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Abstract

A hierarchical model of a polycrystalline aggregate of rigid viscoplastic grains is
formulated, and a robust and efficient computational algorithm for its solution is
proposed. The polycrystalline aggregate is modeled as a binary tree. The leaves
of the binary tree represent grains, and higher tree nodes represent increasingly
larger sub-aggregates of grains. The root of the tree represents the entire polycrys-
talline aggregate. Velocity and traction continuity are enforced across the interface
between the children of each non-leaf node in the binary tree. The hierarchical
model explicitly models intergranular interactions but is nevertheless comparable
in computational effort to the mean-field models of polycrystal plasticity. Simula-
tions of tensile, compressive, torsional, and plane strain deformation of copper lead
to predictions in good agreement with experiments, and highlight the interconnec-
tion between grain deformations and intergranular constraints. It is inferred from
the results that a hybrid mean-field/hierarchical model represents a computation-
ally efficient methodology to simulate polycrystal deformation while accounting for

intergranular interactions.
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1 Introduction

Models presently available for predicting the mechanical response of a poly-
crystalline aggregate to imposed load or deformation may broadly be cate-
gorized either as mean field models, or as microstructural models. The sim-
plest mean field model, due to Taylor (1938), suffices to qualitatively explain
the macroscopic mechanical response and texture evolution during monotonic
homogeneous deformation in high symmetry materials (Hirsch and Lucke,
1988a,b, Tomé et al., 1984), despite neglecting all intergranular interactions.
The self consistent model, another mean field model developed by Hill (1965),
Molinari et al. (1987), and Lebensohn and Tomé (1993) treats intergranular
interactions in an average sense by requiring each grain to deform compatibly
with a homogeneous effective medium representing the polycrystal. Mean field
models neither account for the topology of grain and phase arrangement, nor

demand intergranular compatibility across grain boundaries.

On the other hand, microstructural models can account for the microstructure
in detail. The earliest microstructural model, due to Lin (1964), regarded the
polycrystal as a planar periodic tiling of square grains, and imposed displace-
ment compatibility, and traction continuity along the edges of each square.
More recently, the crystal plasticity based finite element method of Kalidindi
et al. (1992) has been widely applied (Grujicic et al., 2003, Manonukul and
Dunne, 2004, Héripré et al., 2007) to model the details of the microstructure
and intergranular interactions in order to explain experimentally observed mi-

crostructural phenomena in polycrystals. Buchheit et al. (2005) have discussed



the strengths and shortcomings of such models. An alternative, the N-site
model due to Lebensohn (2001) can also include the details of the microstruc-
ture into the model, and is perhaps the computationally fastest method of this

class.

Intergranular interactions are important in modeling the evolution of the grain
sub-structure, which sensitively depends upon the constraints imposed upon
a grain by its neighbors (Leffers and Christoffersen, 1997, Butler and McDow-
ell, 1998, Thorning et al., 2005). Much recent work has focused on substruc-
ture/microstructure sensitive modeling of the plastic response of a variety of
crystalline materials, under a range of loading paths and deformation condi-
tions, e.g., (Peeters et al., 2001a,b, Mahesh et al., 2004, Mayeur and McDowell,
2007, Beyerlein and Tomé, 2008, Shenoy et al., 2008, Shiekhelsouk et al., 2008)
Also, intergranular interactions must be accounted for in modeling the nucle-
ation and propagation of instabilities in a polycrystal (Dillamore and Katoh,
1974, Barnett et al., 2004, Paul et al., 2007), in modeling the response of
polycrystals with fine or elongated grains (Gan et al., 2007, Lee et al., 2007),
or where the test coupon is in the form of a thin membrane (Nemat-Nasser
et al., 2006). In each of these cases the deformation of a grain may be sig-
nificantly influenced by that of its neighbors (Hughes et al., 1997). Evidently,
modeling those phenomena that hinge upon intergranular interactions lies be-
yond the scope of the mean field models, and falls within the purview of the

microstructural models.

The shortcoming of the microstructural models is that they are at least two
orders of magnitude more computationally intensive than the mean field mod-
els. This is especially significant because it is presently computationally pro-

hibitive to incorporate the plastic response of a material point calculated from



a microstructural model to inform a larger simulation of a non-homogeneous
deformation process such as those in the studies of Guan et al. (2006), Zamiri
et al. (2007), Wu et al. (2007), Duchéne et al. (2007), or even to use it to
synthesize a texture dependent yield locus database (Knezevic et al., 2008).
Therefore, in situations that call for consideration of intergranular interactions,
but where only the statistics, and not the exact details of the microstructure
are significant, it is clearly advantageous to coarse-grain the intergranular in-
teraction and thus reduce the computational effort involved in solving the

model.

Strategies for coarse-graining the intergranular interactions have received much
attention recently. The LAMEL model of Van Houtte et al. (2002) accounts for
intergranular interactions in a polycrystal by imposing the applied rolling de-
formation upon pairs of rate-independent grains deforming compatibly across
an intergranular interface parallel to the rolling plane. Van Houtte et al’s (Van
Houtte et al., 2005) ALAMEL model additionally imposes approximate trac-
tion continuity between the interacting grains assuming a zone of continuous
traction variation between interacting grains. We also note here the numerous
works that have invoked similar considerations in order to model the com-
patible interaction between sub-structural features within a grain. Velocity
and traction continuity was used by Lebensohn (1999) and by Proust et al.
(2007) to model the interaction between the matrix and twin bands within
a grain in the context of deformation twinning studies using a self-consistent
model. Whereas Lebensohn (1999) and Proust et al. (2007) only model in-
teractions between pairs of sub-grain structures by forbidding their matrix
and twin bands from dividing further, Ortiz and Repetto (1999), and Ortiz

et al. (2000) have used the hierarchical framework to model the formation of



nested deformation bands of arbitrary depth within the context of minimizing

a non-convex plastic work function.

