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Abstract. Monte-Carlo simulations and theoretical modeling are used to study the
statistical failure modes and associated lifetime distributions of unidirectional 2D
and 3D fiber-matrix composites under constant load. Within the composite the fibers
weaken over time and break randomly, and the matrix undergoes linear viscoelastic
creep in shear. The statistics of fiber failure are governed by the breakdown model of
Coleman (1958a), which embodies a Weibull hazard functional of fiber load history
imparting power-law sensitivity to fiber load with exponent p, and Weibull lifetime
characteristics with shape parameter 8. The matrix has a power-law creep compli-
ance in shear with exponent a. Fiber load redistribution at breaks is calculated using
a shear-lag mechanics model, which is much more realistic than idealized rules based
on equal, global or local load-sharing. The present study is concerned only with the
“avalanche” failure regime discussed by Curtin and Scher (1997) which occurs for
sufficiently large p, and whereby the composite lifetime distribution follows weakest-
link scaling. The present Monte-Carlo failure simulations reveal two distinct failure
modes within the avalanche regime: For larger p, where fiber failure is very sensitive
to load level, the weakest link volume fails in a “brittle” manner by the gradual
growth of a cluster of mostly contiguous fiber breaks, which then abruptly transitions
into a catastrophic crack. For smaller p, where this load sensitivity is much less, the
weakest link volume shows “tough” behavior, i.e., distributed damage in terms of
random fiber failures until failure of a critical volume and its catastrophic extension.
The transition from brittle to tough failure mode for each p within the avalanche
regime is gradual and depends on the matrix creep exponent a and Weibull exponent
B. Also, as « increases above zero the sensitivity of median composite lifetime to
load level increasingly deviates from power-law scaling known to occur for the elastic
matrix case, @ = 0. By probabilistic modeling of the dominant failure modes in each
regime we obtain distribution forms and various scalings for damage growth, and for
carefully chosen sets of parameter values we analytically extend simulation results
on small composites (limited by current computer power) to more realistic sizes.
Our analytical strength distributions are applicable for p > 2 in 2D, and p 2 4 in
3D. The 2D bound coincides with the avalanche-percolation threshold derived by
Curtin and Scher (1997) using entirely different arguments.
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1. Introduction

The failure of a component after spending considerable time under
constant load is called stress-rupture or creep-rupture. In multi-phase
materials, time dependence in the failure process may result from lo-
cally growing, randomly distributed flaws within the stiff, primary,
load-bearing phases leading to microcracks spanning such phase el-
ements, or at phase boundaries leading to slip or cavitation. Both
cause local stress loss and redistribution to nearby phase elements, thus
accelerating flaw growth and microcracking within them. Eventually,
several microcracks may link to from a growing catastrophic crack. One
or more of the phases may also be susceptible to more homogeneous
creep in tension or shear, also altering this stress redistribution over
time. Thus microcracks may become growing voids observed as global
material volume increases over time before void linking and collapse.
Experimentally observing and modeling the breakdown phenomena and
critical event times during creep-rupture is technologically difficult.
For instance, a given material system may exhibit ductile-like behayv-
ior where distributed void initiation and growth appears globally as
primary, secondary and then tertiary creep that with ultimate localiza-
tion and collapse. Yet relatively small changes in values of constitutive
parameters governing individual phase behavior (often connected with
temperature, environmental factors, processing history and local ge-
ometry effects) can cause abrupt transitions to brittle-like behavior
with much less global creep, no tertiary creep, and thus, little warning
of impending component failure. Furthermore, whether a ductile or
brittle-like failure mode is observed may depend on the applied load
level as well as the component geometry and material volume sustaining
the load.

At the same time creep-rupture lifetime statistics for replicated tests
on laboratory coupons typically exhibit large variability, and the shapes
of the lifetime distributions are strongly dependent on load level, ma-
terial volume and whether ductile or brittle-like behavior has occurred.
Engineers typically design components for long life (decades) and ex-
tremely low probabilities of failure (e.g., Py = 107® to Py = 107?)
depending on life-safety constraints. The issue is one of sizing the
component to achieve a suitable load level for the desired reliability
goal. For several reasons this is not achievable by physical testing alone:
First, components may be much larger than laboratory test coupons
for which multiple test fixtures are available to gather creep-rupture
data. Second, the number of such fixtures can never be enough to
provide sufficient data to access the high reliability regime, especially
since several fixed load levels may be necessary to investigate lifetime
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sensitivity to load. Third, testing must be done in real time, which
cannot be fully completed in advance of putting components into ser-
vice. Thus to predict reliable component life engineers must resort to
accelerated testing methods, critical examination of specimens removed
from service, and ultimately, data extrapolation. Thus it is crucial
to have available sophisticated, validated models that are based on
actual material microstructures and the micromechanics and statistics
of failure processes. These may combine analytical and Monte Carlo
simulation approaches.

Unidirectional fiber-matrix composites are of great interest, not only
because they are high performance materials in their own right, but also
because they serve as model materials for study of the creep-rupture
processes described above. Examples of such systems are: (i) polymer-
matrix composites such as continuous aramid, PBO, carbon (graphite),
glass and PIPD (M5) fibers embedded in epoxy, polyester, nylon or
polyimide resins (ii) metal-matrix composites such as silicon carbide
or alumina fibers in an aluminum or titanium matrix, and (iii) brittle-
matrix composites such as silicon carbide or alumina fibers in a silicon
carbide or silicon nitride ceramic, or an LAS glass matrix.

The fibers are the stiff, main load-bearing phase with randomly
distributed flaws that grow over time and result in sudden fiber breaks
where tensile load is unsupported. This strength degradation at flaws
is highly stochastic and depends on the local stress history. Break-
down originates at the nanoscale in the form of thermally activated
inter-molecular slipping and/or bond breaking eventually culminat-
ing in micron scale cracks that grow and sever the fiber. The matrix
serves mainly to redistribute the lost load at breaks onto fibers in
their vicinity, overloading them above the original far-field applied
load. In polymer matrices the thermally activated sliding motion of
polymer chains is manifest as viscoelastic creep in shear. In metals,
shear creep results from thermally activated dislocation motion and
material transport mechanisms along interfaces. Such creep leads to
increasing, relative, longitudinal displacements between the fibers that
causes changing profiles of stress redistribution. Relative fiber displace-
ment may also result from time-dependent debonding and slip at the
fiber-matrix interface. Though occurring with all matrices, this is the
primary mechanism of time-dependence of load transfer in glass and
ceramic matrices. Although nominally brittle and stiff, such matrices
are much weaker than the fibers in tension and undergo quasi-periodic
cracking transverse to the fibers, greatly reducing the tensile matrix
stress. This converts them mainly to a medium of load transfer from
fiber to fiber through shear, though the load transfer tends to be more
dispersed than for polymer and metal matrices.
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As we will see, depending on the stochastic parameters of fiber break
generation, the matrix creep exponent, and the fiber array geometry,
the failure process may appear as one of two basic statistical modes:
The first is brittle-like and involves very little distributed damage (in
terms of fiber breaks) before a few small growing cracks of contiguous
fiber breaks appear, one of which becomes dominant and catastrophic;
The second is more ductile-like wherein composite failure results from
the accumulation of distributed damage before local instability that
spreads to cause collapse. Predicting the tendency toward a partic-
ular mode and associated lifetime distribution is a difficult task and
certainly should not be forced ‘a priori’ or inadvertently result from
simplifying assumptions. On the other hand, comprehensive inclusion
of all the above failure mechanism details, is not yet possible either
from a mechanics or a stochastic process standpoint.

In our analytical modeling, we will therefore idealize the composite
structure and failure processes in terms of progressive fiber failures
and load redistribution in shear, though still preserving key physical
aspects and statistical. These simplifications will render the problem
analytically tractable. At the same time we will develop Monte Carlo
simulation models that make far fewer idealizations, but can only be
implemented on composites of small size, or large composites with small
periodic cells. The key goal will be to integrate the analytical and simu-
lation models to make predictions about much larger composites. These
will include the statistical mode of composite failure in creep-rupture,
the mathematical character of the associated lifetime distributions, and
the scaling laws relating load level to lifetime as well as to certain
intermediate events. These quantities will be functions of composite
volume and various model parameters.

Specifically we focus on the lifetime statistics for a unidirectional
fiber-matrix composite consisting of aligned elastic fibers embedded in a
linearly viscoelastic matrix and subjected to a constant load in tension.
The stochasticity of fiber failure will be governed by the breakdown
model of Coleman (1958a), and in shear the matrix will have a power-
law creep compliance with exponent . When breaks occur, fiber load
redistribution will be calculated using a shear-lag mechanics model,
which is much more realistic than idealized rules based on equal, global
or local load-sharing.

We will calculate the composite lifetime distribution in two steps:
Through Monte-Carlo simulations on small specimens, we first map
the parametric regions governing fiber breakdown statistics and ma-
trix creep rates to the dominant observed composite failure modes.
Then we construct probabilistic failure models of these dominant modes
to analytically deduce composite lifetime distributions for realistically
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sized composites. This procedure is necessarily somewhat speculative
since the Monte-Carlo simulation cell sizes are limited by computational
constraints, and therefore may suffer from finite size effects. However,
given present computational power, and the infeasibility of large scale
numerical replications (~ 107 tests) needed to assure deep tail levels
of reliability (~ 107%), the present approach is the best available in
our judgment. In the remainder of the introduction we describe the
geometry of the model and anticipated failure evolution features in
more detail. With this perspective we review pertinent literature and
how it bears on the modeling and analysis approaches we take.

1.1. THE IDEALIZED UNIDIRECTIONAL COMPOSITE

Our idealized composite consists of a parallel array of n stiff, brittle,
elastic fibers of cross sectional area Af and length L, embedded in
a flexible, perfectly bonded, elastic or viscoelastic matrix. Two fiber
arrays are considered: a linear array forming a 2D planar composite
(“2D array”) and a hexagonal array forming a 3D composite (“3D
array”), as shown in Figure 1. Fibers in the 2D array are indexed from
left to right by a single integer coordinate £ whereas in the 3D array,
each fiber is identified by its £ and m integer coordinates. We assume
periodic boundary conditions both longitudinally and transversely, or
equivalently, the composite has periodic cell structure. We assume that
the fibers carry virtually all the load and the composite is loaded by
applying a far-field, tensile load po, to each fiber.

The matrix locally transfers load from broken to intact fibers through
shear. In Section 2 this is idealized in terms of a classic shear-lag model
where the matrix has a linear, power-law creep compliance with ex-
ponent a. The model will begin with general geometric features but
ultimately the fibers will be in the 2D and 3D arrays above.

In Section 3 we describe the stochastic fiber breakdown model of
B. D. Coleman (1958a), which embodies a Weibull hazard functional
of fiber load history imparting power-law sensitivity to fiber load with
exponent p and Weibull lifetime under constant fiber load with shape
parameter 8. The lifetime of a fiber element is thus determined by the
stochastic breakdown of its weakest flaw, which depends on its load
history.

When a constant tensile load of p, per fiber is applied to a specimen,
fibers fail randomly in succession at the first few weakest flaws, and the
matrix surrounding each break transfers the lost fiber load to neigh-
boring fibers through shear deformation. This stress transfer occurs
over a length scale of a few fiber diameters, which in general grows in
time. In the simulations, which involve periodic cells, it is important to
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chose the cell length to greatly exceed the length scale of load transfer
by the time of composite collapse. By the same token the transverse
cell size must greatly exceed the size scale of break interaction and
localized damage development that ultimately results in the collapse of
some characteristic volume that becomes a catastrophic crack. How to
scale the results of small periodic cells to composites of large volume
becomes the task of the analytical models developed in later sections.

Many of the steps required in fully developing the model are techni-
cally complex and difficult to condense while keeping the line of deriva-
tion comprehensible to readers interested in all the details. Thus we
place many of the technical discussions in Appendices and concentrate
on the key themes and results that are ultimately most important.

Figure 1. Two fiber arrays modeled: (a) planar array and (b) hexagonal array. The
far-field stress applied to the fibers is po. Fibers in the 2D array are indexed by a
single integer £ whereas in the 3D array, they are indexed by the ordered pair (¢, m).

1.2. RESULTS FROM PREVIOUS LITERATURE

Previous literature may be classified into two categories. The first
consists of work on fiber lifetime models and determining asymptotic
lifetime distributions for equal load-sharing bundles by Coleman (1956,
1957a, 1957b, 1958b, 1958a), and Phoenix (1978). Equal load sharing
assumes that the load dropped by broken fiber all along its length is
equally divided among all the surviving fibers. We detail Coleman’s
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fiber lifetime formulation in Section 3 and Phoenix’s conclusion that
the lifetime of a bundle of Coleman fibers is asymptotically (as bundle
size grows to infinity) normally distributed in Section 4.1. Ibnabdeljalil
and Phoenix (1995) study the lifetime distribution of composites by
means of Monte Carlo simulations where global fiber load sharing is
assumed. This is a more continuous version of equal load sharing in
which the fiber stress lost at a break is gradually regained over a
certain characteristic distance along the fiber on each side. Composites
much longer than this characteristic distance typically have lifetime
distributions that have a weakest link structure in terms of links with
log-normal lifetime (which is also normal in the limit of extremely large
bundles).

The second category of work relates to local load-sharing composites.
Here, fiber stress concentrations next to a transverse array of fiber
breaks (a discrete crack) are largest at the crack tip and fibers further
away feel little overload. The asymptotic lifetime in such a case is not
normal or log-normal. Instead it has a weakest link basis in terms of
a certain characteristic lifetime distribution as Tierney (1980, 1982)
and Phoenix and Tierney (1983) have shown. These authors consider
idealized load sharing rules, which in the case of a planar fiber array
translates to the stress concentration on the two fibers adjacent to an
r-cluster of breaks being equal to 1+ r/2. Newman and Phoenix (2001)
have studied the statistical lifetime problem under this assumption,
for the entire range of fiber lifetime sensitivity to load history (pa-
rameterized by p, and described in Section 3), and found a sharp
transition in failure mode at p = 1. While this idealization captures
the important characteristic of crack formation and propagation, it is
far too severe. Hedgepeth (1961) and Hedgepeth and Van Dyke (1967)
give a mechanically consistent method of calculating the fiber stress
state in a composite with breaks. Their shear-lag based analysis results
in more realistic stresses but was restricted to the case where both the
fiber and matrix are elastic. It was extended by Lagoudas et al (1989)
to the case where the matrix is viscoelastic and all the fiber breaks
lie in a single plane perpendicular to the fiber direction. Beyerlein and
Phoenix (1998), however, give a shear-lag methodology to compute the
stress state in the composite under arbitrary arrangements of breaks.
To our knowledge, lifetime studies of Hedgepeth composites with fibers
undergoing time-dependent breakdown and an elastic or viscoelastic
matrix have not been done and we address that question here.

Curtin and Scher (1991, 1997), and Curtin et al (1997) have exten-
sively studied the time-dependent failure of spring networks wherein
damage resembles cracks in Hedgepeth composites in the scaling of
stress concentration ahead of a cluster of fiber breaks. They find two
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regimes of composite failure: an avalanche regime for p > 2, wherein
composite failure occurs by a catastrophically growing volume of local
damage, and a percolation regime for p < 2, wherein composite failure
is essentially global, and occurs through the formation of a percolat-
ing cluster of fiber breaks. Recently Goda (2001) has considered this
problem directly in the framework of Hedgepeth with similar results.

