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Quasistatic failure of highly loaded unidirectional composite materials, which con-
sist of long aligned reinforcing fibers embedded in a matrix, is a complex stochastic
process. This process is studied both in planar and three dimensional unidirec-
tional composites by means of Monte Carlo simulation and theoretical probabilistic
modeling of the composite strength and lifetime problems under tensile loads.

In Chapter 1 the random strength problem of unidirectional composites is
considered. Fiber strengths are assumed Weibull or power law distributed and
fibers are assumed to be arranged either linearly or in a hexagonal array to form
2D and 3D composites respectively. Failure is idealized using the chain-of-bundles
model in terms of J-bundles of length 0, which is the length-scale of fiber load
transfer. Within each é-bundle, fiber load redistribution is determined by local
load-sharing models that approximate the in-plane fiber load redistribution from
planar break clusters as predicted from 2D and 3D shear-lag models. As fiber
strength variability is increased, it is found that the dominant failure mode in
the bundle goes from one of clustered fiber breaking to one of dispersed fiber
breaking up to instability. For these two cases, closed-form approximations to the

composite strength distribution are developed under the local load-sharing model



and an equal load-sharing model of Daniels, respectively. The results compare
favorably with simulations on bundles with up to 1500 fibers.

Chapter 2 discusses the rigorous derivation of bounds on the strength of a
bundle in a planar tape when under so-called idealized local load sharing and when
the fiber strengths are distributed according to a power law. The main result is
established using the Chen-Stein theorem and states that if F'(z) =2, 0 <z <1
is the strength distribution of the individual fibers, the strength distribution G,,(x)

of a bundle of n fibers has the lower tail behavior

x

2
Gp(x) ~ nz® exp (—ﬁ> )

In Chapter 3 we focus on the lifetime problem of unidirectional composites.
The failure process involves both random time dependent fiber failure of Coleman
fibers and matrix viscoelastic creep. We construct probabilistic failure models
for such materials under creep loading, derive composite lifetime distributions
from these models and validate them against empirical distributions obtained from
Monte Carlo simulations of their failure. As in the strength problem, the dominant
failure mode shifts from a clustered fiber breaking mode to a dispersed failure mode

prompting the transition in the composite lifetime distribution.
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Chapter 1

Strength Distributions and Size
Effects for 2D and 3D Composites
with Weibull Fibers in an Elastic

Matrix

1.1 Introduction

Quasistatic failure of unidirectional composite materials, which consist of long
aligned reinforcing fibers embedded in a matrix, is a complex random process.
This complexity stems from the occurrence of various damage events preceding
formation of a catastrophic crack, possibly including fiber breakage, matrix yield-
ing, matrix cracking, fiber-matrix interfacial debonding, and fiber pull-out. Ran-
domness, on the other hand, arises from variability in geometric, constitutive and

fracture properties of the fibers, matrix and interface. Consequently the composite



strength becomes a random quantity so that nominally identical specimens show
statistical variation in their ultimate strengths.

Randomness in a constituent (fiber or matrix) property does not necessarily
induce noticeable randomness in the corresponding composite property. For in-
stance, global composite stiffness is fairly deterministic despite fluctuations in the
local stiffness from material point to point as these fluctuations tend to average out
over a sufficiently large volume. Composite strength, on the other hand, is largely
determined by weak extremes of local strength (typically over the size scale of 5
to 100 fibers), which can lead to propagating material instabilities. Thus, local
strength variability tends to persist through increasing size scale to cause strength
variability at the global scale.

Analytical or numerical determination of the strength distribution of a compos-
ite structure, which reflects the full range of possible random micromechanical fail-
ure phenomena, is presently infeasible for realistic material volumes. Idealization
of the local composite structure, constituent properties and stress redistribution
mechanisms is therefore necessary. Sections 1.1.1-1.1.3 describe the idealizations

made in this study followed by Section 1.1.4, which describes relevant literature.

1.1.1 Idealized composite structure and failure process

In idealizing the composite failure process we consider a composite consisting of a
parallel array of n stiff, brittle, elastic fibers of cross sectional area A; and length
L, and embedded in a flexible, perfectly bonded, elastic matrix. Two arrays are
considered: a linear array forming a 2D planar composite and a hexagonal array
forming a 3D composite, as shown in Figure 1.1. We assume a high fiber-matrix

stiffness ratio so that the fibers carry virtually all the tensile load. The composite



is loaded by applying a far-field, tensile stress o to the fibers so that total tensile
load is approximately noAs. The matrix acts primarily to transfer load locally
from broken to intact fibers through shear. This is idealized in terms of specific

fiber load-sharing models in Section 1.1.2.

(a)

Figure 1.1: The two fiber arrays considered: (a) planar array and (b) hexagonal

array. The far-field stress applied to the fibers is o.

Variability is introduced by assuming that the fibers have random flaws dis-
tributed along them. In our main model these flaws follow Weibull-Poisson statis-
tics. Thus, the strengths of individual fiber elements of small length § are indepen-
dent and identically distributed (i.i.d.) random variables that follow the Weibull
distribution

F(o)=1—exp{—(0/0s)"}, o >0, (1.1)

where p > 0 is the Weibull modulus or shape parameter and o4 is the Weibull scale



parameter. Accordingly the mean strength of a fiber element is o;I" (1 + 1/p) and

the coefficient of variation (standard deviation/mean) is

yfu+2mwTa+1mf—L

Except for very small p the mean differs very little from 5. Note also that small
p corresponds to large variability in fiber strength and vice versa.

By this model a length effect exists whereby oy is related to the fiber strength
at a convenient test gage length Iy by o5 = 0,(ly/5)"/? where o, is the Weibull
scale parameter at ). Later we take § to be a characteristic length of local fiber
load transfer that depends on the geometric and material constitutive parameters
in the shear-lag model. Thus o5 becomes a normalizing parameter for composite
strength.

