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Monte-Carlo simulations and probabilistic modelling are employed to understand the strength
distribution of a planar bundle of local load sharing fibres. The fibres are distributed randomly
within a unit square according to a Poisson process, and the fibre strengths are Weibull distributed
with exponent ρ. Monte-Carlo failure simulations of bundles comprised of up to 105 fibres suggests
that the bundle strength distribution obeys weakest-link scaling for all ρ. Also, a probabilistic
model of the weakest-link event is proposed. This model introduces a failure event at a size scale
between that of the fibre and that of the bundle, whose failure statistics follows that of equal
load sharing bundles. The weakest-link event is modelled as the growth of a tight cluster of these
equal load sharing bundles. The size of the equal load sharing bundles increases with decreasing ρ.
The simulated bundle strength distributions and those predicted by the model are compared, and
excellent agreement is obtained.

I. INTRODUCTION

I.1. Background

A bundle of long parallel fibres loaded in uniaxial ten-
sion along the fibre direction, besides representing the
actual arrangement of phases in unidirectional fibre com-
posites, also represents an idealised model of many het-
erogeneous materials. In these materials, randomness in
the microstructural properties leads to random bundle
strength. In the specific case of fibre composites, fi-
bre strength, inter-fibre spacing, matrix strength, and
fibre/matrix interface strength may be randomly dis-
tributed. It is important, both from theoretical and tech-
nological perspectives, to understand the interconnection
between the probability distribution of microstructural
properties and the bundle strength distribution. The
past two decades have witnessed vigorous efforts toward
understanding this interconnection, as summarised in the
recent review articles by Alava et al. [1], and Pradhan
et al. [2].
Amongst the class of bundle strength problems, the

‘bundle of threads’ or ‘equal load sharing bundle’ model
has the simplest load sharing rule. In the equal load
sharing (ELS) model of an n fibre bundle, of which r
are broken, the remaining n− r intact fibres are equally
overloaded regardless of their proximity to the broken
fibres. The stress concentration on the n− r intact fibres
is given by

KELS = n/(n− r). (1)

Let ℓ denote the load per fibre, so that the total load
applied to the bundle is nℓ. Let the strength of a sin-
gle fibre be characterised by the cumulative distribution
function F (ℓ). A pioneering result, due to Daniels [3]
states that as n → ∞, the ELS bundle strength GELS

n (ℓ)
will be Gaussian distributed:

lim
n→∞

GELS
n (ℓ) = Φ((ℓ− µ)/sn), (2)
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with mean

µ = ℓτ (1 − F (ℓτ )), (3)

and variance

s2n = ℓ2τF (ℓτ )(1 − F (ℓτ ))/n. (4)

ℓτ denotes the value of ℓ at which ℓ(1−F (ℓ)) maximises.
The ELS rule, Eq. (1), is a poor model of the actual

load sharing when fibres are embedded in a continuous
matrix phase. In this case, most of the load dropped by
a broken fibre will be distributed amongst its proximate
fibre neighbours. A model wherein the matrix only trans-
mits shear stresses from broken fibres to their nearby
intact fibres was proposed by Hedgepeth [4] for a one
dimensional array of fibres embedded in matrix, and by
Hedgepeth and Van Dyke [5] for a square lattice fibre ar-
rangement. For a one-dimensional array, Hedgepeth’s [4]
model predicts that the two neighbouring intact fibres
surrounding a broken fibre carry a stress concentration
of 4⁄3, i.e., together they carry 2⁄3 of the load dropped by
the broken fibre. More distant fibres carry the remain-
ing 1⁄3 load dropped by the broken fibre. While realistic,
the determination of stress concentration on intact fibres
using the Hedgepeth [4] or Hedgepeth and Van Dyke [5]
models is computationally tedious for model composites
with more than a few thousand fibre breaks [6, 7].
The local load sharing (LLS) rule due to Harlow and

Phoenix [8] represents a much simpler rule for load trans-
fer from broken to intact fibres in a partially failed bun-
dle. In the LLS rule, using a pre-defined distance norm,
the intact fibres nearest each broken fibre are identi-
fied [8–11]. The load dropped by the broken fibre is
then divided equally amongst the nearest intact fibres.
The LLS rule results in greater overloading of the near-
est neighbours of a broken fibre than the Hedgepeth
model [4, 5], and no overloading at all of farther fi-
bres. LLS overloads are thus more severe than those in
Hedgepeth’s load sharing.
The interconnection between the strength distribution

of the individual fibres and LLS bundle strength is more
complex than that in an ELS bundle [1]. A important in-
sight into this connection, due to Harlow and Phoenix [8],
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states that if GLLS
n (ℓ) denotes the probability distribu-

tion function of an LLS bundle of n fibres, there exists a
function W (ℓ) independent of n such that:

GLLS
n (ℓ) = 1− (1−W (ℓ))n. (5)

Harlow and Phoenix termed W (ℓ) as the weakest-link
strength distribution, and deduced strength scaling with
bundle size on the basis of Eq. (5). They also gave an
analytical expression for W (ℓ), based on a probabilis-
tic model of sequential fibre breakage. In this model,
successive breaks are assumed to occur under the stress
overload produced by foregoing fibre breaks. Thus, event
begins with the failure of one fibre, anywhere in the LLS
bundle. The LLS overload on the neighbouring fibres
leads to the failure of at least one of them, and subse-
quent overload on the neighbours of the pair of breaks.
This process is assumed to continue, until the failure of
the entire bundle. Because failure of successive fibre oc-
curs under the influence of overload from the previously
broken fibres, a cluster growth like failure mode is envis-
aged in this model. Smith [12] provided a mathemati-
cal proof of the existence of the weakest-link distribution
using extreme-value probability theory, in the limit of
n → ∞ and in the limit of the scatter in the random fi-
bre strength approaching zero. He also pioneered the use
of Monte-Carlo simulations of bundle failure to obtain
empirical bundle strength distributions. He showed good
agreement between the probabilistic model for W (ℓ) and
that obtained from the empirical distribution for small,
but finite scatter of the fibre strengths. These arguments
were later extended to a two-dimensional bundle wherein
the fibres were arranged at the nodes of a hexagonal lat-
tice by Smith et al. [10].
Ibnabdeljalil and Curtin [13] obtained the empiri-

cal distributions obtained from Monte-Carlo simulations
performed in a three-dimensional elastic load sharing
bundle of fibres. They found that there exists a bundle
size nc, such that the strength distribution of the elastic
load sharing bundle weak-linked to nc matches that of a
global load sharing bundle of the same size. Similarly, in
a planar bundle also with elastic load sharing, Curtin [14]
considered weak-linking the bundle strength distribution
Gγ(ℓ) to a critical sub-bundle size, nc:

Wnc(ℓ) = 1− (1−Gγ(ℓ))
nc/γ . (6)

He found that there exists a critical size, nc for which
the distribution Wnc(ℓ) is Gaussian. Moreover, he found
that the Gaussian distribution follows Eq. (2):

Wnc(ℓ) = Φ((ℓ− µ∗)/snc
). (7)

Here, nc depends only on the fibre strength variability,
but not on ℓ or γ. The mean strength, µ∗, in Eq. (7)
differs from that given by Eq. (3). Curtin [14] was the
first to connect the bundle strength distribution to that
of ELS sub-bundles.
Let the fibre strengths L obey the Weibull distribu-

tion [15]:

F (ℓ) = Pr{L ≤ ℓ} = 1− exp(−ℓρ), (8)

where ρ is termed the Weibull exponent. For this distri-
bution, the mean strength µF and variance s2F are given
by

µF =Γ(1 + 1/ρ), and

s2F =Γ(1 + 2/ρ)− Γ2(1 + 1/ρ),
(9)

respectively, where Γ(t) =
∫∞

0
xt−1e−xdx [16]. The limit

of low scatter in fibre strengths corresponds to s2F ↓ 0,
which occurs when ρ → ∞. In this limit, the sequence of
fibre breaks in an LLS bundle is dictated by the LLS over-
loads, and successive breaks tend to form predominantly
near pre-existing breaks, as noted above. However, as
ρ decreases, and s2F increases, the probability of occur-
rence of a fibre strong enough to withstand the overload
imposed upon it by a neighbouring break also increases.
This causes a break down of the cluster growth like failure
mode at lower ρ. Breaks tend to be dispersed throughout
the bundle domain, and at small ρ, the pattern of break-
age in LLS bundles resembles that in an ELS bundle,
where fibre locations are immaterial to the sequence of
fibre breakage. Also, while the cluster growth like mode
involves the formation of a crack of a critical size and
its propagation with no further load increase, the dis-
persed failure mode requires many more dispersed fibre
breaks prior to their coalescence. The qualitative tran-
sition with decreasing ρ, i.e., increasing s2F was termed
the brittle-to-tough transition by Curtin [17]. The proba-
bilistic model of Harlow and Phoenix [8], and Smith [12]
apply only to brittle bundles, and grossly overestimate
failure probabilities in tough bundles. The validity of
the weakest-global load sharing link according to Eq. (7)
was shown by Ibnabdeljalil and Curtin [13] for ρ ≥ 2.
Curtin’s [14] result on planar arrays was tested for ρ ≥ 3
on bundles comprised of 2500 fibres or fewer.
The brittle-to-tough transition was observed in simu-

lated bundle failures of Hedgepeth load sharing bundles
by Mahesh et al. [6, 7]. They found that as ρ decreased
below about a value of about 2, deviations from the
weakest-link scaling given by Eq. (5) became more and
more prominent, and the Hedgepeth bundle strength dis-
tribution tended toward that of the ELS bundle, Eq. (2).
This was accompanied by a gradual suspension of the
cluster growth type failure mode in favour of dispersed
breaking. The bundles treated in the Monte-Carlo sim-
ulations of Mahesh et al. [6, 7] were comprised of fewer
than n = 1000 fibres. It was therefore, not possible to
ascertain if these conclusions would hold for very large n
also.

Mahesh and Phoenix [11] found that simulations of
one dimensional LLS bundles too show an apparent tran-
sition from the cluster growth mode to the dispersed
mode, when ρ decreases, with the transition occurring
close to ρ = 1. However, empirically obtained GLLS

n dis-
tributions from simulations on bundle sizes as large as
n = 106, clearly revealed that the weakest-link scaling,
Eq. (5), remained valid for all ρ. This showed that bun-
dle strength distribution remained in the brittle regime
for all ρ. Although Mahesh and Phoenix [11] obtained
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rigorous bounds on W (ℓ) valid for all ρ using the Chen-
Stein theorem, they could not obtain a simple probabilis-
tic model for W (ℓ).
It is not presently known if weakest-link scaling,

Eq. (5), also applies to the two-dimensional LLS bun-
dles. In two-dimensional bundles, fibres are distributed
over a plane. Qualitatively, the stress concentration on
intact neighbours of a cluster of breaks in two-dimensions
is smaller than that in one-dimension, simply because the
number of neighbours is larger in two dimensions. This
may promote deviations away from the cluster growth
mode, toward the ELS like dispersed fibre breaking mode,
and lead to break down of the weakest-link scaling of
the LLS bundle strength distribution. Also, if Eq. (5)
holds in the two-dimensional case, the sequence of fail-
ure events that determine the weakest-link are presently
unknown.

I.2. Overview of the present work

The present objective is to obtain conservative bounds
for the strength distributions of composite bundles. Of
the various load sharing models proposed in the litera-
ture [4, 5, 7, 13, 14, 18–20], the local load sharing (LLS)
model imposes the severest overloads on the neighbours
of broken fibres. This implies [12] that GLLS

n (ℓ) conserva-
tively bounds the strength distribution obtained assum-
ing any of the more realistic load sharing models. Also,
the usual modelling assumption that fibres are centred
at the points of a regular lattice [4, 5, 7, 10, 12–14, 18–
20] while being a good approximation, does not yield
a strictly conservative bound [21] on the stress concen-
trations or strength distribution of realistic composites.
To obtain a conservative bound, the fibre centres are as-
sumed to be distributed following a Poisson point process
in the present work.

Using Monte-Carlo simulations (Sec. II) of two-
dimensional LLS bundles comprised of fibres distributed
according to a Poisson point process of intensity γ over
a unit square, it is presently shown that the bundle
strength distribution obeys Eq. (5), but not Eq. (7).
This result strongly suggests the absence of a brittle-to-
tough transition in the two-dimensional case, just as in
the one-dimensional case [11]. Furthermore, a probabilis-
tic model for W (σ) is presently constructed in Sec. III,
which is valid for all ρ. This model visualises the LLS
bundle as a collection of smaller ELS bundles, and models
the weakest link event as the successive failure of neigh-
bouring ELS bundles under overloads produced by the
failure. The model thus envisages an additional size scale
between that of the fibre and the LLS bundle, viz. that of
the intermediate ELS bundle. At large ρ, the ELS bundle
includes only a single fibre, so that the model coincides
with that of Smith et al. [10]. However, with decreas-
ing ρ, the ELS bundles encompass increasingly greater
number of fibres, and the model predictions deviate from
Smith et al. [10] significantly. The present model does
not coincide with that of Curtin [14], for any ρ. These

deviations provide insights into the failure modes of LLS
bundles. The weakest-link distributions obtained empir-
ically from Monte-Carlo simulations and those predicted
by the probabilistic model are compared in Sec. IV, and
excellent agreement is shown.