In this work, we model a rate-dependent polycrystalline aggregate as a hi-
erarchical arrangement of interacting sub-aggregates. Velocity and traction
continuity between sub-aggregates is enforced at each level of the hierarchy.
The model formulation allows several common constraints (full, and relaxed
constraints, self-consistent constraints, etc.) to be imposed upon the root node
of the hierarchy. We begin by formulating the model for arbitrary hierarchies
in Sec. 2.1-2.3 and in Sec. 2.4, detail a novel, robust and efficient computa-
tional algorithm to solve the system of non-linear equations that result from
the formulation. Then in Sec. 3, we apply the hierarchical model to simulation
monotonic deformation of a copper polycrystal along various load paths, and
compare the predictions with experiments, and with those of the Taylor and

self-consistent mean field models.

2 The Hierarchical Polycrystal Model

2.1 Governing equations

Consider a polycrystalline aggregate of N, rigid-viscoplastic rate dependent
grains, each of which obeys the following constitutive relation between the
isochoric strain rate (é€) and deviatoric stress (o), both assumed uniform over

the domain of the grain (Asaro and Needleman, 1985, Canova et al., 1988):

sign(o : m?), (1)




where, m® = (n®* @ b* + b* ® n®)/2, s = 1,...,S denotes the Schmid tensor
of the s-th slip system with unit normal n® and unit Burgers vector b°, 7°
denotes the critical resolved shear stress of slip system s, and n denotes the
reciprocal rate sensitivity. ¥* = | : m®/7%|"sign(o : m?®) is the slip rate of

slip system s.
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Fig. 1. Schematic drawings of two grain placement schemes for N, = 4 grains in
the microstructure (first row), and the binary trees corresponding to them (second
row). In both cases, node 1 is the root of the tree, and nodes 4, 5, 6, and 7 are the
leaves of the tree denoting grains. The compatibility conditions between the nodes

of the tree are however markedly different in case (a) and case (b).

We model the polycrystalline aggregate as a binary tree. Following standard
nomenclature (Cormen et al., 1990), each node k£ of the binary tree will be
assigned two child nodes denoted as I(k) and 7(k), and a parent node p(k).
Nodes [(k) and r(k) are said to be siblings of each other, and we will use the
notation s({(k)) = r(k), and s(r(k)) = l(k). If neither I(k) nor r(k) exist, k is
called a leaf of the tree. Likewise, if p(k) does not exist, k is called the root of

the tree.

Two schematic examples of the microstructure, and the corresponding binary

trees are shown in Fig. 1. Each of the IV, grains in the polycrystal is identified



with a leaf of the tree. With no loss of generality in representing the physical
connectivity between grains in a polycrystal, nodes that have only one child
are disallowed from our binary tree. Then, it can be seen that if N, is the
number of leaves, the number of nodes in the tree must be N, = 2N, — 1.
Higher nodes representing increasingly larger sub-aggregates of grains are as-
signed a volume fraction w!¥! such that for all &, wlk! = Wk 4 Ir®)] The
volume fraction of the leaves is an input to the model say, from a texture
description of the microstructure. We also define pl¥l = w[{®)]/ql*l € [0, 1],
so that w("®)] /ywlkl = 1 — plkl. The highest node of the binary tree, the root,
represents the entire polycrystalline aggregate. We will presently consider the
formulation and solution of the system of equations of a polycrystalline ag-
gregate represented by a binary tree. A discussion of the best representation

of a given microstructure by a binary tree will be postponed to Sec. 4.

We begin the formulation by defining the deviatoric stress o and the isochoric
strain rate € at each non-leaf node k£ as the volume fraction weighted averages

of those of its children:

ol — gl | (1 — k) gr(®)],

(2)
e — Kl | (1 — k) elr(h)],

Secondly, deformation compatibility and traction continuity is demanded be-
tween siblings [(k) and r(k) as follows: If the interfacial normal between [(k)
and 7(k) is vl and the velocity gradient in node k is L], we will require

that

[LH] = LF®] _ LIe) — Al @
(3)

or®Iy K — Gkl k]

for some A*! (Hill, 1961). A necessary condition (Mahesh, 2005) for Eq. (3a)



to be satisfied is that
[[é]][k] — elr®] gl — ()\[k] Qv £ U g )\[k])/g, (4)

in which case, A* = 2[€]*lpl — ([e]Flpk] . plE) L] Eq. (4) serves to enforce
the symmetric part of Eq. (3a). The anti-symmetric part of Eq. (3a) is satisfied
by imposing lattice spins VVl[k] to the children of node k. To this end, we

at

decompose the velocity gradient of the k-th node as (Mahesh, 2005)

LW = L8 4wl (5)

at >

where,

s, ,'YS,[k]bS,[k] ® nsa[k]’ if ke &, and
LM = (6)

(L) = pH LI + (1= PRI, itk ¢ 2,
where .Z denotes the set of all the leaves of the binary tree. In this work,
Lg’;] will quantify the deformation of node k due to slip only. Compatibility of
deformation between the children of node % is obtained by setting (Mahesh,
2005)