We also consider a variation on the Weibull distribution called the power-law

distribution

(%y if0 <0< o,
Fyo) = (12)

1 if o5 < 0.

Clearly as 0 | 0, F(0) ~ F,(0). Compared to the Weibull distribution Eq. (1.1),
however, F,(o) limits the maximum fiber strength to os. In this work we will com-
pare results under Eq. (1.1) and Eq. (1.2) to understand the role that exceptionally
strong fibers in the Weibull distribution play in é-bundle failure, especially when
p is small.

When a moderate tensile stress is applied to a composite specimen, fibers
fail at random and the matrix surrounding each break serves to transfer the lost
fiber load to neighboring fibers through shear deformation. This stress transfer

tends to occur over a certain length scale, §, which is of the order of a few fiber



diameters. The resulting local stress concentrations may cause neighboring fibers
to fail without any further increase in the applied stress. In turn, these new breaks
may cause even more breaks, and so on. After the formation of a certain number
of breaks, many in small transverse clusters of various sizes, the system of fiber
breaks may become stable. Then a small increment in applied stress will be needed
to induce new breaks, which may create even more breaks due to increased stress
concentrations. Eventually, after some stress increment, the system of fiber breaks
becomes unstable and failure results from a cascade of breaks (possibly with cluster
linking), which forms a wandering transverse crack.

As has been common in the literature, we idealize this failure process in terms
of a longitudinal partition of m = L/§ transverse slabs or short bundles of length
0, called é-bundles. The failure process within a given d-bundle is treated as
mechanically and statistically independent of that in neighboring d-bundles. The
composite is then treated as a weakest-link arrangement of these d-bundles; that
is, the composite fails when the weakest d-bundle fails.

Modeling the failure process in a d-bundle requires the strength statistics of
its fibers of length ¢ as well as a model for redistribution of stress from broken to
intact elements, which we refer to as the load-sharing model. This model should
closely reflect the actual micromechanics of stress transfer around approximately
transverse fiber break arrays in a realistic mechanical model of the composite irre-
spective of partitioning it into J-bundles. Load-sharing models of varying degrees
of idealization that we use are described next. (Henceforth the fiber elements

within é-bundles will be referred to as fibers.)



1.1.2 Fiber stress redistribution and load-sharing models

The simplest load-sharing model is the equal load-sharing (ELS) rule which we
apply separately to each d-bundle. Under ELS, if a d-bundle has n fibers and j
fibers have failed, the load concentration factor on each surviving fiber is x, ; =
n/(n—7), while all failed fibers carry no load. ELS is a reasonable assumption for a
loose bundle of fibers (no matrix) clamped uniformly at each end. However, when
the fibers are embedded in a matrix, the stress tends to concentrate on the intact
fibers closest to the breaks. Thus ELS is not a prior: an accurate mechanical
description of stress redistribution at a composite cross-section. Nevertheless,
theoretical results under ELS will turn out to be useful in interpreting dispersed
fiber failure modes in a composite.

To account for the localized nature of fiber stress redistribution, local load-
sharing (LLS) models have been devised, the simplest of which we call the ide-
alized local load-sharing (ILLS) model. In a 2D planar composite, when fibers
are broken within a given J-bundle, a surviving fiber therein is assumed to have
load concentration factor K, = 1+ r/2 where r is the number of contiguous failed
neighbors counting on both sides. In this 1D rule, a failed fiber shifts half of
its load to the closest survivor on its left and half to the one on its right; more
distant survivors receive no load. In a 3D unidirectional composite with fibers
arranged in a hexagonal or square array, ILLS applied to a d-bundle becomes 2D
and load redistribution to nearest survivors requires additional assumptions on
assigning portions based on the local configuration of failed fibers. For a large
approximately round cluster where all the lost load is redistributed onto the ring
of fibers around the circumference, K, = 1 + D/4 where r ~ 7D?/4, and thus,

D has units yielding one fiber per unit cross-sectional area. In reality, ILLS is



too severe, i.e., the stress concentration on fibers immediately adjacent to a break
cluster is lower than ILLS assumes, and the disparity increases with cluster size.
Also, intact fibers more distant from the cluster experience some overloading due
to longer range effects.

From a mechanics perspective, much more realistic load-sharing models for
0-bundles can be constructed from results based on shear-lag analysis of stress
transfer around single transverse arrangements of fiber breaks in an infinite array
of elastic fibers within an elastic matrix. Such models have been developed by
[21] for 2D planar fiber arrays and by [22] for 3D hexagonal or square fiber arrays.
In these models the axial fiber and matrix shear stresses can be calculated at
arbitrary locations in the composite. However, we only make use of the fiber
stresses calculated along the transverse plane of the breaks, which reduces the
resulting load-sharing to 1D and 2D, respectively. Fibers within a J-bundle are
treated as though the calculated fiber loads apply uniformly over their full lengths
0. By these restrictions, the fiber overloading is monotonic, i.e., the load in an
intact fiber will be non-decreasing during the formation of new breaks. We refer
to the 1D load-sharing model derived from the 2D case as Hedgepeth local load-
sharing (HLLS) and the 2D model from the 3D case as Hedgepeth and Van Dyke
local load-sharing (HVLLS).

In the Monte-Carlo simulations of d-bundle failure we work with complete
numerical versions of 1D HLLS and 2D HVLLS. The stresses are calculated nu-
merically in every intact fiber for every arrangement of breaks that occurs in the
simulations. Fundamental analytical solutions to the underlying shear-lag equa-
tions are coupled to a numerical weighted superposition method to treat each

configuration as for example in [6].