II. FAILURE SIMULATIONS

Monte-Carlo simulations are performed in order to de-
termine the empirical strength distribution of LLS bun-
dles. In each simulation, fibres are distributed according
to a Poisson process of intensity γ in a unit square in
the plane, [0, 1] × [0, 1] ⊂ R

2, and assigned Weibull dis-
tributed strengths with exponent ρ, following Eq. (8).
Three bundles sizes, γ = 103, 104 and 105 and many
Weibull exponents ρ in the range from 0.1 to ∞ are in-
vestigated. For each combination of ρ and γ, nsim = 500
simulations are performed, each with a different realisa-
tion of fibre positions and strengths.
Probabilistic models of composite failure assume that

fibres of non-zero circular cross-sectional area are centred
at the points of a regular lattice [6, 7, 10, 13, 14]. This
case corresponds to zero fibre density fluctuations. More
realistically, fibres would be distributed such that their
centres follow the statistics of hard non-interpenetrating
disks. This statistics of this distribution depends on the
fibre volume fraction [22]. The assumption of fibres cen-
tred at the points of a regular lattice, while being a good
approximation at high fibre volume fractions, does not
yield a conservative bound on strength of the realistic
bundle.
The point density fluctuations in the presently consid-

ered Poisson process can be no less than that in the case
of hard non-interpenetrating disks [22, p. 147]. Higher
point density fluctuations implies larger stress concen-
trations on intact neighbours of broken fibres, which in
turn, implies a more localised brittle failure mode, and
smaller bundle strength [12, 21]. Therefore, the bundle
strength predicted using the present Poisson point dis-
tributed will be more conservative than in the case of
random distributions of hard non-interpenetrating discs,
for any fibre volume fraction.
Barring the implementation of load transfer from bro-

ken to intact fibres, the procedure adopted in these
simulations is the same as that given by Mahesh et
al. [6, 7, 11]. Briefly, the simulation is divided into as
many steps as the number of fibres in the simulation
cell (central domain). Since the simulation cell has unit
area, the applied stress per fibre equals the applied load
per fibre. The applied stress per fibre, σ(= ℓ) is incre-
mented or decremented at every step to fail exactly one
additional fibre. Following this, the stress concentration
on all surviving fibres is updated using the load shar-
ing rule, and the process is repeated until all the fibres
in the simulation cell are broken. The maximum value
attained by σ over all breaks is recorded as the bundle
strength, σ̄j for the j-th simulation. These are ordered
σ̄1 ≤ σ̄2 ≤ . . . ≤ σ̄nsim

and mapped to empirical proba-
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FIG. 1: (Colour online) A periodic central domain with
γ = 4 is obtained by surrounding the cell with 8

identical cells.

bility levels Gγ(σ̄j) = j/(nsim + 1), j = 1, 2, . . . , nsim in
order to obtain the empirical bundle strength distribu-
tion function.
Fibres abutting the edges of unit square simulation

domain are surrounded on average by fewer fibres, which
distorts the load sharing rule for such boundary fibres.
To avoid this distortion, periodic boundary conditions
are imposed on the unit square simulation domain by
surrounding the unit square domain by eight identical
domains, wherein the fibres are distributed exactly as in
the central domain, as shown in Fig. 1. Fibres in the
neighbouring domains are not assigned strengths; they
are linked to their image in the central domain, and are
assumed to fail when their image in the central domain
fails.
The local load sharing (LLS) rule implemented

presently is now discussed. Consider a bundle of n fibres,
of which r fibres are broken already. Let the surviving
n− r fibres be located at (xi, yi), i = 1, 2, . . . , n− r. An
example of such a bundle is shown in Fig. 2a. Each of the
surviving fibres i is associated with a Voronoi cell [23]:

Cr
i = {(x, y) : ‖(x−xi, y−yi)‖ ≤ ‖(x−xj , y−yj)‖, ∀j 6= i},

(10)
i, j ∈ {1, 2, . . . , n− r}. In Eq. (10), ‖ · ‖ is defined as:

‖(a, b)‖ =min
{

√

a2 + b2,
√

(1− a)2 + b2, (11)

√

a2 + (1− b)2,
√

(1− a)2 + (1− b)2
}

∀ 0 ≤ a, b ≤ 1 to reflect periodicity in the x and y direc-
tions. Let Ar

i denote the area of Voronoi cell Cr
i .

Let σr
j denote the stress per fibre imposed upon the

bundle with r broken, and n− r intact fibres in the j-th
weakest simulation specimen. The load applied to fibre i

is then σr
jAi. Let the Weibull distributed fibre strength

of i be Li. Then, the index i∗ of the next fibre to break
is

i∗ = argmini=1,...,n−r(Li/Ai), (12)

and the applied stress at which the next fibre will break
is

σr+1
j = min

i=1,...,n−r
(Li/Ai). (13)

Let i∗ be the fibre shown as an encircled point in Fig. 2a.
Upon its failure, i∗ and Cr

i∗ are deleted, and the area
of cell Cr

i∗ is divided amongst its neighbours, as shown
in Fig. 2b. This represents the most time consuming
step; an efficient deletion algorithm has been given by
Devillers [24].

0 1

1

(a)

0 1

1

(b)

FIG. 2: (Colour online) The periodic Voronoi
tessellation of a unit square with n = 20 points (a)

before, and (b) after the deletion of one point, shown
encircled in (a).