A class of problems closely related to the lifetime problem is the
strength problem where fibers have random strengths according to some
prescribed distribution function and the composite is loaded quasi-
statically under increasing tension. The strength distribution of the
composite is usually sought and this can be viewed as a limiting case of
the lifetime version and affords insights into the dominant composite
failure modes near the limit. In this connection we note the works of
Beyerlein and Phoenix (1997a, 1997b), Landis et al. (2000), Wu and
Leath (2000), and Mahesh et al. (1999) and Goda (2003).

2. Shear-Lag Based Load Sharing in Unidirectional Arrays

We now extend the method of Beyerlein et al. (1998) and Landis
et al. (2000) to calculate the stress state around finite patterns of breaks
in a parallel fiber array within a viscoelastic matrix. We use periodic
boundary conditions, both transversely and longitudinally, which en-
ables us to consider a periodically repeating unit cell and the fiber
and matrix stresses therein. A key issue will be determining a cell size
sufficiently large for accurate failure probability calculations for much
larger composites, especially under high reliability requirements.

2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

We consider a collection of n < co parallel fibers in an arbitrary array
within the matrix, where z is the coordinate along the fiber direction.
According to Hedgepeth’s shear-lag assumptions, fibers deform in pure
tension and the matrix deforms in pure shear. The fibers are loaded
uniformly in simple tension in the far field under po, per fiber for ¢ >
0, and the load is zero for ¢ < 0. We refer to the fiber direction as
longitudinal and to planes perpendicular to it as transverse. We assume
the fibers are linearly elastic with tensile modulus FEf cross-sectional
area As. We let p;(z,t) and u;(z,t) be the tensile load and displacement,
respectively, in fiber ¢ at position z and time ¢, where 1 < i < n. Note
that pi(z,t) = wi(z,t) = 0 for t < 0 and p;i(z,t) = poo when all
fibers are intact and ¢ > 0. If some fibers have breaks, however, the
lost loads around them must be redistributed to intact fibers through
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matrix shear stresses. We let the shear force per unit length transmitted
from fiber j to fiber i at (z,t) be g;;(x,t). Force equilibrium on a fiber
element of length dx requires

Op; " ,
Afa—xldw-l- (;qm> dr = 0, 1=1,2,...,n, (1)

and Hooke’s law for the fiber gives

Ou;
pi(z,t) = EfAfa—Z(-Z'at)- (2)
i
To relate g;; to the relative displacement of the fibers we assume the
matrix is viscoelastic with a power-law creep compliance in shear,

t o
sz,fe(—) >0, (3)
tem
where « is the creep exponent limited to 0 < a < 1, t.y is a time
constant and J, is a compliance constant with an interpretation given
shortly. If G, (t) is the corresponding relaxation modulus, it can be
shown using Laplace transforms and the fact s2.J;,(s)Gm(s) = 1 that

Con(t) = Go (tTm)a £>0 (@)

where G, and J, are related according to
Ge =1/(J (1 + a)T'(1 — @)). (5)

By linear viscoelasticity

05(,0) = [ Gnlt = )iy w3(0.0) — alz, . )

In Eq. (6), @ij(uj(z,v) — ui(z,v)) is the matrix displacement in shear
and g;; represents the shear force on fiber 7 due to fiber j as a hered-
itary integral. ¢;;, 1 # j is a non-negative non-dimensional geometric
parameter that quantifies the proximity of fibers ¢ and j.

Eqg. (3) assumes the creep compliance is a simplification of

JL(t) = Je(1 + t/tem)®, (7)

which also accounts for instantaneous elastic shear response of the ma-
trix, with compliance Je. We use Eq. (3) because it is more amenable
to algebraic manipulations than Eq. (7). As ¢/t — 00, the two forms
converge, but they especially differ for times 0 < ¢ < t¢n. However,
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the instantaneous stress and displacement response of Eq. (7) is well
approximated by Eq. (3) upon setting ¢ = tcp.

In simulating failure in 2D planar arrays, we impose both lateral
and longitudinal periodic boundary conditions on the n fibers. For the
former, fibers £ = 1 and £ = n are adjacent. Also ¢;; can be expressed
in terms of composite geometric parameters. Let the effective matrix
width between fibers be w, and the matrix thickness (perpendicular
to the plane of the fibers) be h. We assume h is also the main fiber
cross-sectional dimension. A matrix bay exists only between adjacent
fibers £ =4 and £ = i + 1, so the effective shear force per unit length

qi,j 18

Qij(xat) :/_toon(t_U)h 9

E%(uj(w,v) —ui(z,v))dv, if|i—j =1
(8)

and g;j(z,t) = 0 otherwise. Thus for the 2D array, we take

h/w if|i —j| modn =1,
(Pz'j:{/ i — Jl (9)

0 otherwise

when i # j, and so the fiber indexing may be extended to an infinite
2D array with periodic cells. We specify ¢;; later.

In simulating failure in 3D hexagonal arrays, the transverse peri-
odic boundary conditions result in unit cells each with n fibers and a
rhombus shaped transverse cross-section of side length y/n (so n must
take certain values). Each edge of the rhombus is effectively contiguous
with the edge opposite to it. We label the fiber at (¢,m) = (0,0) as 1,
then we label the remaining fibers in the rhombus cell with integers in
sequence, first proceeding along the m = 0 row, then the m = 1 row
and so on until the m = /n — 1-th row. Thus, the fiber with label %
is located at £ =i mod /n and m = |i/y/n]. Conversely, the fiber at
(£,m) is indexed by £y/n + m + 1.

A similar argument to that in 2D is carried out for ¢;;, with w
representing an effective matrix thickness. Thus

_ Jh/w  if max((¢1 — £2) mod \/n, (m1 —mg) mod /n) = 1,
Pllrm),(b2mz) = 0 otherwise
(10)

where (¢1,m1) are the coordinates of fiber 7 and (¢2,m2) are the coor-
dinates of fiber j and i # j. Again we specify y;; later.

These two arrays are used in the following sections. However, the
shear-lag methodology in the remainder of this section applies to arbi-
trary fiber arrays provided ¢;; is chosen appropriately.

Combining Egs. (1), (2), and (6) yields the governing equation
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EfAfauzwt _|_/G t—U Z(p”ujxfu (Z(p”>uzmq)) dv

J#z

(11)
Defining
n
Ci=— Y. %ij (12)
Eqg. (11) can be shortened to

0%ui(z,1t) t - Ouj(z,v) _

For the transverse boundary conditions to Eq. (13), let B be the set of
r breaks in the periodic patch at time ¢. We locate each break by its
fiber number, ¢ and its z coordinate. Thus, we let

B = {(i1,z1), (t2,22), - - -, (ir,xr) }. (14)

For the longitudinal periodicity, the fiber breaks occur along the
fiber direction with periodicity L. That is, if 0 <z < L, k=1,...,r,
breaks repeat at zp = jL, 7 = 1,2,.... The case of infinite boundary
conditions is retrieved by letting . — oo. If L is finite, periodicity
demands that for i =1,2,...,n

pi(x = 0,t) = pi(x = L, t), t>0, (15)

for traction continuity in the fiber direction across unit cells. Also,
letting ¢(t) be a function continuous in ¢, then for some c(t),

u;(0,t) = u;i(L,t) +¢(t), t>0, (i,0)¢ B (16)

for displacement continuity in the absence of boundary cracks. Thus
c(t) is independent of ¢ but in general must depend on the position and
number of fibers. By way of the traction free boundary condition at
fiber breaks, we have

Oui, (T, t)

pik(.’lik,t) = F¢A; =0, (ik,.’Ek) €EB, k=1,...,r

(17)
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Finally, in order that the applied load be carried by all fibers we need

n
> pi(z,t) =nps, t>0, 0<z<L. (18)
=1

2.2. RESULTS AND APPROXIMATIONS FROM SHEAR-LAG ANALYSIS

The solution methodology of the governing equations in the preceding
section is described in Appendix A. The explicit solution for the time
evolution of stresses in a composite with a single break can be found in
Eq. (136), and is given in terms of the normalized time 7 = ¢/t (see
Eqg. (103)), and normalized axial coordinate £ = /4, (see Eq. (102)).
dy is a viscoelastic characteristic length scale and is approximately the
length of the unloading zone around a fiber break at time t.m, after its
formation.
It is clear by examining Eq. (136) that the similarity variables

_ ¢ L8
z 4

T ora/2? e/

and

(19)

are key. In terms of these variables, if V' denotes the normalized dis-
placement field over and above uniform stretch, the normalized over-
stress field due a single break (see Eq. (137)) is

ov'! " i
gy _ Ci——2t
o0& {; F'l+a)

Aippz Aipz'
N I WV T ) B Wirsean A

where C;\;/T'(1+ «) are scaling vectors (see Appendix A.2). Adding a
uniform normalized stretch of &, the actual displacement field is given
by £ + V', and adding normalized applied stress of 1, the stress field
is 1 + 0V’ /0¢. Taking £ — oo, the dependence of the stress state on
¢ and 7 now enters exclusively through the similarity variable z. Also
as n is increased, this normalized stress solution quickly approaches
that of Beyerlein et al. (1998) for n = oo obtained by an influence
function approach. In the rest of this section, this condition is met. In
fact, convergence to the n = oo solution is numerically complete if we
take n = 400 in the presence of fewer than 20 fiber breaks even when
contiguous. Hence, the transverse interaction of breaks across unit cells
can be neglected.

Henceforth, we will focus solely on the 2D and 3D arrays of Sec-
tion 1.1 subject to periodic boundary conditions both in the fiber di-
rection and in the transverse plane. We will examine composite stresses

(20)
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in the presence of certain special break configurations that are useful in
the probabilistic modeling in Section 4. The methodology for deducing
the stress field in a composite with multiple interacting breaks from
the single break influence functions Eq. (20) is given in Appendix A.3.

35 : : :
—— 2D Shear-Lag Theory
- - Approx. Eq. (21)
3 - - Approx. Eq. (24)

Figure 2. Stress decay in 2D on the fiber adjacent to a cluster of k breaks in the
& = 0 plane. £ is set to co so there are no longitudinal cluster images. The number
of fibers is sufficiently large that the transverse interaction of clusters is negligible.

Figure 2 shows the stress profile so deduced in the fiber adjacent to
a transverse cluster of contiguous breaks in a 2D array with £ = oc.
Ky (z) is the stress concentration in the fiber adjacent to the k-cluster
located at £ = 0 formed at 7 = 0. The approximation

Ki(2) ~ Ki(2) = 1+ (Ki(0) - 1)(1 — z/VR) exp(—2)  (21)
accurate for small k& where

Ki(0) = Ki(0) = LA (22)

is also shown. (We use ‘ *’ to denote approximations.) We let wy, be the
“overload length” on the fiber adjacent to a cluster of k& breaks, which
is the length over which its stress concentration exceeds 1. In 2D, with
£ = 0o, we approximately have

wi = o = VEr2, (23)
A more convenient approximation, superior to Eq. (21) for larger k, is
Ky (2) = Ki(2) = 1 + (K5 (0) — 1) exp(—z(1 + 1/Vk)). (24)
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Unlike Eq. (21), Eq. (24) however results in Ky (z) > 1, for all 2.

A similar observation holds for the 3D array if we identify a tight
cluster as the 3D counterpart of the cluster of k contiguous breaks in
2D. A tight cluster is an ordered collection of fiber breaks in a transverse
plane wherein each successive break occurs on an intact fiber subject
to the largest overload due to the previous, smaller cluster. Figure 3
depicts an ordered 10-break, tight cluster together with the peak stress
concentrations on the most heavily loaded peripheral intact fibers next
to previous smaller clusters. This sequence is not monotonic. For in-
stance, k = 6 fails at a higher stress concentration than & = 7. This is
due to the jaggedness of the tight cluster as it grows; the k = 7 fiber is
surrounded by three broken fibers as opposed to the k = 8 fiber, which
has two broken neighbors. Aspects of these irregularities are discussed
in detail in Mahesh et al (1999) and accounting for them will be key
to probabilistic modeling of the lifetime distribution.

k Ki(0) Ki(0)
0 1.0000 1.0000
1 1.1046 1.1658
2 1.2337 1.2280
3 1.2828 1.2736
4 1.3205 1.3109
5 1.3644 1.3428
6 1.5889 1.3711
7 1.4107 1.3965
8 1.4596 1.4198
@ 9 1.6163 1.4414

Figure 8. One possible sequence for tight cluster growth to 10 fiber breaks in a
hexagonal fiber array. The numbers (0, 1,2,...,9) denote the order of fiber breaking.
Also included are the associated stress concentrations in the £ = 0 plane if £ = oo

and their estimates according to Eq. (27).

For the fiber subject to the largest overload from the critical cluster
which may break and extend the cluster), we see in Figure 4 that
g

Ki(2) ~ Ki(2) = 1+ (Bi(0) — 1)(1 - 22/V/k) exp(~22)

(25)
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approximates the stress decay on the adjacent fiber away from the
cluster plane. The overload length in 3D with £ = co approximately is

wi & @ = 7%2VEk /2. (26)

Edge jaggedness of a tight cluster is reflected in the fluctuations of
the stress concentrations on its neighbors and hence in the peak value,
Kj(0). An accurate approximation for this peak around a smooth k-
cluster, none of whose neighbors is adjacent to more than two fiber
breaks, is given by

2Vk

K (0) =~ Ky (0) = 32

+ 1. (27)
Among clusters of fewer than 20 breaks, k = 6, 9, 11, 13, 15, 17 and 18
are not smooth; all the others are. The actual Kj(0) for non-smooth
clusters is always somewhat greater than given by Eq. (27). As in the
2D case, for larger k, Ki(z) is better approximated by

Ki(2) = Kp(2) = 1 + (Ki(0) — 1) exp(—22(1 + 1/VE). (28)

—— 3D Shear-Lag
- - Approx. Eq. (25)

Figure 4. Stress decay in 3D on the fiber adjacent to a cluster of k breaks in the
& = 0 plane. £ is set to co so there are no longitudinal images of the cluster. The
number of fibers in the unit cell is taken large enough that the transverse interaction
of clusters is negligible.

The above approximations were derived for 2’ = oo. However, they
are also accurate when z < 2', especially for small « since p/+/T(1 + )
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16 Mahesh and Phoenix

in Eq. (20) decreases slowly with increasing « from its peak value of 1
at @« = 0. Even for a = 0.5, u/+/T'(1 + @) = 0.92. While the stress still
decays away from a break according to Eq. (24) in 2D and Eq. (28) in
3D, the approximations can be improved by modifying the expression
for K(0) to account for longitudinal interaction between breaks and
their periodic images, which finite 2’ entails. The following modified
forms of Eq. (24) and Eq. (28) are good approximations when £ < oo
but z < 2’; in 2D, in terms of

2L = TQ/Z,

we have approximately

7k

Kk,Lsz,L(O) = \/Z (l—eXp(—ZL’lﬁl/k)) +1 (29)

and in 3D,

Ki(0) ~ K (0) = \/ # (1 - exp(—zmyn/VR) +1. (30)

When « is small, then these approximations hold with reasonable accu-
racy if £ is replaced by £ = e=7*/22/(1%/?T'(14 a)) so long as £ > 1.
Figures 5 and 6 compare these approximations against stress concentra-
tions obtained by the shear-lag procedure. Here 1;(£) is a convenient
fitting parameter such that as k — oo, K 1,(0) — /7€¢1/4 + 1.
When z and 2’ become comparable in magnitude the simple ap-
proximations for K(0) in 2D and 3D break down. Figure 7 shows the
stress concentration on the fiber next to a single break when a = 0.5.
For comparison, the time invariant stress concentration for an elastic
matrix is also shown. At small times, when S/Ta/ 2 is large, the in-
fluence between a break and its longitudinal images is negligible and
stresses in the break vicinity are entirely driven by the break. At larger
79/2 interactions between breaks increase causing the weights (also the
break opening displacements) to decrease from their early values. This
decreases the fiber overloads adjacent to the break as seen in Figure 7.
However, since the stress dropped by the broken fiber must be shifted to
survivors in its transverse plane, the overload on more distant fibers will
increase. Thus, when a > 0, stresses tend to equalize throughout the
unit cell as time increases, the speed increasing with «. The influence
of periodic boundaries is further enhanced by the presence of large
numbers of breaks in each cell since breaks interact with their periodic
images besides images of others. This further decreases break opening
displacements and the process of stress equalization quickens.
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— 2D Shear-Lag
- - - Approx. Eq. (29)

Figure 5. Stress concentration ahead of a k-crack in a periodic 2D bundle of n = 100
fibers of length £. v1 is a convenient fitting parameter in Eq. (29).