Wi = skew {(L¥ — (LK) — (1 - p")(A¥ @ v — [L]},

S8

(7)
Wit = skew {(£¥ = (L)) + (AM @ o — LT}

The problem of determining consistent fields in the hierarchical polycrystal
thus amounts to finding the five independent components of deviatoric stress
ol k € &£ at the N, leaves such that Eq. (3b) (2 equations) and Eq. (4) (3
equations) are satisfied at each of the N,, — N, = Ny — 1 non-leaf nodes of the
binary tree. This results in 5(/N, —1) non-linear algebraic equations, which, for
their closure require the imposition of five boundary conditions. The system

of non-linear algebraic equations is dense because every leaf (grain) shares an



ancestor in the hierarchy with every other leaf. Intractably large matrices may
result if the standard methodology (Powell, 1970) for the solution of non-linear
equations were used. Note that the intrinsically banded structure of the finite
element method is not available for the present hierarchical structure of the
problem. The hierarchical nature of the present problem however lends itself

to a different strategy for an efficient piecemeal solution, as detailed below.

2.2 State evolution of the polycrystal

Once ol*l and ¥l conforming to Egs. (2), (3b), and (4) at each node k are
determined, the lattice spins VVlth] at each node k are determined from Eq. (7),
and used to update the lattice orientations of the grains. The shape of node

k, quantified by its deformation gradient tensor F'! can also be updated

using (Kocks et al., 1998)

F — ] plkl (8)

The orientation of the interfacial normal between the children of node £, is
assumed to evolve with the shape of node k: If the interfacial normal were

l/([)k] when the deformation gradient of node & is Fo[k}, the interfacial normal is

taken as (Mahesh and Tomé, 2004)

v = B PR ) T R ) (9)

after the evolution of the deformation gradient to FI*.



2.8 Hardening model

The hardening law used in the present study is of the extended Voce type

given by Tomé et al. (1984)
T(F) = To + (7'1 + 01F) [1 — exp(—FOo/Tl)] y (10)

where ' denotes the shear strain accumulated in all the slip systems of the
grain. Increment of the critical resolved shear stress 7° in slip system s fol-

lows Kocks et al. (1998)

_ dr(l)

= Y HTY (11)

where the summation is over all the slip systems indexed by s, H denotes
the 12 x 12 hardening matrix, and d7(I')/dl" is obtained by differentiating

Eq. (10).

H used in this work incorporates the experimental observation of Franciosi
and Zaoui (1982) that latent hardening of slip systems in copper is anisotropic
and depends on the type of interaction between dislocations in the active and
latent slip systems. The value of Hy, s,s" € {1,...,12} is chosen depending
upon whether the interaction between s and s’ is of the self hardening (hy),
coplanar (hy), colinear (hy), Hirth locking (h;), glissile junction forming (hs),
or Lomer-Cottrell junction forming (h3) types. According to Franciosi and

Zaoui (1982) and Pierce et al. (1982), 1 < hy < hy < hy < hy < 1.4 in copper.

The hardening model described above is a modification of models available
in the literature. Surveys of hardening models may be found in Weng (1987)
(parametric models), and Mahesh et al. (2004) (sub-structural models). As

an example of an alternative definition of latent hardening coefficients, Weng
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(1987) has suggested
hss = a1 + (1 — 1) cosbye oS ¢sg + g 8in sy + a3 sin ¢y, (12)

where «.) are fitting parameters in place of h(.y in the present model, and 0,
is the angle between the slip directions the s-th and s’-th slip systems, and
¢ss is the angle between their slip plane normals. Weng (1987) observes that
hardening matrices of this form can accommodate several types of hardening
including, isotropic and kinematic hardening. This observation also applies to

the hardening matrix H used in this work.

2.4 Solution methodology for the hierarchical model

Prior to detailing an algorithm for the solution of the 5NN, deviatoric stress
components satisfying Eq. (3b), Eq. (4), and the imposed boundary conditions

in Sec. 2.4.8, we set forth key concepts used in the solution.

2.4.1 Continuity conditions in Leibfried-Breuer notation

We refer to Lebensohn et al. (1998) for a description of the 5-dimensional
Leibfried-Breuer vector representation of a traceless symmetric matrices whereby
the matrix representation of the strain rate and deviatoric stress in the sample
coordinate system are [€] = Y5_, éMpM and [o] = 5_, 6WbN | respectively.
Here b represent symmetric basis matrices that obey the orthonormality
condition b : pW = Oxu- It is easily shown that for a coordinate trans-
formation specified by [€'] = [R]"[€][R] and [¢'] = [R]"[o][R] where [R] is
orthonormal, there exists an orthonormal matrix o, ey, = [R]"b"™[R] : bV

such that éN' = ,,é® | and o™’ = a,,0. Note that [-] denotes the matrix

11



representation of a tensor in the sample coordinate system, and - denotes a

matrix.

Let a¥! denote the rotation matrix in the Leibfried-Breuer space that cor-
responds to a physical rotation R from the sample coordinate system to a
coordinate system whose 2-axis coincides with the interface normal between
the child nodes of node k. Thus the 1 and 3 axes of the interfacial coordinate
system will lie in the interface; their actual orientation within the interface is
irrelevant. Then, in the Leibfried-Breuer notation, Eq. (3b) and Eq. (4) take
the form
Pa[[e¥]] + Qa[[o]] = o, (13)
where,
P = diag(1,1,0,1,0), and @ = diag(0,0,1,0,1). (14)
Eq. (13) is the statement of strain-rate compatibility and traction continuity
between the children of node £ in Leibfried-Breuer form, and is related to the
condition used by Lebensohn (1999) in that his K is our Q~'P. The present

treatment however obviates Lebensohn’s numerical treatment of infinities.