In developing probability models of the failure process, the above approach
unfortunately results in serious analytical difficulties that require further ideal-
izations to yield simpler rules for crucial configurations. In particular, only the
stresses in intact neighbors adjacent to certain idealized, contiguous break clusters
are defined. In HLLS a fiber next to an isolated group of r contiguous breaks is
idealized as having load concentration factor K, = \/m In HVLLS the load
concentration on the fibers around an approximately circular cluster of diameter
D is approximated as K, = \/m where again r &~ mD?/4. The square-root
feature in terms of cluster diameter indicates that these approximations are con-
sistent with a continuum fracture mechanics viewpoint. Section 1.2 elaborates on

their basis.

1.1.3 Composite strength distribution and Monte Carlo

simulation approach

A key quantity of interest is the distribution function G, (o) for §-bundle strength.
By the weakest link formula and chain-of-bundles assumption the strength of the

composite of length L = md has distribution function H,,, (o) given simply by
Hyn(o) =1—1[1-Gu(o)]™, o>0. (1.3)

The key task is to determine G, (o) in terms of F(o) for fiber strength and the
load-sharing model for fibers in a §-bundle.

In our model and Monte Carlo simulations we will assume periodic boundary
conditions. Thus our 1D HLLS §-bundles will form a tube, and under 2D HVLLS
with hexagonal symmetry the simulation will be on a rhombus patch with doubly-

periodic boundary conditions.



The Monte-Carlo algorithm for simulating failure is described in detail in [28].
In brief, to simulate the failure of a single 6-bundle, the first step is to assign
numerical strength values to each fiber as sampled from the fiber strength dis-
tribution, Eq. (1.1) or Eq. (1.2). Then a load just sufficient to fail the weakest
fiber is applied to the §-bundle, and numerical stress redistribution is computed
using either HLLS or HVLLS. If the new fiber stresses exceed the strengths of any
other fibers then these too fail and stress redistribution for the new configuration
is computed. This iterative process of fiber failures and stress redistribution is
continued until either stability is reached or the §-bundle fails catastrophically. If
it becomes stable, a load increment is applied to the d-bundle just sufficient to
fail another fiber, and the above process is repeated. Eventually, at some load
increment, a cascade of fiber failures occurs as the d-bundle fails. The applied
fiber stress triggering the collapse is the strength of the J-bundle.

The Monte-Carlo algorithm involves repeating the above procedure N (= 500)
times for each (n, p) pair, yielding N individual §-bundle strengths. The empirical
strength distribution @n(a) is constructed by plotting j/N against o(;) for j =

1,..., N where o(;) is the strength of the j™ weakest §-bundle of the N simulated.

1.1.4 Results and insights from previous literature

Statistical modeling of the composite failure process has a long history. Pioneer-
ing work using the chain-of-bundles framework was carried out by [16], [36] and
[37], all using an ELS approach to d-bundle failure based on work of [12] and
[7]. [47], [38], [48], and [1] pursued LLS approaches to d-bundle failure variously
building on the works of [21] and [22]. These works not only initiated the discus-

sion of dispersed versus localized cluster modes of fiber failure but also served to
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uncover the enormous difficulties in performing probability calculations. Harlow
and Phoenix [17, 18, 19], Smith [39, 41], Smith et al. [42] and [35] simplified LLS
to ILLS to capture the essence of localized fiber stress redistribution yet allow
tractable analysis. Some of the large-p asymptotic results were also developed
by [2] and [3] under relaxation of the chain-of-bundles and ILLS assumptions.
This served to point out the robustness of the chain-of-bundles assumption as a
means of capturing the crucial step of transverse evolution of failure clusters up
to instability.

More rigorous analytical treatments for d-bundles under 1D ILLS have also
been carried out. See for example [25], [20], [27], and [46]. Other works such as
those by [29], [14], Beyerlein and Phoenix [4, 5] and [28] have used Monte Carlo
simulation interpreted by approximate probability calculations to treat d-bundle
failure under more realistic HLLS and HVLLS models. A full 3D failure simulation
under a special version of HVLLS for square fiber arrays and avoiding the chain-of-
bundles assumption was carried out by [26]. A lattice-based variation of HVLLS
that also incorporated fiber slip and pullout during failure was developed by [24].
An FEM-based, Monte Carlo model that also considered interfacial debonding was
recently developed by [15]. Overviews of relevant literature have been published
by [9] and [32].

The most important early work for ELS bundles (applied here to 6-bundles) was
due to [12] who showed that as the number of fibers n increases, the distribution
for the strength of a bundle converges to a Gaussian or normal distribution with
a fixed asymptotic mean, and a standard deviation that decreases as 1/y/n. As
[40] and [30] showed, the convergence of Daniels’ Gaussian approximation to the

true distribution is slow with an error approximately proportional to n='/6. By
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developing explicit corrections to the mean and variance that were proportional to
n~2/3 they obtained dramatic improvements to the Gaussian approximation that
worked well even for bundles with as few as five Weibull fibers. These accurate
results will form the basis for interpreting the dispersed fiber failure mode in our
Monte Carlo simulations when p is small.

Harlow and Phoenix [17, 18] observed numerically that 1D ILLS §-bundles with
Weibull fibers obey weakest-link scaling beyond a certain size n. In particular, their
strength distribution function, G, (o) behaves such that W, (¢) = 1—[1—G,(o)]'/"
rapidly becomes independent of size n, converging as n — oo to a characteristic
distribution function W (o). This distribution embodied the key aspects of the
localized statistical failure process. [35] gave a simple formula for constructing an
accurate estimate of W (o) when fibers have modest to small strength variability
(larger p). Beyerlein and Phoenix [4, 5] observed from Monte Carlo simulations
that d-bundles under a full implementation of 1D HLLS also show weakest-link
behavior, and they developed an expression for W (o) that matched very well its

empirical counterpart, W, (o).