Finally we consider the stress enhancements in fibers next to a
cluster of k breaks, with two limbs of equal length k/2 that are are
staggered longitudinally through &;. That is, the cluster consists of
breaks on adjacent fibers 1,2,...,k/2 at { = 0and k/2+1,k/2+2,...,k
at & = &. In 2D, letting z, = &/7%/2 and £ = oo, we obtain

. k
Ky ., ~ \/% (1 + exp(—qﬁzzs/\/lg)) +1, (31)
an accurate approximation as Figure 8 shows. In 3D we obtain

Kk,zs ~ 7r3—\//,;2 (1 +exp(—¢gzs/%)) +1. (32)

As zs becomes small, the staggered cluster acts as one aligned cluster.
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2 :
— 3D Shear-Lag
1.94 - - Approx. Eq. (30) o 4
©  Rough Cluster K, o

Figure 6. Stress concentration ahead of a k-crack in a periodic 3D bundle of n = 100
fibers of length £. 91 = (&) is the fitting parameter in Eq. (30). Peak stress
concentration ahead of rough clusters are shown separately and labeled with o.

1.4 : !

_. a=0,7 >0, elastic
+a—%,7':10_5
H—(l:%,T:lO:i

1.3 +a_l7':105

Figure 7. Time variation of the stress profile in the fiber adjacent to a single break
in a 2D array of length £ = 10 when a = 0.5. For comparison the time-invariant
stress profile corresponding to an elastic matrix (o = 0) is also shown.
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4 :
—— Shear-Lag
- - Approx. Eq. (31) Zg = l, ¢2 =4
3.5F :
3,
g Py =3
~=
! o5l b 7/12 =2
b ,‘/12 =15
2,
1.5F
'1 L L L L
0 2 4 6 8 10

Figure 8. Stress concentration ahead of two adjacent k/2-long clusters staggered by
2z =&/7%/* when £ = 0. 9 is a fitting parameter used in Eq. (31). Eventually the
cluster acts as one aligned cluster
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20 Mahesh and Phoenix

3. Fiber Strength Distribution
Coleman (1958b) introduced a fiber lifetime model whereby the prob-

ability that a fiber of length [ fails before time ¢ when subjected to the
load history p,(s), 0 < s < t, applied uniformly along its length is

Fultipa) =1 -exp {0 (& [(sputonas) ), )

with the functional forms

U(ly) = %yﬂ (34)
and )
() = 2P0 (35)

for ¥ and «. Here [; is the reference gage length and % is a character-
istic fiber time scale. Incorporating Eq. (34) and in Eq. (33) gives

Fu(tipu() =1 —exp{—% (= t (pp—‘o’)d)ﬂ} (36)

If the load p(z,t) in a fiber is both position and time dependent, as
occurs near a fiber break, a natural generalization of Eq. (36) is

F(t,p(-))zl—exp{—%/oldy [%/Ot (%)pdsr}. (37)

Normalizing the fiber load at z and ¢ according to

Oy, Ttem z,t
Dcf Dct
where . .
lo\?8 [ tet ) »
of = — I 39
pa =m0 ()" (1 (39)

Eq. (37) can be rewritten as

F(r,w()) =1 —exp (— / e I T(w(@)ﬂdc]ﬂ) L (o)

where A = [/4, is normalized length. Restricting Eq. (40) to the case
where the fiber load is uniform, we get the normalized form of Eq. (36)

Fulr,m()) =1 - exp (—A [ / T(m(@)ﬂdc]ﬂ) (41)

iter28.tex; 30/03/2004; 11:49; p.20



Lifetime Distribution for Composites 21

where 7, (7) = py(t)/per. According to Eq. (41) a fiber element of unit
normalized length (A = 1) loaded uniformly for unit normalized time
(7 = 1) under unit normalized load (m, = 1) has probability 1 — 1/e of
failure. Denoting the normalized far field load by 7e = poo/Pct, then

Uy (65 T) =05 (67 7-)77-00 (42)
relates the normalized fiber load 7 (€, 7) to the fiber stress concentration

0i(&,7) defined in Eq. (105).
For a fiber element of normalized length A, the quantity

Hmmm=f@M%mmwr (43)

is called the cumulative hazard of fiber failure. Letting Z be an expo-
nentially distributed random variable, i.e.,

Pr{Z <z} =1 —exp(—=2), (44)
the time to fiber failure has distribution given by Eq. (40) upon taking
Z > H\1,7()). (45)

Stated otherwise, a fiber segment loaded (not necessarily uniformly)
along its length breaks when its cumulative hazard exceeds its expo-
nentially distributed, standard representative random variable Z. In the
case of uniform loading, the cumulative hazard becomes

20,7 ) = [ [ mayeac]

in terms of which Eq. (45) holds.
As a simple example we consider the constant load history

applied uniformly to a fiber of normalized length A. Then its lifetime
distribution normalized according to Eq. (41) is

Fu(T) =1—exp (—)\%"ﬂT’B) . (47)

Another example from which an interesting interpretation of fiber
“strength” emerges is the loading

mu(T) =%1, T>0 (48)
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22 Mahesh and Phoenix

linearly increasing in time with loading rate % and again uniform along
the fiber. In terms of strength, s = %7, and effective Weibull modulus,
0 = (p+ 1)B, the distribution function for strength, Eq. (41), is

A
I —1_ N e
Fu(s) =1 exp( (p+1)/352/38)' (49)
Upon letting p 1 0o and 8 | 0 such that g is fixed, then,
(02)”
BP

The strength becomes increasingly insensitive to loading rate.

— 1.

[(p+1)2) =

4. Probabilistic Analysis of Composite Fracture

4.1. EQUAL LOAD SHARING ARRAYS

The simplest model is to assume a loose bundle of n fibers (no matrix
and fibers held by clamps) loaded in tension. The load sharing in such a
bundle is termed equal load sharing (ELS) whereby each failed fiber is
unloaded along its full length, and when & fibers have failed, the stress
concentration in each of the n — k surviving fibers is

n

Ky = p— (50)
Under the fiber model, Eq. (36), Phoenix (1978) has shown that the
lifetime of an ELS bundle is asymptotically normally (Gaussian) dis-
tributed as n — oo. An important point is that for large p and in-
termediate n the derivation in Phoenix (1978) actually lends itself
to obtaining an approximate log-normal lifetime distribution as was
shown in Ibnabdeljalil and Phoenix (1995). This log-normal distri-
bution transitions to asymptotic normal behavior as n becomes very
large.

ELS is not expected to be valid for fibers embedded in a matrix since
the matrix tends to concentrate redistributed stress on fibers near the
breaks rather than equally redistributing it to fibers across the compos-
ite. Nevertheless, we will find that this tendency to normally distributed
lifetime appears also for unit cells in large, local load-sharing bundles
in which fiber breaking is highly dispersed, which in turn depends on
the values of p, 8 and «a and overall fiber volume nl.

iter28.tex; 30/03/2004; 11:49; p.22



Lifetime Distribution for Composites 23

.

)

W N

NMToo --—

— nﬂ-oo

N @
)
/IR n
Ozzz) .

Figure 9. Chain-of-bundles subdivision of a composite of normalized length £ into
m smaller A-bundles each of whose failure is statistically and mechanically almost
independent of the others. A = £/m. 2w is the longitudinal length scale of transverse
load redistribution on fibers, which we will later take to be the overload length ahead
of critical cluster of breaks (defined in Section 4.4).

4.2. CHAIN-OF-BUNDLES MODEL

Composite failure typically corresponds to the formation of a transverse
cluster or “crack” sufficiently large to become unstable. It is common
to idealize the failure process in terms of a longitudinal partition of the
composite of normalized length £ into a number, m, of transverse slabs
or short bundles as shown in Figure 9, and to regard composite failure
as the failure of the weakest such bundle (e.g., Smith (1980)).

Note that £/m need not correspond to the longitudinal length scale
of catastrophic transverse failure initiation in the composite. To see this
let w be the time-dependent stress overload length of a single break or a
cluster of transverse breaks. Approximations for w when fiber breaks are
arranged transversely in 2D and 3D are given respectively in Eq. (23)
and Eq. (26). Then 2w and not £/m (unless coincident) determines the
longitudinal length scale of transverse stress redistribution. We will
refer to each of the m bundles of real length A and effective length
2w as A-bundles. Typically, 2w > A and therefore, overload lengths of
adjacent bundles may overlap causing their failure events to be depen-
dent. This dependence, however, is only local owing to the relatively
short range of the overload region. Thus many of the results of the fully
independent case are excellent approximations. In particular, if G, (1)
is the lifetime distribution of a single A-bundle, and H,, ,(7), that of
the entire composite, then

Hpyp(m) = 1—[1—-Gp(r)]™. (51)
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4.3. PROBABILITY OF k-CRACK FORMATION

We now focus on modeling the failure of a single A-bundle of n-fibers.
First, we recognize the failure of k adjacent fibers in the A-bundle
as a likely precursor to the failure of the A-bundle for any £ < n,
and call the event of its formation, k-cracking. Next let Z1,..., Z; be
independent, unit exponentially distributed, standard representative
random variables as described in Section 3. Let T'(Z1,..., Zx; \') be
the normalized time required to fail a parallel arrangement of fiber
elements where fiber ¢ has standard representative random variable Z;,
for 1 <4<k and

X' = max(), 2w), (52)

where 2w is the longitudinal length scale of transverse cracking shown
in Figure 9. Also let each fiber element be loaded in time such that the
normalized load profile along its length is determined by two constants,
R and ¢, according to

T(€,7) = Too [1+ (8 — 1) exp (—[¢le/m?)] (53)

where —\'/2 < ¢ < N'/2. Our notational distinction between 8 and K
is that K is thought of as the stress concentration ahead of a cluster
of breaks, whereas & more generally refers to that due to a set of
arbitrarily located breaks. This choice of the functional form for (&, 7)
is motivated by the approximate stress profiles Eq. (24) and Eq. (28)
in 2D and 3D respectively. & and ¢ may themselves be time-dependent
quantities. The form Eq. (53) is chosen for the stress profile because it
is a good approximation for the stress concentration ahead of a tight
cluster of breaks, whose formation is the dominant mode of composite
fracture under certain parametric conditions discussed shortly.

Configurations of fiber breaks other than a tight cluster may result
in stress profiles considerably different from that of Eq. (53). We ignore
such configurations (in the theoretical modeling but not in the Monte
Carlo simulations) owing to their small probability of occurrence. Also
the form Eq. (53), accurate for a cluster of breaks that form simulta-
neously may not be so good when breaks in the tight cluster form at
widely different times. However we disregard these minor differences.

The general method is an adaptation of Tierney’s (1980, 1982) to
the load profile Eq. (53). The first scaling relation is independent of
the far-field applied load 7, and for 7 > 0, is

TT(Z]-’ Tt Zn? AI) = T(Tﬂ+a/2Z1a e 7T/B+a/2Zn; )\ITQ/Q) (54.)
or equivalently,

T(Z1,. .., Zg; N) = 7T (r7P=2 7, . 77 B=el2 7 X' [79/2).  (55)
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This relation can be established inductively. When some [ of the k fibers
under consideration are broken (not necessarily as a tight cluster), let
I be the set of k — [ fibers still intact and let &;(7) and ¢;(7) determine
the stress concentration in fiber i, ¢ € I according to Eq. (53). The
variation of &; and ¢; with time is mainly due to the formation of fiber
breaks elsewhere in the bundle. Let T} 1 = Tj41(Z1, ..., Zp; A') be the
time to failure of the next fiber. Then, for any = > 0, if K; > 1, for
1 € I, we can establish that

tTiy1 = 2T41( 20, -, Zny N')

N Ti _ e A
= %Ig {a:n 1 Z; < /0 d¢ l/O 1+ (R —1)e C“/Q]pdg“] }
a/2

by Ti ey B
= ;Ig{n 2P Z; < /0 dé l/o 1+ (R —1)e ¢/ ]pdgl }

N pe/? T g/ B
:?el; Titxﬂ+a/2Zi§/0 d¢ |:/0 [1+(§1‘—1)6 cal? ]pdC]

= Tj1 (a2 21, . 2P H02 2, Ng®l?)
(56)
where intermediate steps involve appropriate changes of variables.
Similarly, a load scaling relationship can be established as follows.

Let T(Z1,...,Z,; N; o) again be the time to failure but under exter-
nal load 7y. Then,

T(Z1y. .y Zpy; Nioo) = T(Zl/ﬂgg,...,Zn/ﬂgg;/\'; 1)

e pia/2 (57)
= o T/ T(Z1,..., Zn; Naglel ;1)

where we have used Eq. (54) to obtain the second expression on the
right hand side. Equivalently we have

pB pBa/2
o P2y, T N 780 5 T00) = T2,y Zy N5 1). (58)

Owing to their dependence on Eq. (54), the scaling laws, Eq. (57) and
Eq. (58), also require that at each step & > 1, ¢ € I in order to be
valid. In the case that &; = 1, for 7 € I, (i.e., each successive break
forms under the far-field load, being completely uninfluenced by any
other break), we have the scaling relation

T(Zyyeney Zn; N Too) = Tl T( 21, .oy Zny N5 1). (59)
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In Section 6.1 we find that composites pass through an initial phase
of dispersed fiber breaking under the far-field load wherein Eq. (59) is
applicable. They then transition to a phase of clustered fiber failure
wherein the form Eq. (53) with &; > 1 is a good approximation for the
stress concentration on fibers under risk of failure. Hence the actual
scaling rule between load and lifetime can be expected to follow a load
exponent between p and pf/(5+«a/2), which will be seen in Section 6.1.

