fibre breaks
formed at the edges of the simulation cell can continue to extend through the
opposite periodic boundary. In other words, clusters are not affected by the trans-
verse cell boundaries. However, while the model specimen of Fukunaga et al (1984)
and Landis et al (2000) is infinitely long along the fibre direction, the simulation
cell is finite. This implies that the growth of fibre break clusters located near the
fibre-wise edges of the simulation cell will be impeded artificially. To overcome
this, Mahesh and Phoenix (2004) proposed a simulation cell that is periodic in
both the transverse, and fibre directions. Clusters of breaks near any edge of the
fully periodic simulation cell continue to grow from the opposite edge of the cell.

In three-dimensional fracture simulations (Ibnabdeljalil and Curtin 1997; Lan-
dis et al 2000), composite specimen fail by the catastrophic propagation of a lo-
calised cluster of breaks. The critical volume to which the localised cluster must
grow before it propagates catastrophically depends, among other things, on the fi-
bre strength variability. For sufficiently small fibre strength variability, the volume
encompasses only one fibre break, which suffices to trigger the sequential failure of
neighbours (Habeeb and Mahesh 2015). If the fibre strength variability is larger,
specimen fracture initiates by the failure of a critical volume comprised of many
fibres. On the one hand, in order to be representative of the fracture mechanism in
the physical composite, the simulation cell should be much larger than the critical
volume of the localised cluster. On the other hand, the solution of the periodic
shear-lag model is intrinsically computationally intensive. In order to meet the
former requirement subject to the latter limitation, the studies of Ibnabdeljalil
and Curtin (1997), and Landis et al (2000) were restricted to the case of relatively
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small fibre strength variability. Reducing the O(N3) computational cost of solving
for the elastostatic state in a partly damaged simulation cell using an improved
algorithm would lessen the limitation, and allow fracture simulations for larger N.
It is a major objective of the present work is to propose such an algorithm.

Another approach pursued in the literature to achieve larger N is to restrict
the fracture simulations to two-dimensional patches (Mahesh et al 2002). Efficient
O(N log N) algorithms applied to such patches enable fracture simulations in N >

106 fibre patches (Mahesh et al 2019), three orders of magnitude larger than those
of Ibnabdeljalil and Curtin (1997), and Landis et al (2000). The large N allowed
Mahesh et al (2019) to access large fibre strength variability.

Two-dimensional simulation patches extend one characteristic length along
the fibre-direction, and fibre breaks are limited to a transverse section located
at the mid-point of the characteristic length. The transverse alignment of the fibre
breaks enhances stress concentrations due to fibre breaks, and promotes cluster
growth. The fibre breaks in the patch are assumed to be mechanically isolated from
those in all other patches. Overloads on intact fibres in two-dimensional patches
also increases monotonically with the number of fibre breaks, which considerably
simplifies load-stepping in the simulation algorithm.

The assumptions underlying the two-dimensional simplification are, however,
not realistic. While the load dropped by an isolated fibre break is approximately
regained over one characteristic length in a three-dimensional composite, the dis-
tance over which load dropped by a cluster of fibre breaks is regained increases
with cluster size (Mahesh and Mishra 2018). It is thus not true that fibre breaks,
more than one characteristic length apart, are independent. Also, fibre breaks typ-
ically form in a staggered fashion. Assuming them to be concentrated in a common
transverse plane is unrealistic, and has been shown to underestimate the compos-
ite strength (Curtin 2000). Two-dimensional simulations thus do not faithfully
capture the pattern of microscopic failure events in physical composites. They are
useful, however, to predict a conservative bound on the strength distribution of a
three-dimensional composite.

In the works referenced above, fibre breakage is taken to be the only micro-
scopic mechanism of progressive damage. The matrix is assumed to deform in
shear, but to remain either perfectly bonded (Landis et al 2000), or to be dam-
aged uniformly to the point of not influencing further load-sharing amongst fibres
(Ibnabdeljalil and Curtin 1997). While this is a reasonable assumption in some
systems, e.g., carbon-epoxy composites, widespread matrix damage in the form of
interfacial debonding, and fibre pull-out is observed e.g., in glass-epoxy compos-
ites (Hull and Clyne 1996). These composites exhibit a brush-like fracture surface.
Neglecting matrix damage is sometimes justified by invoking the large stiffness
contrast between the fibres and the matrix, and noting the smallness of the en-
ergy released during matrix failure events. However, recently, Sheikh and Mahesh
(2018) have pointed out in the context of hybrid composites that although matrix
failure releases little energy, it changes the pattern of load redistribution in the
composite, and thereby alters the sequence of further fibre breakage. The latter
has a large effect on the fracture energy. A major objective of the present work is
to propose a model that accounts for matrix failure.

The objectives of the present work are: (i) To propose a linear, fully periodic,
three-dimensional shear-lag model that accounts for fibre breakage, and matrix
failure in the form of matrix splitting or interfacial debonding (Sec. 2); (ii) to de-
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Fig. 1: A rhombus-shaped periodic patch of ν × ν fibers arranged in a hexagonal
lattice. The m–n coordinate system is also shown.

termine the influence of fibre breaks, and matrix failures, and to incorporate these
influences in an influence superposition technique (Sec. 3), and (iii) to propose
a fast Fourier transform-based O(N log N) algorithm for influence superposition
(Sec. 3). The fast algorithm exploits the linearity, and periodicity of the influence
fields. Fracture simulations incorporating the fast algorithm are briefly described
in Sec. 4, including a novel algorithm to detect specimen fracture. The computa-
tional speed-up offered by the present eigensolution-based approach is quantified
in Sec. 5, and the nature of load redistribution from broken fibres to intact ones in
the presence of matrix failure is analysed. Also, sample fracture simulations with
and without matrix failure are presented. These simulations elucidate the role of
matrix failure on fracture development.

2 Shear-lag model

2.1 Periodic patch and governing equations

The transverse cross-section of the model composite is assumed rhombus-shaped,
as shown in Fig. 1, following Mahesh et al (2002). Two edges of the rhombus define
the m, and n coordinate axes. Fibres are identified by their (m, n) coordinates.
Following Landis et al (2000), the following periodicity conditions are imposed:
fibers (0, n) and (ν−1, n) (the left and right edges of the patch) are assumed adjacent
for all n ∈ {0, 1, . . . , ν−1}. Similarly, fibers at the top (n = ν−1) and bottom (n = 0)
edges are also considered adjacent. On account of periodicity, only fibre indices
modulo ν are significant. For indices m, and n, these are defined as

[m] :=m − ν ⌊m/ν⌋ , and
[n] :=n − ν ⌊n/ν⌋ ,

(1)
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where ⌊·⌋ denotes the largest integer no greater than its argument. Here, and
elsewhere, := indicates a definition.

Hedgepeth and Van Dyke (1967) proposed a model for the load distribution
in a fibre composite assuming that the fibres are only loaded in tension and the
matrix only in shear. Let

Nmn = {([m + 1], n), (m, [n + 1]), ([m − 1], [n + 1]), ([m − 1], n), (m, [n − 1]), ([m + 1], [n − 1])}
(2)

denote the set of six immediate neighbours of fibre (m, n). Assuming each fibre (m, n)
to receive shear only from the matrix bays connecting it to its six neighbours, they
expressed its equilibrium equation along the fibre-wise, or z-direction, in terms of
its displacement fields vmn(z) as:

E A
d2

vmn

dz2
(z) + Gw

d

∑

(m′,n′)∈Nmn

(vm′n′(z) − vmn(z)) = 0. (3)

Here, E A represents the extensional rigidity of a fibre, G the shear modulus of
the matrix, d the fibre diameter, and w the inter-fibre spacing. The factor Gw/d
represents the shear flow in the fibre per unit matrix shear strain. Eq. (3) can
alternately be expressed as:

E A
d2

vmn

dz2
(z) + Gw

d

ν−1∑

p=0

ν−1∑

q=0

Amnpqvpq(z) = 0, (4)

for m, n ∈ {0, 1, . . . , ν − 1}. The interaction between the nearest neighbour fibres is
captured through the matrix

Amnpq =




−6, if p = m, and q = n,

1, if p = [m ± 1], and q = n,

1, if p = m, and q = [n ± 1],
1, if p = [m ± 1], and q = [n ∓ 1],
0, otherwise.

(5)

The Amnpq matrix is translation invariant (Hedgepeth and Van Dyke 1967; Gupta
et al 2017), i.e.,

Amnpq = A[m−p],[n−q],00, (6)

on account of the periodicity of the composite patch.
Hedgepeth and Van Dyke (1967) eliminated the material and geometric con-

stants appearing in Eq. (4) by defining the non-dimensional axial position ζ as:

ζ := z

√
Gw

E Ad
, (7)

and the non-dimensional displacement umn as

umn := vmn

√
E AGw

dP2
. (8)

Here, P denotes the average load per fibre. The appearance of P in the denominator
of the right side in Eq. (8) indicates that the non-dimensional displacement, umn(z),
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corresponds to unit average load per fibre. In terms of ζ , and umn(ζ), Eq. (4)
becomes

d2umn

dζ2
(ζ) +

ν−1∑

p=0

ν−1∑

q=0

Amnpqupq(ζ) = 0. (9)

Presently, the average load per fibre is assigned a value of unity, i.e.,

1

ν2

ν−1∑

m=0

ν−1∑

n=0

dumn

dζ
(ζ) = 1, for all ζ . (10)

Following Beyerlein et al (1996), the auxiliary displacement field, ũmn(ζ) is
defined as

ũmn(ζ) = umn(ζ) − ζ . (11)

Expressed in terms of ũmn, Eqs. (9), and (10) become:

d2ũmn

dζ2
(ζ) +

ν−1∑

p=0

ν−1∑

q=0

Amnpq ũpq(ζ) = 0, (12)

and

1

ν2

ν−1∑

m=0

ν−1∑

n=0

dũmn

dζ
(ζ) = 0, for all ζ . (13)

The model composite patch is assumed to extend over [−L, L] along the fibre
direction and to be periodic across the boundaries ζ = ±L, i.e., fibre and matrix
elements at ζ = limε→0 L − ε, and ζ = limε→0 −L + ε are assumed adjacent. This
requires that any fibre break at ζ = L, is matched by another in the same fibre at
ζ = −L, and that if there is no fibre break in fibre (m, n) at ζ = ±L, the normalised
auxiliary displacement ũmn obeys (Mahesh and Phoenix 2004)

ũmn(ζ = −L) = ũmn(ζ = L) + S, (14)

where S is independent of m and n. It also requires that the normalised auxiliary
traction,

σ̃mn :=
dũmn

dζ
(15)

is continuous across the periodic boundary:

σ̃mn(ζ = −L) = σ̃mn(ζ = L), (16)

for all fibres (m, n) unbroken at ζ = ±L.
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Fig. 2: Longitudinal section along the n = 0 plane showing the discretisation along
the fibre direction. The composite patch is divided into 2K blocks. Each block in
turn is divided into P − 1 segments by P Chebyshev points.

2.2 Discretisation of the composite patch

The domain of the periodic composite patch of length 2L is discretised into 2K
‘blocks’ of equal length, ∆ = L/K, indexed as k = 0, k = 1, . . ., k = 2K −1, as shown
in Fig. 2. Periodicity implies that blocks k = 0 and k = 2K − 1 abut each other.
Paralleling Eq. (1), the periodic index of block k is denoted [k], and defined as

[k] := k − 2K

⌊
k
2K

⌋
, (17)
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so that the neighbours of block k can be expressed simply as [k − 1], and [k + 1].
The block boundary between blocks [k−1] and [k] is located at ζ = −L+k∆, for

k ∈ {0, 1, 2, . . . , 2K − 1}. The triplet (m, n, k) identifies a point in the fibre (m, n) that
is located at ζ = −L + k∆. Field variables associated with this point are identified
by the subscript mnk, e.g.,

ũmnk := ũmn(ζ = −L + k∆), and σ̃mnk := σ̃mn(ζ = −L + k∆). (18)

To identify matrix bays, a more elaborate convention is required. Consider
the matrix bay in block k, between neighbouring fibres (m, n) and (m1, n1) ∈ Nmn,
defined in Eq. (2). Index i is set such that

i :=




0, if (m1, n1) = ([m + 1], n),
1, if (m1, n1) = (m, [n + 1]),
2, if (m1, n1) = ([m − 1], [n + 1]), and
undefined, otherwise.

(19)

To avoid double identifying a matrix bay, i is defined only for half of the (m1, n1) ∈
Nmn. The quadruplet (m, n, k, i) uniquely identifies the matrix bay in block k orig-
inating from (m, n). All the matrix bays can be identified in this manner, which
implies that there are thrice as many matrix bays as fibres in the model patch.