1.1.5 Outline of the paper and main results

In the next section we describe the governing equations and main results for the
shear-lag models for fiber breaks in planar and hexagonal arrays of fibers. The
former forms the basis for 1D HLLS and the latter for 2D HVLLS used in Sec-
tions 1.3 and 1.4. Section 1.3 summarizes the Monte-Carlo simulation results using
the framework in [28], and makes connection between the dominant failure mode
in a d-bundle, i.e., cluster growth for large p and dispersed fiber failure for small p,

and the behavior of its strength distribution. In Section 1.4, we study the cluster
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growth failure mode and derive results for the distribution function for composite
strength in terms of a characteristic distribution function W (o) for which we de-
velop closed-form approximations. We also develop results under the power-law
distribution for fiber strength and through comparison to those under the Weibull
case, as p decreases, we gain insight into the effects that a few extremely strong
fibers can have on the results. We also develop expressions for the critical cluster
size and size effect for composite strength. Section 1.5 focuses on the dispersed
failure mode observed in the HVLLS and HLLS simulations for small p, and uses
results on ELS ¢-bundles to form tight lower bounds on the failure probabilities.
Section 1.6 presents some analysis giving insight into the effects of p on probabil-
ities and patterns of cluster growth. The final section draws connections to other

work and summarizes insights achieved in the present work.

1.2 Load-Sharing Models for )-Bundles

We now elaborate on the basis for the local load-sharing models used in the failure
of -bundles, earlier referred to as HLLS and HVLLS. The description covers both
numerical implementation and simplifications needed for analytical probability

modeling.

1.2.1 Shear-lag model for a 2D planar fiber array: basis
for HLLS

The shear-lag model for a 1D transverse array of breaks in a 2D planar fiber array
was first studied by [21]. In the model, fibers are assumed to deform in simple

tension and the matrix deforms in simple shear. The fibers are loaded uniformly at
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z = 00 under tensile stress o, where z is distance along the fiber direction away
from the central transverse plane where breaks are located. We let E; be the fiber
tensile modulus, and G, be the matrix shear modulus and assume E; > G,,. Each
fiber has cross sectional area A, the effective matrix width between the fibers is
w, the matrix thickness (perpendicular to the plane of the fibers) is h, the center-
to-center fiber spacing is d and the fiber volume fraction is V;. A simple case is to
assume h is also the main fiber cross-sectional dimension. Then A; ~ h?, d ~ w+h,
and A, = wh, where A, is the cross sectional area of the matrix between two
fibers. Thus the fiber volume fraction is V; = As/(Af + Am) & h/d. Though exact
for fibers of square cross section, these relations are useful approximations for
circular fibers with radius 7 = h/2. To simplify the discussion, all cross-sectional
dimensions will be viewed as approximate, and our primary interest will be in the
effects of fiber fractures at a length scale greater than the fiber diameter.

We ignore the part of the applied load carried by the matrix in tension, as
well as matrix tension effects in the stress transfer process. At the breaks we view
the matrix as severed in the plane of the breaks and ignore any local singular-
like stress concentrations in the fiber at a scale smaller than the fiber diameter.
Many matrices locally yield rather than support such stresses. Unless V; is small,
ignoring matrix tension has little effect on stress transfer.

We let 0,(z) and u,(2) be the stress and displacement, respectively, in fiber n
at location z along the fiber, where —oo < z < oo and n € (...,-2,-1,0,1,...).
In matrix bay n between fibers n and n+1, the effective shear force per unit length
gn(2) is given by

Gmh

an(2) = = = (Un41(2) = un(2)). (1.4)
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The effective shear stress 7,(z) and shear strain 7,(z) follow

Tn(2) = GmYn(2) = qn(2)/h. (1.5)

Hooke’s law for the fiber gives

dun(2)

oal2) = B (16)
and equilibrium of forces on a fiber element leads to
dPu,(2)  Gmh
B Ag dz2( ) + w (Unt1(2) — 2upn(2) + up—1(2)) = 0. (1.7)

The boundary conditions are o,(z = £oo) = o for all fibers, 0,(0) = 0 for the r
fibers assumed to be broken on the z = 0 plane and u,(2) = 0 for all intact fibers.
We normalize the various quantities above using

P, =o,/0,

Un = (un/0)(Ei/0),

Ty = (hd/As)(1a/0), (1.8)

I'n = Unsr — Un = (1nGm/0) (h6/As),

§ = z/9,

where § is the length scale of load transfer given by

§ =V (ErArw/(Gumh) = /At(Er/Gu) (w/h). (1.9)

These normalizations yield a non-dimensional Hooke’s law

_ dUL(§)
and a non-dimensional system of equations
2
T 4 Uis(€) — 20n(6) + Un 1 (6) = 0, (1.11)

dg?
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with normalized boundary conditions

P,(to0) =1, —oco<n<oo
P,(0) = 0, on all 7 broken fibers, (1.12)

U,(0) = 0, for all other fibers.

For a single break at n = 0 and z = 0 this set of equations can be solved for all
z using discrete Fourier transform methods. This leads to influence functions for
the effects of a single break on stress and displacements at all fiber and matrix lo-
cations. An arbitrary array of multiple breaks lying within a single plane can then
be handled using a superposition of influence functions translated to the actual
break locations and appropriately weighted to satisfy the boundary conditions.
This operation requires numerically solving an r X r matrix equation where r is
the number of breaks!. In the Monte Carlo simulations of J-bundle failure, we
use this method to numerically calculate the fiber loads for all break arrays that
occur. A similar approach was used in [6] and Beyerlein and Phoenix [4, 5]. This
constitutes the 1D load-sharing model called HLLS.