Letting Wy (7) be the distribution function of T'(Z1, ..., Zg; N'; Too),
then we have

Wi(1) = Pr{T(Z1,- .., Zi; ;7o) < 7}
__pB pBa/2
=Pr{r 1" P T(Z0, . .., Zp; N o ®/?1) < 1}

= Pr{T('rl_ﬂ_a/QZl,...,Tl_ﬂ_a/sz;)\'/Ta/Q; 1)<1

_ /Rk Lo, (T W1, - -y X /7025 1)) 7ROt e/2) phod (60)

k
X exp (—Tﬂ+°‘/2 Z y,) dyi ... dyg
=1

— XN {y € RI_: T (Y1, - -5 Yks /\'/To‘/2) < 1}7k<ﬂ+a/2)7r§gﬂ
as 71,0

by monotone convergence. In the step before the integral sign we let
pB
71 = 7% *"* and used Eq. (55) and after the integral we set y; =
T pal ?2. Note also that A* denotes the Lebesgue measure (volume).
Tierney also provides an approximation for \*{y € R} : T(y1,...,y; N /7%/?) <

1} when p is large. Adapted to the load profile Eq. (53), it becomes,

My eR T(yr,...,us N /7)) <1} =T(1 + BFT(kB +1) ' x
k—1

I

j=0

2N; /022—/2 dg {/01[1 +(K;(0) - 1) exp(—ij/C“/Q)]”dC}ﬂ]
(61)

where we take ¢; = 1+ 1/4/j for 2D arrays and ¢; = 2(1 + 1/+/5) for
3D arrays, and N;, the number of neighbors around a tight j-cluster,

1S
1, ifj=0
Nj=9 (62)
2, ifj=1,2,...,k

in 2D and
Nj=nD =2\/mj (63)
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in 3D arrays. Here D is the tight j-cluster diameter determined by
7D?/4 = j. As detailed in Appendix B, Eq. (60) and Eq. (61) can be
simplified when p is large to obtain

k— lN Kpﬂ+1
Wilr) & (2 DB T(L+kg) 7K 2 H

wa
4.4. CRITICAL k*-CRACK AND COMPOSITE LIFETIME

We let G (7) be the probability of occurrence of at least one k-crack
originating in a A-long n-fiber bundle. Then following Tierney (1980,
1982) and Phoenix and Tierney(1983), we have

GH ~1—[1 - Wi(r)™ (65)
Treating the composite as a serial arrangement of m such bundles,

which are mechanically and statistically independent, the probability
of occurrence of at least one k-crack in the composite, Hy[,]f;l (1), is

HEL (1) = 1= [1 = Wi(r)]™ (66)

In cases where composite failure is ultimately driven by the forma-
tion and catastrophic propagation of a single dominant cluster of breaks
(out of several that may initiate but lag the dominant one), composite
failure may be regarded as a proper sub-event of the formation of a
k-crack. Consequently, the distribution function for composite lifetime,
H,,,,(17) may be bounded according to

Hyn (1) < min HIE (7)

1<k<n
= 1I<I}cl£ln 1—[1—Wg(r)™ (67
— 1=l i (o)™

= 1= [1 = Wi (7)™

where k*(7) is the crack size that minimizes Wy(7) for each 7 and is
called the critical cluster size. In Section 6, when comparing to Monte
Carlo simulations, we find the above upper bound to be especially tight
when p is large so as to serve as a good approximation of the composite
lifetime distribution function itself.
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5. Monte Carlo Failure Simulation

5.1. SIMULATION PROCEDURE

We now describe a Monte Carlo simulation model for the composite
failure process, which has flaw arrangements roughly similar to but
more general than the flaw geometry of the idealized unidirectional
composite described in Section 1.1. The discretizations described be-
low are essential to making the simulation algorithm reasonably fast.
However, the extent of these idealizations is much smaller than those
required in the construction of the subsequent analytical model.
Following the chain-of-bundles concept we conceptually partition
the n-fiber 2D or 3D array of normalized length £ into m bundles,
each of length A = £/m. We will term the part of a fiber belonging
to a bundle as a fiber segment. Each segment is further subdivided
into 2f + 1 (> 1) fragments. Thus there are m bundles, n fibers,
mn fiber segments and ny = mn(2f + 1) fragments in the simulation
cell. Fragment lengths are geometrically proportioned with the central
fragment being the shortest and each fragment traveling away from the
center longer than the previous fragment by a constant multiple. This
is done to accommodate the sharper stress gradient that will tend to
occur near the center. We denote the length of the i-th fragment by [;,
i=1,...,ns. Each fragment is then assigned an independent standard
representative random variable Z; which is exponentially distributed
with rate [;. This is accomplished by producing uniform U(0, 1) random
variables U;,7 = 1,...,ny, from which Z;,i = 1,...,ny, the desired
standard representative random variables, are obtained according to

log U;

Z;=—
i lz

i=1,...,n;. (68)
Failure of a fragment is assumed to occur at its mid-point.

Upon applying the far-field load 7o, to the composite the first step
is to determine the failure time 7, of the ‘weakest’ fragment, which by
Eq. (41) is

. Z
7'13 =  min .
1=1,...,n¢ ﬂgg

(69)

Next the break location is transfered from the fragment where it occurs
to the center of the associated segment. This simplification effectively
renders the failure process more like the chain-of-bundles model of Sec-
tion 4.2 than the idealized unidirectional composite of Section 1.1. How-
ever, this step is necessary for computational tractability, though we
will shortly investigate its impact on the simulated composite lifetime
distribution by varying A. Fragments belonging to the fiber segment in

iter28.tex; 30/03/2004; 11:49; p.28



Lifetime Distribution for Composites 29

which the break occurs are then eliminated from future consideration
by setting their Z;’s to co. This is done because the fragments within
the broken segment are unloaded due to the break, and their failure
probabilities become greatly reduced. Also, a subsequent break in the
same segment will have minimal influence on the composite stress state.

Since every fiber break is transported to the mid-point of its asso-
ciated segment, the peak overload on neighboring fibers occurs at the
mid-points of the corresponding segments and decays roughly expo-
nentially along the fibers down to the far-field value. For the purpose
of determining the residual lifetime of a fragment in an overloaded
segment, we assume constant stress along the fragment determined
by value at its center. As mentioned, fragments closer to the segment
mid-point are chosen to be shorter.

Successive segments are broken in a recursive manner. Let the stress
concentration and the standard representative random number at the
end of the (k — 1)-th recursive step be &;(k — 1) and Z;(k — 1), i =
1,2,...,ny respectively. The k-th recursive step consists of determining
the time to failure of the k-th break starting with a system of k£ — 1
breaks and updating the quantities &;(k) and Z;(k) to reflect the pres-
ence of the new break. The k-th recursive step is begun by determining
the smallest residual fragment lifetime using

1
o Z; (k—1)

Tres(k — 1) = i=tons (Rg(k — Doo)?”

Global time is then advanced by 7yes(k — 1) and the time of the k-th

fragment failure, 7y = 7 _1 + Tyes(k — 1) is recorded. As before the break

is then repositioned to the segment center. The standard representative
random number of each surviving fragment is then updated as

(70)

Zi(k) = Zi(k — 1) — (Ri(k — V)moo)P7ly, i=1,2,...,n;

to reflect the elapsing of time 7ye5. Here £;(k—1) = max(&;(k—1),0). In
order to speed up the computations, &;(k) is determined from shear-
lag calculations only at segment centers and then is interpolated to
fragment centers according to

Ri(€) = A+ Bexp(—ct/m/?), (71)

where A and B are chosen so as to fit the stress concentrations deter-
mined by shear-lag calculations at segment centers. 7 is taken to be 7,
the time of formation of the k-th break. That is, interpolation assumes
that all k breaks were formed at once at time 0. In keeping with Eq. (24)
and Eq. (28) ¢ is taken to be 14 1/v/k in 2D and 2(1 4 1/v/k) in 3D,
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where k is the number of fiber breaks in the same bundle as the fiber
segments between which interpolation is done. These steps are repeated
until the failure criterion described in the next section is satisfied.

In the above recursion, the most time consuming operation by far is
the computation of stress concentrations due to a set of breaks. It in-
volves implementing the procedures of sections A.2 and A.3, and doing
this efficiently is critical. Recall that as breaks are formed in succession,
their weights are determined using Eq. (149). Then [A(0T)]( ) given
a previous set of breaks is the northwest corner of the [A(0T)](41xr41)
matrix with a new break appended to this set. It is imperative to exploit
this structure to efficiently compute weights using Eq. (149). Since
—[A(0)](rx) is symmetric and positive definite, it permits Cholesky
factorization of the form

—[A(0+)]r><r = errLrirxr (72)
where L is the lower triangular Cholesky factor (see Horn and John-
son (1985)). The solution for the weights is made efficient by storing,
updating and using the Cholesky factor of the —[A(0™)],«, matrix when
stepping through fiber breaks. To update L to account for the formation
of break r + 1 in the presence of r breaks, we construct B,y1 as the
vector of influences of the previous r breaks on the (r + 1)-th break.
Then,

L 0
Laiiyxr1) = [XZZZ: pzzll] (73)

where X is obtained by solving
LixwXT =B
by forward substitution and

P=+1-XXT.

We now now investigate the consequences of the key modeling dif-
ference between the present Monte Carlo simulation versus the more
realistic description of the failure process in the unidirectional com-
posite given in Section 1.1. In the above Monte Carlo model, flaws in
effect occur in a uniform grid that passes through the centers of the m
short fiber bundles. This has the effect of unrealistically aligning fiber
breaks perpendicular to the fiber direction, and thereby, potentially
facilitating the extension of break clusters since transversely aligned
fiber breaks produce the greatest stress concentrations ahead of the
cluster tip. Such a restriction is indispensable from a computation time
standpoint since the determination of influences at possible break sites
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in the uniform grid due to fiber breaks occurring at other sites in the
uniform grid can be done by translating the influences of a single break
anywhere in the grid according to Eq. (143) and Eq. (144). On the other
hand, if the potential break sites were situated arbitrarily, the entire
influence field of each fiber break on all other potential break sites would
have to be recalculated using the shear lag methodology. Alternatively
stresses could be interpolated from a regular grid to the locations of
arbitrarily occurring break sites, but this approach is unsatisfactory
because stresses can vary exponentially in the array.

As it turns out, alignment of fiber breaks in the Monte-Carlo model
is not much of an issue when the length of a segment A is much smaller
than the overload length ahead of the cluster tip. Indeed, it would be
best to choose A as small as possible in order to reduce the effects of
such alignment. In our simulations, we have found it satisfactory to
take A = 0.5, which is near the practical limit of our our computational
capability. We divide each X into ny = 11 fragments.

We have simulated the failure of 2D and 3D arrays of n = 100 fibers
of normalized length £ = L/§, = 10 under periodic boundary condi-
tions. To determine fiber statistics through Eq. (41), we have considered
three combinations of (8, p), namely (0.1,75), (0.3,25), and (0.5,15).
In all cases, we have p > 2, which far exceeds the transition to perco-
lation breakdown calculated by Curtin and Scher (1997) and Newman
and Phoenix (2001). The role of matrix viscoelasticity was studied by
considering three powers for the power law compliance, namely o« = 0,
0.1 and 0.5, where o = 0 corresponds to the elastic case. Failure was
also studied under three different applied loads, namely 7o, = 0.3,
0.5 and 0.7. For each set of parameter values we tested ng, = 1024
virtual composite specimens. The simulations were performed on a
cluster parallel computer of Intel 500 MHz processors. Depending on
the parameters of the model, computations took anywhere between 0.5
and 1500 processor-hours.

5.2. DETERMINING THE TIME OF COMPOSITE FAILURE

A crucial aspect is to establish the critical event that signals composite
failure in the simulation algorithm above. We consider three reasonable
possibilities. The first is that failure is taken to occur when the compos-
ite strain rate (&) exceeds a fixed threshold, ¢ > &.. Composite strain is
easily determined from the sum of fiber break opening displacements,
which are the weights w(7) in Eq. (149). A second approach is to
consider the composite failed if a bundle of some appropriately chosen
length (say the characteristic length or overload length for some fixed
k) has all fibers in it failed. Here k£ must be chosen large enough to
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represent a critical cluster, i.e., one which will continue to propagate
with almost certainty. A third approach of a purely numerical nature is
to identify composite failure with the sudden acceleration of occurrence
of successive fiber breaks by considering the composite failed if

Tl =T (74)

Ti+1

where 7; is the time of formation of the i-th break and e is a suitably
chosen small constant.

We use this third approach, taking Eq. (74) as our failure criterion
with € taken to be the computer’s machine precision (about 10716).
From a set of benchmark simulations that exercised the entire param-
eter range of our failure simulations, we found the criterion given by
Eq. (74) to be the most conservative of the three criteria in that its
satisfaction occurs only after the satisfaction of the other two. The first
two, however, have a mechanical basis, while the third does not though
it is based on the observation that the time between successive fiber
failures becomes progressively small after the composite goes unstable.
Consequently, the satisfaction of the first two criteria (which occur more
or less at the same time) signal composite instability and the continued
simulation up to the satisfaction of the third criterion could result in
significant post-critical fiber breaking often removed from the cluster
of breaks that became unstable. These post-critical breaks, however,
are of no concern since they are formed well after the failure process in
the composite has gone catastrophic and they actually take negligible
time to form, thereby hardly affecting the simulated empirical lifetime
distribution.

5.3. FAILURE CONFIGURATIONS AND MODES

Depending on the fiber and matrix parameter values and the applied
composite load 7y, composite failure is dominated by one of two qual-
itatively distinct modes of failure: (i) a clustered failure mode, which
accompanies high fiber failure sensitivity to load level, high applied
load and short overload length, or, (ii) a dispersed and more global
failure mode, which accompanies relatively lower fiber failure sensitivity
to load level, small applied loads and longer overload lengths. In a
later section, distinctly different theories will be required to model the
lifetime distributions for these two modes.

For the clustered failure mode, (i), Figure 10 shows the arrangement
of fiber failures in the vicinity of the composite failure plane in the
median specimen among ng, = 1024 simulations of n = 100 fiber,
B =0.1, p =75, a = 0 (elastic matrix) composite under applied load
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Figure 10. Snapshot of damage near the failure plane in the median 8 = 0.1, p = 75,
a = 0 specimen (elastic matrix) among nsim = 1024 simulations under applied load
Moo = 0.7 and at time 7 = 6.536 x 107° when the failure criterion Eq. (74) is
satisfied by the formation of 77 fiber breaks out of a possible 2, 000. Each horizontal
line spans a bundle of n = 100 fibers and successive bundle centers are spaced
A = 0.5 apart. Only five out of the twenty bundles in the simulation cell are shown.
Each o denotes a fiber broken before the composite goes unstable according to the
strain criterion (which is satisfied after the formation of 44 fiber breaks) and each x
denotes a post-critical broken fiber. Notice that the critical cluster size k* = 4 and
that staggering of breaks in the catastrophic cluster occurs between planes £ = 8.5
and £ = 9. The box at the figure bottom plots the times when fiber breaks occur.

Too = 0.7. Longitudinally this composite is divided into m = 20 bundles
and the normalized length of each segment is A = 0.5. Figure 11 shows
the evolution of composite strain over time for this same specimen.
The strain grows catastrophically after the failure of 44 fiber segments
at time 744 = 0.5615 x 107°. As Figure 10 shows, however, after 44
breaks the incremental times between fiber failures become negligible
in sum suggesting that this particular specimen goes unstable after just
44 fiber breaks have formed. The number of contiguous fiber breaks in
the final failure plane at the time when propagation rapidly accelerates
is only k* = 4. We return to this observation in Section 6.

The clustered failure mode, (i), decreases in prominence and sharp-
ness when p decreases. This is in qualitative accord with Eq. (41) since
it diminishes the rate of increase of the probability of fiber segment
failure. The transition from a clustered to dispersed failure mode is
signaled by increased out-of-plane fiber failures ahead of the cluster
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Figure 11. Plot of strain versus time in the median 8 = 0.1, p = 75, a = 0 (elastic),
specimen under applied load 7o, = 0.7. Each o denotes the time of formation of a
fiber break. Initially the strain grows moderately as breaks accumulate randomly
in the composite, but then a cluster forms and extends more quickly. The cluster
growth goes critical, causing cluster extension to proceed rapidly prompting the
blow-up of composite strain starting at break number 45.

tip. Note that both the terms — “clustered” and “dispersed” — refer to
parameter value sets that still lie in the “avalanche” regime of Curtin
and Scher (1997). We do not consider parameter sets in their “perco-
lation” regime, nor do we investigate parameter values for a transition
to such a region.