Carrying this process forward for r = 1, 2, . . . , n re-
sults in complete failure of the LLS bundle. The bundle
strength is defined as

σ̄j = max
r=1,2,...,n

σr
j , j = 1, 2, . . . , nsim. (14)
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The just described LLS rule involves no matrix opera-
tions, and is therefore, computationally the fastest load
sharing model for two dimensional bundles. This allows
the simulation of fibre bundles comprised of as many
as 105 fibres. For comparison, the number of fibres in
the largest elastic load sharing planar simulation cell of
Curtin [14] was 2500. Assuming Hedgepeth load sharing,
Mahesh et al. [7], included at most 900 fibres in their sim-
ulation cell. The empirical distributions obtained from
the present simulation cells with a larger number of fi-
bres extend deeper into the lower tail of the weakest-link
distribution function. This allows a better check of the
probability models.
A number of realistic load sharing models have been

proposed in the literature [4, 5, 7, 13, 14, 20]. Let
Greal

n (ℓ) denote the strength distribution of a bundle of
n fibres obeying any of the realistic load sharing rules.
Let W real(ℓ) = 1 − (1 − Greal

n (ℓ))1/n be the associated
n-independent weakest-link distribution. The LLS rule
imposes more severe overloads on the neighbours of a fi-
bre break, or a cluster of breaks, than any of the realistic
load sharing models. This implies, according to the
probability model of Smith [12], that W real(ℓ) ≤ W (ℓ),
or Greal(ℓ) ≤ GLLS(ℓ). That is, the LLS rule conser-
vatively bounds the strength distribution obtained from
any of the realistic load sharing models.

III. PROBABILISTIC MODEL

The empirical strength distribution of LLS bundles,
Gγ(σ̄j), down to a probability level of 1/(nsim + 1)
can be obtained from nsim Monte-Carlo simulations for
fixed ρ and γ. It is typically computationally infeasi-
ble to perform more than a few hundred simulations.
Strength distribution predictions in the high reliability
regime, Gγ(σ̄j) ≤ 10−6 is therefore, normally inacces-
sible through Monte-Carlo simulations alone. This mo-
tivates the need for a probabilistic model that captures
the distribution obtained from Monte-Carlo simulations,
and which can readily be extended into the high reliabil-
ity regime.
The present probabilistic model regards the LLS bun-

dle as a collection of many ELS bundles, each of which in
turn, may contain one or more fibres. The intermediate
scale of the ELS bundles plays a key role in the model,
especially at small ρ. The elementary failure event in the
present model is the failure of an ELS bundle, unlike in
Harlow and Phoenix’s [8] or Smith et al.’s [10, 12] mod-
els, where the elementary failure event is the failure of
an individual fibre.

III.1. Poisson-Voronoi tessellation

Let χ = {(xi, yi) : i ≥ 1} denote a homogeneous Pois-
son point process [16] of intensity γ in R

2 restricted to the
unit square, [0, 1]× [0, 1] ⊂ R

2, which specifies the fibre
locations. Let χ′ denote the Poisson point sub-process

1
0

1

FIG. 3: (Colour online) Poisson process χ represented
by the small blue dots, and the sub-process χ′

represented by the encircled blue dots assuming
p = 1/10. Each point in χ′ is associated with an ELS

bundle comprised of m = 15 points of χ.

derived by sampling from χ with probability p ∈ [0, 1]:
χ′ = {(xi′ , yi′) ∈ χ : Ui′ ≤ p}, where {Uj ∈ [0, 1] : j ≥ 1}
denotes a sequence of uniformly distributed independent
random variables. The expected number of points in
χ and χ′ are then γ and pγ, respectively. Each point
(xi′ , yi′) ∈ χ′ represents an equal load sharing (ELS)
bundle comprised of m ≥ 1/p fibres.
An example of this scheme is presented in Fig. 3. In

this example, the Poisson process χ of intensity γ = 50 is
represented by the small blue dots, each of which locates
a fibre. The sub-process χ′ is shown by encircled blue
dots assuming p = 1/10. Each point in χ′ is associated
with an ELS bundle comprised of m = 15 points of χ.
Two such ELS bundles are shown as circles drawn using
dashed lines. Note that neighbouring ELS bundles may
overlap, i.e., share common points in χ. Fig. 3 also shows
a Voronoi tessellation of the χ′ process. It is important
to notice that the tessellation is not of the χ process.
The neighbours of (xi′ , yi′) ∈ χ′, denoted Ni′ , are

those points whose Voronoi cells share a common edge
with Ci′ . The number of neighbours of (xi′ , yi′) ∈ χ′

equals the number of sides of Ci′ and is denoted Ni′ .
The area of Ci′ is denoted Ai′ .

III.2. Tight clusters and load concentration

The present probabilisitic model follows that of Smith
et al. [10], with the key difference that ELS bundle fail-
ures are assumed to be the elementary events leading up
to LLS bundle failure. In the present probabilistic model,
LLS bundle failure initiates with the failure of an ELS
bundle located at i′1 ∈ χ′. The load dropped by i′1 ∈ χ′

is then distributed amongst its neighbours, Cj′
1
, j′1 ∈ Ni′

1
,

following local load sharing. Next one of the ELS bun-
dles, say i′2 ∈ Ni′

1
is assumed to fail. The third step
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involves the failure of one of the ELS bundles represent-
ing an intact neighbour of Ni′

1
or Ni′

2
. Proceeding thus, a

connected cluster of k failed ELS elements, i′1, i
′
2 . . . , i

′
k is

arrived at. It is additionally required that the connected
cluster maintain an approximately circular shape at ev-
ery stage of the failure process. Such a circular cluster of
ELS bundle failures is called a ‘tight’ cluster of breaks,
following the nomenclature of Mahesh et al. [7].
Derivation of approximate formulae to describe the

stress state around a tight cluster of breaks is facilitated
by observing the following connection between the Pois-
son process and a regular hexagonal lattice. The discrete
density of the number of neighbours of a typical point in
a Poisson-Voronoi tessellation, Pr{Ni = l}, l = 3, 4, . . .,
due to Calka [25] has mode lmode = 6. The number of
neighbours of a fibre in Smith et al’s. [10] hexagonal lat-
tice is also 6. This similarity is presently exploited to
approximate the number of neighbours of a tight cluster
of k failed elements.
In Smith et al.’s [10, Fig. 2 (d)] hexagonal lattice, the

number of lattice points in a tight cluster of r ‘rings’ is
k = 1+6+ . . .+6(r− 1) = 3r(r− 1)+1. The number of
neighbours whose failure will preserve the circular ‘tight’
shape of the cluster is 6(r−1). Eliminating r, the number
of critical neighbouring points surrounding a tight cluster
of k breaks, is approximately

nk = 2
√
3k − 3, k = 1, 2, . . . . (15)

The overload on each of these nk neighbouring elements is
k/nk, approximately. To account for the error of approx-
imation, a fitting parameterM is introduced. The actual
overload is taken to be Mk/nk, where M is understood
to be of the order of 1. Thus, the load concentration
factor on the nk neighbouring elements is

Kk = 1 +Mk/nk. (16)

In Calka’s [25] discrete distribution noted above,
Pr{Ni < 6} ≈ 0.38, while Pr{Ni > 6} ≈ 0.33. The
discrete density function is thus weighted toward the for-
mer, i.e., nk given by Eq. (15) is more likely to be an
over-count than an undercount of the number of neigh-
bours at least for k = 1. Also, the most overloaded neigh-
bouring point will be subjected to more than the average
stress concentration of k/nk. For both these reasons, it
is expected that M > 1 in Eq. (16).