In the probability analysis for HLLS under large p we use accurate approxi-
mations to the load concentrations due to an isolated cluster of r contiguous fiber
breaks in a single plane, or r-cluster. Specifically we want the peak load concen-
tration factor (at the z = 0 plane) on the nearest neighbor, denoted K,.. We also
want the load concentration factor K, ; on fiber number s ahead of an r-cluster.

Some results due to [21] and [23] are reviewed in [6] and approximations were

! This method works for the more general problem in which the breaks do
not lie within a single plane [6]. In that case numerical integration is required
in evaluating the influence functions. In our case of aligned breaks the influence
functions are simple expressions.
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developed there using Stirling’s formula. The approximations

K, ~ %TH, (1.13)

1
Ky~ Kpy | ———) 1.14
’ m(s—1)+1 (1.14)

are minor improvements on theirs, which are extremely accurate even for small

and

r. For larger clusters the latter result is only useful for s within about r/4 of the
cluster edge, at which point the stress concentration reaches the far-field value,
unity, as seen in [6]. Note also that for the fiber subadjacent to the last break of a
large r-cluster, the load concentration is about one-half the value on the adjacent

fiber.

1.2.2 Shear-lag model for a 3D hexagonal fiber array: basis
for HVLLS

In a 3D hexagonal array of fibers, as considered by [22] and shown in Figure 1.1,
similar ideas apply as in the previous section. The fibers are identified by the index
pair, (m,n) corresponding to axes in the transverse plane with included angle /3
radians. All displacement and stress quantities have subscript (m,n) to replace n
in the planar case and the normalizations are the same. The main change relative
to the planar fiber array is that the non-dimensional differential equation for the

dimensional displacement (5 of fiber (m,n) becomes

Umn
(d#)(f) + (U(m+17n) (&) + U(m,n+1)(f) + U(mfl,n) €3)
(1.15)

+ U(m+1,n—1) (f) + U(m—l,n—l—l)(f) - 6U(m,n) (f)) =0.

Thus, six interfiber couplings exist for each fiber instead of two as in a planar array.

The boundary conditions are similar to those given by Eq. (1.12) except the break



17

array is 2D. The numerical implementation in calculating the fiber stresses is also
similar. This constitutes the 2D load-sharing model called HVLLS.

In the probability analysis for HVLLS under large p we use accurate approxi-
mations to the load concentrations due to an isolated cluster of r contiguous fiber
breaks in a single plane, or r-cluster. We focus on the stress concentrations around
a penny-shaped r-cluster. First we define an effective fiber spacing d and a di-
mensionless diameter D of the penny. The effective fiber spacing is chosen so that
there is one fiber per unit cross-sectional area. In a hexagonal array, one fiber and
matrix unit occupies area V3d' 2 /2 where d' is the center-to-center fiber spacing so
that d = (v/3/v/2)d' ~ 0.9306d’. We define D such that r = 7D?/4 so that the
effective cluster diameter is Dd. The fibers surrounding the r-cluster are subjected

to the “effective” stress concentration

K, ~ \/—+1—\/W3/2+1 (1.16)

For the decay of the stress concentration with distance we find
K,
m(s—1)+1

is a reasonable approximation, where s is the number of effective fiber spacings d

(1.17)

r,s ~

(not necessarily an integer) a fiber is away from an effective cluster radius R =
(D —1)/2. For larger D this result is only valid for s within about D/10 of the
edge of the cluster, beyond which the stress concentration drops very close to the

far-field value, unity. See [28] and [32] for elaboration.

1.3 Failure Mechanisms in é-bundles

We now describe certain qualitative trends observed in the Monte Carlo simu-

lations of d-bundle failure. The observed failure mechanisms appear to play a
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fundamental role in determining the behavior of the strength distribution. The
cause and effect relationship seems clearest when viewed in terms of the variability

in fiber strength through p.

1.3.1 Small variability in fiber strength (large p)

For p = 10, snapshots of the damage evolution en route to d-bundle failure in
median (N = 500) 2D and 3D specimens are shown in Figures 1.2 and 1.3, respec-
tively, where the boundary conditions are periodic. In each figure, the last stage
corresponds to the pattern of breaks immediately after the formation of an unsta-
ble configuration and before collapse. We separately label the first fibers to fail
after the point of instability. Since the boundary conditions are periodic a break
cluster appearing at one edge (side or top) may be continued on the opposite edge.

When p is large (low variability in fiber strength), the tendency to form break
clusters and propagate them appears to be the dominant failure mode (Figures 1.2
and 1.3). As breaks form under increasing applied load, they overload their neigh-
bors more intensely than more distant fibers. The probability of failure of a neigh-
bor is thus enhanced since the neighboring fibers are unlikely to be much stronger
than the broken fiber. This leads to the formation of a cluster of breaks, which
in turn imparts even larger stress concentrations on its neighbors and the clus-
ter therefore propagates with increasing probability as it grows. Eventually the
cluster becomes unstable and fails the composite.

As mentioned, [18] observed that the strength distribution of a composite with
a cluster-forming failure mode lends itself to weakest-link scaling analysis. They

found that the cumulative distribution function for the strength of a é-bundle
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Figure 1.2: Snapshots of the failure process in median strength (N = 50) 1D -
bundles with 30 Weibull fibers for p = 10 and periodic boundary conditions. ()

intact fibers, (X) broken fibers and () first fibers to fail after instability.

under 1D ILLS has the form
Gnlo)=1—-[1-W(o)]", o >0, (1.18)

when the bundle size n is larger than a certain critical size, where W (o) was earlier
called the characteristic distribution function. The threshold for n turns out to be
the critical cluster size k(o) for instability in the d-bundle, being approximately
defined by Ko =~ oy.