2.4.2 Boundary conditions in Leibfried-Breuer notation

The boundary conditions imposed upon the root node r of the hierarchy can

be specified in the form:

S[eM + Te"]+ U = 0. (15)

The full constraints (FC) imposition of a strain-rate €™ at node r is accom-
plished by setting S = diag(1,1,1,1,1), T = diag(0,0,0,0,0), and U = —€™P,
Relaxation of constraints (Honeff and Mecking, 1978) on planes perpendicular

to the ‘2’-axis, i.e., 019 = 091 = 093 = 093 = 0, is accomplished by setting

12



S = diag(1,1,0,1,0), T = diag(0,0,1,0,1), and U = —(&™, &, 0, &P, 0),
where é™ is the i-th Leibfried-Breuer component of the imposed strain rate
vector. The interaction equation (Lebensohn and Tomé, 1993, Eq. 18) of the
self-consistent method

é—-E=-M(oc-YX),
where (¢,0) and (E,X) are the strain rate and the deviatoric stress in a
grain, and in the homogeneous effective medium, respectively, and M is the

interaction matrix, can also be cast in the form of Eq. (15), by setting S =

diag(1,1,1,1,1), T = [M], and U = [-E — M.

The constraint imposed upon a sub-hierarchy rooted at some non-root node

k, k # r can also be expressed in form of Eq. (15), by selecting

S = PalP®)]
U= _(@[p(k)] [els®)]] 4 QalP®)] [ols®)]).

2.4.83 Tangent modulus

We will now derive the tangent modulus of node k, denoted M'8[k] = dél*! /der!*.
If node k is a leaf of the hierarchy, its M'[k] may be directly computed by
differentiating Eq. (1) as shown by Kocks et al. (1998). The calculation below
pertains to a non-leaf node k of the hierarchy, and assumes that M"[l(k)]
and M'8[r(k)] are known. It is desired to determine the differential change
dél¥l given the differential deviatoric stress increment do¥! subject to the con-

straints

d (&[P(k)] [elF)] + @[p(k)][o.[k]])

d (P[] + Qa™ o))

0,

0.
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Egs. (17) demand preservation of the constraints imposed upon node k by the
rest of the hierarchy, and the state of incompatibility between the children of
node k to first order, respectively. Following Lebensohn’s (Lebensohn, 1999)

analysis, we obtain

M“[k] = (PIMEU(R]AN + (1= pH)M () (P AN + (1= J)T)
(18)

= (Pal M (U(R)] + Qo) (P ME[r (k)] + Qo). (19)

2.4.4 Binary tree related definitions and notation
The height of node k, h[k], in the hierarchy is defined as:

1, itke. Z,
hlk] =

1+ max(h[l(k)], h[r(K)]), ifk ¢ Z.

The set of nodes of height / in the binary tree will be denoted by s#”. The

set of descendants of node k, denoted as Z[k] is defined as

{k}, if I(k) and r(k) do not exist,
I[k] =

{k,2l(k)], Z|r(k)]}, otherwise.

The distance, d(k,) between node k, and node [ € Z[k] is defined as

0, if kK =1 and,
d(k,1) =

1 +d(k,p(l)), otherwise.

The set of all descendants of node k, within a distance b is denoted by 2°[k] C

P[k]. The set of nodes | € 2°[k] that are either distant b from k, or are leaves

14



of the hierarchy, will be denoted as .#°[k]. In Fig. 1(b), 2°[1] = {1,2,3,6,7},
L] = {3,6,7}, P*2] = {2,3,4,5,6}, and L3[2] = {4,5,6}.

2.4.5 Measure of incompatibility

For integral b (chosen according to computer memory constraints), we define
the incompatibility below node k& as
1/2
e'lk] = {HNHQ + Y ||PatTe]) + @W[[{amunf} . (20
leDP[k)
where the 2-norm is understood, and where,

&[p(k)][[[é[p(k)]]” + Qa[p(k)][[[a-b(k)]]”, if k # r and,
Tl — - (21)

S[eM] + T[e™] + U, if k= r.

I'™ quantifies the incompatibility between the root of the sub-hierarchy P°[k],
and the rest of the hierarchy if the sub-hierarchy is rooted at an internal node
of the binary tree; otherwise it quantifies the incompatibility of the fields in
node k with the imposed deformation. The second term in Eq. (20) quantifies

the residue in Eq. (13) within a block of height b rooted at node k.