III.3. Weakest-link event

Let σ be the uniform far-field tensile stress per fibre
imposed on the bundle χ. Because the bundle cross-
sectional area is unity, σ is also the load per fibre im-
posed. The expected total tensile load imposed on the
bundle is then σγ. Each point (xi, yi) ∈ χ′ is associated
with an equal load sharing (ELS) bundle comprised of
m ≥ 1/p fibres drawn from χ. Let Em(σ) denote its
strength distribution. Expressions for Em(σ) are pre-
sented later in Sec. III.4.

Following Smith et al. [10], the weakest-link event un-
derlying LLS bundle failure is assumed to begin with the
failure of the weakest of the approximately pγ ELS bun-
dles. The overload K1 produced on the n1 neighbours of
the weakest bundle following Eqs. (15) and (16) is then
assumed to fail one of them. This process of failure and
overloading is continued up to the failure of k ELS bun-
dles. According to this model, probability of failure of
the LLS bundle obeys weakest-link scaling, and is ap-
proximately given by

Gγ(σ) = lim
k→∞

1− (1−Wk(σ))
pγ , (17)

where,

Wk(σ) = Em(σ) {1− (1 − Em(K1σ))
n1}×

{1− (1 − Em(K2σ))
n2}×

. . . {1− (1 − Em(Kkσ))
nk} . (18)

According to Eq. 17, p = 1 signifies the association of the
weakest-link failure event with every fibre, while p < 1
signifies the same for every (1/p)-th fibre, on average.
The requirement that m ≥ 1/p stated above ensures that
every fibre is part of at least one ELS bundle.

III.4. ELS bundle strength distribution

Consider an ELS bundle ofm fibres, each of which fails
following the distribution function F̂ (σ) under imposed
remote stress σ. As noted in Sec. I, Em(σ) will be Gaus-
sian with mean and standard deviation given by Eqs. (3)
and (4), respectively, provided m → ∞. For small m,
however, Em(σ) is given by an efficient and accurate re-
currence relation due to McCartney and Smith [26]:

Em(σ) = F̂m(σ)−
m−1
∑

r=0

(

m

r

)

φr

{

F̂ (σ) − F̂

(

σ

m− r

)}m−r

,

(19)
where, φ0 = 1, and

φr =F̂m

(

σ

m− r − 1

)

−

r−1
∑

p=0

(

r

p

)

φp

{

F̂

(

σ

m− r − 1

)

− F̂

(

σ

m− r

)}r−p

.

(20)

III.5. Fibre failure probability

It only remains to determine the strength distribution
of fibres making up the ELS bundles as a function of
the applied stress per fibre, σ. Let the fibre strengths
be Weibull distributed with exponent ρ, according to
Eq. (8). In that equation, the fibre strength L refers
to the maximum load it can carry. The load, in turn,
is the product of the applied stress per fibre, σ and the
area of the its Voronoi cell, A. The distribution of A



7

in a Poisson-Voronoi tessellation is yet an unsolved prob-
lem of stochastic geometry. Empirical distributions for A
can, however, be obtained through simulations. Follow-
ing the simulation approach, a number of authors have
found that the gamma distribution captures the area dis-
tribution obtained from simulations quite well. Here, the
following expression, given by Kiang [27]

Pr{A ≤ a} =
c

Γ(c)

∫ a

α=0

(cα)c−1 exp(−cα)dα, (21)

is taken to describe the area distribution of Voronoi cells
in a Poisson-Voronoi tessellation, with c = 4 for point
distributions in R

2. ln

-20
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)
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3
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20

FIG. 4: (Colour online) Fibre strength distribution as a
function of the applied stress per fibre, for a range of ρ

given by Eq. (22).

If Li denotes the strength of fibre i, and Ai the area
of its Voronoi cell, the fibre failure event corresponds to
[Li ≤ σAi]. It is physically reasonable to assume that
Li and Ai are independent. Therefore, the probability of
failure of fibre i is given as

F̂ (σ) = Pr{Li ≤ σAi}

=
c

Γ(c)

∫ A

a=0

(ca)c−1 exp(−ca)F (σa)da,

= 1− cc

Γ(c)

∫ ∞

a=0

ac−1 exp(−(ca+ (σa)ρ))da.

(22)

The form of F (σa) in the second step above follows from
Eq. (8). The fibre strength distributions for a range of ρ
given by Eq. (22) is shown in Fig. 4.

IV. RESULTS

Failure patterns and strength distributions obtained
from the Monte-Carlo simulations described in Sec. II
are now presented, and compared with predictions of the
probabilistic model of Sec. III.
As stated in Sec. II, empirical strength distributions

Gγ(σ̄j), for j = 1, 2, . . . , nsim are obtained from nsim =

−1.9 −1.7 −1.5 −1.3 −1.1
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ln
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ln
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j
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)
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(a)
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−2

0

2

ln
(−

ln
(1

−
G

γ
(σ̄

j
))
)

ln σ̄j

γ = 105 104 103

(b)

FIG. 5: (Colour online) Empirical LLS bundle strength
distributions, Gγ(σ̄) obtained from Monte-Carlo

simulations for nsim = 500 random realisations of (a)
ρ = 1, and (b) ρ = 10 LLS bundles, plotted on Weibull

probability paper.

500 realisations of LLS bundles for a range of Poisson
intensities γ and Weibull exponent ρ. Fig. 5 shows the
obtained empirical distributions plotted on Weibull prob-
ability paper for γ = 103, 104 and 105 and Weibull ex-
ponents ρ = 1 and ρ = 10. In these coordinates, Weibull
distributions plot as straight lines. Since the obtained
empirical distributions are curved downward, it follows
that Gγ(σ̄j) is not Weibull distributed, even though the
individual fibre strengths are. It is also clear that bun-
dles with larger γ are weaker: for any fixed probability
level Gγ , the larger bundles has a smaller strength, σ̄j .