Field variables associated with the matrix bay (m, n, k, i) are indicated using sub-
scripts mnki, e.g., τ̃mnki(ζ), is the normalised shear stress in matrix bay (m, n, k, i),
defined later in Eq. (52).

2.3 Fibre breaks, and matrix failure

Damage in the model composite can take the form of fibre breaks and matrix
failures. Fibre breaks are restricted to the boundaries of blocks, while matrix
failures are required to span the length of one or more blocks, i.e., extend over
ζ ∈ (−L+ [k]∆,−L+ [k ′]∆), for some integers k and k ′, [k] < [k ′]. These assumptions
are not restrictive because the ideal case of arbitrarily located breaks, and matrix
failures is approached by letting ∆ ↓ 0.

Let there be B fibre breaks, located at (mb, nb, kb), b ∈ {1, 2, . . . , B}. The condi-
tion of zero traction at fibre break located at (mb, nb, kb) is

dumbnbkb

dζ
= 0, (20)

or, in terms of the auxiliary displacement ũmn of Eq. (11),

dũmbnbkb

dζ
= −1. (21)

Let there be F matrix failures, located at (m f , n f , k f , i f ), for f ∈ {1, 2, . . . , F}. The
model matrix bay (m f , n f , k f , i f ) is said to be failed if it does not transmit shear
between the two fibres flanking it over the axial extent of block k f . Debonding
of either or both fibre-matrix interfaces flanking the matrix bay (Hull and Clyne
1996), or matrix splitting (Wolla and Goree 1987) are two ways to physically realise
matrix failure, as defined. The present definition, however, does not encompass
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matrix cracking transverse to the fibre direction, as in ceramic matrix composites
(Evans and Zok 1994).

Matrix failures will alter the governing equations of the flanking fibres. Let
Imnk ⊆ Nmn be the set of neighbours of fibre (m, n), such that the matrix bays be-
tween (m, n) and the elements of Imnk are intact in block k. In the absence of matrix
failures, Imnk = Nmn. In the presence of matrix failures, the governing equations,
Eq. (3), expressed in terms of the non-dimensional auxiliary displacement fields,
ũmn(ζ) become:

d2ũmn

dζ2
(ζ) +

∑

(m′,n′) ∈ Imnk

(ũm′n′(ζ) − ũmn(ζ)) = 0, (22)

in block k. A fibre-interaction matrix, A′
mnpq(k), constant over each block, and

encapsulating the information about all the failed matrix bays can be derived
from Eq. (22) for each block k (Sheikh and Mahesh 2018).

Fig. 3 schematically shows the n = 0 longitudinal section of a composite with
2 fibre breaks and 26 failed matrix bays. For an arbitrary configuration of fibre
breaks and matrix failures, it is required to solve the governing equations, Eq. (22),
subject to traction free boundary conditions at breaks, Eq. (21) and imposed unit
loading, Eq. (13) for the unknown auxiliary displacement fields, ũmn.

A solution methodology for this problem based on eigenvector expansion was
proposed by Sheikh and Mahesh (2018). In this method, ũmn within each block
is obtained using the eigenvalues and eigenvectors of the A′

mnpq(k) matrices, to-
gether with conditions demanding continuity of displacements and tractions be-
tween blocks. However, the eigenvector expansion method is associated with a large
asymptotic computational cost of O(ν6) floating point operations. This severely
limits the number of fibres and volume of the model composite. The objective of
the present work is to propose a computationally much lighter solution method-
ology, which exploits the structure of the Amnpq matrix, and the computational
efficiency of the fast Fourier transform.

3 Computationally efficient solution

The present computationally efficient solution algorithm obtains ũmn(ζ) by su-
perposing the elastostatic states corresponding to two unit problems. The two
unit problems can be solved, and their solutions superposed efficiently using the
fast Fourier transform. An important feature of the present approach, which dis-
tinguishes it from that of Sheikh and Mahesh (2018), is that matrix failure is
accounted for, not by writing a separate Amnpq(k) for each block k, but by treating
the matrix as intact throughout and canceling out the shears that the failed matrix
bays apply on their flanking fibres. This is done by applying equal and opposite
forces on the flanking fibres externally. The determination of these forces is the
most computationally challenging aspect. Mathematically, the latter problem has
the structure of a saddle point problem (Benzi et al 2005).
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Fig. 3: Longitudinal section along the n = 0 plane schematically showing a model
composite patch with fibre breaks (thick horizontal line segments), and failed ma-
trix bays (hatched regions). Although the model allows matrix failure in three-
dimensions, for clarity, the damaged state is depicted in one longitudinal plane
only.

3.1 Governing equations in Fourier space

The two-dimensional discrete Fourier transform (DFT) of ũmn(ζ) is defined as
(Briggs and Henson 1995)

Ũrs(ζ) :=
1

ν2

ν−1∑

m=0

ν−1∑

n=0

ũmn(ζ) exp
(
−2πιmr

ν

)
exp

(
−2πιns

ν

)
, (23)



Fast analysis of composites with fibre breaks and matrix failure 11

where ι =
√
−1. The inverse transform is then

ũmn(ζ) =
ν−1∑

r=0

ν−1∑

s=0

Ũrs(ζ) exp
(
2πιmr
ν

)
exp

(
2πιns
ν

)
, (24)

for j, k ∈ {0, 1, . . . , ν − 1}. Gupta et al (2017) have shown that applying Eqs. (23)
and (24) to Eq. (12), and utilising the key property given by Eq. (6) yields the
governing equation in Fourier space:

d2Ũjk

dζ2
(ζ) +

ν−1∑

r=0

ν−1∑

s=0

DjkrsŨrs(ζ) = 0, (25)

for j, k ∈ {0, 1, . . . , ν − 1}, where,

Djkrs =

{∑ν−1
m=0

∑ν−1
n=0 Amn00 exp

(
−2πιrm

ν

)
exp

(
−2πιsn

ν

)
, if j = r, and k = s,

0, otherwise.
(26)

In the terminology of Rezghi and Elden (2011), Djkrs is diagonal in the modes
(1, 3), and (2, 4). The diagonal entries of −Djkrs are denoted

δrs := −Drsrs . (27)

This permits rewriting Eq. (25) as:

d2Ũrs

dζ2
(ζ) − δrsŨrs(ζ) = 0, (28)

for r, s ∈ {0, 1, . . . , ν }. Eq. (28) represents the uncoupled form of the system of
ordinary differential equations, Eq. (25), which can be solved in closed form:

Ũrs(ζ) =
{

crsζ + drs, if δrs = 0, and

crs exp(−
√
δrsζ) + drs exp(

√
δrsζ), if δrs , 0.

(29)

For the Amnpq given by Eq. (5), there is exactly one δrs, which is zero. Without
loss of generality, this mode is assigned the indices, r = s = 0, i.e., δ00 = 0. Also, for
all r, s ∈ {1, 2, . . . , ν−1}, δrs > 0, so that the arguments of the exponential functions
in Eq. (29) are real (Gupta et al 2017).

Ũrs(ζ) must satisfy the condition of zero nett normal traction in any transverse
section, as demanded by Eq. (13). Substituting Eq. (24) into Eq. (13) gives:

1

ν2

ν−1∑

m=0

ν−1∑

n=0

ν−1∑

r=0

ν−1∑

s=0

dŨrs

dζ
(ζ) exp

(
2πιmr
ν

)
exp

(
2πιns
ν

)
= 0, for all ζ ∈ (−L, L). (30)

Switching the order of summation and rearranging yields:

1

ν2

ν−1∑

r=0

ν−1∑

s=0

dŨrs

dζ
(ζ)

ν−1∑

m=0

ν−1∑

n=0

exp

(
2πιmr
ν

)
exp

(
2πιns
ν

)
= 0, for all ζ ∈ (−L, L). (31)

Now,
ν−1∑

m=0

ν−1∑

n=0

exp

(
2πιmr
ν

)
exp

(
2πιns
ν

)
=

{
0, if r , 0 or s , 0,

ν2, if r = s = 0.
(32)
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Eqs. (31), and (32) together imply that dŨ00/dζ = 0. In other words, crs = 0 if
r = s = 0, and Eq. (29), becomes:

Ũrs(ζ) =
{

drs, if r = s = 0, and

crs exp(−
√
δrsζ) + drs exp(

√
δrsζ), if r , 0, or s , 0.

(33)

The Fourier transform of the normalised tractions is then readily obtained by
differentiating Eq. (33) as:

dŨrs

dζ
(ζ) =

{
0, if r = s = 0, and

−crs
√
δrs exp(−

√
δrsζ) + drs

√
δrs exp(

√
δrsζ), if r , 0, or s , 0.

(34)

3.2 Fibre breaks

3.2.1 Single fibre break

The problem of a single fibre break subject to unit opening displacement was
originally formulated and solved by Hedgepeth (1961). A computationally faster
solution, based on the fast Fourier transform (FFT) was proposed by Gupta et al
(2017). The latter solution assumed an infinitely long simulation cell along the fibre
direction. The present solution follows that of Gupta et al (2017), but additionally
accounts for the periodicity of the composite patch in the fibre direction, ζ . The
treatment of shear stresses due to fibre breaks is also developed here for the first
time.

Consider a finite patch extending in the fibre direction over ζ ∈ [−L, L], as
shown in Fig. 4. Let the fibre (m, n) = (0, 0) be broken at ζ = 0. The composite is
divided into two blocks. Block A extends over ζ ∈ [−L, 0), while block B extends

over ζ ∈ (0, L]. Let ũ(A)mn(ζ) and ũ(B)mn(ζ) denote the auxiliary displacement fields in
blocks A and B, respectively. Following Hedgepeth and Van Dyke (1967), let the
broken fibre be given a unit opening displacement, i.e.,

ũ(A)
00

(ζ = 0) = −ũ(B)
00

(ζ = 0) = −1. (35)

Symmetry across the ζ = 0 plane dictates that

ũ(A)mn(ζ = 0) = ũ(B)mn(ζ = 0) = 0, for (m, n) , (0, 0). (36)

Also, continuity of fibre displacement across the periodic boundary ζ = ±L, Eq. (14),
requires:

ũ(A)mn(ζ = −L) = ũ(B)mn(ζ = L) + S, (37)

where S is independent of m, and n (Mahesh and Phoenix 2004), and traction
continuity across the ζ = ±L boundary, Eq. (16), requires:

dũ(A)mn

dζ
(ζ = −L) = dũ(B)mn

dζ
(ζ = L). (38)

Let the Fourier transforms of ũ(A)mn, and ũ(B)mn, given by Eq. (23), be Ũ(A)
rs (ζ), and

Ũ(B)
rs , respectively. Substituting Eqs. (35) and (36) into Eq. (23) yields:

−Ũ(A)
rs (ζ = 0) = Ũ(B)

rs (ζ = 0) = − 1

ν2
, (39)
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ζ = 0

ζ = +L

ζ = −L

(m, n) = (0, 0) (m, n) = (1, 0) (m, n) = (2, 0) (m, n) = (3, 0) (m, n) = (ν − 1, 0)

b
lo
ck

A
b
lo
ck

B

. . .

. . .

1

1

Fig. 4: Longitudinal section along the n = 0 plane showing the unit loaded single
break.

for r, s ∈ {0, 1, . . . , ν − 1}. Similarly, Fourier transforming Eq. (37) gives

Ũ(A)
rs (ζ = −L) = Ũ(B)

rs (ζ = L) + S

ν2

ν−1∑

m=0

exp

(
−2πιmr

ν

) ν−1∑

n=0

exp

(
−2πιns

ν

)

=

{
Ũ(B)
rs (ζ = L) + S, if (r, s) = (0, 0),

Ũ(B)
rs (ζ = L), for other (r, s).

(40)
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The second line of Eq. (40) is obtained using

ν−1∑

m=0

ν−1∑

n=0

exp

(
−2πιmr

ν

)
exp

(
−2πιns

ν

)
=

{
0, if r , 0 or s , 0,

ν2, if r = s = 0.
(41)

The Fourier transform of Eq. (38) is simply:

dŨ(A)
rs

dζ
(ζ = −L) = dŨ(B)

rs

dζ
(ζ = L). (42)

Following Eq. (33), let the Fourier transformed displacements in the two blocks
be:

Ũ(A)
rs (ζ) =

{
d(A)
rs , if (r, s) = (0, 0),

c(A)rs exp(−
√
δrsζ) + d(A)

rs exp(
√
δrsζ), if (r, s) , (0, 0),

Ũ(B)
rs (ζ) =

{
d(B)
rs , if (r, s) = (0, 0),

c(B)rs exp(−
√
δrsζ) + d(B)

rs exp(
√
δrsζ), if (r, s) , (0, 0).