2.4.6  Linearized continuity conditions
Using Eq. (2), €’[k] can be expressed as e’[k] = ||F°[k]||?, where
Plk] = A'[R)E"[K] + BY[K]Z'[k] + CIk], (22)

and E'[k] = (eh,én, ..., &n)T, 20k] = (oM, a2, ..., )T, and {l1, Iy, ..., 1} =
ZP[k]. The coefficient matrices A°[k] and B°[k] are formed by volume fraction

weighted summation of Pa and Qal”, I € 2°[k] and the loading vector C[k]

15



is formed from I¥]. The non-linearity of F*[k] arises from the relationship be-
tween Eb[k], and X°[k] in Eq. (1). For the purpose of finding a perturbation

6%°[k] that reduces ||F°[k]||, we define the Jacobian of F[k] as

J'[k] = OF"[k]/0Z"[k] = (A[k][M"*" (k] + B’[k)), (23)
where the block tangent modulus M*°[k] = diag(M®, ... M%)
The problem of eliminating the incompatibility €®[k] is equivalent to mini-
mizing the scalar function f(X) = ||F°[k*]||?/2 that is solved here using the
trust region method (Conn et al., 1987, Kelley, 1999). Each step of the process

involves approximating the local variation of f(X) around the current iterate

Yo by the quadratic model
FE)=fE)+(VHTE-Z) + (E-Z) Vf(E-20)/2, (24)

where the gradient Vf = J°[k]F°[k], and Hessian V2f = (J°[k])TJ°[k]. The

predicted reduction in f(X) is given by
A=—(VH)'(Z-Zo) = (- Z0)V*f(Z - Zo)/2. (25)

Note that the size of the optimization problem grows exponentially with b.

2.4.7 Stress increment partitioning

We now give a formula for partitioning a given stress perturbation do*! im-

posed at node k£ among its children subject to the constraints

P[5 + (1 = p) [ ¥)) = 5], and, (26)
26
Pal[5TeM]] + Qo [s[a]]) = 0.
The first condition above demands preservation of the average property in

Eq. (2a), and the second condition demands maintenance of the current state

16



of incompatibility between the child nodes of k. Noting that 6€l“®)] = M8[i(k)]sal!®),
and 0elr®)] = Me[r (k)]0 ), we get §o'*) = AFlgat®) | where Al is given

by Eq. (19), and

2.4.8 Solution algorithm

The trust region (Conn et al., 1987, Kelley, 1999) based solution algorithm is
given in Alg. 1. It involves iteratively lowering the e’[k*] of node k* with the
largest incompatibility error, using a local quadratic model of the incompati-

bility surface near the present state of stress.

3 Numerical results

In this section, we present the results of numerical simulations of deformation
of a copper polycrystal comprising of N, = 256 initially randomly oriented
grains of equal volume comprising the leaves of a hierarchical model described
above. All simulations start with the same set of uniformly distributed random
interfacial normals v¥! between sibling nodes of the hierarchy. The polycrystal
is represented as a balanced binary tree with N, = 511 nodes. Node r = 511

is the root of the tree with height h[r] = 9.
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3.1 Monotonic Tension, Compression, and Torsion of copper polycrystals

We begin by fitting the parameters of the hardening model of Sec. 2.3 to the
experimental data of Tomé et al. (1984) under monotonic tension, compres-
sion, and torsion of copper. Fitting is done to both the hierarchical and VPSC
models. In the hierarchical model, tension, and compression are imposed using
the relaxed constraints on the root node » = 511, whereas torsion is imposed
using full constraints. All three loadings are imposed using full constraints
in the VPSC model. Comparison of the experimental and model generated
stress-strain response for both the hierarchical and VPSC models are shown
in Fig. 2. The extended Voce hardening parameters used in fitting are given
in Table 1.

(a) Hierarchical model (b) VPSC model

Tension Tension

e ® .
* * Compression]

cevvcoe N
Compressmr

200 200

150 | Torsion 150 | Torsion

100 100

50 - 50 -

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
€33 (Tens), —ez3 (Comp), €15 (Tors) €33 (Tens), —ez3 (Comp), €15 (Tors)

Fig. 2. Comparison of the experimental data of Tomé et al. (1984), indicated by
dots, with that of a 256 grain hierarchical model (a), and VPSC calculation (b),

indicated by continuous lines. The fitting parameters are listed in Table 1.

It is seen from Fig. 2 that both the hierarchical model, and the self-consistent
model succeed in fitting the experimental data. Whereas the parameters needed

to fit the tension and compression curves using the hierarchical model are com-
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Table 1
Voce parameters (in MPa) used in fitting Tomé et al. (1984)’s experimental stress
strain curves using the hierarchical and VPSC models. The latent hardening con-

stants are hg = 1, hy = 1.2, ho = 1.25, and hy = 1.3.

Hierarchical model VPSC model

Loading T0 0() T1 01 T0 90 T1 91

Tension 15 190 110 4 || 12 280 150 10

Compression || 15 190 110 1 || 12 290 135 1

Torsion 15 120 66 9 || 12 280 110 10

parable (the only small difference being in 6;), they are markedly different
from those needed to fit the torsion curve. The parameters needed for fitting

all three curves are different for the VPSC model.

The difficulty of finding a common set of Voce parameters for all loading paths
was noted by Tomé et al. (1984). In fitting their data with a full constraints
model, and with a model that transitions from full to relaxed constraints as
grains become flatter, they found that accounting for texture evolution can
only partially explain the different stress-strain response along different load-
ing paths. They argued that the rest of the discrepancy is caused by loading-
path dependent sub-structure formation and hardening of grains, and that
different Voce parameters are needed to account for distinct sub-structures.
Direct experimental evidence demonstrating that the sub-structure pattern in
tension, and in torsion are different was given by Bassim and Liu (1993) for
commercial copper, and likely arises because grains rotate toward well defined

stable orientations during uniaxial tension but undergo constant rotation and
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do not approach stable orientations (Kocks et al., 1998, Chap. 5, Sec. 1.3)
during torsional deformation. The extended Voce law of Eq. (10) is unable
to capture the hardening patterns under both schemes of sub-structure evo-
lution. This necessitates significantly different parameters to fit tension and

compression on the one hand and torsion on the other.