Figures 12, and 13 correspond to a case wherein out of plane break
staggering is prevalent although the composite still fails by the forma-
tion of a cluster of breaks spanning several transverse planes (bundles).
Figure 12 shows the evolution of strain with time in the median among
ngim = 1024 specimen of 8 = 0.5, p = 15 and a = 0 (elastic matrix)
composites under applied load 7o, = 0.3. In contrast to Figure 11,
strain increments occur rather continuously owing to the large num-
ber of initial dispersed breaks that form, seemingly in an uncorrelated
manner, before a growing cluster is initiated. While no sharp point is
clearly identifiable signaling the start of strain blow-up, we take this
number to be 101 breaks, where the strain rate (not shown) shows a
first large acceleration. We show the configuration of fiber breaks at
that time in Figure 13, where a cluster of breaks forms that straddles
planes £ = 8 to £ = 9.5 and frequently switches between planes.
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Figure 12. Plot of strain versus time in the median 8 = 0.5, p = 15, @ = 0, under
applied load me = 0.3. Each o denotes the formation of a new break. Dispersed
initial breaks take up much of the lifetime of this composite with criticality appar-
ently reached when the dispersed failures have reached a certain concentration. This
happens in this specimen when the number of breaks is 94.

At the opposite end of the spectrum we have composites that appear
to fail by a dispersed fiber failure almost entirely up to instability, i.e.,
mode (ii) above. By continuing simulations well past the onset of strain
instability we still induce large cluster formation, as this represents
eventual localization but a more global-like load sharing system occurs
up to that point. Figure 14 shows the break configuration in the entire
composite with g = 0.5, p = 15 and a = 0.5 (a strongly viscoelastic
matrix) at applied load 7o, = 0.3. The strain instability criterion is
satisfied when almost the entire lifetime of the composite has elapsed.
The difference between this and the previous much more localized cases
lies in the length of the overload zone. In Figure 13, since the matrix
was elastic, the overload zone was confined to its time independent
value of approximately 24,. In Figure 14, however, the overload zone
eventually expands to cover almost the total length of the composite
cell, increasing many-fold the opportunity for staggering of a crack.
This increasingly becomes an issue as « increases further. Another im-
portant point is that since normalized time 7 spans many decades, the
overload length w o 7%/2 varies considerably. Since staggered clusters or
cracks propagate with lower probabilities than aligned cracks, owing to
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Figure 18. Snapshot of the damage near the failure volume of a median 8 = 0.5,
p = 15, @ = 0, specimen among nsim = 1024 under applied load 7 = 0.3, at
T = 7.788 x 10" when the failure criterion Eq. (74) is satisfied. The meanings of the
horizontal line, o, and X are identical to those in Figure 10. Notice the extensive
stagger between bundles centered at £ = 8.5, £ =9 and £ = 9.5. The failure plane
is not identifiable; instead the bundles centered about these three planes maybe be
thought as a failure volume. After the critical cluster has formed, failure progresses
in the plane £ = 8 to a larger extent. The bottom box shows the times of formation
of breaks, where only every fourth break has been marked for legibility.

the smaller stress concentrations ahead of them, this favors the general
propensity toward dispersed fiber breaking.
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Figure 14. Completely dispersed failure snapshot of the median 8 = 0.5, p = 15,
a = 0.5, composite under applied load 7o, = 0.3, at time 7 = 1.21 x 10* when it
goes critical as per the strain criterion. The overload length of a single break at this
time almost encompasses the whole of the composite.

6. Comparison of Monte Carlo Empirical and
Analytical Lifetime Distributions

In this section, we compare the empirical lifetime distributions obtained
from the Monte Carlo simulations described in Section 5 and the an-
alytical model developed in Section 4. The gradual transition from a
localized failure mode, (i) to a global failure mode, (ii), as seen in the
failure patterns of Section 5.3 is reflected in their lifetime distributions
changing from a weakest-link form with a characteristic distribution
function in the cluster formation and growth case, to a log-normal or
normal distribution in the dispersed failure case. Since computational
limitations necessitate a small size for the simulated unit cell, we must
pay particular attention to the role of boundary effects (here manifested
as the effects of periodic boundary conditions) on the composite failure
and will find that periodic boundary conditions impel composites (cells)
that are too small toward a dispersed failure mode.

Empirical distributions discussed are those of n = 100 fiber com-
posites of normalized length £ = 10 divided into ™ = 20 bundles
longitudinally. According to this division in each fiber there are two
fiber segments per characteristic length d,. Therefore, the empirical
weakest link distribution W(T) is derived from the empirical composite
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lifetime distribution H,n,(7) according to
W(r) =1~ (1 — Hpy(r))/™ (75)

where mn = 20 x 100 = 2,000 in the remainder of this discussion (i.e.,
the total number of fiber segments is 2,000).

6.1. 2D ARRAYS

6.1.1. Lifetime Distribution

A key quantity affecting the lifetime distribution function H,,,(7) is
the stress concentration ahead of a cluster of & fiber breaks. As seen in
the failure configurations of Section 5.3, the typical propagating cluster
of k breaks tends to be somewhat staggered. In view of this fact and our
observations in Section 2.2 regarding the effect of periodic boundary
conditions and staggering ahead of a cluster of k breaks in Eq. (29)
and Eq. (31), respectively, we take the form of the stress concentration
ahead of a cluster of k& breaks in 2D arrays to be

Ki(r) = || Sn(l - exp(-L/(kro)) £ 1 (76)

where we provisionally let 15 be a free parameter. In Eq. (76), the
factor 1 — exp(—£/(k7*/?)) comes from Eq. (29) and is a correction for
the periodicity of the composite patch along the fiber direction. As seen
in Section 5.3, staggered k-clusters of breaks hardly ever occur in pairs
of (k/2)-clusters as idealized in Eq. (31); the number of cluster limbs
may exceed two, and their relative size is random. Eq. (31) is thus
unrealistically specialized to be a good model of load concentration
ahead of a staggered cluster of breaks. Therefore, we approximately
account for cluster staggering using the parameter 9, in Eq. (76), and
drop the correction 1; which appears in Eq. (31). The utility of Eq. (31)
lies in showing where this correction is to be applied: as a multiplier of
wk/8.

The dependence of K (1) on 7 is weak and 7 may be varied consid-
erably without significantly affecting Ky(7). We therefore can let 7 in
Eq. (76) be the normalized time since the formation of the first break
in the k-cluster without affecting the approximation much.

In addition to accounting for the influence of interaction between
periodic unit cells, this form for K also accounts for the staggering of
fiber breaks through the parameter 1. It suffices to let

1 if £ < kg
= 77
W {¢ > ko (77)
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where kg is appropriately chosen and % is maintained as a free pa-
rameter, which is chosen so as to produce the tightest bound in the
lower tail of the simulated empirical lifetime distributions. We only
allow 1 < 9 < 2, where ¢ = 1 corresponds to the k-cluster being
comprised of two equal limbs (as defined before Eq. (31)) infinitely
apart while 99 = 2 corresponds to the case where the two limbs are
aligned transversely.

The form Eq. (76) with the restriction Eq. (77) at best represents
an attempt to capture the dominant effect of the stress concentration
ahead of a staggered cluster of k-breaks using the fewest fitting param-
eters. The chosen form results in predicted lifetime distributions that
accurately capture the form of the empirical distributions.

2D: =01, p=75 a=0, 7 = 0.7

p=11,k =3

_16 I I I I I I
-20 -18 -16 -14 -12 -10 -8 -6

log(T)

Figure 15. Comparison of the empirical weakest link distribution with the
k-envelope given by Eq. (64) in a 8§ = 0.1, p = 75 and a = 0 (elastic matrix)
composite on Weibull coordinates under applied load o = 0.7. To get good agree-
ment, we chose ) = 1.1 and ko = 3. Points of intersection of the k-lines are marked
with squares.

Figure 15 shows the comparison between the empirical W(T) ob-
tained from Monte Carlo simulations and Wi(7), k& = 1,...,8, from
Eq. (150) for the case of a composite under applied load 7o = 0.7
wherein the matrix is elastic @ = 0 and fiber statistics are determined
by the parameters 8§ = 0.1 and p = 75. According to Eq. (67), the
model predicts an upper bound that is the minimum envelope of the
shown Wj(7). To obtain good agreement between ming Wy (7) and
W (7), we have set the free parameters as ¢ = 1.1 and kg = 3. The
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minimum envelope of Wy (7) approximates the shape of W(T) well, but
divergence is seen in the lower tail. Decreasing 1 for larger k would
reduce this divergence. Doing so is physically justifiable since larger
k corresponds to increased staggering, which can be corrected for by
making 1 smaller. The empirical median lifetime of this composite is
found to be 71 /5 ~ 6.5 % 10~% at which time k* = 4 in the Weibull lower
envelope. From Figure 10 it can be seen that the critical cluster size k*
in the failure plane of the median specimen is indeed 4.

2D: =0.1, p=T75, 7o = 0.7

Monte darlo Simulatioﬁs
— Cluster Growth Model

-4

20 -15 “10 5 0
log(7)

Figure 16. Comparison on Weibull paper of the empirical weakest link distribution
with the minimum of the k-envelope in 8 = 0.1, p = 75 fiber composites with matrix
of three different @: @ = 0, 0.1, and 0.5 under stress e = 0.7. The (¢, ko) pairs for
these three o are respectively, (1.1, 3), (1.4, 3) and (1.75, 3).

Figure 16 shows the Weibull lower envelope for composites where
B =01, p =7 and a = 0, 0.1 and 0.5, the first of which was
just discussed. The applied normalized load is e, = 0.7. The median
lifetimes of the three cases varies in the reverse order of their overload
lengths wjy at the failure time. The median lifetimes of the a = 0,
a = 0.1, and @ = 0.5 composites are, respectively, 71/ = 6.5 X 1076,
7.7 x 1076 and 6.0 x 1073. In all three cases, the median lies in the
range of k* = 4. This implies that the approximate normalized overload
lengths calculated using Eq. (23)are w4 = 2, 1.11, and 0.56 respectively.
Since the elastic (« = 0) composite has an overload zone next to a fiber
break, which instantaneously extends to ws = 2, a break in it subjects
a greater length of its neighboring segment to overload than it would
in an « = 0.1 or a« = 0.5 viscoelastic composite. This qualitatively
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explains the observed trend in the median lifetime. In computing the
model lines for the three different cases, we have substituted 7 = 7 /2
in Eq. (76) without appreciable error. While ky = 3 is fixed in all three
cases, ¥ = 1.1, 1.4, and 1.75 when o = 0, 0.1, and 0.5 respectively.
This is in keeping with the overload length argument suggested above;
correction necessary to account for staggering is smaller if the overload
length is shorter. This in turn results in 1 closer to 2 as « increases.

The disagreement in the lower tail between the predicted and empir-
ical weakest-link distributions, seen previously for a = 0, decreases and
almost disappears as « is increased up to 0.5. Viewed in conjunction
with the increased possibility of staggering that accompanies increased
overload length wy as a decreases according to wy 7%/2 this bolsters
our earlier suggestion that the assumed forms Eq. (76) and Eq. (77)
for K are imperfect and break down as fiber break staggering ahead
of a cluster becomes pronounced.

2D: B =0.5, p=15, 1, = 0.3
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Figure 17. Inability of the k-envelope model to fit the empirical weakest-link distri-
bution for composites with 8 = 0.5, p = 15 and a = 0 (elastic matrix) under load
Moo = 0.7. Lines for k£ > 5 appear to intersect (as marked with squares)almost at a
single point. For the other parameters we have taken ¢ = 1.2 and ko = 3.

As indicated earlier, the cluster growth failure mode, (i), gives way
to a dispersed failure mode, (ii), as cluster extension probability is
decreased. In Figure 17, in attempting to fit Wi (7) to the weak-linked,
lifetime distribution of an elastic matrix composite (o = 0) with fiber
parameters S = 0.5 and p = 15, we find that the lines of Wy (7) intersect
each other almost at one point when k exceeds about 5. An explanation
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follows from the boundedness of stress concentrations ahead of a k-
cluster of breaks in a unit cell under periodic boundary conditions in
accordance with Eq. (29). Let K, be this upper bound for a unit cell of
length £. That is, let K 1, < K, for K = 1,2,.... Then for sufficiently
large k, the ratio Wy,1 /W) becomes

Wii1(7) . 2xT(1+B8)T(1+ (k+1)8) 1 -1 5 e
Wi(r) e T(1+kp) < - Kk,L) (Kk,p7o0) 77"
~ 2T (1 + B) 8P (k) (Kpmo )PP 7P T0/2

(78)

where v(k) = O((k + 1)#) is a slowly increasing function of ¥ when f
is small. From this we may define an accumulation time

Ta = (2XT(1+ B)BP(k) (K1 moo)PP) 578 (79)

whereby Wy1(7) < Wy(7), for 7 < 1, and all k& > ko for some ko.
For 7 > 71,, however, there is a unique k* such that Wi (7) < Wy(7),
for all k where k* = k*(7). By this argument, accumulation of W}, of
the above described nature should occur for all values of S and p for
sufficiently high k in a composite cell.

Once the stress concentration ahead of a cluster of breaks does not
substantially increase with further increases in cluster size, cluster ex-
tension must proceed at the same speed irrespective of cluster length.
In this condition a global damage mode appears to take over and fibers
fail in a dispersed manner until they link up and fail the composite.

Dispersed failure is characteristic of equal load-sharing bundles, which
have Gaussian (normal) lifetime distributions asymptotically as n —
00, as discussed in Section 4.1. That gives us reason to expect the same
distribution even in local load sharing composites when fiber failure
is also dispersed. However, we do not find obvious normal tendencies
for any of our simulated lifetime distributions. A second possibility
(Curtin (1998)), suggested by the longitudinal localization of dispersed
fiber breaks within bands smaller than the composite length, is that
the empirical lifetime distribution follows

A

Hyp(7) = 1= (1= W ()™ (80)

where W(T) is approximately Gaussian and the composite may be
thought of as a weakest link arrangement of 7 equal load-sharing
bundles. However again, W () determined from Eq. (80) fails to be
Gaussian for any 7m as determined from our simulation H,,, data.

Tt turns out, however, that W () is very linear on log-normal coordi-
nates which differs from the normal coordinates in that the horizontal
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Figure 18. Plots of the weak linked empirical distribution of 8 = 0.5, p = 15
composites under applied stress 7 = 0.3 on log-normal paper. The linearity of
the plots suggests that the weak linked distributions are log-normal.

axis is log7 instead of 7. Figure 18 shows the weak-linked lifetime
distributions of 8 = 0.5, p = 15 composite specimens with matrix
creep exponents of @ = 0.1 and o = 0.5 on log-normal probability
coordinates together with straight lines which are least squares fits of
them. Here m is chosen in each case to be the integer which minimizes
the standard error of both the slope and intercept estimates of the
fitting straight lines. The line corresponding to a = 0 is excluded from
this figure since the standard error corresponding to it does not achieve
a minimum at any reasonable 7n and continually decreases as m is
increased and the concept fails to work, i.e., the form Eq. (80) does
not capture the distribution of fImn for « = 0. This observation is in
agreement with Figure 17 which shows that the k-cluster growth model
is a reasonable assumption until it is superseded by non-accelerating
crack growth due to the influence of its periodic images. Thus the case
a = 0 behaviorally appears to lie between the clustered and dispersed
failure modes for this limited unit cell size.