(43)

Substituting Eq. (43) into Eqs. (39), (40), and (42) yields:

d(A)
rs = −d(B)

rs = − 1

ν2
, if (r, s) = (0, 0), and

c(A)rs + d(A)
rs = −c(B)rs − d(B)

rs =
1

ν2
, if (r, s) , (0, 0);

(44)

d(A)
rs = d(B)

rs + S, if (r, s) = (0, 0),

c(A)rs exp
(√
δrsL

)
+ d(A)

rs exp
(
−
√
δrsL

)
= c(B)rs exp

(
−
√
δrsL

)
+ d(B)

rs exp
(√
δrsL

)
, if (r, s) , (0, 0);

(45)

and

−c(A)rs exp
(√
δrsL

)
+ d(A)

rs exp
(
−
√
δrsL

)
= −c(B)rs exp

(
−
√
δrsL

)
+ d(B)

rs exp
(√
δrsL

)
, if (r, s) , (0, 0),
(46)

respectively. These equations together imply that

S = −2/ν2, (47)

d(A)
rs = −1/ν2, and d(B)

rs = 1/ν2, (48)

if (r, s) = (0, 0), and

d(A)
rs = −c(B)rs =

exp
(√
δrsL

)

2ν2 sinh
(√
δrsL

) ,

d(B)
rs = −c(A)rs =

exp
(
−
√
δrsL

)

2ν2 sinh
(√
δrsL

) ,

(49)

if (r, s) , (0, 0). Substituting Eqs. (48) and (49) into Eq. (34), and performing the
inverse transform, Eq. (24), for each ζ ∈ {−L + k∆, k ∈ {0, 1, . . . , 2K − 1}} gives
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the normalised tractions at all the block boundaries. The associated asymptotic
computational effort of this computation is O(ν2 log ν) (Briggs and Henson 1995).
The ũmn so obtained will obey unit opening displacement at the break, following
Eq. (35). Let ψ denote the normalised tractions at the two free boundaries at the
break:

ψ :=
dũ(A)

00

dζ
(ζ = 0) =

dũ(B)
00

dζ
(ζ = 0). (50)

In the sequel, the solution corresponding to unit normalised compressive trac-
tions at the break,

dũ(A)
00

dζ
(ζ = 0) =

dũ(B)
00

dζ
(ζ = 0) = −1, (51)

will be needed. Exploiting the linearity of the present problem, the corresponding
solution is obtained by scaling c(A)rs , d(A)

rs , c(B)rs , and d(B)
rs , obtained in Eqs. (48) and

(49) by −1/ψ. The normalised tractions developed in fibre (m, n) at the boundary
between blocks k and [k − 1] due to applied unit compressive tractions, Eq. (51),
is denoted σ̃f

mnk
.

3.2.2 Shear tractions, and Chebyshev interpolation

The single fibre break of Sec. 3.2.1 at (m′, n′, k ′) = (0, 0,K) also induces shear
tractions in all the matrix elements. Let the normalised shear tractions in the
matrix bay (m, n, k, i) be denoted τ̃f

mnki
(ζ), defined following Eq. (19) as:

τ̃fmnki(ζ) :=



ũ[m+1],n(ζ) − ũmn(ζ), if i = 0,

ũm,[n+1](ζ) − ũmn(ζ), if i = 1, and

ũ[m−1],[n+1](ζ) − ũmn(ζ), if i = 2,

(52)

for ζ ∈ (−L + k∆,−L + [k + 1]∆). The functions τ̃mnki(ζ) are presently approximated
by Chebyshev polynomials (Mason and Handscomb 2002).

The Chebyshev polynomials of the first kind are defined recursively over ζ̂ ∈
[−1, 1] as T0(ζ̂) := 1, T1(ζ̂) := ζ̂ , and

Tp+1(ζ̂) := 2ζ̂Tp(ζ̂ ) − Tp−1(ζ̂), (53)

for p ∈ {1, 2, . . .} (Mason and Handscomb 2002). A linear transformation from
ζ̂ ∈ [−1, 1] to the domain of the k-th block, ζ ∈ [−L + k∆,−L + [k + 1]∆], is:

ζ̂ :=
2

∆
ζ +

2L − (2k + 1)∆
∆

. (54)

Over the domain of the k-th block, the shear tractions τ̃f
mnki

(ζ) can be approxi-
mated by the first P Chebyshev polynomials as:

τ̃fmnki(ζ) ≈
P−1∑

p=0

ãfmnk (i, p) Tp

(
2

∆
ζ +

2L − (2k + 1)∆
∆

)
. (55)

By virtue of Eq. (55), the Chebyshev coefficients ãf
mnk

(i, p), with i ∈ {0, 1, 2}, and
p ∈ {0, 1, . . . , P − 1} characterise the normalised shear tractions in the matrix bays.
Approximating the shear tractions using Chebyshev polynomials is superior to the
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simpler approximation with the monomial basis, {1, ζ̂, ζ̂2, . . . , ζ̂P−1} (Beyerlein and
Phoenix 1996), because the latter is ill-conditioned, and suffers from an instability
termed the Runge phenomenon (Mason and Handscomb 2002). A second advan-
tage of the approximation, Eq. (55), is that it converges rapidly (Trefethen 2013).
The third, and the most important advantage, associated with the approxima-
tion, Eq. (55), is that it can be inverted efficiently. The coefficients ãf

mnk
(i, p) can

be computed using the discrete cosine transform (Mason and Handscomb 2002,
Sec. 6.3.3) of τ̃f

mnki
(ζp,k ), where ζp,k are the P Chebyshev points in the k-th block:

ζp,k := −L +

(
[k] + 1

2

)
∆ +
∆

2
cos

{ pπ
P − 1

}
, (56)

for p ∈ {0, 1, . . . , P − 1}. The P = 6 Chebyshev points in block k = 2 are shown in
Fig. 2. Using the discrete cosine transform, the P coefficients ãf

mnk
(i, p), in all the

blocks and fibres, can be obtained using an O(Kν2P log P) computation, which is
linear in the number of elements.

For each ζp,k , substituting Eqs. (48) and (49) into Eq. (33), and performing
the inverse transform using Eq. (24), yields the auxiliary displacements ũm′n′(ζp,k )
in all the fibres due to the break at (m, n, k) = (0, 0,K). Substituting ũm′n′(ζp,k )
into Eq. (52) gives τ̃f

mnki
(ζp,k ). The Chebyshev coefficients, af

mnk
(i, p) of Eq. (55),

can then be obtained using the discrete cosine transform (Mason and Handscomb
2002, Sec. 6.3.3).

3.2.3 Normal tractions due to multiple fibre breaks

The influence, λf
mnk;m′n′k′ , of the fibre break located at arbitrary (m′, n′, k ′) at arbi-

trary (m, n, k), is defined as the normal traction induced at (m, n, k) by an isolated
break at (m′, n′, k ′). Here, and elsewhere, unprimed and primed indices of the in-
fluence matrix are used to the indicate the influenced, and influencing locations,
respectively. It is clear from Sec. 3.2.1 that

λfmnk;00K = σ̃
f
mnk . (57)

Periodicity of the patch implies that λf
m′n′k′;mnk

is translation invariant, i.e., it
satisfies

λfmnk;m′n′k′ = λ
f
[m−m′][n−n′][k−k′];000. (58)

Together, Eqs. (57), and (58) completely specify λf
mnk;m′n′k′ .

It is recalled from Sec. 2.3 that B fibre breaks are located at (mb, nb, kb), for
b ∈ {1, 2, . . . , B}. Let equal and opposite tractions, wf

mbnbkb
be applied to the free

surfaces of fibre break b by an external agency. Positive applied tractions wf
mbnbkb

are assumed to be compressive, for consistency with Eq. (51), and so that a pos-
itive w

f
mbnbkb

will cause opening displacements at the fibre break. It will prove

convenient to associate a w
f
m′n′k′ with all (m′, n′, k ′) locations, not only those with

a fibre break, and to define it to be zero wherever fibres are not broken, i.e.,

w
f
m′n′k′

{
:= w

f
mbnbkb

, if (m′, n′, k ′) = (mb, nb, kb), for some b, and

:≡ 0, if (m′, n′, k ′) , (mb, nb .kb), for any b ∈ {1, 2, . . . , B}.
(59)
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The normalised traction at (m, n, k), due to all the breaks is denoted σ̄f
mnk

, and is
given by

σ̄f
mnk :=

B∑

b=1

λfmnk;mbnbkb
w
f
mbnbkb

.

=

ν−1∑

m′
=0

ν−1∑

n′=0

2K−1∑

k′=0

λfmnk;m′n′k′w
f
m′n′k′ .

(60)

The first expression sums only over the fibre breaks. Calculating the stress state
at all (m, n, k) using this expression entails a computational cost of O(2Kν2B). The
second expression sums of over all the grid locations, whether or not they contain
a fibre break. The locations lacking a fibre break do not contribute because of
Eq. (59). The second expression requires 2Kν2 multiplications and additions per
(m, n, k); for all (m, n, k), the computational expense entailed is (2Kν2)2. If B ≪
2Kν2, i.e., the fibres are sparsely broken, the first expression is much more efficient.
However, if B and 2Kν2 are comparable, there is not much computational gain in
using the first expression.

An alternate computationally efficient approach, following Gupta et al (2018),
to calculate the normalised tractions at all (m, n, k) exists. This hinges on the
observation, based on Eq. (58), that λf

mnk;m′n′k′ is block circulant in the modes

(1, 4), (2, 5), and (3, 6), following the terminology of Rezghi and Elden (2011). It can
therefore be diagonalised using the three-dimensional Fourier transform (Briggs
and Henson 1995). The diagonal elements are:

Λ
f
rst :=

1

2Kν2

ν−1∑

m=0

ν−1∑

n=0

2K−1∑

k=0

λfmnk;000 exp

(
−2πιrm

ν

)
exp

(
−2πιsn

ν

)
exp

(
−2πιtk

2K

)
,

(61)
for r, s ∈ {0, 1, . . . , ν − 1}, and t ∈ {0, 1, . . . , 2K − 1}.

Consider the discrete Fourier transform of wf
m′n′k′ :

W f
rst :=

1

2Kν2

ν−1∑

m′
=0

ν−1∑

n′=0

2K−1∑

k′=0

w
f
m′n′k′ exp

(
−2πιrm′

ν

)
exp

(
−2πιsn′

ν

)
exp

(
−2πιtk ′

2K

)
.

(62)
W f

rst represents the components of w
f
m′n′k′ in the eigenspace of λf

mnk;m′n′k′ . The

diagonal structure of λf
mnk;m′n′k′ in its eigenspace is exploited to simplify the com-

putation of Eq. (60). Let Σ̃rst be the three-dimensional discrete Fourier transform
of σ̃mnk . Then,

Σ̃rst = Λ
f
rstW

f
rst . (63)

Inverting Σ̃rst through Eq. (24) into real space, formally represented as

σ̄f
mnk =

ν−1∑

r=0

ν−1∑

s=0

2K−1∑

t=0

Λ
f
rstW

f
rst exp

(
2πιrm
ν

)
exp

(
2πιsn
ν

)
exp

(
2πιtk
2K

)
, (64)

yields the normalised tractions in physical space.
For a given w

f
m′n′k′ , the calculation of W f

rst through Eq. (62) entails a com-
putational cost of O(2Kν2 log(2Kν2)) (Briggs and Henson 1995); the products of
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Eq. (63) 2Kν2 multiplications, and the Fourier inversion of Eq. (64) a further cost
of O(2Kν2 log(2Kν2)) (Briggs and Henson 1995). This implies that the overall com-
putational effort of obtaining the normalised tractions is O(2Kν2 log(2Kν2)), much
smaller than the cost of directly evaluating Eq. (60), except when B is very small.