If the strength statistics of the LLS bundle with the
random fibre strengths and spacing were similar to that
of an ELS bundle, bundle strengths would be Gaussian
distributed, following Eq. (2). To check this possibility,
Fig. 6 plots the same empirical distributions shown in the
previous Fig. 5, on Gaussian probability paper. In these
coordinates, normal distributions plot as straight lines. It
is clear from Fig. 6a and Fig. 6b corresponding to ρ = 1
and ρ = 10, respectively, that LLS bundle strengths do
not plot as straight lines. They have an upward curva-
ture, which indicates that LLS bundle strengths are not
Gaussian distributed.
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FIG. 6: (Colour online) Empirical LLS bundle strength
distributions, Gγ(σ̄) obtained from Monte-Carlo

simulations for nsim = 500 random realisations of (a)
ρ = 1, and (b) ρ = 10 LLS bundles, plotted on Gaussian

probability paper.

IV.1. Critical bundle

Each step of the Monte-Carlo simulation entails incre-
menting or decrementing the applied stress per fibre, σr

j

so as to augment the number of breaks by 1 (Sec. II).
The history of σr

j versus the number of breaks, r in the
median (250th weakest out of nsim = 500 simulations)
γ = 103, and ρ = 1 simulation is shown in Fig. 7a. Al-
though both increments and decrements of σr

j are plot-
ted, only σr

j increments are physically meaningful, be-
cause in a practical experiment, the applied stress will
be monotonically increased. Accordingly, the ‘physical’
σr
j curve, obtained by taking the cumulative maximum

value (upper envelope) derived from the σr
j curve is also

shown in Fig. 7a. The σr
250-r plot shown in Fig. 7a peaks

at the bundle strength σ̄250 = 0.246, at which point the
number of broken fibres is 362. The distribution of in-
tact (dots) and broken (circles) fibres at r = 362 breaks
is shown in Fig. 7b. It appears that the broken fibres are
widely dispersed all over the bundle domain. No large
tight cluster (Sec. III.2) is discernible.
A very different response is observed in Fig. 8 corre-

sponding to the median γ = 103, and ρ = 10 bundle.
The peak of the σr

j versus the number of breaks, r curve
is reached after the formation of only 13 breaks under
applied stress per fiber σ̄250 = 0.321 in Fig. 8a. Further-
more, as is clear from Fig. 8b, these breaks are tightly
clustered together into two groups.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

break number, r

σ
r 2
5
0

(a)

0 1

1

(b)

FIG. 7: (Colour online) (a) The fluctuating curve shows
the evolution of applied stress per fibre σr

250 with the
number of fibre breaks, r in the median ρ = 1, γ = 103

simulated LLS bundle. The flat portion of the red curve
marks represents the bundle strength σ̄250. (b)

Configuration of broken and intact fibres at the point of
formation of the critical cluster. σr

j and σ̄r are defined
in Sec. II.

Qualitative understanding of this difference can be ob-
tained by recognising that the standard deviation of the
Weibull distribution, Eq. (9), corresponding to ρ = 1 is
1, while that corresponding to ρ = 10 is about 0.11. The
higher ρ thus has much less spread of the fibre strengths.
In this circumstance, the stress overload due to the fail-
ure of a neighbouring fibre will significantly enhance the
probability of failure of a fibre. Successive fibre failures
will be controlled by stress concentrations, which will
therefore be clustered. In the ρ = 1 median specimen
on the other hand, because of the wide scatter in fibre
strengths overloads due to the failure of neighbouring fi-
bre will not significantly enhance fibre failure probability.
The sequence of fibre failures will be controlled by the or-
dering of fibre strengths, and the weakest fibres can be
expected to be distributed uniformly all over the bundle,
as in Fig. 7b.
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FIG. 8: (Colour online) (a) The fluctuating curve shows
the evolution of applied stress per fibre σr

250 with the
number of fibre breaks, r in the median ρ = 10, γ = 103

simulated LLS bundle. The flat portion of the red curve
represents the bundle strength σ̄250. (b) Configuration
of broken and intact fibres at the point of formation of
the critical cluster. σr

j and σ̄r are defined in Sec. II.

IV.2. Weakest-link distribution

The weakest-link distribution is defined as

Wγ(σ̄j) = 1− (1 −Gγ(σ̄j))
1/γ , (23)

by replacing n in Eq. (5) by γ. Wγ(σ̄j) corresponding
to the three decades of γ values studied are plotted in
Fig. 9 for four values of ρ ≥ 0.5. The abscissae have been
normalized by the mean strength, given by Eq. (9). It is
patently clear from Fig. 9 thatWγ(σ̄j) is independent of γ
for a fixed ρ: W103 , W104 and W105 collapse onto a single
master curve, for all ρ ≥ 0.5. This justifies dropping the
subscript γ and denoting the weakest-link distribution
by W (σ̄j). Although for clarity only four values of ρ are
shown in Fig. 9, the foregoing observation is found to be
true for all simulated values of ρ ≥ 0.5.
For ρ < 0.5, collapse of the empirically obtained

weakest-link distributions does not occur. Fig. 10 shows
that at ρ = 0.2, whereas the simulated weakest-link dis-
tribution for γ = 104 and 105 collapse into a single curve,

−2.2 −1.8 −1.4 −1 −0.8
−18
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−4
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j
)
)
)
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ρ = 0.5 1 2.5 ∞

FIG. 9: (Colour online) Weakest-link distributions,
defined in Eq. (23), derived from the empirical strength
distributions corresponding to γ = 103, 104, and 105,

for ρ ≥ 0.5. Wγ(σ̄j) is found independent of γ.
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−18
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ln
(−

ln
(1

−
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γ
(σ̄

j
)
)
)

ln(σ̄j)

ρ = 0.2 ρ = 0.1

FIG. 10: (Colour online) Weakest-link distributions of
ρ = 0.2 and ρ = 0.1 bundles with γ = 103, 104 and 105.

that for γ = 103 does not. At ρ = 0.1, none of the three
curves coincide with any other.