We use reasoning found in Ibnabdeljalil and Phoenix (1995) to ex-
plain the observed log-normal nature of the link W (7) of Hy, (7). It
hinges on the connection between the lifetime problem and the static
strength problem established through Eq. (49). Monte Carlo simula-
tions show that the strength of equal load-sharing bundles converges
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rapidly in distribution to the normal distribution even when the bundles
are as small as n» = 5. This is in contrast to the lifetime of equal
load-sharing bundles whose convergence in distribution to a normal
distribution is much slower, so that the convergence is not nearly com-
plete even for n = 500. Since our weakest link bundles are quite small,
their lifetime distribution is non-normal in shape.

To see how log-normality arises we must determine the lifetime
distribution that corresponds to a given normal strength distribution.
Following Ibnabdeljalil and Phoenix (1995) and Phoenix (1978) the
standardized lifetime of an equal load sharing bundle has the scaling

fOT P (s)ds = Trf,, ifn(s)=mx
y = 4 ! 81
{fOT nP(s)ds = LI, if w(s) = As (81)

where T' and T" are the actual failure times under the two kinds of
loadings — constant and linearly increasing, and where & is the loading
rate and 7 is a standard time assuming m,, = 1. This remarkable
result for both the fiber and the bundle emerges from the factorization
property of the power law breakdown rule in integrals (Phoenix (1978)).
Equating the two right hand sides and substituting the strength-time
relationship ¥ = #ZT" in the linearly increasing load case gives

R°T' yptl
p+1  (p+1)Z

(82)

P
Tnl, =

which implies that

1 1
Yox Tl x log(7)+1 83
— 7 log() (53)
where the latter approximation is accurate for large p (p > 10, say)
and Z close to one. Since X is normal, this suggests that 7 must be
very close to log-normal.

6.1.2. Important Scaling Relations
Within a bundle wherein each fiber is subjected to the stress concen-
tration based load profile of Eq. (53), a scaling relation between the
applied load and lifetime was derived in Eq. (57). In the absence of
fiber stress concentrations the scaling relation was found to be Eq. (59).
The actual stress state in a partially failed composite lies between these
extremes and we now consider the actual scaling relationship seen in
our Monte-Carlo simulations.

Figure 19 shows the variation of the median composite lifetime, 71 /2,
with applied bundle load, 7, for 8 = 0.1 and p = 75 for the fiber and
a = 0, 0.1, and 0.5 for the matrix. When a = 0, the load-lifetime
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Figure 19. Scaling of the median lifetime(ry/;) with applied load(me) for
Monte-Carlo simulated composites with 8 = 0.1, and p = 75 and different a. In the
case of the elastic matrix, @ = 0, the scaling relation is 2T /2 = ¢ exactly where
c is a constant. When o = 0.1, the scaling w557, /2 = c is a good approximation.
When a = 0.5, a simple power law scaling fails to hold.

scaling relation Eq. (57) collapses into Eq. (59) which appears to hold
in the simulations. Thus, the median lifetime 7/, scales exactly as

ml. However when a > 0, the behavior is more complicated. While

Eq. (57) suggests the form A 2)71 /2 = constant for the load-

lifetime scaling, which for @ = 0.1 becomes 7307, /2 = constant, it can

be seen that the actual scaling relation for o = 0.1 goes as 727, /2 =
constant. Thus the actual load scaling power (= 58) lies between the
exponents given by Eq. (59) and Eq. (57).

A possible reason for this deviation is that while Eq. (59) applies
when fiber failures occur independently of each other and Eq. (57) ap-
plies when they form by cluster extension, in reality, composite failure
starts with dispersed breaking wherein Eq. (59) applies and terminates
with the growth of a cluster of breaks when Eq. (57) applies. Therefore
it seems reasonable that the actual scaling exponent lies between the
exponents given by these extremes. Furthermore, Eq. (64) allows us to
approximate the actual load scaling exponent since the dependence of
the characteristic lifetime distribution on load goes as

B8
Wk(T) ~ Wgo+((k_p1)/k)a/27' (84)
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so it would be reasonable to expect
ng/(ﬂ“L((k_l)/k)o‘/QTl/Q = constant (85)

so long as the composite fails by cluster formation and growth. Setting
k = 3 which is the observed critical cluster size in this expression for
the median range, we find that the load-lifetime scaling exponent is
56.25 which is very close to the observed scaling exponent, 58.

Figure 20 shows the comparison of fiber failure times in a single
specimen, using the same Monte Carlo random numbers, under three
different applied loads. Fiber failure times in the composite are scaled
according to Eq. (85), and while not completely converging for the three
applied load levels, the last failure times are closer than when they are
scaled according to Eq. (57) or Eq. (59). Note that & for each specimen
is chosen to be its critical cluster size k*. The sequence of breaks leading
up to composite failure is different for the different specimens owing to
the different applied loads, although they have identical standard repre-
sentative random numbers. The scaling Eq. (85) is derived by statistical
arguments, not deterministic ones, unlike Eq. (59) and Eq. (57). This
makes the lack of collapse of the three curves unsurprising. Furthermore
the limiting times are not ordered according to load level. Another
contributor to the disagreement between the three scaled final lifetimes
is that length scale correction, as suggested by Eq. (57), has not been
incorporated into Eq. (85).

When a = 0.5, as is evident from Figure 19, the power-law load
lifetime scaling breaks down especially for smaller loads. This is to
be expected, for as « increases, so does the overload length ahead of
a crack prompting the dispersion of breaks in the fiber direction as
often observed above. This causes the breakdown of the cluster-driven
mode of composite failure, which in turn results in breakdown of the
power-law load-lifetime scaling relationship.

Figure 21 shows the same scaling but of the median specimen under
the three loads. Since the scaling relation is statistical, it is reasonable
to compare the statistically similar median specimen although they are
not the same realization in that they have different sets of standard
representative random numbers for the fibers. As is seen, the failure
times are close to each other; however this collapse is only approximate
suggesting some non-linearity of the o = 0.1 line in Figure 19. However,
the observed mismatch of the failure times in Figure 21 is much smaller
than the final mismatch in Figure 20.
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Figure 20. Damage evolution in terms of fiber failures in time in a single § = 0.1,
p = 75 specimen (same standard representative random numbers) under three
different loads: 7 = 0.3, 0.5, and 0.7. The time 7(9) of occurrence of break DN
for each applied load 7o is scaled according to T3(N) = wgf/(3+(k_1)a/(2k))r(‘ﬁ) as
would be expected in a load sharing bundle according to Eq. (85).

6.2. 3D ARRAYS

In 3D, the interaction effects of periodic images of break clusters along
the fiber direction are considerably smaller than that in 2D. Hence, we
assume the form for the stress concentration ahead of a k-cluster to be

vk

where we have absorbed the smaller correction for periodicity (see
discussion below Eq. (76))

1+ exp(—Lrih1 /VR),

into the factor 1)y itself, and where Eq. (86) is derived from the form
Eq. (32) for the stress concentration ahead of a staggered cluster of
breaks. Also, it suffices to take 1) of the form

1, ifk=1
¢k:{¢ ifk>1 (87)

as in 2D where 1) is left as a free fitting parameter albeit subject to the
bounds 1 < ¢ < 2. In Eq. (63) we noted that the number of neighbors
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Figure 21. Damage evolution in terms of fiber failures in time in three g = 0.1,
p = 75 statistically identical (median specimen among 1024 simulations; they have
different standard representative random variables) specimen under three different
loads: moo = 0.3, 0.5, and 0.7. The scaling of fiber failure times is the same as that
in Fig 20.

surrounding a j-cluster of fiber breaks is N; =~ (47)1/251/2. However
the stress concentration varies considerably from fiber to fiber among
these neighbors and in a previous work (Mahesh et al (2002)) we have
found it essential to accommodate this variation by letting

Nj =nj" (88)

where 1) and v are fitting parameters. N; may be viewed as the effective
number of fibers surrounding a cluster that are at high risk of failure.
Figure 22 shows a comparison of the cluster growth model against
the empirical weakest link distribution obtained from simulations of an
elastic matrix (o = 0), 3D composite under applied load 7o, = 0.7 and
where 8 = 0.1, p = 75 for the fibers. To fit the data we have taken
N; = 1.25j%27 and 4 = 1.86. The closeness of the fitting parameter 1)
to 2 suggests that out of plane staggering of fiber breaks is minimal for
this elastic matrix case with high fiber breakdown sensitivity to local
fiber load level. Owing to the smaller stress concentrations ahead of
a k-cluster in 3D than in 2D, the probability range of the simulations
encompasses broader k* regimes. Figure 23 similarly compares the clus-
ter growth model with the empirical weakest-link distribution in a 3D
composite with a mildly viscoelastic matrix (o = 0.1) and fibers with
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Figure 22. Comparison, on Weibull probability coordinates, of the empirical weak-
est-link distribution with the k-envelope given by Eq. (64) in an elastic matrix 3D
composite (@ = 0) under applied load 7o = 0.7 and where 8 = 0.1, p = 75 for the
fibers. To get good agreement, we set ¢ = 1.86, n = 1.25, and v = 0.27.

a low breakdown sensitivity to local load level (8 = 0.5 and p = 15)
where the applied composite load is mo, = 0.3 per fiber. As seen, the fit
is exceptionally good in the lower tail using the fitting parameter values
shown in the figure. Even though the times are large, the approximate
normalized overload length @y, ~ vk7%/2/2 here is still much smaller
than the normalized composite length £.

Generally speaking, stalling of clusters due to interactions between
breaks and their periodic images is much less of an issue in 3D than in
2D arrays since these interactions are much smaller. As seen in Figure 6,
stress concentration ahead of a cluster of breaks is very mildly affected
as £ is decreased from oo to 5. Though not shown, the £ = 10 line is
almost indistinguishable from the £ = oo line.

Figure 24 shows the lower envelope of the k-lines for 3D composites
with 8 = 0.1 and p = 75 fibers, matrices of different creep exponents, o,
and with applied load level 7, = 0.7. The observation and explanation
in 2D regarding the order of the median lifetimes applies also in 3D.

As in 2D, the weak-linked lifetime distribution is strongly log-normal
as shown in Figure 25 for 7o, = 0.3. (Unfortunately simulation of the
case of highly creep sensitive matrix, a = 0.5, and lower load, 7o, = 0.3,
is beyond our computational capabilities so is not shown.) Unlike in 2D,
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Figure 23. Comparison, on Weibull probability coordinates, of the empirical weak-
est-link distribution with the k-envelope given by Eq. (64) in a mildly viscoelastic
matrix (o = 0.1) 3D composite under applied load 7o = 0.3 and where 8 = 0.5,
p = 15 for the fibers. To get good agreement, we set ¢ = 1.7, n = 1.25, and v = 0.27.

log-normality of the weak-linked lifetime distribution in 3D is not tied
to cluster stalling resulting from interactions between breaks and their
images. This indicates that the tendency toward log-normality of the
weak-linked lifetime distribution is not an artifact of our limited unit
cell size for the simulations. However, what is surprising here is that
H,pp is itself normally distributed, as shown in Figure 26, although
its mean and standard deviation are far removed from the mean of
6.19 x 10% and standard deviation of 2.76 x 103 predicted by the equal
load-sharing model for both @ = 0 and @ = 0.1 (since matrix char-
acteristics are irrelevant to equal load sharing). We believe, however,
that normality of I:Imn(T) is coincidental and that it breaks down in
the lower tail, and so, will not survive scaling to larger composites.
Indications of such a breakdown are already seen among the last few
specimens in Figure 26.

6.3. DISCUSSION

For a heterogeneous material network model, very similar in breakdown
and load-sharing features, Curtin and Scher (1997) showed that the
failure mode of a “typical” bundle transitions from avalanche to perco-
lation breakdown at p = 2. This result could be tied to the square-root
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Figure 24. Comparison on Weibull coordinates of the empirical weakest link dis-
tribution with the minimum of the k-envelope in 3D composites with three matrix
viscoelastic creep exponents a = 0, 0.1, and 0.5 and fibers with high breakdown
sensitivity to stress level 8 = 0.1, p = 75 and loaded under applied stress level
Teo = 0.7 . To get good agreement we have taken ¢ = 1.86, n = 1.25, and v = 0.27.

feature of stress at the cluster tip to cluster diameter. Assuming a more
severe local load sharing rule where the fiber stress at the cluster edge
grew linearly with cluster size, Newman and Phoenix (2001) showed
the transition to occur in their case at p = 1, and where g = 1.
In the context of these studies, the composites used in the present
simulations, with p > 15, would fall well within the avalanche regime.
What the present simulations newly reveal, however, is that even within
the avalanche regime, there are two types of local breakdown that
trigger the avalanche, or eventual catastrophic crack growth, which
we have called the clustered and dispersed modes. Thus, while the
composite lifetime still has a weakest link character, Eq. (80), for both,
the two modes assert themselves in the form of W (r) — given by the
Weibull envelope in the clustered case and log-normal in the dispersed
case, and in whether m is approximately mn, or is smaller. As the
model parameters are changed, the transition from the clustered to the
dispersed failure mode is not abrupt.

An interesting feature of the dispersed failure is mode is the existence
of a log-normal, weakest-link distribution. This is likely the result of
slow convergence to the normal distribution of an equal-load sharing,
time-dependent bundle, which would tend toward normality if it were
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Figure 25. Plots, on log-normal coordinates, of the weak-linked empirical distribu-
tion W (7) for composites with fibers having relatively low breakdown sensitivity
to local fiber load level (8 = 0.5, p = 15), matrices which are elastic (o = 0) and
mildly viscoelastic (o = 0.1) and under relatively low applied stress moo = 0.3. The
linearity of the plots suggests that the weak linked distributions are log-normal.

possible to simulate sufficiently large specimens under model parameter
values and load levels that proportionally increase the break cluster size
needed to finally obtain catastrophic crack growth and failure. Ibnab-
deljalil and Phoenix (1995) observed the persistence of log-normality in
a brittle matrix composite model for much larger bundles than we have
simulated, so the convergence to normality, is slow. It may very well
be that in the probability range of practical interest, the weakest-link
is indeed log-normal. Current computational capabilities do not permit
resolving this issue in the foreseeable future.

The simulations do suggest global percolation like failure (Figure 14)
when p and 7y are sufficiently small. In light of the above mentioned
works, the establishment of an accumulation time in Eq. (79) in our
finite simulation cells must be dismissed as spurious finite patch size
effects. A Monte-Carlo study, similar to the present, but implementing
open boundary conditions would avoid these effects. (But it would suffer
from the pitfall of stress leakage out of the simulation patch, and the
artificial protracted lifetimes which goes with it.) In the next section,
we will calculate the form of the weakest link distribution in large
composites in light of these conclusions.
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Figure 26. Plots, on normal coordinates, of the empirical distribution Hp,(7) for
the case of Figure 25. Except for the tails, linearity of the plot suggests normality
of the distribution for these small specimens (unit cells). However, this is believed
coincidental as the parameters of the normal distribution are far from those predicted
by equal load-sharing theory, and the deviations in the tails will cause distortions
in scaling to much larger composites.