3.2.4 Shear tractions due to multiple fibre breaks

The shear traction, τ̃mnki(ζ), for ζ ∈ (−L + k∆,−L + [k + 1]∆), induced by the single
fibre break of Sec. 3.2.1 at (m′, n′, k ′) = (0, 0,K) in all the matrix bays is char-
acterised by the Chebyshev coefficients, amnk (i, p), as detailed in Sec. 3.2.2. 3P
influence matrices, corresponding to i ∈ {0, 1, 2}, and p ∈ {0, 1, . . . , P − 1} are re-
quired to specify the influence of fibre breaks on matrix bays. The (i, p)-th influence
matrix, µf

mnk;m′n′k′(i, p), is defined as the p-th Chebyshev coefficient of the shear

traction induced in the matrix bay (m, n, k, i) due to a break located at (m′, n′, k ′).
The fibre break of Sec. 3.2.1 is located at (m, n, k) = (0, 0,K). From Sec. 3.2.2,

µfmnk;00K (i, p) = afmnk (i, p). (65)

On account of periodicity in the model patch, µf
mnk;m′n′k′ is also block circulant in

the modes (1, 4), (2, 5), and (3, 6):

µfmnk;m′n′k′(i, p) = µf[m−m′][n−n′][k−k′];000(i, p), (66)

paralleling Eq. (58). Eqs. (65) and (66) together specify all the elements of the
influence matrices, µf

mnk;m′n′k′(i, p). The p-th Chebyshev coefficient of the shear

stress induced in the mnki-th matrix bay can be expressed in analogy with Eq. (60)
as:

āfmnk (i, p) :=
B∑

b=1

µfmnk;mbnbkb
(i, p) wf

mbnbkb
.

=

ν−1∑

m′
=0

ν−1∑

n′=0

2K−1∑

k′=0

µfmnk;m′n′k′(i, p) wf
m′n′k′ .

(67)

Performing the calculations in Fourier space is much more efficient, as noted in
Sec. 3.2.3. Accordingly, let Mf

rst (i, p) denote the three dimensional Fourier trans-
form

Mf
rst (i, p) := 1

2Kν2

ν−1∑

m=0

ν−1∑

n=0

2K−1∑

k=0

µfmnk;000(i, p) exp
(
−2πιrm

ν

)
exp

(
−2πιsn

ν

)
exp

(
−2πιtk

2K

)
,

(68)
for r, s ∈ {0, 1, . . . , ν−1}, and t ∈ {0, 1, . . . , 2K −1}. As defined in Eqs. (59) and (62),
w
f
m′n′k′ and W f

rst represent the weights of the fibre breaks, and its Fourier trans-

form, respectively. Let āf
mnk

(i, p) denote the p-th Chebyshev coefficient of the shear
traction induced in the matrix bay (m, n, k, i) by all the fibre breaks in the com-
posite patch. The development spanning Eqs. (60)–(64) concerning the calculation
of the normalised tractions in the fibres due to an arbitrary collection of breaks
carries over to the present case too. The counterpart of Eq. (64) is:

āfmnk (i, p) =
ν−1∑

r=0

ν−1∑

s=0

2K−1∑

t=0

Mf
rst (i, p)W f

rst exp

(
2πιrm
ν

)
exp

(
2πιsn
ν

)
exp

(
2πιtk
2K

)
. (69)
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The shear traction in the matrix bay (m, n, k, i) due to all the fibre breaks, denoted
τ̄f
mnki

(ζ), can then be obtained by substituting Eq. (69) into Eq. (55):

τ̄fmnki(ζ) ≈
P−1∑

p=0

āfmnk (i, p) Tp

(
2

∆
ζ +

2L − (2k + 1)∆
∆

)
. (70)

3.3 Matrix failure

Just like fibre breaks, matrix failure can also induce normal tractions in the fibres,
and shear tractions in the matrix bays. However, in the absence of fibre breaks,
the matrix does not experience shear loading. In other words, an isolated matrix
failure has no influence on the elastostatic fields in the fibres. For this reason, in the
present treatment, the problem of equal and opposite distributed forces applied to
neighbouring fibres in an undamaged composite patch is considered. In Sec. 3.4,
the solution to this problem will be used to cancel out the shear tractions exerted
by failed matrix bays in the flanking fibres, and thereby mimic the mechanical
effect of matrix failure.

3.3.1 Point force pair

Suppose all the fibres and matrix bays in the periodic composite patch are intact.
Let normalised forces ±1 be applied at ζ = 0 in fibre (m, n) = (m1, n1), and (m, n) =
(m2, n2), respectively. The domain of the composite is the same as in Sec. 3.2.1.
The domain is divided into two blocks, now named (C) and (D). Fig. 5 shows a
longitudinal section of such a composite for the case that (m1, n1) = (0, 0), and
(m2, n2) = (1, 0). The imposition of the forces ±1 at ζ = 0 in fibres (m, n) = (m1, n1),
and (m, n) = (m2, n2), implies

dũ(C)
mn

dζ
(ζ = 0) =




dũ
(D)
mn

dζ
(ζ = 0) − 1, if (m, n) = (m1, n1),

dũ
(D)
mn

dζ
(ζ = 0) + 1, if (m, n) = (m2, n2), and

dũ
(D)
mn

dζ
(ζ = 0), otherwise.

(71)

Also, displacements must be continuous across the block interface at ζ = 0:

ũ(C)
mn(ζ = 0) = ũ(D)

mn (ζ = 0). (72)

Substituting Eq. (71) into Eq. (23) yields:

dŨ(C)
rs

dζ
(ζ = 0) = dŨ(D)

rs

dζ
(ζ = 0)− 1

ν2

{
exp

(
−2πιm1r

ν

)
exp

(
−2πιn1s

ν

)
− exp

(
−2πιm2r

ν

)
exp

(
−2πιn2s

ν

)}
,

(73)
for all r, s ∈ {0, 1, . . . , ν − 1}, while Eq. (72) transforms to

Ũ(C)
rs (ζ = 0) = Ũ(D)

rs (ζ = 0). (74)

Substituting Eq. (43) into Eq. (74) yields:

d(C)
rs = d(D)

rs , if (r, s) = (0, 0),

c(C)
rs + d(C)

rs = c(C)
rs + d(D)

rs , if (r, s) , (0, 0).
(75)
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ζ = 0

ζ = +L

ζ = −L

(m, n) = (0, 0) (m, n) = (1, 0) (m, n) = (2, 0) (m, n) = (3, 0) (m, n) = (ν − 1, 0)

. . .

. . .

1

1

b
lo
ck

C
b
lo
ck

D

Fig. 5: Longitudinal section along the n = 0 plane showing the forces exerted on a
pair of neighbouring fibres, to shear the in-between matrix bay.

Similarly, substituting Eq. (43) into Eq. (71) yields:

−c(C)
rs + d(C)

rs = −c(D)
rs + d(D)

rs − 1

ν2
√
δrs

{
exp

(
−2πιm1r

ν

)
exp

(
−2πιn1s

ν

)
− exp

(
−2πιm2r

ν

)
exp

(
−2πιn2s

ν

)}
,

(76)

for (r, s) , (0, 0). Equations (45) and (46), which represent the continuity of dis-
placements and strains at the periodic boundary ζ = ±L are also valid presently.
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These equations together imply that s = 0,

d(C)
rs = d(D)

rs = 0, (77)

if (r, s) = (0, 0), and

c(C)
rs = d(D)

rs =
1

4ν2
√
δrs

exp
(√
δrsL

)

sinh
(√
δrsL

)
{
exp

(
−2πιm1r

ν

)
exp

(
−2πιn1s

ν

)
− exp

(
−2πιm2r

ν

)
exp

(
−2πιn2s

ν

)}
, and

c(D)
rs = d(C)

rs =
1

4ν2
√
δrs

exp
(
−
√
δrsL

)

sinh
(√
δrsL

)
{
exp

(
−2πιm1r

ν

)
exp

(
−2πιn1s

ν

)
− exp

(
−2πιm2r

ν

)
exp

(
−2πιn2s

ν

)}
,

(78)

for (r, s) , (0, 0).

3.3.2 The distributed force pair

It is recalled from Eq. (53) that Tp′(ζ̂) denotes the p′-th order Chebyshev polyno-

mial over ζ̂ ∈ [−1, 1]. Suppose equal and opposite distributed forces of intensity,
±Tp′((2ζ−∆)/∆) are applied by an external agency on the fibres (m1, n1) and (m2, n2)
over the interval ζ ∈ [0,∆], i.e., block K. Also, attention is restricted to the case
that (m1, n1) and (m2, n2) represent the flanking fibres of a matrix bay, (0, 0,K, i′),
i′ ∈ {0, 1, 2}, as identified by Eq. (19). Fig. 6 shows ±T2(2ζ/∆ + (2L − (2K + 1)∆)/∆)
imposed on the fibres (m1, n1) = (0, 0), and (m2, n2) = (1, 0).

Regarding the distributed force pairs as an assembly of infinitesimal point
force pairs, ±Tp′((2ζ0 −∆)/∆)dζ0, the displacements Ũrs in Fourier space due to the

distributed force pair, ±Tp′(ζ̂), can be obtained by superposing the displacements
obtained in Eqs. (33), (77), and (78). This yields: Ũ00(ζ) = 0, and

Ũrs(ζ) =




∫
∆

ζ0=0
Tp′

(
2ζ0−∆
∆

) {
c(D)
rs exp

(
−
√
δrs(ζ − ζ0)

)
+ d(D)

rs exp
(√
δrs(ζ − ζ0)

)}
dζ0, if ζ ≥ ∆,

∫
∆

ζ0=0
Tp′

(
2ζ0−∆
∆

) {
c(C)
rs exp

(
−
√
δrs(ζ − ζ0)

)
+ d(C)

rs exp
(√
δrs(ζ − ζ0)

)}
dζ0, if ζ ≤ ∆/2, and

∫ ζ

ζ0=0
Tp′

(
2ζ0−∆
∆

) {
c(D)
rs exp

(
−
√
δrs(ζ − ζ0)

)
+ d(D)

rs exp
(√
δrs(ζ − ζ0)

)}
dζ0

+

∫
∆

ζ0=ζ
Tp′

(
2ζ0−∆
∆

) {
c(C)
rs exp

(
−
√
δrs(ζ − ζ0)

)
+ d(C)

rs exp
(√
δrs(ζ − ζ0)

)}
dζ0, if 0 < ζ < ∆,

(79)
for r , 0, or s , 0. Eq. (79) can be evaluated efficiently by pre-calculating and
storing the formulae for the indefinite integrals

I+p′,rs =
∆

2

∫
Tp′(ζ̂0) exp

(
∆

2

√
δrs ζ̂0

)
d ζ̂0, and

I−p′,rs =
∆

2

∫
Tp′(ζ̂0) exp

(
−∆
2

√
δrs ζ̂0

)
d ζ̂0,

(80)
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ζ = 0

ζ = +L

ζ = −L
(m, n) = (0, 0) (m, n) = (1, 0) (m, n) = (2, 0) (m, n) = (3, 0) (m, n) = (ν − 1, 0)

. . .

. . .

ζ̂ = +1

ζ̂ = −1

+T2(ζ̂) −T2(ζ̂)

∆

Fig. 6: Longitudinal section along the n = 0 plane showing the distributed forces
exerted on a pair of neighbouring fibres, so as to shear the in-between matrix bay.

for p′ ∈ {0, 1, . . . , P}, and r, s ∈ {0, 1, . . . , ν − 1}, using a computer algebra package
such as Maxima (2014). In terms of these functions, Eq. (79) can be written as:

Ũrs(ζ) =




{
c(D)
rs exp

(
−
√
δrs

(
ζ − ∆

2

))
I+p′,rs

���
1

−1
+ d(D)

rs exp
(√
δrs

(
ζ − ∆

2

))
I−p′,rs

���
1

−1

}
, if ζ ≥ ∆,

{
c(C)
rs exp

(
−
√
δrs

(
ζ − ∆

2

))
I+p′,rs

���
1

−1
+ d(C)

rs exp
(√
δrs

(
ζ − ∆

2

))
I−p′,rs

���
1

−1

}
, if ζ ≤ 0, and

{
c(D)
rs exp

(
−
√
δrs

(
ζ − ∆

2

))
I+p′,rs

���
ζ−∆/2

−1
+ d(D)

rs exp
(√
δrs

(
ζ − ∆

2

))
I−p′,rs

���
ζ−∆/2

−1

}

+

{
c(C)
rs exp

(
−
√
δrs

(
ζ − ∆

2

))
I+p′,rs

���
1

ζ−∆/2
+ d(C)

rs exp
(√
δrs

(
ζ − ∆

2

))
I−p′,rs

���
1

ζ−∆/2

}
, if 0 < ζ ≤ ∆,

(81)
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for r , 0, or s , 0, where

I±p′,rs

���
b

a
= I±p′,rs(b) − I±p′,rs(a). (82)

It is straightforward to obtain the strains in Fourier space, dŨrs/dζ , by differenti-

ating Eq. (81), taking care to employ Leibnitz’s rule to determine d

(
I±p′,rs

���
ζ

−1

)
/dζ ,

and d

(
I±p′,rs

���
1

ζ

)
/dζ , where applicable.