The Voce parameters used to fit the tension and compression curves using
the hierarchical model are much closer to each other than those obtained by
fitting these same curves with the VPSC model. We interpret this to physically
mean that whereas the hierarchical model succeeds in fitting both curves by
assuming similar average sub-structural evolution within grains, the VPSC
model requires an assumption of different sub-structural evolution. In view
of the rotation pattern of grains toward stable orientations in both tension
and compression, the hypothesis of similar sub-structural evolution in both
tension and compression, as given by the hierarchical model, appears more

reasonable.

3.2 Plane strain deformation of copper polycrystals

We now analyze in detail the plane strain deformation of a hierarchical copper
polycrystal to a rolling reduction of 74%. Because grains rotate toward well
defined stable orientations during rolling, we assume the hardening parameters
fit to the tension data from Table 1, which are similar to those that fit the
compression data. Plane strain boundary conditions are imposed either on the
entire hierarchy at node 511, which is the only element of the set #° or on
the 16 sub-hierarchies rooted at the nodes comprising 5, or on the 256 sub-

hierarchies rooted at the nodes comprising .7#1. 7! loading is equivalent to
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the Taylor model, and will serve as a point of comparison for the other results.
Both full (FC) and relaxed constraints (RC) are imposed. We distinguish
between the trivial hierarchical models (! FC and RC models) and the true

hierarchical models (#° and #° FC and RC models) below. Also, e =

I \/ (2/3)€élrl(7) : €rl(7)dr denotes the von Mises strain at the root node of
the hierarchy, and RD, TD, and ND respectively denote the rolling, transverse

and normal directions.

Figure 3 shows the calculated {111} pole figures after 74% reduction for dif-
ferent constraints, and for different sets chosen for constraint imposition. Four
fold symmetrization of the pole figures is done for easy comparison with the
experimentally measured pole figure of Hirsch and Lucke (1988a). Similarly,
the choice of the displayed set of level lines overlaps that of Hirsch and Lucke
(1988a). The peak intensity in the simulated {111} pole figures corresponding
to FC on ##° (Fig. 3a), FC on " (Fig. 3b), and RC on #° (Fig. 3d), are
5.6, 6.4, and 6.3, respectively, and agree well with the peak experimental in-
tensity of 6.0. Thus, all the true hierarchical models fit the peak experimental
stress intensity well. Their pole figures are also in good qualitative agreement
with the experimental pole figure of Hirsch and Lucke (1988a). Trivial hi-
erarchical FC and RC calculations however result in more than double the
experimental peak intensity being predicted (Fig. 3c and Fig. 3e). This agrees
with the well known (Hirsch and Lucke, 1988b, Butler and McDowell, 1998,
Lebensohn, 2001) tendency of the Taylor model to overestimate the texturing
rate. Fig. 3f shows the final texture predicted by a viscoplastic self-consistent,
(VPSC) calculation (Lebensohn and Tomé, 1993). The predicted peak inten-

sity is intermediate between that of the trivial and true hierarchical models.

The underlying reason for the markedly different peak intensities of the .7#°
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a: FC on ##°. max = 5.6 b: FC on J#°. max = 6.4 ¢: FC on 4. max = 12.9

Fig. 3. Calculated {111} pole figures after a rolling reduction of 74% from 256-grain
simulations using the hierarchical polycrystal model (a-e), and using the viscoplastic
self consistent model (Lebensohn and Tomé, 1993) (f). Four-fold symmetrization of
the pole figures and the choice of the level lines (0.5, 1, 2, 3, 4, 5, 5.5, 6, 7, 8, 10, 12,

15, and 18) correspond to the experimental pole figure of Hirsch and Lucke (1988a.).

and 7' FC models is seen by comparing the distribution of grain lattice spin
axes (the dual of VVl[akt}) in Fig. 4. It is seen that the dominant direction of the
lattice spin axes moves from close to TD in the early stages of deformation to
lie on the RD-ND plane with increasing deformation, for both FC on #° and
FC on !, but is less clustered in these regions under .%#° constraints than
under J#! constraints. Taken together with the observation that the mean
grain spin rates for the #° model are higher (0.67 at €,y = 0.25 and 0.26
at e,y = 1.35) than those for the ! model (0.49 at €,5; = 0.25 and 0.18 at
exm = 1.35), we conclude that the reduced peak intensity in Fig. 3a compared
to Fig. 3c originates from the greater scattering of the lattice spin axes of the

grains in the .7#° model, and not because of smaller lattice spin magnitudes
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in the ##° model.

max = 10.1
< @%
g ) TD
O QO@
&
R
§
@)
=

Fig. 4. Pole figure representation of the lattice spin axis at e,y = 0.25 (first column),
and at eyy; = 1.35 (second column) for FC at 5! (first row), and FC at 7 (second

row). The plotted levels are 1, 2, 3, 5, 7, 9, 10, and 13.

The continuity conditions demanded in the hierarchical model affects the ac-
tivation of slip systems in individual grains. Following Lebensohn and Tomé
(1993), we take a slip system to be active in a grain if its absolute slip rate
is at least 5% of the maximum absolute slip rate in that grain. Fig. 5 shows
the evolution with deformation of (NV,.), the average number of active slip
systems. It is seen that (i) the four true hierarchical models exhibit similar
evolution (Fig. 5b), which suggests that the continuity conditions between
nodes of small height determine the grain fields, and (ii) all the true hierarchi-
cal models result in greater activity than the VPSC model, which suggests that
the condition of deformation compatibility with neighboring grains imposes

greater constraint on the grains than the condition of deformation compatibil-
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ity with a homogeneous effective medium as in the VPSC model. The greater
constraint imposed on each grain in the Taylor FC (') model also explains
its much larger (N,.;) compared to all the other models. (iii) The (N,) of the
true hierarchical models, the Taylor RC model, and the VPSC model become

similar with increasing deformation.