IV.3. Weakest ELS-bundle distribution

It is now attempted to verify the weakest ELS-
bundle scaling given by Ibnabdeljalil and Curtin [13]
and Curtin [14], given previously in Eqs. (6) and (7).
Figs. 11a and 11b show the weakest ELS link distribu-
tion, Wnc corresponding to nc = 200 for ρ = 1 and to
nc = 20 for ρ = 200, respectively, on Gaussian probabil-
ity paper. The collapse of the curves corresponding to
γ = 103, 104 and 105 onto a single curve for both values
of ρ implies that Wnc(σ̄j) is indeed independent of γ.
This is not surprising in light of the collapse observed in
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FIG. 11: (Colour online) Weakest ELS-bundle
distributions, defined in Eq. (6), derived from the
empirical strength distributions corresponding to

γ = 103, 104, and 105, for (a) ρ = 1 with nc = 200 and
(b) ρ = 10 with nc = 20.

Fig. 9 onto a single master curve. The collapsed master
curves are however, not straight lines. This indicates that
they are not Gaussian distributed. The straight lines in
Figs. 11a and 11b correspond to the strength distribu-
tion of an nc fibre ELS bundle, given by Eq. (2), shifted
vertically upward by 2.5 and 6.1 for ρ = 1 and ρ = 10,
respectively. These shifts amount to adjusting the mean
strength of the ELS bundle. They were also needed in
the work of Curtin [14], as noted below Eq. (7).

The values of nc corresponding to ρ = 1 and ρ = 10
in Fig. 11 are chosen to best bring the slope of Daniels’
Gaussian distribution into agreement with that of the
empirical distribution. The slope corresponds to the
standard deviation in Gaussian probability paper. In-
creasing the value of nc beyond the present values tends
to straighten out the empirical distributions, i.e., makes
them more Gaussian, but, destroys the near agreement
between the weakest ELS-bundle distribution and that
given by Eq. (2). On the other hand, decreasing the
value of nc below the present values increases the cur-
vature of the collapsed master curve, i.e., makes it even
more non-Gaussian. These observations show that the
scaling given by Eqs. (6) and (7) does not apply to the
present LLS bundle strength.
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FIG. 12: (Colour online) The model predicted
weakest-link probability Wk(σ̄) (Eq. (18)) of obtaining a

failed tight k-cluster in ρ = 1 LLS bundles.

IV.4. k-failure event

In the present probabilistic model, LLS bundle
strength is represented as a continuous variable, σ̄,
without subscripts that identify the simulation number.
Fig. 12 shows the weakest-link probability, Wk(σ̄), of ob-
taining a failed tight k-cluster for k = 1, 2, . . . , 20 for
ρ = 1 LLS bundles. This probability is predicted using
Eq. (18) and taking ELS bundle size, m = 25, p = 1/3,
and M = 1.65. It is seen that the model predictions
accurately capture the empirically obtained weakest-link
distribution, previously also shown in Fig. 9.
Convergence of the Wk(σ̄) with increasing k happens

for smaller k at higher σ̄. At the highest σ̄, convergence
occurs already at k = 1. Even at the lowest value of
σ̄, convergence is practically complete by about k = 10.
Denoting

W (σ̄) = lim
k→∞

Wk(σ̄), (24)

it is clear that the rate of convergence is quite rapid.
For any given σ̄, the value of k for which convergence

is practically complete can be taken to indicate the size
of the critical cluster. For the median ρ = 1 specimen of
Fig. 7, the ln(σ̄) = ln(0.246) corresponds in Fig. 12 to k =
2. Multiplying by the number of fibres per bundle, m =
25, the weakest-link event in this bundle is triggered by
the failure of a tight cluster of about 50 fibres. However,
the identity of these 50 fibres is difficult to establish from
Fig. 7b, given the seemingly dispersed breaking observed.
In the present ρ = 10 LLS bundles too, W10(σ̄) fits

the empirically obtained weakest-link distribution very
well. This suggests that the rate of convergence of the
model is insensitive to ρ. The weakest-link probability,
Wk(σ), for ρ = 10 LLS bundles is similarly shown in
Fig. 13. The assumed model parameters are ELS bundle
size, m = 1, M = 2.7 and p = 1. Here, the load level
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FIG. 13: (Colour online) The model predicted
weakest-link probability Wk(σ̄) (Eq. (18)) of obtaining a

failed tight k-cluster in ρ = 10 LLS bundles.

of the median specimen, ln(σ̄) = ln(0.321) corresponds
to k = 4 or k = 5. The critical cluster in this case, may
have been a subset of either of the two groups of broken
fibres shown in Fig. 8b.
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FIG. 14: (Colour online) Comparison of the empirical
distributions with Eq. (26) for ρ = 0.1 for γ = 103, 104

and 105 bundles.

Attention is now turned to the regime ρ < 0.5. This
regime is characterised by extremely large fibre strength
variance. Corresponding to ρ = 0.1, Eq. (9) gives
µF ≈ 4 × 106 and s2F ≈ 2 × 1018. This indicates that
a typical bundle will contain very strong fibres with high
probability. Suppose bundle failure coincides with the
failure of the strongest fibre therein. The probability of
that all the fibres in a γ-bundle will fail under load σ̄γ,
applied per fibre is

H(σ̄) = F γ(σ̄γ), (25)

and the weakest-link calculated from this distribution
would be

WH(σ̄) = 1− (1 −H(σ̄))1/γ . (26)

Fig. 14 compares the bundle strength distribution ob-
tained from simulations of γ = 103, 104 and 105 bundles
with ρ = 0.1, with the weakest-link distribution given by
Eqs. (25) and (26). The evidently good comparison in
the upper tail of the distribution validates the hypothesis
that at small ρ, bundle failure in the present simulations
coincides with the failure of the strongest fibre.
The agreement shown in Fig. 14, and the hypothesis

underlying it, cannot persist indefinitely as γ is increased
with ρ fixed. For a sufficiently large γ, which is likely
to be much larger than 105, the strongest fibre will not
be strong enough to carry the entire bundle load, and
the dominant failure mode must revert to that given in
Sec. III. Monte-Carlo failure simulations of such gigantic
bundles appear to be well out of reach with the present
computational resources.
Hitherto, a distinction has been made between the

regimes ρ ≥ 0.5 and ρ < 0.5 in discussing bundle strength
distributions. The foregoing considerations suggest that
this distinction arises on account of computational limita-
tions and not because the bundle failure mechanism itself
undergoes a transition across ρ = 0.5. Therefore, here-
after, only the regime ρ ≥ 0.5 will be discussed with the
understanding that the physical mechanisms of bundle
failure will continue to apply for all ρ > 0, for sufficiently
large bundle size γ.