Fourier inverting this expression formally using Eq. (24) yields the normal
tractions at all the block boundaries, denoted σ̃m

mnk
(i′, p′). These calculations are

somewhat tedious, but elementary, and are omitted for brevity. Similarly, the shear
tractions induced by the present distributed forces can also be computed substi-
tuting the present ũmn(ζ) into Eq. (52). The resulting shear tractions are denoted
τ̃m
mnki

(ζ ; i′, p′). The Chebyshev coefficients of τ̃m
mnki

(ζ ; i′, p′), following Eq. (55) are
denoted am

mnk
(i, p; i′, p′). The computations of these coefficients for the present prob-

lem of distributed fibre loading exactly parallels the development in Sec. 3.2.2 for
the case of fibre breaks.

3.3.3 Normal tractions due to multiple distributed loads

The influence, λm
mnk;m′n′k′(i

′, p′), of the distributed loads ±Tp′(2ζ/∆ + (2L − (2K +
1)∆)/∆) applied to a pair of neighbouring fibres flanking the matrix bay (m′, n′, k ′, i′)
at (m, n, k) is defined as the auxiliary strain induced by this loading at (m, n, k). From
Sec. 3.3.2,

λmmnk;00K (i
′, p′) = σ̃m

mnk (i
′, p′). (83)

As in Eq. (58), periodicity of the patch implies that λm
mnk;m′n′k′(i

′, p′) is translation
invariant, i.e., it satisfies:

λmmnk;m′n′k′(i
′, p′) = λm[m−m′][n−n′][k−k′];000(i

′, p′), (84)

and is therefore diagonalisable through through three-dimensional Fourier trans-
formation. Let Λm

rst (i′, p′) be the diagonalised form of λm
mnk;m′n′k′(i; , p′), obtained

through Fourier transformation:

Λ
m
rst (i′, p′) := 1

2Kν2

ν−1∑

m=0

ν−1∑

n=0

2K−1∑

k=0

λmmnk;000(i
′, p′) exp

(
−2πιrm

ν

)
exp

(
−2πιsn

ν

)
exp

(
−2πιtk

2K

)
,

(85)
for r, s ∈ {0, 1, . . . , ν − 1}, and t ∈ {0, 1, . . . , 2K − 1}.

Let external tractions ±wm
m′n′k′(i

′, p′)Tp′(2ζ/∆+ (2L −(2K +1)∆)/∆) be applied to
the fibers flanking matrix bay (m′, n′, k ′, i′). Traction is applied only to the fibres
flanking a failed matrix bay. For convenience, however, wm

m′n′k′(i
′, p′) is defined to

be zero for intact matrix bays (m′, n′, k ′, i′), and for all p:

w
m
m′n′k′(i

′, p′)
{
:= w

m
m f n f k f

(i f , p′) if (m′, n′, k ′, i′) = (m f , n f , k f , i f ), for some f , and

:≡ 0, if (m′, n′, k ′, i′) , (m f , n f , k f , i f ), for any f .
(86)
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Paralleling Eq. (60), the normal traction at fibre location (m, n, k) induced by all
the distributed tractions, is

σ̄m
mnk :=

P−1∑

p′=0

F∑

f=1

λmmnk;m f n f k f
(i f , p′)wm

m f n f k f
(i f , p′),

=

3∑

i′=1

P−1∑

p′=0

ν−1∑

m′
=0

ν−1∑

n′=0

2K−1∑

k′=0

λmmnk;m′n′k′(i
′, p′)wm

m′n′k′(i
′, p′),

(87)

which is expensive to compute directly, for the reasons noted below Eq. (60).
Instead, let Wm

rst (i′, p′) be the three-dimensional Fourier transform of wm
m′n′k′(i

′, p′),
keeping i′, and p′ fixed. Then, paralleling Eq. (69), the traction, σ̄m

mnk
(i′, p′), in-

duced by all the applied distributed tractions is

σ̄m
mnk (i

′, p′) :=
ν−1∑

r=0

ν−1∑

s=0

2K−1∑

t=0

Λ
m
rst (i′, p′)Wm

rst (i′, p′) exp
(
2πιrm
ν

)
exp

(
2πιsn
ν

)
exp

(
2πιtk
2K

)
.

(88)
Eq. (88) must be calculated for each (i′, p′), i′ ∈ {0, 1, 2}, and p′ ∈ {0, 1, . . . , P − 1},
and their results superposed in real space to obtain the auxiliary normal tractions:

σ̄m
mnk :=

2∑

i′=0

P−1∑

p′=0

σ̄m
mnk (i

′, p′). (89)

3.3.4 Shear tractions due to multiple distributed loadings

The influence, µm
mnk;m′n′k′(i, p; i′, p′), of the distributed loads ±Tp′(2ζ/∆+ (2L−(2K +

1)∆)/∆) applied to a pair of neighbouring fibres flanking the matrix bay (m′, n′, k ′, i′)
on the matrix bay (m, n, k, i) is the p-th Chebyshev component of the normalised
shear traction induced in the latter. For (m′, n′, k ′, i′) = (0, 0,K, i′), from Sec. 3.3.2,

µmmnk;00K (i, p; i′, p′) = ammnk (i, p; i′, p′). (90)

As in Eq. (58), periodicity of the patch implies that µm
mnk;m′n′k′(i, p; i′, p′) is trans-

lation invariant for fixed i, p, i′, and p′, i.e., it satisfies:

µmmnk;m′n′k′(i, p; i′, p′) = µm[m−m′][n−n′][k−k′];000(i, p; i′, p′). (91)

Let āmnk (i, p; i′, p′) be the p-th Chebyshev coefficient of the shear traction in-
duced in matrix bay mnki due to the imposition of tractions ±wm

m′n′k′(i
′, p′)Tp′(2ζ/∆+

(2L − (2K + 1)∆)/∆) in the fibres flanking the matrix bays m′n′k ′i′. Then,

āmnk (i, p; i′, p′) :=
F∑

f=1

µmmnk;mbnbkb
(i, p; i′, p′) wm

mbnbkb
(i′, p′).

=

ν−1∑

m′
=0

ν−1∑

n′=0

2K−1∑

k′=0

µfmnk;m′n′k′(i, p; i′, p′) wf
m′n′k′(i

′, p′).

(92)

The block circulant structure of µm
mnk;000

(i, p; i′, p′) makes it diagonalisable

through through three-dimensional Fourier transformation, paralleling Eq. (61).
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Let Mm
rst (i, p; i′, p′) be the diagonalised form of µm

mnk;000
(i, p; i′, p′). Let the weights,

w
m
m′n′k′(i

′, p′) and their Fourier transforms, Wm
rst (i′, p′), of the distributed forces ap-

plied to neighbouring fibres be as specified in Sec. 3.3.3. Then, the p-th Chebyshev
coefficients, ām

mnk
(i, p; i′, p′), of the shear tractions due to all the distributed forces

for fixed i′, and p′ in all the matrix bays are obtained using:

āmmnk (i, p; i′, p′) :=
ν−1∑

r=0

ν−1∑

s=0

2K−1∑

t=0

Mm
rst (i, p; i′, p′)Wm

rst (i′, p′) exp
(
2πιrm
ν

)
exp

(
2πιsn
ν

)
exp

(
2πιtk
2K

)
.

(93)
Further, paralleling Eq. (89),

āmmnk (i, p) :=
2∑

i′=0

P−1∑

p′=0

āmmnk (i, p; i′, p′). (94)

3.4 Zero traction conditions

For given fibre weights, wf
mb′nb′kb′

, and matrix weights w
m
m f ′n f ′k f ′

(i f ′, p′), Secs. 3.2,
and 3.3 present a method to efficiently compute the normal and shear tractions in
all the fibres and matrix bays, respectively. However, wf

mb′nb′kb′
and w

m
m f ′n f ′k f ′

(i f ′, p′)
are not known. They must be determined by demanding zero normal and shear
tractions at the sites of fibre breaks, and matrix failure, respectively (Hedgepeth
1961).

The zero normal traction boundary condition at fibre breaks is given by Eq. (21).
Substituting Eqs. (60) and (87) into Eq. (21) yields a linear equation in the weights
w
f
mb′nb′kb′

, and w
m
m f ′n f ′k f ′

(i′, p′).

B∑

b′=1

λfmb′′nb′′kb′′ ;mb′nb′kb′
w
f
mb′nb′kb′

+

P−1∑

p′=0

F∑

f ′=1

λmmb′′nb′′kb′′ ;m f ′n f ′k f ′
(i f ′, p′)wm

m f ′n f ′k f ′
(i f ′, p′) = −1,

(95)

for b′′ ∈ {1, 2, . . . , B}.
Consider next the problem of enforcing zero shear traction in failed matrix bays

(m f ′′, n f ′′, k f ′′, i f ′′), while recalling that the analysis of Secs. 3.2, and 3.3 assumed
intact matrix bays. The external tractions imposed on the fibres, wf

m f ′n f ′k f ′
and

w
m
m f ′n f ′k f ′

(i f ′, p′), induce shear tractions characterised by the Chebyshev coefficients

āf
m f ′′n f ′′k f ′′

(i f ′′, p′′), given by Eq. (67), and ām
m f ′′n f ′′k f ′′

(i f ′′, p′′), given by Eq. (92). By

way of reaction, the matrix bays apply opposite shear tractions on their flank-
ing fibres, characterised by the Chebyshev coefficients −āf

m f ′′n f ′′k f ′′
(i f ′′, p′′) and

−ām
m f ′′n f ′′k f ′′

(i f ′′, p′′).
As stated in Sec. 2.3, the mechanical effect of the failure of the matrix bay

(m f ′′, n f ′′, k f ′′, i f ′′) is that it exerts no tractions on its flanking fibres. This is achieved
in the model composite patch with intact matrix bays by imposing external trac-
tions on the flanking fibres. These externally imposed tractions must exactly cancel
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the tractions that the flanking fibres experience from failed matrix bays. Mathe-
matically, this condition can be expressed as:

w
m
m f ′′n f ′′k f ′′

(i f ′′, p′′) = āfm f ′′n f ′′k f ′′
(i f ′′, p′′) + āmm f ′′n f ′′k f ′′

(i f ′′, p′′), (96)

for all p′′ ∈ {0, 1, . . . , P − 1}, and all the failed matrix bays (m f ′′, n f ′′, k f ′′, i f ′′). It is
important to note that Eq. (96) does not demand zero shear strain in the failed
matrix bays, i.e., the displacement of the fibres flanking a failed matrix bay will,
in general, be unequal. Substituting Eqs. (67), (92), and (89) into Eq. (96) yields:

w
m
m f ′′n f ′′k f ′′

(i f ′′, p′′) =
B∑

b′=1

µfm f ′′n f ′′k f ′′ ;mb′nb′kb′
(i f ′′, p′′) wf

mb′nb′kb′
+

P−1∑

p′=1

F∑

f ′=1

µmm f ′′n f ′′k f ′′ ;m f ′n f ′k f ′
(i f ′′, p′′; i f ′, p′) wm

m f ′n f ′k f ′
(i f ′, p′),

(97)

for each matrix failure, f ′′ ∈ {1, 2, . . . , F}, and Chebyshev interpolation order,
p′′ ∈ {0, 1, . . . , P − 1}. Let

Imm f ′′n f ′′k f ′′ ;m f ′n f ′k f ′
(i f ′′, p′′; i f ′, p′) :=

{
1, if (m f ′′, n f ′′, k f ′′) = (m f ′, n f ′, k f ′), and (i f ′′, p′′) = (i f ′, p′), and
0, otherwise.

(98)
Eq. (97) can then be rewritten as:

B∑

b′=1

µfm f ′′n f ′′k f ′′ ;mb′nb′kb′
(i f ′′, p′′) wf

mb′nb′kb′
+

P−1∑

p′=1

F∑

f ′=1

(
µmm f ′′n f ′′k f ′′ ;m f ′n f ′k f ′

(i f ′′, p′′; i f ′, p′) − Imm f ′′n f ′′k f ′′ ;m f ′n f ′k f ′
(i f ′′, p′′; i f ′, p′)

)
×

w
m
m f ′n f ′k f ′

(i f ′, p′) = 0.