Using Weibull coordinates, we have plotted in Figure 1.4 the empirical weakest-

link distributions

A A

Wo(o)=1—-[1-G.(0)]"", >0, (1.19)

obtained from our Monte-Carlo failure simulations of the empirical distribution
function for §-bundle strength, G, (o), under 1D HLLS. For p > 1 the W, (o)
curves for n = 225, 625 and 900 collapse onto one characteristic curve W (o), but
not for p = 1/2. The plotted results suggest that the cluster growth failure mode
is active for p > 1. From the §-bundle failure stresses observed in the simulations,

rough estimates of the corresponding critical cluster sizes k£ are obtained from
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Figure 1.3: Snapshots of the failure process in median strength (N = 500) 2D

0-bundles with 900 Weibull fibers for p = 10 and periodic boundary conditions.

O intact fibers, ) broken fibers, and (©) first fibers to fail after instability.

solving Kyo = 0, using Eq. (1.13). In all cases £ is at least an order of magnitude

smaller than the size of the smallest bundle n = 225. For p =1 it is less than 15

and is about 10 for p = 3. This suggests that Eq. (1.18) applies for the §-bundle

stress and size range shown, which is significant since it gives a size scaling for

the strength distribution in terms of n. Figure 1.4 also shows a reversal in the

weakening trend as p decreases from 10 to 1 to a strengthening trend as p decreases

below 1. The latter is due to very strong fibers from the upper tail of the p = 0.5

Weibull distribution, which is examined further in Section 1.3.2.

For 2D é-bundles under HVLLS, empirical weakest-link distributions W, (o)
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Figure 1.4: Weakest-link scaling phenomenon in 1D d-bundles. The empirical
weakest-link distributions, Wn(a), for sizes n = 225, 625 and 900 collapse onto
one master distribution, W (o), for p > 1 but not for p = 0.5. Also shown is
the characteristic distribution function, W (o), from the cluster growth model in

Eq. (1.40).

are shown in Figure 1.5, and a similar collapse to W (o) is seen for p = 5 and
10. For p = 2 and 3 the collapse is less sharp than in 1D, and it worsens rapidly
as p is decreased further. For 0 < p < 2, analysis of the critical cluster size k
from solving Ko = o5, using Eq. (1.16), shows that & approaches the size of the
smallest bundle. Thus the lack of collapse of the Wn(a) curves to one master curve
W(a) does not necessarily imply that cluster growth dominated failure no longer
dominates, an issue we revisit later.

For larger p, the strength distribution for é-bundles under 2D HVLLS is gov-

erned by the lower tail of the fiber strength distribution, as is seen by considering
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Figure 1.5: Weakest-link scaling phenomenon in 2D -bundles. The weakest-link
distribution, Wn(a), for composite sizes n = 225, 625 and 900 appears to converge

onto one master distribution, W (o), for p > 1.
two modified Weibull distributions,

F(o) if0<0 <oy,

F(o) = (1.20)
1 if 05 < 0,
and
)
0 if o <0,
Flo)=41-1/e if0<0o <oy, (1.21)
F(o) if 05 < o,
\

where F(o) is the original Weibull distribution, Eq. (1.1). The former reduces
the strength of all fibers stronger than o5 to exactly o5 in the original Weibull

distribution, and the latter weakens or pre-breaks to zero strength all fibers weaker
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than os5. The simulation results in Figure 1.6 show that the J-bundle strength
distribution produced by F(c) agrees nearly perfectly with that due to the original
Weibull F (o) but the same is not true of F (o) where a large strength reduction

occurs.

X X Xx;
XX XXX

Figure 1.6: Dominance of the lower tail of the Weibull fiber strength distribution in
determining d-bundle strength for 2D HVLLS and larger p as seen from agreement

between simulations for F(o) and the original F (o) for p = 3 and 10.

1.3.2 Large variability in fiber strength (small p)

When p is small (large fiber variability), the cluster-driven breakdown mechanism
is subdued by a dispersed failure mode in a J-bundle. This is seen in snapshots
of the fiber failure sequence in 1D HLLS and 2D HVLLS §-bundles for p = 1, as

shown in Figures 1.7 and 1.8, respectively.
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Figure 1.7: Snapshots of the failure process in a median strength (N = 500)
2D HLLS 4-bundle with 30 Weibull fibers and p = 1 under periodic boundary
conditions. () intact fibers, ) broken fibers, and () first fibers to fail after

instability.

A qualitative explanation for this is that the tendency to form and grow clusters
is suppressed by the tendency to form breaks dispersedly, thereby undermining the
ability of any one cluster to propagate. Instead, bundle failure results from the
coalescence of small clusters and dispersed breaks. Thus, when the fiber strength
variability is large, clusters of fiber breaks are less likely to propagate due to the
presence of occasional strong fibers that impede growth. Also, many weak fibers
fail under small applied loads causing the initial dispersed patterns.

Despite the dispersion of breaks in the failure mode of the 1D ¢-bundles (Fig-
ure 1.7) with 30 fibers, there is convergence to a characteristic distribution W (o)
for sizes exceeding n = 225 (Figure 1.4). This suggests that fiber breakage, de-
spite beginning dispersedly approaches clustered growth after a certain number of
dispersed breaks have formed. This aspect will be revisited later.