(a) R U

55 . . . . . . 55
5 N 1 5|
45 1 45
/§ . RC on 1 /§ \ RC on s#°
Z I on | = |__FC on 25
- 35 VPSC 1 e 35 %\
FC on s#° RC on 4#° —
8 1 st FC on %9/
25 . . L L L L 25 L L I I I I
0 0.2 0.4 0.6 08 1 1.2 1.4 0 0.2 0.4 0.6 08 1 1.2 1.4
EvM €vM

Fig. 5. Evolution of the average number of active slip systems, (N,¢) in the grains
calculated by various models. (a) Evolution for three mean field models and one
true hierarchical model (FC on .5#?), and (b) Comparison of the different true

hierarchical models.

Another measure of the division of the imposed deformation among the grains
is obtained by considering the average deviation of the deformation of grains
from plane strain, given that the macroscopically imposed deformation is plane
strain. We quantify planarity of grain deformation using the intermediate
eigenvalue of the strain rate tensor, i.e., if /\[1]6} < )\[Qk] < A[gk] are the eigen-
values of é¥!, k € Z, Fig. 6 plots the evolution of the standard deviation of
Ao with deformation. Again, we observe that (i) all the true hierarchical mod-
els have similar (A%)é evolution with imposed deformation, and these show
considerable non-planarity of deformation that however, decreases with defor-
mation. (ii) At the early stages of the deformation, the VPSC model coincides

with the Taylor RC model (RC on '), but transitions toward the true hier-
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archical models with increasing deformation. (iii) Of all the models, the Taylor

RC model shows the least deviation from planarity.

(b)

0.16
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Fig. 6. Evolution of the deviation of average grain deformation from plane strain
deformation. (a) Evolution for two mean field models and one true hierarchical

model (FC on ), and (b) Comparison of the different true hierarchical models.

),
Note that (A\2)2 = 0 for FC on #.

A measure of the constraint experienced by individual grains constituting the

polycrystal is the deviation of the granular strain rate, é¥! and stress ol*!

7

ke &, from €l o'l where r is the root of the hierarchy. Four measures of
deviation
1
. el N\ 2\ 3
5¢:<<1_ﬂ:i> >
‘ [[€F1]] | €]
1
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(-2 )
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(
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7 || ’

(28)

-

evaluated at e, = 0.25 and €,y = 1.35 are shown in Table 2. These quan-
tify the standard deviation of the direction (d¢, 62) and magnitude (67, 6™)
differences between the grain fields (e, o*!), k € . from their macroscopic

averages (€', o). We observe that: (i) Each of 6¢, 62, 67, and &7 is com-
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Table 2

Deviation of the grain fields (é[k], cr[k]), k € % from the macroscopic averages

(€I, &) after 29% and 74% rolling reduction.

Loading evm = 0.25 evm = 1.35
64 o 54 oy 64 o 6d oy

1 FC || 0.000 0.000 | 0.200 0.327 || 0.000 0.000 | 0.156 0.198
A FC | 0.094 0.286 | 0.161 0.263 || 0.131 0.274 | 0.129 0.214
° FC || 0.109 0.356 | 0.146 0.261 || 0.137 0.291 | 0.128 0.217
' RC || 0.097 0.119 | 0.161 0.323 || 0.133 0.169 | 0.153 0.220
2% RC || 0.101 0.298 | 0.154 0.266 || 0.139 0.229 | 0.131 0.225
#° RC || 0.119  0.347 | 0.155 0.270 || 0.154 0.266 | 0.132 0.214
VPSC || 0.061 0.234 | 0.024 0.133 || 0.086 0.087 | 0.046 0.161

parable for all the true hierarchical models at both low and high eyy.

This

reinforces our earlier suggestion that the continuity conditions imposed be-

tween nodes of small height determine the scatter of the é¥l, and ¥, k € &

fields. (ii) Compared to the true hierarchical models, the VPSC model results

in much smaller scatter of the grain fields (both strain rate and stress) from

that of the macroscopic average, at both stages of the deformation process

considered. (iii) 64, and 6™ for the true hierarchical models are comparable to

that of Taylor RC model (' RC). This is not true for 62, and 57"
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3.8  Computational effort

The computer run time of the different models, normalized against the run
time of FC loading on ' are 0.83 (FC on ##°), 1.83 (FC on #7), 1.40
(RC on ##1), 0.68 (RC on %), and 1.92 (RC on ##°). Throughout, we have
taken b = 9 (Sec. 2.4.5). Surprisingly, the #° calculations are faster than
the corresponding 7! calculations, although, the #° calculations are more
time consuming than the J#* calculations. This is because the total compu-
tational time is the product of the time to set up and solve the quadratic
incompatibility problem (Sec. 2.4.6), and the number of such problems.
calculations turn out to be faster than #' calculations because the simulta-
neous correction of the stresses in 16 grains arrives at a compatible system
of fields with fewer steps, even though each set of the solution is more time
consuming. In ##° calculations however, the solution time of the much larger
quadratic model is large enough to outweigh the reduction in the number of

solution steps.