7. Large Composites

Computational limitations have confined us to composites with n. = 100
fibers and length L = 104,, or, mn = 1000 fiber segments. These are
very small compared to real composites, which typically have more
than mn = 107 fiber segments of length of the order of §,. We also
imposed periodic boundary conditions, which prevented stress leakage
from the unit cell as would occur had we imposed patch boundary
conditions, which would in turn result in artificially longer composite
lifetimes. However, periodic boundary conditions resulted in spurious
accumulation times owing to the interaction of breaks with their images
located in close proximity. This tended to stall the growth of the sharp
stress concentrations next to clusters. Furthermore, under the chain
of bundles framework, we re-centered the breaks appearing in each
A-bundle both in the simulations and effectively in the modeling of
cluster growth, a necessary simplification to limit computation time.
To reduce the artificial effect of re-centering we set A = 0.5 which
is the smallest value given our computational constraints. While this
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turned out adequate for composites with large p fibers (high failure
sensitivity to load level), its effects were clearly discernible when p was
smaller as it resulted in shortened overload lengths. We will consider
large composites without these artificial restrictions.

7.1. 2D ARRAYS

When £ = 0o, Eq. (22) and Eq. (23) express the stress concentration
and overload length ahead of a k-cluster. Out of plane staggering of
fiber breaks during cluster growth will still need to be accounted for
and we do so by introducing the parameter ¢ (compare with Eq. (76))

Ki0) =g +1, 1<v<o. (89)

The upper bound for 1) corresponds to the case of transversely aligned
breaks and the lower bound to a crack with two equally long limbs
spaced substantially apart. Substituting Eq. (89) into Eq. (64), we
derive the following closed form expression for W(7) in Appendix C:

Wi = 2% e [~ (2-1)ple-0()}, W

where 0’s represent constants specified in Appendix C and,

o) = LT
TR0 VE

The composite lifetime distribution can now be obtained as usual using

Hpp(r)=1—-(1—-W(1))™ (91)

W (7) will not be a distribution function unless it is non-decreasing in
7. Setting dW (7)/dr > 0, we have a condition for its regime of validity,

(p/2 — 1)86364/7% > 65. (92)

This condition is obviously not satisfied if p < 2 assuming all the 6
constants are positive. Interestingly our transition, 2, for p coincides
with that of Curtin and Scher (1997) derived in an different manner.
It must be emphasized that just as Eq. (64), Eq. (90) is applicable
only for large p. The comparisons with Monte-Carlo simulated distribu-
tions in Section 6 demonstrate its applicability down to p = 15, when
finite simulation cell size effects do not affect cluster growth. In deriving
the regime of validity of the clustering mode of failure and Eq. (90),
we have assumed that although the coefficients 6; may vary for small
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p, the form of the expression, particularly the coefficient p/2 — 1 of
the exponential term will remain unchanged. The given lower bound
for applicability, p = 2 hinges on it. In the present composite model,
computational constraints prevent us from verifying this assumption.
We note however that it has been borne out in other studies which have
assumed simpler load sharing, and fiber lifetime statistics, such as that
of Newman and Phoenix (2001).

In Figure 27 we compare Eq. (90) against empirical weak-linked
lifetime distributions obtained from Monte-Carlo simulations. A good
fit in the case of the @ = 0.5 composite requires a 1 value slightly
in excess of 2, the supposed upper bound on 1. This is likely due to
slight errors introduced during the approximations. The effect of small
changes in stress concentration on lifetime is large, since lifetime scales
as KPB. Although the lower tail of the & = 0, W(r) distribution is
a poor fit of the empirical distribution, we find that the fit improves
as « is increased (and corresponding overload length decreases). This
trend suggests that the failure of the a = 0, and a = 0.1 lower tails
stems largely from the inability of Eq. (89) to capture the periodicity
of boundary conditions when the overload length is sizable. In Fig-
ure 16, where more elaborate corrections for periodicity were made
using Eq. (76) for the stress concentrations, the fit is much better.

An alternative form for the stress concentration, which is likely to be
more successful in accounting for periodic boundary conditions while
still amenable to closed form W (7) determination, is

K;(0) = ,/%Vapﬂ. (93)

assigning as it does an effective crack length of 15” to the j-crack,
where both ¢ and v are fitting parameters to be determined in a way
that results in W(7) being a good fit to the empirical distributions.

Based on our simulation experiences, we expect that with 8 and «
fixed, composites with large p will have ¢ =~ 2. When p is decreased,
the cluster growth will be less stress driven, prompting 1 to decrease.
Similarly, 1 will decrease with increasing w o 7%/2 for fixed p and S,
and for fixed p and « will decrease with increasing 3.

We imagine a cutoff 1), such that when ¢ < ), failure switches from
a clustered to a dispersed mode owing to insufficient hazard ahead of
a cluster. The simulations suggest that the weakest link in this case is
driven by the lower tail of a log-normal distribution of mean y; and
standard deviation o1, which is given by

N )k
blatr)) ~ T (94)
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Figure 27. Comparison on Weibull paper of the empirical weakest link distribution
with the 2D weakest link distribution given by Eq. (90) in 8 = 0.1, p = 75 fiber
composites with matrix creep exponent of three different values, @ = 0, 0.1, and 0.5,
under stress moo = 0.7. The values of 1 used in Eq. (89) in the three cases are 1.8,
1.84, and 2.1 respectively.

where

1 T
z(t) = —1lo (7> .
(1) = 218 \ Gop )
The composite lifetime distribution H(7) is given by
~ m
Hy(2(r) =1 = [1=&(z(r))] " (95)

As the composite size gets large, so will 7. For large m, from Leadbetter
et al. (1983, Theorem 1.5.3) and algebraic manipulations we find

H(z(r)) = 1 — exp (—exp{—azm (e — 1)} (96)

with
ap, = (2log m)'/?

and
1
b = (2logm)'/? — 5 (2log 1) "2 (log log 7 + log 47).

This result performs poorly in practice since /m must be very large.
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7.2. 3D ARRAYS

Proceeding as in 2D, we obtain the closed form expression for W(7) in
3D arrays in Appendix D:

,7_05 2
wr) ~ A exp {— (% _ B+ u) %(1 _ e(T))} (97)

0>
93

where again, the 0’s denote constants specified there, and,

N 4003/ Loup_ HpB—2B—7)—3) 4,
pB—pB+v abf3(pB — 4(B —v))
2(1 — 4/(3a%/%)) 304/2
6 (B -4 -v)

While the power of the pre-factor of the exponential, 85 is negative in
2D arrays, it turns positive for 3D arrays. As in 2D, in order that
Eq. (97) describe a valid distribution function, it is necessary that
p > 4(1 —v/p). If, as in (Mahesh et al., 2002, Figure 13), v | 0 as
p decreases, a transition from the avalanche to the percolation-type
failure mode occurs near p = 4. The comments below Eq. (92) on the
assumptions underlying this regime of validity result apply here too.
Within the avalanche failure mode, when dispersed failure and hence
log-normality of the weak-link is active, the composite distribution
function is expected to be independent of composite dimensionality,
and therefore to obey Eq. (96).

The approximations involved in obtaining Eq. (97), especially in
Eq. (174) and Eq. (175) are more severe than those involved in obtain-
ing Eq. (90). The present approximations improve for larger k£ than can
be simulated with current computational capabilities. Comparison of
Eq. (97) with the simulated 3D lifetime distributions is thus necessarily
poor, and is not shown. We give the result, however, in anticipation that
the sizes of composites that can be simulated will eventually be large
enough for a fair comparison. We note that the envelope forms from
which Eq. (97) was derived do indeed work well.

(98)

8. Conclusion

Using Monte-Carlo simulations as a guide, we have developed analytical
models for the lifetime distributions of 2D and 3D fiber composites
with Coleman fibers and a viscoelastic matrix. This was done within
the avalanche regime of Curtin and Scher (1997). Unlike many earlier
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models, we have not confined fiber failures to a single plane transverse
to the fiber direction. The conclusions arrived at through Monte-Carlo
simulations are summarized in Section 6.3. The values of p at which the
analytical lifetime distribution functions, Eqgs. (90), and (97), calculated
assuming clustered failure mode breakdown and when regarded as the
point of transition from the “avalanche” to the “percolation” failure
mode of Curtin and Scher (1997), result in the critical values p = 2
in 2D, and p = 4 in 3D composites, respectively. The validity of this
interpretation however remains to be seen, and given the implausibility
of simulating this limit in the foreseeable future, only detailed analytical
calculations may be able to prove it.
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Appendix
A. Solution of the Governing Equations

Here we detail the solution of the governing equation Eq. (13) subject
to the boundary conditions Egs. (15-18). In Section A.2, we solve the
problem of determining stresses in a periodic patch in the presence
of a single fiber break and in Section A.3, we detail the approach to
superpose single break solutions in order to handle multiple interacting
breaks which may or may not all form at once. First, however, in
Section A.1 we express the boundary value problem in non-dimensional
terms by a suitable change of variables.

A.1. NORMALIZED EQUATIONS AND BOUNDARY CONDITIONS
We define the important quantities ¢ and d, respectively, as

= max pij, (99)

i#]

5, = ,/%, (100)

where §, is a viscoelastic characteristic length scale and is approxi-
mately the length of the unloading zone around a fiber break at time
tem after its formation. Correspondence is made between the elastic and
viscoelastic matrix problems by choosing the parameters of the creep
compliance such that é, = de = \/EA/Gy where G is the elastic shear
modulus. In terms of these quantities we define normalized variables
¢ij, & 05 and U;, for 1 < 4,5 < n as

and

$ij = % (101)
t=1 (102)

= tfm (103)

Ym(T) = %t:m) (104)
oi(¢,7) = W (105)
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E;A
Ui (£> T) = U (féw thm) il (106)
PooOy
The normalization of u; is such that Hooke’s law takes on the form
oU;
3 é’ = 0;. (107)
From Eq. (102), the normalized composite unit cell length becomes
L
£=— (108)

Also from Eq. (9), Eq. (12), and Eq. (101) it follows that for 2D arrays,
92 ifi=j,
¢ij =41 if|i —j| modn =1, (109)
0  otherwise

Similarly, for 3D arrays, Eq. (10), Eq. (12), and Eq. (101) yield

—6 if ﬂl = 62 and mi1 = my,

P(tr,ma)(lasme) = 41 if max((41 — £2) mod v/n, (m1 — ms) mod v/n) =1,
0 otherwise.
(110)
With these normalizations, the governing equation Eq. (11) becomes

U (&, 1) [T =~ , U;(£,v) _
87524‘/0 gm(T — ’U) (]gl ¢ZJ v ) dv = 05 (111)

1=1,2,...,n

Normalizing the boundary conditions Eq. (15)-Eq. (18), yields

O'Z'(f:O,T):O'l‘(gz,Q,T), T207 izla"'an (112)
aik = aUgg(éj) = O, (zkagk) S B, k = 1, , T (113)
U(§=0,7)=Ui({ = £,7)+C(r) (i,0) ¢ B (114)

and .
Y oi¢,m)=n, 0<ELEL, T2>0. (115)

=1

where C(7) is the normalized version of ¢(¢) in Eq. (16).

iter28.tex; 30/03/2004; 11:49; p.61



62 Mahesh and Phoenix

To cast the problem in influence function terms, we consider an
‘auxiliary’ problem whereby the far field load is eliminated but a com-
pressive force of magnitude po, is applied to each end at a fiber break,
forcing each break open. In normalized variables this becomes a unit
compressive force. The effect is to uniformly reduce the strains by
Poo/Ef, stresses by p and, displacements by peoz/Ef. Thus we let
Uj(&,7) be the fiber displacement in the auxiliary problem and have

Uz,(§7 T) = Uz(é.a T) —¢ (116)
Taking o} = 0U;/0¢ (primes do not denote differentiation) we have
oi(§) = 0i(§) - L. (117)

To obtain U], we must solve the system of differential equations

QPPU(E, T ", OUL(¢,v) B
o¢2 -l-/ Gn(T — ) (Zqﬁz] 5 )dv—O, (118)

1=1,2,...,n
subject to the boundary conditions
ol =0,7)=0j((=2L,7), T>0, (4,0)¢B (119)
Ul¢=0,7)=Uj(=¢£,7)+C(r), (i,0)¢B (120)
;o oU; (&)

Ty Tg:_l’ (ir,&x) €B, k=1,...,r (121)

and .
Y oj(¢, 1) =0, 7>0, 0<¢LL (122)

=1

The stress field o (&, 7) is thus the stress in a periodic patch due to
a unit normalized compressive load forcing open each break but with
no far field load applied. The benefit is that o; gives the influence of
the compressive forces applied at the breaks in B on fiber 7 at £. Once
U, is known we can obtain the displacement field due to the far-field
unit normalized tensile load using Eq. (116) and Eq. (117). In the next
section, we give the solution for a single break and in Section A.3 we
extend this to multiple breaks by linear superposition.

A.2. SINGLE BREAK SOLUTION

The solution to the multiple break problem can be built up from a
special ‘unit’ auxiliary problem, where a single break occurs at time
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t = 0 in fiber 7 = iy at position £ = 0. To emphasize this restriction,
we V;/(€,7) denote the displacement U/(&,7) in fiber ¢ at position &
and time 7 due to this single break, and let V;(¢,s) be the Laplace
transform of V/(¢,7), t =1,...,n. Thus

Tig.s) = [ Viem)ear (123
0
In terms of V;(¢, s) then, Eq. (118) becomes
82‘72'(5’8) 7 § /. _
87524_8%111(8) (ng ¢2]1/3(§7 3)) =0, (124)

1=1,...,n.
The boundary conditions Eq. (119) to Eq. (122) now become

v, oV

- ° = > = R (R
aé- (0’ 3) aé- (’27 3)? S - O? ? 1?27 7’n’ (]‘25)
‘_/i(OaS) = ‘71(2,5) + C_’O(S)a §2>0, 1 7é io (126)
ov; 1
Vi _ 1 S L
o (0,) S 52 0, =1 (127)
and I
> M=o, 0<e<e s> (128)

23

i=1
where Cy(7) is C(7) corresponding to the single break case. For the
power law matrix creep function, we have

G(s) = ——— > 0. 129

A6) =t 2 (129)

In terms of the vector V = {Vq, V5, --- ,V,}7 and the matrix ® = [#4j],
Eq. (124) can be rewritten as

Ta+a)) 0 - oy
<7/> SV} - BV} = (o). (130)

To solve Eq. (130), we need the eigenvalues and eigenvectors of ®,
which is a symmetric, diagonal-dominant matrix with zero row (and

column) sums. Thus the eigenvalues A\?,i = 1,...,n are real and by
Gershgorin’s theorem, A? € [0, 2 maxi<i<n |¢iil),i = 1,2,...,n. We also
assume the system is semi-connected, i.e., given any distinct integers
p, and g, there is a sequence p = k1, ko, ..., ky,, = ¢, such that matrix
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entries @k ks, Pkokss - -» Phm_1knm are non-zero. Since A\; = 0 lies on
the boundary of the Gershgorin disk, to it corresponds the eigenvector
1= {11...1}T, unique up to a multiplicative constant. Thus, the null
space of ® is 1D with basis 1. The remaining n — 1 eigenvectors are
orthogonal to 1, so their rows sum identically to zero.