To gain further insight into the behavior of the empirical distribution function
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Figure 1.8: Snapshots of the failure process in a median strength (N = 500) 2D
HVLLS 6-bundle with 900 Weibull fibers and p = 1 under periodic boundary
conditions. () intact fibers, @ broken fibers, and () first fibers to fail after

instability.

for 6-bundle strength, G, (o), for small p, we have plotted G, (o) in Figure 1.9
under all three types of load-sharing: 1D HLLS, 2D HVLLS and ELS (equal load-
sharing) as described in Section 1.1.2. The é-bundles all have n = 900 fibers,
and normal (Gaussian) coordinates have been used for plotting since the strength
under ELS, a truly dispersed failure mode, is very close to Gaussian (i.e., a straight
line). As p decreases, the strength distributions for all three types of load-sharing
converge. For 2D HVLLS the convergence is virtually complete for p = 1 and for

1D HLLS, the convergence improves dramatically between p = 1 and p = 1/2,
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though it is not quite complete even at p = 1/2. Remarkably, as p decreases, the
details of the load sharing mechanism diminish in importance in determining the
strength distribution. Also, the ELS strength distribution acts as a lower bound
on the HVLLS distribution, becoming tight as p becomes small. It is an open
question whether ELS bundles always have lower probability of failure than LLS

bundles, as p decreases further.

4 T T
3’ X O |
8-
2r : 1
= 1f 1
L
S o
= n = 900
|
& -1f :
_27 -
-3F x X O-‘ X O® ) .‘ ° ELS L
1D HVLS
© 2D HVLLS
— I I I I T
0.2 0.3 0.4 0.5 0.6 0.7 0.8

o /.05

Figure 1.9: Comparison of empirical strength distributions, én(a), for 900 fiber
d-bundles under ELS, 2D HVLLS and 1D HLLS on normal (Gaussian) probability

coordinates.

Two cautionary points should be made. First, although the distributions for
0-bundle strength under HLLS and HVLLS approach those for ELS, the patterns
of fiber breaks in terms of cluster sizes are not the same whereby ELS shows more
dispersion. Second, if the bundle size n were increased by orders of magnitude, the

reduction in variability for ELS is roughly 1/+/n, whereas for HVLLS and HLLS it
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may be milder. In fact, HVLLS and HLLS may ultimately produce slightly weaker
bundles than ELS since the scale of load-sharing over groups of fibers may be more
limited than in ELS. Thus the large §-bundle may act more like a chain of smaller
0-bundles, each roughly following ELS. We revisit this issue in Section 1.5.

For 2D HVLLS é-bundles, when 0 < p < 1, the strength distribution is domi-
nated by the upper tail of the fiber strength distribution within the range of our
simulations. In Figure 1.10, we compare the strength distributions produced by the
upper and lower tail-modified Weibull distribution Eqgs. (1.20) and (1.21) against
those produced by the original Weibull distribution, Eq. (1.1). As p decreases, the
upper tail dominance increases as the behavior becomes insensitive to the lower
tail suggesting that cluster propagation is stalled by occasional strong fibers. This
is the opposite to that seen in Figure 1.6 for larger p. Further investigation of this

issue is considered in Section 1.5.
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+ F(o), Eq. (1.20)
-13f o F(0), Eq. (1.1)
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Figure 1.10: Dominance of the upper tail of the Weibull fiber strength distribution
on the empirical characteristic distribution function, W (o), for 6-bundles with 900

fibers and p = 1 and 1/2. Shown are the original Weibull F' (o), F(o) with strong

fibers reduced in strength, and F (o) with weaker fibers reduced to zero strength.

1.4 Analysis of Composite Strength Distribution
for Large p

We now develop closed-form analytical approximations to the characteristic dis-
tribution function W (o) using a cluster growth approach as originally described
in [39] and [35]. The importance of this result is that the distribution function for

the strength of a large composite with n fibers of length L becomes

H,,(o)~1—[1—-W(o)™ (1.22)

~1— e W), o >0,
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where m = L/§ is the number of §-bundles in the composite. Notably the resulting

probability depends on the composite volume mn.

1.4.1 Characteristic distribution W (o) under 1D HLLS

To derive an approximation to W (o) in the case of 1D HLLS we model §-bundle
failure as a cascade of fiber failures. To begin, we approximate the probability
such a cascade occurs, starting with the failure of a given fiber. The structure
of such an event is that under stress o, a given fiber fails, and its two immediate
neighbors then suffer stress Kjo, of which one fails. The pair of breaks formed
causes one of the two adjacent overloaded neighbors to fail under stress Koo, the
resulting triplet then fails one of its two overloaded neighbors under stress Kso,

and so on until all n fibers have failed. Thus, W (o) is approximately

Wa(o) = F(o){1 - [1 - F(Ki0)"H{1 - [1 - F(K0)]"}

{1-[1-F(Ky 10)]°} (1.23)
- oo | (G e [ (50) ]}

where K, is the stress concentration on the two fibers next to an r-cluster as
approximated by Eq. (1.13), and F(o) is given by Eq. (1.1).

Simplifying assumptions are made in writing Eq. (1.23). First, only the failure
of the fibers adjacent to an r-cluster are considered. Failure of fibers further
away is ignored even though such fibers are overloaded. This is justified because,
as r becomes large, the fibers neighboring the cluster carry twice as much load
as the fibers sub-adjacent to it, according to Eq. (1.14). Thus for large p, the
probability of failure of a sub-adjacent fiber without the failure of the adjacent

fiber is negligible. Second, the formula assumes that fibers next to the cluster are
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virgin. In other words, in evaluating the probability of failure of an overloaded
fiber at stress Ko, the event that it survived a lower stress Ko, j < r is ignored.
While the first assumption decreases the calculated probability of failure relative
to the true one, the second assumption increases it. For large p, the errors thus
committed are negligible.