(99)

3.5 Iterative solution

Dropping the indices for clarity, and denoting a column vector all of whose elements
are a as {a}, Eqs. (95) and (99) can be written as:

[
[W]B×B [X]B×PF

[Y ]PF×B [Z]PF×PF

] (
{wf }B×1
{wm}PF×1

)
=

(
{−1}B×1
{0}PF×1

)
. (100)

Here, the elements of [W], [X], [Y ], and [Z] are the coefficients λf , λm, µf , and
µm − Im, respectively. Eq. (100) is a linear system of the saddle point type, which
appears in a variety of applications (Benzi et al 2005). The matrix [W]B×B, which
represents the interactions between fibre breaks, is known to be symmetric and
negative definite (Gupta et al 2018). [Z]PF×PF represents the influence between
failed matrix bays; this is symmetric but indefinite. The matrix [X]B×PF represents
normal tractions induced by matrix failures, and the matrix [Y ]PF×B represents
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shear tractions induced by fibre breaks. [X] , [Y ]T . This makes the coefficient
matrix in Eq. (100) unsymmetrical. It is also indefinite.

Direct solution has a computational complexity of O((B+PF)3), which becomes
prohibitive for large B and/or F (Golub and Van Loan 2012). An iterative method,
based on Krylov subspace methods is therefore preferred (Greenbaum 1997), espe-
cially since the matrix products [W]{wf }, [X]{wm}, [Y ]{wf }, and [Z]{wm} can be
computed efficiently, following Secs. 3.2.3, 3.2.4, 3.3.3, and 3.3.4. A robust method
to solve Eq. (100) for unsymmetric indefinite systems is the pre-conditioned GM-
RES method (Saad and Schultz 1986). This method, however, requires a good
pre-conditioner that will tightly cluster the eigenvalues of the coefficient matrix in
Eq. (100) in the Argand plane (Greenbaum 1997; Saad 2003). Excellent precon-
ditioners are known for some problems, which have special structure (Bai 2006).
Most dramatically, if Z = 0 in Eq. (100), Murphy et al (2000) have proposed a pre-
conditioner that should result in GMRES converging in three, or fewer iterations.
However, to the knowledge of the author, the coefficient matrix in Eq. (100) does
not conform to the special structure of any of the cases examined in the literature.
Therefore, a simple preconditioner is not readily available. It should also be noted
that attempts to solve Eq. (100) using GMRES without pre-conditioning fail, as
convergence is excruciatingly slow.

In the present work, Uzawa iterations (Uzawa 1958; Elman and Golub 1994),
with Anderson acceleration (Anderson 1965; Ho et al 2017) is used to solve Eq. (100)
iteratively. Let t ∈ {0, 1, 2, . . .} be an iteration counter for Uzawa’s iteration. Start-
ing with the initial iterate (t = 0):

(
w
f
B×1

w
m
PF×1

)

0

:=

(
{1}B×1
{0}PF×1

)
, (101)

successive iterates are obtained as (Elman and Golub 1994)

−[W]{wf }t+1 = −{−1} + [X]{wm}t, and (102)

{wm}t+1 = {wm}t + ω
(
[Y ]{wf }t+1 + [Z]{wm}t

)
. (103)

Exploiting the symmetry and positive-definiteness of −[W], Eq. (102) is solved
using the unpreconditioned conjugate gradient method (Greenbaum 1997). The
relaxation parameter ω in Eq. (103) is chosen to be unity. It is reiterated that all
the matrix vector products are computed following the efficient Fourier transform
based formulae given in Secs. 3.2.3, 3.2.4, 3.3.3, and 3.3.4.

Uzawa’s method uses up much less computer memory than GMRES, and does
not require sophisticated pre-conditioners, but it converges slowly. Convergence
is greatly accelerated using the Anderson acceleration scheme, implemented as
detailed by Ho et al (2017). In this method, a small number M of Uzawa iterates
are stored, along with their residues. M = 10, presently. Iterate t+1 is generated by
solving a least squares problem involving all the M stored iterates and residuals.
Details may be found in Ho et al (2017).

4 Fracture simulations

The model shear-lag specimen of Sec. 2 is subjected to fracture simulations fol-
lowing the algorithm detailed in e.g., Landis et al (2000). Deviations from this
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algorithm are noted below. The most important deviation is that matrix failures
are also generated in the course of the simulations, and the overloads due to com-
posite damage are computed using the fast procedure developed in Sec. 3. Briefly,
the fracture simulation begins with assigning random strengths to the fibre seg-
ments drawn from a specified probability distribution. Presently, the strengths of
the fibre segments extending ∆/2 to either side of locations (m, n, k) are taken to
be Weibull (1952) distributed:

F(σ) = Pr{Σ ≤ σ} = 1 − exp (−∆σρ) , (104)

where ρ is termed the Weibull modulus. In the first step, the average load per
fibre, P (see Eq. (8)), is assigned the strength of the weakest fibre segment, so
that it breaks. Fibre breaks are restricted to the locations (m, n, k), consistent
with the assumption made in Sec. 2.3. Matrix bays, on the other hand, are not
assigned strengths. Instead, breakage of a fibre at (m, n, k) is assumed to trigger
the failure of all the matrix bays abutting it, viz., (m, n, k, 1), (m, n, k, 2), (m, n, k, 3),
([m−1], n, k, 1), (m, [n−1], k, 2), and ([m+1], [n−1], k, 3), in block k, and matrix bays
(m, n, [k−1], 1), (m, n, [k−1], 2), (m, n, [k−1], 3), ([m−1], n, [k−1], 1), (m, [n−1], [k−1], 2),
and ([m + 1], [n − 1], [k − 1], 3) in block [k − 1]. Simulations in which matrix bays
are assumed not to fail are also performed. Comparing the fracture development
predicted by these two cases elucidates the role of matrix failure below. The two
cases will henceforth be identified by the phrases ‘with matrix failure’, and ‘without
matrix failure’, respectively.

In the second step, the overload due to the first break at all the other fibre seg-
ments is computed. If the tensile stress in any fibre element exceeds its strength,
that element is then failed. When no more failures occur, the average load per
fibre, P, is increased so that one more fibre break forms. The overloads are recom-
puted, and damage events caused by the overloads are accumulated. This process
is repeated in subsequent steps until the model specimen fractures. It must be
noticed that the average load per fibre increases monotonically over the fracture
simulation, i.e., the simulation mimics a load-controlled test. In this respect too,
the present algorithm deviates from the displacement controlled simulations of
Landis et al (2000).

The normalised macroscopic strain, ǭ at each step of the simulation is defined
as:

ǭ =P

(
1

ν2

ν−1∑

m=0

ν−1∑

n=0

umn(ζ = L) − umn(ζ = −L)
2L

)

=P

(

1 +
1

ν2

ν−1∑

m=0

ν−1∑

n=0

ũmn(ζ = L) − ũmn(ζ = −L)
2L

)

=P

(

1 +
2

ν2

1

ψ

1

2L

ν−1∑

m=0

ν−1∑

n=0

2K−1∑

k=0

w
f
mnk

)

.

(105)

Here, the second step follows from the first using Eq. (11), and the third step
from the second step using Eqs. (37), (47), and (50). wf

mnk
, defined in Eq. (59),

represents the weights of the fibre breaks. Eq. (105) expresses the macroscopic
strain as a superposition of contributions from the elasticity of the fibres, and the
opening displacements of the breaks.
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ζ = +L

ζ = −L
(m, n) = (0, 0) (m, n) = (1, 0) (m, n) = (2, 0) (m, n) = (3, 0) (m, n) = (ν − 1, 0)

∆

Fig. 7: Longitudinal section along the n = 0 plane schematically showing a sim-
ulation cell with fibre breaks (thick horizontal line segments), and failed matrix
bays (hatched regions). The information about fibre breaks and matrix failures is
captured using the graph, shown superimposed. Open circles depict vertices, and
lines connecting vertices depict edges of the graph. Each ∆-segment of the fibre
has an associated vertex. Neighbouring vertices in the same fibre are connected by
an edge if there is no intervening fibre break. Vertices located in the same block,
in adjacent fibres, are connected by an edge if the intervening matrix bay is intact.
Although the model graph is three-dimensional, for clarity only a two-dimensional
longitudinal section is shown.
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Landis et al (2000) terminated their simulation when the displacement-controlled
loading curve exhibited a significant load drop. This approach is not suitable for
the present load-controlled algorithm. Therefore, an explicit termination condition
to algorithmically identify a fractured computer specimen is needed. If fibre breaks
were the only type of microscopic damage in the model specimen, then specimen
fracture is easily identified with the failure of all the fibres in a transverse plane. In
this case, the transverse plane containing the broken fibres represents the smooth
macroscopic crack. If, as in the present case, matrix failure is also a microscopic
damage mechanism, the crack that causes specimen fracture need not lie in a single
transverse plane. The fracture surface may comprise of fibre breaks in a number
of transverse planes, connected together by failed matrix bays. Algorithmically
identifying the formation of the macroscopic crack in this case is not trivial. A
graph based algorithm is presently proposed for this purpose.

The graph based algorithm maintains the connectivities in the simulation cell
using a graph G = (V, E), where V represents the set of vertices, and E represents
the set of edges. Each fibre segment within a ∆-block is associated with a vertex of
the graph. Vertex vmnk is identified with the fibre segment in fibre (m, n) included
within block k ∈ {0, 1, . . . , 2K − 1}. Vertices are connected to each other by edges.
Two vertices in adjacent bundles, but in the same fibre, vmnk and vmn[k+1] are
connected by an edge, if there is no fibre break at the common block boundary.
Each vertex vmnk is also connected by edges horizontally to the vertices vm′n′k , for
(m′, n′) ∈ Imnk , provided the intervening matrix bay is intact. In other words, the
pair of fibre segments flanking every intact matrix bay is connected by edges, and
the pair of fibre segments flanking broken matrix bays are not connected by edges.
The vertices and edges of the graph in the n = 0 longitudinal plane of a composite
for the case of an illustrative set of fibre breaks, and matrix failures, are shown in
Fig. 7.

At the beginning of a simulation, when all fibre and matrix elements of the
simulation cell are intact, E is initialised such that every vertex is connected to
its two neighbours along the fibre, and to the six fibre segments neighbouring it
in its own block. E is then updated after each fibre break or matrix failure by
deleting edges. The presence of a circumnavigating path traversing along edges,
starting from a vertex, and ending again at the same vertex indicates that the
periodic specimen is not fractured. The absence of any such circumnavigating
path indicates that the specimen is fractured.

Before implementing the aforesaid condition to detect specimen fracture, the
periodic cell is made artificially non-periodic by replicating one block, say k = 0 to
make a new block, k = 2K. During replication, every vertex in block k is copied over
to the replica block, k = 2K. All the edges connecting any of the vertices in block
k = 0 to block k = 2K−1 are deleted. Likewise, all the edges connecting the vertices
in block k = 2K to block k = 1 are also deleted. All the other edges in blocks k = 0,
and k = 2K are preserved. The distance on the graph between vertices vmn0 and
vmn,2K is then determined using the breadth-first-search algorithm (Cormen et al
2009), for some (m, n). A finite distance on the graph indicates the presence of a
circumnavigating path, and the non-occurrence of specimen fracture. If an infinite
distance occurs, it indicates the non-availability of a circumnavigating path. In
this case, the criterion is retested starting from another vm′n′0. If all the fibres are
exhausted, and a circumnavigating path is still not found, the model specimen is
algorithmically recognised to be fractured.
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5 Results

The solution methodology for the shear-lag model presented in Sec. 3 promises an
accurate approximation with much smaller computational effort than that based
on eigenvector expansions, proposed by Sheikh and Mahesh (2018). The gains in
computational speed are quantified for test cases in Sec. 5.1. The correlation be-
tween accuracy of the solution and the order of the Chebyshev polynomial used
to interpolate the shear stress variation in matrix bays is determined in Sec. 5.2.
Overload profiles predicted near single breaks, and small clusters of breaks are
then presented in Sec. 5.3. The effect of the periodicity imposed along the fibre
direction on stress overloads is then considered in Sec. 5.4. Finally, the computa-
tional efficiency of the present method is exploited to study fracture development
in large simulation cells in Sec. 5.5.

5.1 Computation time

Consider a model composite specimen comprised of ν2 = 256 fibres, axially ex-
tending 2K = 10 blocks, each block ∆ = 0.5 long. A circular cluster of breaks of
radius r ∈ {0, 1, 2, . . .} is introduced by breaking all the fibres distant no more than
r inter-fibre spacings from the fibre (m, n) = (0, 0) in the k = 0 block. Here, and in
the sequel, the centre-to-centre distance between two neighbouring fibres in the
hexagonal lattice is taken to be unity. Corresponding to r = 0, 1, and 2, these
clusters have 1, 1 + 6 = 7, and 1 + 6 + 12 = 19, fibre breaks, respectively.