We reemphasize that all the true hierarchical calculations involve the same or-
der of magnitude of computational effort as a Taylor (") calculation, unlike
a full crystallographic finite element or N-site calculation, which typically is
at least two orders more computationally intensive than any of the mean field

models.

4 Discussion

In Sec. 3.2, four measures of grain response in hierarchical polycrystals were

considered: the texture evolution, activity of slip systems, planarity of grain
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deformation, and statistical deviations of the grain stress and strain-rate fields
from the macroscopic average. In every measure considered, the true hierarchi-
cal models showed similar response regardless of the imposed constraint (FC
or RC) and regardless of the node set for constraint imposition (A or 7).
This suggests that the requirement of compatibility and traction continuity
(Eq. (3)) between children of the more numerous nodes of small height statis-
tically dominates that between children of the fewer nodes of larger height in
determining the granular fields. In other words, it appears that truncation of
the hierarchy beyond a certain height (= 5 for copper) has little deleterious
influence upon the statistics of the computed grain response in the hierarchi-
cal model. The optimal height for truncation will depend upon the anisotropy
of the crystal response, with more anisotropic crystals requiring truncation at
greater heights to fully capture the statistics of their response. This leads us
to suggest that a computationally light model of a polycrystal that accounts
for intergranular interactions would comprise of a mean field model like the
Taylor or the VPSC model wherein the grains are replaced by binary trees of
small height. The .75 models are examples of such hybrid models of the poly-
crystal. Indeed, it has been shown that these calculations are computationally

lighter still than their respective Taylor calculations.

It was stated in Sec. 1 that the binary tree model cannot capture intergranular
interactions to the same level of detail as a true microstructural model (Ka-
lidindi et al., 1992, Lebensohn, 2001). Topologically, this derives from the
absence of closed loop paths through the leaves (grains) of the binary tree,
unlike in the actual microstructure. However, it is precisely the absence of
closed loops in the binary tree model that enables its rapid solution, as the

solution of sub-hierarchies can be accomplished without consideration of the

28



rest of the hierarchy.

We now discuss the construction of the binary tree model from given mi-
crostructural information from say, a 2D micrograph. A single step in this
process involves dividing a region (represented by node k) of the micrograph
into two sub-regions (/(k) and r(k)), according to the criterion below. The pro-
cess can be recursively applied to each of the two sub-regions to obtain further
sub-division. Desirable properties of the dividing curve between the two sub-
regions are that it must (i) be a continuous union of grain boundary segments,
(i) approach planarity (linearity in 2D) as closely as possible, so that assign-
ment of a normal vector v!¥! to this interface corresponds to physical reality,
and (iii) divide the region such that p!*! ~ 0.5. Each such potential dividing
curve can be assigned an effective normal vector v* = ¥, ,N; /|| &; L, Ny,
where N; represents the unit normal of the i-th segment of the contour, of
length /; and the optimal dividing curve defined as one that minimizes the

cost function

1\2 3, LN - plk)? 2
Cw, (1 1) o (BN )
where W, + Wy, = 1. An attempt to implement this procedure on actual

microstructures to compute the grain fields is deferred to future work.

5 Conclusion

A hierarchical model of a rate-dependent polycrystal that explicitly accounts
for inter-granular interactions, and is yet comparable in computational effort
to mean field models is proposed, and an algorithm for its solution is given.

Deformation along various monotonic loading paths of a copper polycrystal
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have been analyzed using this model under different constraints. Good agree-
ment with experimental observations is found. Further, it is found that all
the true hierarchical models tested lead to similar macroscopic response, sug-
gesting that the continuity conditions applicable near the lowest level of the

binary tree dominate the determination of granular deformation.

It is therefore suggested that computationally efficient modeling of a polycrys-
tal while accounting for the interaction between grains can be accomplished
by embedding short binary trees (of height approximately 5 in f.c.c. copper)

in the place of grains in conventional mean field models.
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Algorithm 1 Trust region solution algorithm for the hierarchical polycrystal.

Data: Root node r; binary tree descriptors I(k), r(k), p(k); initial guesses for

(k] £ 0, and trust radii R[k] > 0, Vk € 2[r]; b> 1, and £ > 0.

Result: €l and ol fields that satisfy Egs. (1), (3b), and (4).

1:

k*=r

2: while e’[k*] > ¢ do

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

Let X, be the current iterate of stress. Calculate F°[k*](X,), and
JU[E*](Z,) (Sec 2.4.6).
Compute a step §X°[k*] to minimize the quadratic model for f(X) given
by Eq. (24) subject to ||[6Z°[k*]|| < R[k*]. Obtain A from Eq. (25).
Partition §X°[k*] recursively (Sec. 2.4.7) to determine dol¥l, k € £ n
D[k*]
Update ol¥l + ol¥l+a!¥, recompute €, k € £ N P[k*] using Eq. (1),
and recursively update €l and ol¥l, k € 2[k*] using Eq. (2).
Recompute e’[k*], and calculate A, the true reduction in f.
if A/A <0 then
R[k*] « R[k*]/4. Reject the step 6X°[k*], and go to step 4.
else if 0 < A/A < 0.25 then
R[k*] < R[k*]/4. Accept the step 6X°[k*].
else if 0.25 < A/A < 0.75 then
Accept the step 62°[k*].
else
R[k*] + 2R[k*]. Accept the step §X"[k*], and go to step 4 to attempt
lowering e®[k*] further.
end if
Update €[k], for all nodes k.

k* = argmaxye g € [k].

19: end while
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