Let the normalized right eigenvectors of matrix [—-®] be E;, j =
1,2,...,n corresponding to eigenvalues /\?, j = 1,2,...,n where the
normalization can, for example, be done so that > ", |E;;j| = n for
each i and A\; = 0, and E; = 1. The solution to Eq. (130) is

V(Es) =y LB

\js/2¢ Ajs¥2(€ - £)
+j§e"Ej leXp <_ P(1+a)> _eXp< T+ o) )]}
(131)

where e; = ej(s), j = 1,2,...,n are scalar multiples of the eigenvectors
which must be chosen appropriately. Also

AR B
o ¢ :E{Z(”JEJ,/P d+a)

Nis®/2¢ Xis¥2(¢ — &)
Lo () o (e )
(132)

Boundary conditions Eq. (125) and Eq. (128) are already satisfied by
this solution, the former being obvious by substitution and latter since
the row sum of each eigenvector other than the first is zero. To satisfy
Eqg. (126) and Eq. (127), we scale the eigenvectors E;,i = 1,2,...,n by
choosing e; appropriately. Eq. (126) is satisfied for i # iy by taking

" Aise/2g
erEin + ) e;Eij [1 — exp (_71_‘](1 o)

Jj=2

=0, 0<s<oo (133)

and Eq. (128) is satisfied by taking

n . . e0/2
Z#ejEioj —1 —exp L =1, 0<s<o0.
T(1+a) I'(l+a)

=2
(134)
Eqg. (133) and Eq. (134) together give n linear equations to solve for
the n unknowns e;, j = 1,...,n at any s.
Obtaining normalized stresses and displacements in the time do-
main requires inverting Eq. (131) and Eq. (132). Exact inversion is

iter28.tex; 30/03/2004; 11:49; p.64



Lifetime Distribution for Composites 65

intractable, but Schapery’s direct method for approximate Laplace
inversion yields

F(t) =5 F5)] s (135)

where 7y & 0.577 is Euler’s constant. Beyerlein et al. (1998) discuss the
regime of validity of Schapery’s approximate inverse formula. In terms
of this approximate inverse, the solution becomes

7.04/2
V'(&,T) = {61E1
+j§26]EJl p( /2 %(1+a)> p(,ra/g /I‘(1+a)>]}
(136)
and

oV’ " A
6—5(5,7) = {jgejEjixm
Ajpé Ajp(€ - L)
% l—exp (_70/2 JF(l + a)) P (7‘0‘/; r'(1 +a)>] }
(137)

where

p=e"7e/? (138)

and E;, j =1,2,...,n are scaled so that

- Ajps
bt 3 1o (- )| <0 0o <o
i=2
(139)

Al )]:—1, 0<7 < o0

S — R . - . Ak=
;\/P(l—l—a)e] ‘”l exP( 7oz /T 1 )

and

(140)
Note that the e; = e;(7) represent time varying scales for the E;.
Since we need the solution for an arbitrarily located break in the
periodic cell, we make explicit the notation for the break at (ip,& = 0)
as

‘/3(677—) = ‘/j(faT;iOaO)a (141)
where, in accordance with Eq. (116), V;(&,7) = Vj(§,7) + . The dis-
placement due to a single break at (ig,&#), denoted by UJl-j(f,T;io,fﬂ)
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for 0 < ¢* < £, is obtained by translating V; (¢, 7;10,0) as
Uj (€, 73i0,€") = V;((€ — €) mod £, 7510, 0). (142)

A computationally attractive feature of the 2D and 3D arrays of
Section 1.1 under periodic boundary conditions is that translational
invariance holds also in the transverse direction. In 2D it suffices to
carry out the above analysis for a break at £ = 0, £ = 0 and determine
Vy(€,7;0,0). The displacement of fiber £, denoted U*(£, ¢, 7; £, &%) due
to a break at £ = ¢, and ¢ = £! is given by

UL, &, 7308, €%) = V(¢ — #)) mod n, (€ — £)mod £,7;0,0).  (143)

Similarly in 3D, the displacement U*(£, m, &, 7; 2%, m*, €%) of fiber (£, m)
due to a break at £ = ¢4, m = m!, and & = ¢! is given by

U (e, m, &,7; 68, m*, &) = V(£ — £)) mod /n, (m — m*) mod +/n,

(€ — " mod £,7;0,0).
(144)

In general, under other types of boundary conditions, simple solution
translation is inadequate and the entire procedure described above must
be carried out for each fiber.

Next we consider the superposition of single break solutions to de-
termine the stress state due to r fiber breaks formed at different times.

A.3. MULTIPLE BREAK SOLUTION

Through weighted superposition of single break solutions, we wish to
determine the displacement and stress state in a periodic composite
cell at normalized time 7 > 7, due to r breaks formed at normalized
times 71 < 75 < ... < 7, and located at (i1,&1), (i2,&2), - - -, (ir,& ). For
1 <4, <, let Ajj(7) denote the normalized stress at the location of
fiber break j due to a unit compressive load applied at fiber break i at
normalized time 7 from initial load application. That is, let

Aitr) = G265, 1.6) (145)

be the influence at (j,&;) due a break at (i, ;) as determined by Eq. (137)
in the notation of Eq. (141). We must find weighting functions w;(¢),i =
1,2,...,r such that

: T owi(¢) .
Zj[ Ea—— / (T - j .,

(146)
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Analytical solution for w;(¢), i € {1,2,...,7} and 0 < {( < 7 is
generally intractable. A numerical method consists of stepping though
normalized time from ( = 0 to ( = 7 as follows: For k > r define
0=2Co< (1 <...<( =T, as a partition of time interval [0, 7] such
that for each 7;, % = 1,...,r, there is a ¢}, such that ; = (},. Then, we
approximately express condition Eq. (146) in terms of the (;’s as

T k
—1= Z: [AiJ(T —m)wi(r) + Y, AT — ) (WilGm) — wi(Gm-1)) | 5

m=p;+1
T <T
j=1,2,...,r
(147)
The choice of (;, i =1, ...,k determines the accuracy and speed of the

numerical approximation as discussed below. Beyerlein et al. (1998)
discuss merits and drawbacks of various methods. In terms of

T

Cj(r) ==1=> |Nij(1 = T)wi(ms) — Ay (07 )wi(Cr—1)

=1
T <T
k-1 (148)
+ ) Ay = ) (wilGn) = wi(Gm-1)) |
m=p;+1
7=12,...,m

Eq. (147) can be rewritten as a matrix equation

[A0T)H{w(r)} ={C(n)} (149)

where A(07) is the matrix of instantaneous influences of the r breaks
on each other, C = {C;,Co,...,C.}T and w = {wy,wo,...,w,}".
This system of equations can then be solved for the weights w;(7),
j=1,...,r. It can be shown that [A(0")] is negative definite.

B. Asymptotic Approximation of Wy (r) for large p

Here we detail the asymptotic approximation for A* in Eq. (61) for
large p. In that case, by combining Eq. (60) and Eq. (61) we have

Wi(r) = 2F0(1 + B)FT(1 + kﬂ)flﬂ’;gﬁTk(ﬂ+a/2)

k—1 2T,(\)é_'/z ) . ,
jl;[o [NJ/O df{/o 1+ (Kj(()) -1) exp(—gcj/g / ] dC} ] )
(150)
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When o = 0, the double integral collapses simply into the single integral

Py = |7 del1+ (K;(0) D exp(—€e))l. (151)
For a > 0, the integral in the product above may be approximated as
A_'2 1 B
Py = [ de{ [ 10+ (05,0) - Dexp(~¢e; ¢ pc
gy [7 g [ [P L (0 — Dexp(=es(w + )P P
=(0-1) /0 d§ {/0 dw}

w?

6— 1)~ —J_;Z: 3 © |1 4 &; exp(—p;w g
N ( cjl) /o / s {/o - Zw —|—(1)9 : )]pdw}
(152)

upon making the change of variable w = ¢~%/2 — 1 where 6 = 2 Ja+1
in the first step and {c; = p; in the second, and abbreviating (K;(0) —
1) exp(—p;) = €;. When p is large we can accurately approximate the
inner integral as

0o [1— G (1 —eriw)]”
dw:(1+c:j)”/0 | Cj?;(ﬂ)a J

~(1+¢5)° /00 exp(_ci/;jiwl/)(fj + 1))dw

/°° [1+ € exp(—p,w)]?
0

(w+1)? dw

~(1+ Qj)”/ exp (—M — Olog(w + 1)) dw
0

¢i+1
) C,pipw
~ (14 Cj)p/o exp <_(’?373|-1 - 9w> dw
_ A+t
0+&;(0+ puj)
(153)

Whereas [1 + €; exp(—p,jw)]? > 1 for all w > 0, our exponential ap-
proximation in the second step including (1 + €;)?*! tends to zero for
large w. To account for this disparity, we notice that the exponential
factor dips below one at wy = (1/p;)(1 + 1/€&;)log(1 + &) so that the
error is bounded by [°(w + 1) ldw = (0 1) (wy +1)"0 . In view
of this correction term, we take our inner integral to be of the form

/00 1+¢; exp(—,ujw)]pdw ~ (1+ Cj)p"'l
0 (w+1)° (0 — 1) +&((0 — 1) + ppy)’

(154)
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which, in addition to being an improvement of the approximation (as
determined numerically), is exact when €; = 0. Substituting this ex-
pression into Eq. (152) yields

A—:fj— — e H(p+1)B
cj Jo 1+(Ky—1)e #(1+ £25%)

in terms of the original variables. This formula is very accurate when
p is large (> 15 say) and € is moderate ( > 5 say), i.e., a is not
large (< 0.5 say). Although the above analysis was done for the case
a > 0, Eq. (155) is well defined even if a = 0. Indeed, for o = 0 it
collapses to the integral in Eq. (151). Furthermore, when X > X\ we
can approximate Eq. (155) in a manner similar to the approach used
to evaluate the inner integral above to obtain

1 Kpﬂ+1
Pj ~ ” m (156)
where
e

The error involved in the approximation of the outer integral is larger
than that for the inner integral since the rate of decay (p + 1)8 of
the dominant term, [1 + (K; — 1)e #]*+18 is typically much smaller
than p, which was the decay rate in the inner integral. This leaves
asymptotic approximations such as the ones above focusing near the
origin somewhat less accurate (Copson (1965)). Therefore, in our nu-
merical calculations we numerically integrate Eq. (154) instead of using
Eq. (156). Nonetheless Eq. (156) is valuable since it captures in closed
form the cumulative hazard ahead of a cluster of j breaks, except per-
haps for a scale constant, and can be used in a closed form evaluation
of Wi(7) in Section 7.
In simplified form we finally have the key approximation

k—1
Wi(r) ~ 2570 (1 + B)*T (1 + kB) ~mkobrk(B+e/2) TT N; Py
=0

~ \ k= lN Kp/o’+1
= (20" BT+ kAP g ] 28
(158)

where in the second step, we have extracted the anomalous j = 0
factor A/7%/2 from the product series. Unlike the other factors, this
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factor corresponds to the initial break or the seed of the k-cluster, the
probability of its inception, given by Eq. (47) is therefore independent
of « since matrix creep has no time to occur.

C. Closed form Approximation for W(7) in 2D
We now determine a closed form approximation for the weak-linked
lifetime distribution function W (). We begin with Eq. (64) with N; =
2,7=1,2,...,k—1.

k
Wi (1) :Tk(/B+Oc/2)P (/8+ 1) (4 )k—l kpB A

T(kB + 1) a2
1 .
=l 7

We let a = m4p/8 so that K; = v/1 + aj. In terms of a we have excellent
approximations for the various factors in Eq. (159) as

k—1 1 kk/2

~ ~(VE-1) (160)
it (VE+ 1)kt
1
k—1 k4l_1 P
H K ~ (Clk + 1) a 2 (k)—l)] (161)
J 1,1 ’
j=1 (a+1)a™2
and,
- 1(\/k+;_\/1+;)’“‘%
H(Kj -1 = o' 2 2 em2(k=1)
j=i Jiti—y1+1 (162)
_/1 I_ 1
e a{ k-+ 1+ }
Setting
Wi(1) = Wi (7) (163)
yields the intersection time of the Wy and Wy, lines as
1\ 1 K;—1 D((k+1)B+1) 1
B+a/2 _ (1 n _> 1 By — (164
! Vk/ 4x KPP T(B + DT (kB + 1) 785 (164)

Algebraic manipulations following the substitution of Eq. (160), Eq. (161),
Eqg. (162), and Eq. (164) in Eq. (159) result in

Wy, = % (k+2>02exp{— (g - 1) B <k+ 2) (1 —@k)} (165)
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where
1/2
, \ Va [\/ﬂ— 1] ( a >92
1= -
X (1+a)t 1ta (166)
1 1 1
Xexp{(£—1> ﬂ(1+—)+\/;/1+—+2},
a a a
1 1\ pB+1
O ={(-—= 1
2 (a 2) 2 (167)
and )
J1ja—1 ( 1>—5
Op=——r— | k+— . 168
S R A Hee)
Inverting Eq. (164), we get an expression for k in terms of 7 as
1 63
k+-—-~— 169
+ a 704 ( )
where ,
0 388 n PP (—2)B
5 \ 16xa”PT(1 + B) ’
and

2
04 = m(ﬂ‘Fa/?)

Substituting Eq. (169) into Eq. (165) we finally have the key result

LU {— (3 _ 1) ﬂf%(l _ @(T))} (170)

705 2

where

95 == 0294 - a/2,

o = LT
C(p/2-1)B V05

and

D. Closed form Approximation for W(r) in 3D

Proceeding as in 2D we start by specializing Eq. (64) for 3D to

k
Wi (1) = rF(B+e/2) s+ l)xk_lwk”ﬂ A

T(kB+1) © ra/2
- ” +1 (171)
k—1 nj K]Pﬂ
I : ;
i 1+ 7 K;—-1
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We let a = 2¢/ﬂ3/2 so that K; = y/a/j + 1, and as in 2D, we first
approximate the different products in Eq. (171) to yield

k—1
H nj" ~ (2#)%nk7167”kk”(k_%), (172)
j=1
k=1 Ek/4 E3/4 pl/2 9
R — p{——+——k1/4+—}, (173)
it (VE+ 1)k 3 2 3

1

k—1 k—%-1 2
Hsz[(ax/EJrl) > exp{_§+¢%+1[1_1]}] |

i (a+1)%_a2 2¢ 212 a
(174)
and
k—1 k-1
Vvavk+1-1 -1
HKJ—lz( vk )1 2exp{——+
j=1 ( a+ 1- ].)5
2 1
X 53 [ avk+1— a—i—l] -3 [x/E\/ax/EJrl—\/aJrl]}.
(175)
As in 2D, setting
Wi (1) = Wip1(1) (176)

gives T in terms of k as

srapp [+, 1\ 1 Ke—1 D((k+1)B+1) 1
Pl = (4 ) e e et T O

Substituting Eq. (172 — 177) into Eq. (171) and simplifying yields

wim 2 Vi L] e (- (2 o) [V 2] - o)

N,ra/Z 4
(178)
where
v—1 1 _M : 3 1
\27) 2 ePta La (Ga3)+d
91 = %W(\/m_ 1); pB+1 (l_L)
(@+1)% e 1 (179)
VaF1 o8 (2 Btz 2
9 _ PP 1 rFo7 v 2 Z
Xexpl -+ e TR 0
_pB+1 (l _ 1) 1
2 = 9 2 32)TVTp (150
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and
da T ApB-26-7-3) (r, 1\
o~ i ta)  epmoagm (Fte)
2(1 — 4/(3a%?)) 1\
i ()
(181)
Inverting Eq. (177) we get
VEk + 1o 97;1 (182)
a T
where ,
B 3ﬂ,37ro—op,3 pB—4(B—v)
9= <4nxapﬂ/2r(/3 - 1)) ’ (183)
and 2 +
a
Upon substituting Eq. (182) into Eq. (178) we finally get
05 2
wr) ~ 2 exp{ (pﬂ B4 ) - @(T))} (185)
03
where
05 = 020, + /2, (186)
and
o)~ 905" oy HeB=AB=1)=}) ,,

201-4/(3a") 0.2
650 — 4(8 — v))
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