The overloads due to the fibre breaks, with and without matrix failure are
studied. The condition wherein the matrix bays surrounding the fibre breaks are
intact is termed ‘no matrix failures’. The condition wherein all the matrix bays
surrounding a fibre break are failed is termed ‘with matrix failures’. In the latter
case, 12 matrix bays, each of length ∆ are failed, six each in blocks b = 0, and
b = 9. Other matrix bays are assumed intact.

The redistributed tractions in the model specimen can be computed in two
ways: First, the eigenvector expansion method of Sheikh and Mahesh (2018), and
second, the fast Fourier transform (FFT) based method, developed presently. CPU
times corresponding these two calculations performed in the same computer, with
and without matrix failure, were measured. The results are shown in Fig. 8. In the
case of the eigenvector expansion method, the total computational time includes
the times to compute the eigenvalues and eigenvectors of the block matrices, and
the time to superpose the various blocks. For parity, the total computational time
of the FFT solution also includes the time to compute the unit solutions, the time
to determine their weights, and that to superpose the unit fields. No simulation is
allowed to run longer than 5000s. In the case of the eigenvector solution method,
only the cases r ∈ {0, 1, 2} complete in fewer seconds. Using the present FFT based
method, computations up to r = 7 complete in under 3s.

It is clear from Fig. 8 that the present method is orders of magnitude faster than
the eigenvector solution method of Sheikh and Mahesh (2018). The computational
requirement for the eigenvector solution increases with increasing numbers of fibre
breaks, but that of the present method remains practically constant, for fixed ν2.
The latter is to be expected because all the matrix-vector multiplication operations
associated with Eqs. (102) and (103) are performed over the entire simulation cell,
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Fig. 8: Comparison of the computational (CPU) time required to solve for the
elastostatic fields in a simulation cell comprised of 2K = 10 blocks each of length
∆ = 0.5, using the (a) eigenvector method of Sheikh and Mahesh (2018), and (b)
the present FFT based method.



Fast analysis of composites with fibre breaks and matrix failure 33

 2

 3

 4

 5

 6

 7

 8

 9

 10

 16  64  256  1024  4096

C
P
U

ti
m
e
[s
]

ν2

CPU time

curve fit, Eq. (106)

Fig. 9: Computational time in seconds, to solve for the tractions in a simulation
cell comprised of 2K = 10 blocks each of length ∆ = 0.5, and ν2 ∈ {24, 26, . . . , 212}
fibres, using the the present FFT based method.

regardless of the number of fibre breaks. On the other hand, introduction of the
matrix failures causes the computational effort of the FFT method to increase,
while the computational time requirement of the eigenvector solutions remains
practically the same, with or without matrix failures. This too can be understood
by noting that in the present method, matrix failures increase the number of
unknowns in Eq. (103), which therefore, adds to the computational effort. In the
eigenvector method, matrix failures are absorbed into the governing equations,
Eq. (22). The time to extract the eigensolution of the matrix, with or without
matrix failures remains the same. Therefore, the presence of matrix failures does
not increase the eigensolution-based computational time.

The increase of computational effort associated with solving for the traction
redistribution in patches of increasing size, ν2 ∈ {24, 26, . . . , 212}, is shown in Fig. 9.
For each size, a circular cluster of breaks, of radius ν/2 is centered at the fibre
(m, n) = (0, 0). All the matrix bays surrounding the fibre breaks are assumed failed.
As before, matrix failure extends one bundle (∆ = 0.5) to each side from each fibre
break. Fig. 9 also plots the curve

CPU time =
(
2 × 10−4 s

)
ν2 log(ν2) + 2.5 s, (106)

an analytical function that reasonably fits the computational times. This shows
that computational effort actually scales as O(ν2 log(ν2)), as expected in Secs. 3.2,
and 3.3.
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Fig. 10: The variation with P, of the improvement in approximation, εP, Eq. (107),
of normal tractions in all the fibres. P − 1 denotes the highest polynomial order in
the Chebyshev basis.

5.2 Accuracy of polynomial expansion

As noted in Sec. 3.2.2, the functional form of the shear traction in a matrix bay
is described in terms of Chebyshev polynomials, up to order P. It is expected
that the exact shear tractions are more closely approached with increasing P. To
quantify this approach, let dũmnk/dζ(P) denote the traction at fibre location (m, n, k)
calculated by describing the matrix bay shear tractions as sums of Chebyshev
polynomials of orders p ∈ {0, 1, . . . P}, as in Eq. (55). The incremental improvement
in approximation with P is defined as:

εP :=
ν−1
max
m=0

ν−1
max
n=0

2K−1
max
k=0

����
dũmnk

dζ
(P) − dũmnk

dζ
(P + 1)

���� . (107)

Consider a composite simulation cell comprised of ν2 = 28 fibres, discretised
longitudinally into 2K = 10 blocks, each ∆ = 0.5 long. Let fibre (m, n) = (0, 0) be
broken at ζ = 0, and let all the twelve matrix bays adjacent to the fibre break be
failed over one block. Fig. 10 shows the monotonic decrease of εP with P. For a
nominal tolerance of ε = 10−6, εP < ε for P ≥ 5, i.e., the Chebyshev polynomials
accurately approximate the actual shear stress distribution in matrix bays for P
as small as 5. Further results are therefore calculated assuming P = 5.
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and (87), with position along the fibres, ζ , over half the length of the simulation
cell. These overloads are due to a single broken fibre, and matrix failures around it.
Normal tractions in the broken fibre are less than unity, while those in the intact
neighbours are more than unity. The three colours correspond to the cases with
matrix failure extending 0, ∆, and 2∆ to each side of the fibre break, for ∆ = 0.5.

5.3 Normal tractions due to fibre breaks

Consider a ν2 = 28 fibre simulation cell discretised along the fibre direction into
2K = 10 blocks, each ∆ = 0.5 long. The simulation cell extends over ζ ∈ [−L, L] =
[−2.5, 2.5]. Let the fibre (m, n) = (0, 0) be broken at ζ = −L = −2.5, i.e., at the lower
boundary of block k = 0. Matrix bays not immediately abutting the fibre break are
assumed intact. As for the matrix bays abutting the fibre break, three cases are
considered: (i) the matrix bays surrounding the break are intact, (ii) the matrix
bays surrounding the break in block k = 0, and in block 2K − 1 = 9 are failed,
and (iii) in addition to the failed bays in (ii), the matrix bays surrounding fibre
(m, n) = (0, 0) in blocks k = 1 and k = 8 are also failed. There are thus 0, 12, and
24 failed matrix bays in cases (i), (ii), and (iii), respectively. It is recalled that by
virtue of the periodicity assumed, blocks k = 0, and k = 2K − 1 = 9 are adjacent to
each other; the fibre break is located at their common boundary.

The reloading profile calculated for these damaged configurations, in the broken
fibre, and the overload profile in its six neighbours are shown in Fig. 11. The stress
profiles are shown over ζ ∈ [−L, 0]; the profile for ζ = [0, L] is obtained by reflecting
about ζ = 0. The overload profiles in the six intact neighbours of the broken fibre
are the same, by symmetry. Thus, they coincide in Fig. 11.
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The reloading and overload profiles for case (i) coincides with previous results
(Hedgepeth and Van Dyke 1967; Mahesh et al 1999). In particular, the peak stress
concentration of 1.105 is obtained in the intact fibres surrounding the broken fibre,
in the transverse plane of the broken fibre, ζ = −L. The normal traction in the
broken fibre increases exponentially, due to the shear stresses transmitted to it by
the surrounding matrix bays. It regains much of the traction dropped at the fibre
break by about ζ = −L + 1. In cases (ii) and (iii), the broken fibre stays unloaded
over the length of the matrix failure, ∆, and 2∆, respectively. Even so, it regains
much of the load it dropped over unit length along the fibre direction.

The overload profiles in the neighbouring intact fibres depend on the length of
the matrix failure. The maximum overload in cases (ii), and (iii) is smaller than
that of case (i). Also, while the maximum overload in case (i) occurs at ζ = −L,
that for cases (ii) and (iii) occurs at ζ = ∆ and 2∆, respectively. It is concluded that
matrix failure reduces the stress concentrations in the neighbours of the broken
fibre, and shifts the maximum stress concentration outside the transverse plane of
the initial break.

Next, let all the fibres whose centres are located within a closed disc of radius
r = 1 from fibre (m, n) = (0, 0) be broken in the common transverse plane ζ = −L.
Seven fibre breaks comprise this cluster. The six broken fibres surrounding (m, n) =
(0, 0) will have the same overload profile, by symmetry. This may, however, differ
from that of fibre (m, n) = (0, 0) itself. Thus, there will be two distinct reloading
profiles in the broken fibres. Twelve intact fibres, arranged along the edges of a
hexagon, neighbour the cluster of breaks. Of these, six intact neighbours form the
vertices of the hexagon, and six are centered at the mid-points of its sides. By
symmetry, the overload profiles in former group, and in the latter group must be
the same. Therefore, there will two distinct overload profiles for the neighbouring
intact fibres also.

Let cases (i) and (ii) correspond to the case of no matrix failures, and that
wherein all the matrix elements abutting any of the failed fibres in blocks k = 0,
and k = 9 are failed, respectively. The reloading, and overload profiles in the broken
and neighbouring intact fibres are shown for cases (i), and (ii) in Figs. 12a and
12b, respectively.

The greatest stress concentration of about 1.4 in the intact neighbours occurs
in case (i) in the plane ζ = −L of the initial breaks, as seen in Fig. 12a. This peak
stress concentration is softened by matrix failure, as shown in Fig. 12b. The peak
stress concentration decreases, and shifts out of the transverse plane of the initial
breaks.

5.4 The effect of periodicity

Periodicity along the fibre direction is enforced in the present model composite
through Eqs. (14), and (16), thereby making the model fields dependent upon the
length of the periodic cell along fibre direction, 2L. This dependence is presently
studied in a simulation cell comprised of ν2 = 28 fibres discretised into blocks of
length ∆ = 0.5, for L ∈ {1, 2.5, 5}, which correspond to 2K ∈ {4, 10, 20}, respectively.
A fibre break is located at ζ = −L in the fibre (m, n) = (0, 0). The overloads devel-
oped in the fibres (m, 0), for m ∈ {1, 2, . . . , ν/2} in the plane ζ = −L are shown in
Fig. 13.
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Fig. 12: Variation of the normal tractions, 1 + σ̄f
mnk
+ σ̄m

mnk
, given by Eqs. (64),

and (87), with position along the fibres, ζ , over half the length of the simulation
cell. These overloads are due to a cluster of broken fibres of unit radius, and matrix
failures around it. Matrix failure extending (a) 0, and (b) ∆ on either side of ζ = −L
are considered. Since matrix failure is suppressed in (a), σ̄m

mnk
= 0.
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The overloads, σ̄f
mnk

, developed in the absence of matrix failure are shown in
Fig. 13a. The predicted overloads are comparable for L = 2.5, and L = 5, and
decrease with distance from the fibre break. However, when L = 1, the overloads
are nearly constant for 3 ≤ m ≤ 8, simulating equal load sharing conditions. The
maximum overload, realised on the fibre (m, n) = (1, 0), however, remains nearly
constant for all L.

The overloads, σ̄f
mnk
+ σ̄m

mnk
, developed in the presence of matrix failure in

all the matrix bays abutting the fibre break are shown in Fig. 13a. The matrix
failures extend over a distance ∆ in all the cases. Again, the predicted overloads are
comparable for L = 2.5, and L = 5, and decrease with distance from the fibre break.
Also, when L = 1, the overloads are nearly constant for 3 ≤ m ≤ 8. Furthermore,
the maximum overload, realised on the fibre (m, n) = (1, 0), is substantially smaller
when L = 1, than when L = 2.5, or L = 5.

It is concluded that as the specimen length, L, is decreased, the periodic bound-
ary conditions cause the localisation of the stress overloads in the vicinity of fibre
breaks to diminish. This diminution is enhanced in the presence of matrix failures.

5.5 Fracture development

Fracture simulations are performed on the model specimen described in Sec. 2.
Simulations are performed for the composite sizes, ν2 ∈ {28, 210}, and for non-
dimensional longitudinal half-lengths, L ∈ {2.5, 5.0, 10.0} divided into 2K ∈ {10, 20, 40}
equal blocks respectively, each of length ∆ = 0.5. Chebyshev expansion of the shear
stresses in the matrix bays following Eq. (55) is performed to order P−1 = 3, which
corresponds to εP ≈ 10−6 in Fig. 10. The Weibull modulus of the fibres, which ap-
pears in Eq. (104), is taken to be ρ = 10.