IV.5. Comparison of simulated and model

distributions

TABLE I: Parameters used in the probabilistic model.

ρ m M p

Eq. (8) Sec. III.3 Eq. (16) Sec. III.3

0.5 55 1.3 1

20

1 25 1.65 1

3

2 10 1.85 1

3 5 1.9 1

5 2 1.95 1

10 1 2.25 1

20 1 2.7 1

∞ 1 2.9 1

Using the parameters listed in Tab. I, W (σ̄) are de-
termined using Eq. (24). It is seen from Tab. I that a
monotonic variation of model parameters occurs with ρ:
m increases, while M and p decrease with decreasing ρ.
Representative comparisons of W (σ̄) with the empirical
weakest-link distributions obtained from simulations are
shown in Fig. 15. The probabilistic model’s predicted
distribution and the empirically obtained distribution are
seen to be in excellent agreement.



12

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−20

−15

−10

−5

 

 

ln
(−

ln
(1

−
W

(σ̄
)
)
)

ln(σ̄/µF )

ρ = 0.5 1 2.5 ρ = ∞

FIG. 15: (Colour online) Comparison of the empirical
strength distribution obtained from Monte-Carlo

simulations with the predictions of the probabilisitic
model, assuming the parameters listed in the Tab. I.

V. DISCUSSION

V.1. Summary

When fibre strengths have small variance, the fail-
ure of a single fibre typically overloads its neighbours to
breakage also. Bundle failure proceeds by cluster growth
like failure mode, and endows the bundle strength dis-
tribution with weakest-link scaling. Such bundles are
termed brittle. For larger variance of fibre strength, the
neighbour of a broken fibre is likely to possess sufficient
strength to withstand the overload. Thus, with increas-
ing fibre strength variance, fibre failures in an LLS bundle
may not cluster together. That is, they may occur widely
dispersed over the bundle domain. But, lack of proximity
between successive fibre breaks characterises ELS bun-
dle failure. This argument suggests [6] that as the fibre
strength variance increases, LLS bundle strength must
approach the ELS bundle strength.
The present results show that the above suggestion is

not true for a planar LLS bundle. The correct qualitative
argument for this case goes as follows: In an LLS bundle
with large fibre strength variance, fibre breakages occur
in a dispersed manner in the initial stages of bundle fail-
ure, as the overloads produced by single fibre failures are
inadequate to fail their neighbours with high probabil-
ity. However, there comes a point during dispersed fibre
breakage when a cluster of breaks larger than a critical
size, m, forms somewhere in the bundle at random. This
cluster forms simply due to the fortuitous occurrence of
weak fibres near each other. Beyond the point of forma-
tion of the m-cluster, dispersed fibre failure gives way to
a clustered failure mode of m-sized bundles. The latter
mode expands the original m-sized cluster. The requisite
critical size m increases with increasing fibre strength
variability. This failure mode endows the planar LLS

bundle strength distribution with weakest-link scaling.

V.2. Comparison with previous models
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FIG. 16: (Colour online) Strength distribution of the
m-fibre ELS bundles, for a range of ρ. The variation of

m and M with ρ is given in Tab. I.

Based on Eqs. (16) and (18), Em(Mσ̄) can be taken
to represent the distribution of the elementary failure
event underlying cluster growth in the present proba-
bilistic model (Sec. III), approximately. Its distribution
is plotted in Fig. 16. m and M vary with ρ as given in
Tab. I. It is seen that Em(Mσ̄) distributions are similar
to each other for all ρ, in contrast to the fibre strength
distributions, F̂ (σ), shown in Fig. 4. This makes it plau-
sible that cluster growth of ELS bundles to failure occurs
for all ρ. If the elementary failure event were taken to be
fibre failure, the same would not be true. For ρ ≥ 10,
whereat m = 1, the ELS bundle coincides with a fi-
bre, the present model’s elementary failure event coin-
cides with that used in the literature [8, 10, 12], and
the present probabilisitic model coincides with the clas-
sical one [8, 10, 12]. For smaller ρ, however, the classical
probabilistic models overestimate the failure probability,
while the present model correctly estimates it.
Ibnabdeljalil and Curtin [13] and Curtin [14] were the

first to suggest the link between LLS bundle failure and
the failure of an ELS sub-bundle. Their scaling rules,
Eqs. (6) and (7), assume that failure of an ELS bundle
of a certain critical size, nc represents the weakest-link
event in the bundle failure. As shown in Sec. IV.3, this
scaling rule breaks down for all ρ in the case of the present
LLS bundle. ELS bundle failure is the elementary failure
event in the present probabilisitic model also. However,
the role of the ELS bundles in the present model differs
from that in Curtin [14] in the following significant ways:
(i) The failure of the presentm-bundle is but a part of the
chain of events leading up to composite failure (Eq. (18)).
The failure of any nc bundle in Curtin [14] is the weakest-
link event and implies composite failure. This also makes
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the present m smaller than Curtin’s [14] nc for any given
ρ. (ii) The present m-bundles experience stress concen-
trations from the failure of neighbouring m bundles and
fail in response to these overloads. Local stress concen-
trations play no role in Curtin [14]. (iii) The present
m-bundles may overlap, as shown in Fig. 3, and they do
so for ρ ≤ 1 (Table I). The nc bundles in Curtin [14] do
not.

Although there is no brittle-to-tough transition in the
planar LLS bundle, a higher order transition appears to
occur across ρ = 1. As seen from Tab. I, p = 1 for ρ > 1,
but p < 1 for ρ ≤ 1. As noted previously in Sec. III.3, p =
1 signifies the association of a weakest-link failure event
with every fibre, while p < 1 signifies the same for every
(1/p)-th fibre. In LLS bundles with ρ ≤ 1, the present
results suggest that independent weakest-link events are
not associated with each fibre, but with collections of
1/p fibres. No such transition is suggested by any of the
foregoing probabilistic models.

VI. CONCLUSIONS

Using Monte-Carlo simulations and probabilistic mod-
elling, the strength distribution of two dimensional lo-
cal load sharing bundles with Weibull distributed fibre
strengths and Poisson distributed fibre positions has been
studied. The Monte-Carlo simulations show that the
strength distribution has a weakest-link character for any
Weibull exponent. A simple and accurate probabilistic
model has been proposed for the bundle strength dis-
tributions. A key feature of the probabilistic model is
the consideration of failure events at a size scale between
that of a single fibre and that of the bundle, whose failure
statistics follows that of equal load sharing bundles.
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