Corresponding to each ν, and L, for each of the two rules governing matrix
failure, Monte Carlo fracture simulations are performed on nsim = 256 model spec-
imen following the algorithm given in Sec. 4. Let σ(i), i ∈ {1, 2, . . . , nsim} denote
the average load per fibre at the instant of specimen fracture, in the i-th speci-
men, sorted in ascending order, so that σ(1) ≤ σ(2) ≤ . . . ≤ σ(nsim). The empirical
probability of specimen failure at stress level σ(i), Gν2;L(σ(i)), is then taken to be

Gν2;L(σ(i)) =
i − 1/2

nsim
. (108)

Gν2;L(σ(i)) is the empirical distribution of model composite strength. It has been
shown by a number of works in the literature (Harlow and Phoenix 1981; Smith
1982; Beyerlein and Phoenix 1997; Landis et al 2000) that it is more insightful to
study the strength distribution of the weakest-link, defined as:

Wν2;L(σ(i)) = 1 −
(
1 − Gν2;L(σ(i))

)1/(2Lν2)
. (109)

Accordingly, Fig. 14 shows the empirical weakest-link strength distributions, Wν2;L(σ(i)),
obtained with and without matrix failure on Weibull probability coordinates. In
these coordinates, Weibull distributions plot as a straight line. It is clear that none
of the empirical weakest-link distributions Wν2;L(σ(i)) is Weibull distributed.

In Fig. 14, the distributions corresponding to the simulation cell sizes, ν2 =
28, and ν2 = 210, with L = 2.5 assuming no matrix failure are the strongest.
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Fig. 14: Empirical weakest link distributions, Wν2;L plotted on Weibull probability
paper, for various model specimen sizes, corresponding to ρ = 10. Distributions
obtained with and without matrix failure are shown.

They collapse onto each other, i.e., they exhibit weakest-link scaling (Harlow and
Phoenix 1981). Although not shown here, the weakest-link distributions for longer
model composites, L = 5.0, and L = 10.0 with matrix failure suppressed also
collapse onto the common master curve.

The scaling obtained in Fig. 14 with matrix failure does not obey weakest-link
scaling over the probability range considered. For a fixed number of fibres, ν2,
the empirical weakest-link strength distributions, Wν2;L(σ(i)) move toward obeying
the weakest-link scaling with increasing L. For fixed L also, weakest-link scaling
is better obeyed with increasing ν2. In both cases, weakest-link scaling is obeyed
in the upper tail, but not in the lower tail of the empirical distributions. These
observations indicate that larger ν2, and L are required if the strength distributions
are to obey weakest-link scaling with matrix failure than with no matrix failure.
They also suggest that the weakest-link event with matrix failure may be more
spatially diffuse than that without matrix failure.

It is also observed in Fig. 14 that for fixed ν2, the strength of the median spec-
imen decreases with increasing model length, L. Further, the slope of Wν2;L(σ(i))
with matrix failure is greater than that without matrix failure, indicating that
the former strengths are less scattered than the latter. These observations can be
understood on the basis of the results in Sec. 5.4. With increasing L, the stress
overloads due to a fibre break, or a small cluster of breaks, is more strongly lo-
calised over its neighbouring intact fibres, and thereby reduces the mean strength.
On the other hand, reducing L makes the load sharing more equal amongst intact
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a
v
er
a
g
e
lo
a
d
p
er

fi
b
re
,
P

without matrix failure

with matrix failure

critical

critical
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specimen. Separate curves are obtained with and without matrix failure.

fibres, which is associated with smaller scatter in the composite strengths (Mahesh
et al 1999).

As noted in Sec. 4, during the fracture simulations, the average load per fi-
bre is monotonically increased. The normalised stress-strain plots for the median
specimen amongst the nsim specimens with ν2 = 210, L = 2.5 simulated with and
without matrix failure are shown in Fig. 15. For this size of the model composite,
ψ ≈ 2.3737 in Eq. (105). The stress-strain graph for specimen with matrix failure
visibly deviates from linearity, whereas that of the specimen with matrix failure
suppressed remains nearly linear until fracture.

The last load increase usually occurs well before the fracture of the specimen.
The step at which the last load increment is applied is termed the critical step,
and is marked as such in Fig. 15. Large strains develop between the critical step
and the final step at which fracture occurs without any load increase. The curves
in Fig. 15 are not shown up to the fracture strain in order to clearly reveal the
shape of the stress-strain curve up to the critical step.

Fig. 16 shows the pattern of fibre breaks in all the blocks at the critical step in
the median ν2 = 210, L = 2.5, ρ = 10 specimen, with matrix failure suppressed. A
broken fibre at the bottom of block k is indicated by a dot at the fibre’s location.
Fig. 17 shows the state of fibre breakage after the macroscopic fracture of the same
specimen is realised by the breakage of all the fibres in the k = 4 transverse section.

A fibre break located at (m, n, k) shields other fibre locations (m, n, [k ± p]) from
breaking. This is because the normal traction builds up in the broken fibre grad-
ually with distance from the break, and thereby unloads other locations in the
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Fig. 16: Distribution of fibre breaks (red dots) at the critical step, when the maxi-
mum average load is first reached, in the median ν2 = 210, L = 2.5, ρ = 10 specimen
without matrix failure. The state of damage in all the blocks k ∈ {0, 1, . . . , 9} is
shown.
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Fig. 17: Distribution of fibre breaks (red dots) at the final step corresponding to
macroscopic failure in the median ν2 = 210, L = 2.5, ρ = 10 specimen without
matrix failure. The state of damage in all the blocks k ∈ {0, 1, . . . , 9} is shown.
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same fibre, as seen in Sec. 5.3. This effect is called shielding. Fibres are unlikely
to break at shielded sites. In Fig. 17, a cluster of shielded sites, devoid of fibre
breaks is located near the top edge, n = ν, of the simulation cell in the blocks
k ∈ {0, 1, 2, 3, 5, . . . , 9}. These sites are shielded by the fibre breaks in the k = 4
block. Based on the locations of the shielded sites in Fig. 17, it is inferred that
specimen fracture developed from the cluster of breaks labelled C in the k = 4
block in Fig. 16. The Wν2;L(σ(i)) distributions of Fig. 14 thus correspond to the
probability of occurrence of this event.

Turning next to the case with matrix failures, Fig. 18 shows the pattern of
fibre breaks (red dots), and matrix failure (purple lines) at the critical step in
the median ν2 = 210, L = 2.5, ρ = 10 model composite. At the critical step, a
number of fibre breaks and matrix failures in the bays abutting the fibre breaks
are observed. Again, it is not evident which of these will propagate catastrophically.
The fibre breaks, and matrix failures after the formation of a macroscopic crack,
following the criterion of Sec. 4 is shown in Fig. 19. It is seen that no one transverse
plane has fully failed; the fracture surface threads across multiple transverse planes
connected by matrix failures. This is consistent with the brush-like fracture surface
of glass fibre reinforced composites observed experimentally (Hull and Clyne 1996).

The shielded fibre locations in Fig. 19 enable the identification of the fibre
break clusters that propagated to produce the final crack. In Fig. 19, one set of
shielded sites, devoid of fibre breaks is located near the top edge, n = ν, of the
simulation cell in the blocks k ∈ {1, . . . , 8}. These sites appear to be shielded by the
cluster of fibre breaks, and matrix failures, labelled C1, extending over the k = 0,
and k = 9 blocks. It is recalled that these blocks are adjacent to each other due to
the periodic boundary conditions.

Cluster C1 is not the only nucleus of the catastrophic crack. Additional nuclei
are indicated by other shielded sites. One such set of shielded sites is observed
near the bottom edge, n = 0, in blocks k ∈ {0, 3, . . . , 9}. These fibre locations are
shielded by the cluster of fibre breaks, and matrix failures in the blocks k = 1, and
k = 2, labelled C2 in Fig. 18. These considerations show that the fracture of the
median specimen with matrix failure occurs by the growth of multiple fibre break
and matrix failure clusters and their coalescence. These observations suggest that
the reason that Wν2;L(σ(i)) in Fig. 14 does not obey weakest-link scaling is that
fracture does not develop from a single nucleus.

It was observed previously that with increasing ν2, and L, Wν2;L(σ(i)) increas-
ingly obey weakest link scaling. This suggests that with increasing ν2, and L, the
dominant failure mode must switch from a global failure mode involving the coales-
cence of clusters of fibre breaks and matrix failure to the catastrophic propagation
of a single cluster.

6 Discussion

In the classical shear lag models (Cox 1952; Hedgepeth 1961), fibres are assumed
to be loaded in simple tension, and matrix elements in simple shear. These models
assume a perfectly undamaged matrix, and treat fibre breaks as the only type
of progressing damage. In the linear shear-lag model developed here, both fibre
and matrix failures are admitted as microscopic damage modes. Fibre and matrix
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Fig. 18: Distribution of fibre breaks (red dots), and matrix failures (purple lines)
at the critical step, when the maximum average load is first reached, in the median
ν2 = 210, L = 2.5, ρ = 10 specimen with matrix failure. The state of damage in all
the blocks is shown.
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Fig. 19: Distribution of fibre breaks (red dots), and matrix failures (purple lines)
at the final step corresponding to macroscopic fracture, in the median ν2 = 210,
L = 2.5, ρ = 10 specimen with matrix failure. The state of damage in all the blocks
is shown.
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failure are regarded as sites of zero tensile traction, and zero shear traction, re-
spectively. The model so developed can be solved inefficiently in O(N3) time, by
a straightforward extension of the classical algorithms, where N is the number of
fibre segments in the model. A faster O(N log N) algorithm exploiting the transla-
tion invariance of the elastostatic fields of unit failure events is presently proposed.
For given computer hardware, the present algorithm can solve for the elastostatic
state in much larger simulation cells.

The present model admits straightforward extensions beyond the development
given here. For example, the present development assumes a rhombus-shaped
cross-section comprised of ν fibres along both the m- and n-axes in Sec. 2.1. This
can be readily generalised to non-rhombus parallelogram shaped cross-sections
comprised of different number of fibres, along the m- and n-axes, as in Curtin
(2000). Also, the Amnpq matrix in Eq. (5) could be modified to signify interactions
further afield than the nearest ring of neighbours. Further, the entire analysis could
be carried out, with considerable simplification, for a two-dimensional tape in the
m-z plane (Gupta et al 2017). Finally, accounting for the tensile loads carried by
the matrix, and accounting for matrix cracks also seems feasible, following the
approach suggested by Beyerlein and Landis (1999).

Other seemingly natural extensions of the present model are not straightfor-
ward. For example, implementing a pull-out stress, τ , 0 over a varying length
that restores the far-field load in a broken fibre, as in Ibnabdeljalil and Curtin
(1997), is not straightforward. This is because the average load experienced by
the composite determines the length of the sliding zone. Since the configuration
of the damaged regions depends upon the applied load, the problem ceases to be
linear, and the present methods do not apply. Also, the model cannot be readily
extended to account for infinite length along the fibre direction. This is because
translation invariance along the fibre direction, and therefore the applicability of
FFT-based algorithm, break down in the absence of periodicity.

The present work focuses on linear shear-lag models, wherein the influence of
fibre breaks can be superposed. Linear models represent highly idealised limit-
ing cases of detailed non-linear models, which account for a variety of non-linear
mechanisms including matrix plasticity, interfacial debonding, and frictional slid-
ing across the debonded interface (Landis and McMeeking 1999; Okabe et al 2001;
Xia et al 2002; Mishnaevsky Jr and Dai 2014; Swolfs et al 2013; Mishra and Ma-
hesh 2017). The non-linearity disallows the superposition of break influences in
these models. Therefore, they are much more computationally expensive to solve.
Computationally tractable simulation cells of these models tend to be small. For
example, the largest patches simulated by Mahesh and Mishra (2018) were com-
prised only of 128 fibres, and extended only one characteristic length along the
fibre. The fast Fourier transform based solution methods developed here will not
carry over to these complex models.

7 Conclusions

A linear, periodic, three-dimensional shear-lag model for a polymer matrix com-
posite has been developed, which allows damage in the form of fibre breaks, and
matrix failure. A fast Fourier transform based method has been proposed to obtain
the elastostatic state in this composite. The present algorithm is orders of mag-
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nitude faster than than the classical approach. Fracture simulations have been
performed using the fast algorithm. It is shown that even though the matrix car-
ries no tensile loads, matrix failure affects the stress redistribution in partially
failed model composites, and alters the development of fracture. This establishes
the importance of accounting for matrix failure while assessing the reliability of
composite materials.
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