While Eq. (1.23) can be used directly to estimate W (o) numerically for larger
n, it is more illuminating to have a functional form for W (o) independent of n. We
now derive such an approximation especially applicable in the lower tail (smaller

o/os). When K,o < o5 we have

e 2 () [ () - (5)] e

This simplification is inaccurate when K,o becomes comparable to o5. In order

to preserve accuracy in this range, we rewrite Eq. (1.23) as

= (7)) T ()]

AT 1o (2 (22))] (1.25)

j=k(o)
= {Wi(o)(0)} {T1(0)} {T2(0)},
where k(o) is an appropriately chosen critical cluster size depending on o, as we
describe shortly. Also we have preserved the explicit dependence on k of the first

quantity, which can be written as

Wi(0) = 26 Y (K Ky - - - Ky_1)” (%)kﬂ (1.26)

Note that the third product ¥y(o), in Eq. (1.25), is carried out to oo instead of n

since the terms in the product converge very rapidly to unity and the product itself
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converges rapidly in n. Except for very small n this replacement has negligible
effect and has the benefit of making W (o) explicitly independent of n.
One way to define k(o) might be to take it as the integer satisfying

F(Ky 10) <1 - é < F(Ko). (1.27)

This, however, leads to a discontinuous W (o) because the 25! factor in Eq. (1.26)
prevents W (o) from being continuous at exactly o/os = 1/Kj;. Smooth tran-
sitions, however, do occur at certain values of o where the right hand side of

Eq. (1.26) has the same value for both k£ and k + 1, i.e., for a transition o such

that
o kp o (k+1)p
K Ky - K_y)? (—) ="K\ Ky - - K)? (—) : (1.28)
oy %)
Taking the approximation Eq. (1.13) as the equality
b
K, =" (1.29)
b
we then have
9—1/p
7 - S — (1.30)
o5 Kg Vk+b
where
a=2"VrP/rt2 and b=4/7. (1.31)

When ¢ is decreased continuously the associated k cannot increase continuously
since it takes on only integer values. If we relax this requirement and also permit
k to vary continuously, we may replace /o5 in Eq. (1.26) in terms of k according
to Eq. (1.30). In addition, substituting for K, using Eq. (1.29) we have Wj(o)
only as a function of k£ whereby

k—1
af
W, = e [0+ (1.32)

r=1
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Evaluating the product in Eq. (1.32) yields

1

(r + b)?/? —exp{ Zlog (r+0) }
1

p : p [t 1 (1.33)
zexp{ifl log(u-l-b)du—z/1 u-i—bdu} :
b+k—1/2\ P/? _
_ ((b—i—/c) ) exp{_p(k 1)}’

k—

r=

(b+ 1)b+1/2 2
so that
Wy =C(k+b)?exp{—B(k+b)}, (1.34)
where
=1,
b6=p (g _ %)  and (1.35)

C = apeﬂ(b+1)(1 + b)—ﬂ(b+1/2).

To get a relationship between W}, and o, we use Eq. (1.30) relating k£ to o, and

upon simplification obtain

Wio(o) =€ (“22) exn { -5 (“%) "}, (1.36)

Next we approximate ¥;(o) in Eq. (1.25). Using Eq. (1.30) we obtain

=t (1.37)
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Finally we evaluate Wy(0), the third product in Eq. (1.25), which is the prob-

ability of cluster stalling. Upon using Eq. (1.30) we obtain

wior= 11 [r=en {2 (57) ]

j=k(0) (1.38)
A exp {— /oo exp {—(b+ u)?/? (_)P} du}
k(o) ags
— exp {—%F@/p, 1) (?)2} |
where
[(p,1) = /1 e ldy (1.39)

is the incomplete gamma function. Substituting Egs. (1.36), (1.37) and (1.38) into
Eq. (1.25), i.e., Wy (0) = Wi(0)¥1(0)¥a(0), keeping only the dominant term in

Eq. (1.37) and dropping the subscript ‘co’, we obtain

Wio)~ 0 (“2) e {55 (20)'}. (1.40)
where
B=1+ (%)2 {2(/)’; TR 1)] , (1.41)

and all other constants are as defined in Eq. (1.31) and Eq. (1.35). Note the
emergence of the quantity p/2 as an important parameter in B. As p decreases
below 2, B begins to grow rapidly, which lowers W (o).

Since there are n fibers in a J-bundle, a cascade can originate from any one of
them, and these events are taken as being statistically independent. This results
in the approximation Eq. (1.18), and through Eq. (1.3), to Hy, (o) for the full

composite as given by Eq. (1.22).
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To investigate the success of this result we compare W (o) to W (o), which
results from the convergence of the simulated W, (o) of Eq. (1.19) with increasing
n. Figure 1.4 shows W (o) from Eq. (1.40) together with W (o) from the Monte
Carlo simulations. No adjustable parameters are involved. For p = 1,3,5, and
10, the calculated and simulated distributions are in remarkable agreement. For
p = 0.5 the agreement suddenly weakens where no n-independent W (o) appears.
This lack of agreement is consistent with our earlier observations in Figure 1.9
where the distribution G,(c) for é-bundle strength was close to that for ELS,
which has a dispersed fiber failure mode. The value p = 2 does not emerge as
having a dominating effect. Surprisingly the model seems to apply well for p =1,
and Figure 1.4 does not rule out its application for p = 1/2. This issue is revisited

in Section 1.5.

1.4.2 Size effects for critical cluster and composite strength

under HLLS

We next examine the size effect for the characteristic composite strength. That
is, for fixed probability of failure p, we ask how the composite strength for the
pth quantile scales in terms of number of fibers n and length L = md where m
is the number of d-bundles in the composite. We take p = 1 — 1/e = 0.632,
which would correspond to the Weibull scale parameter for composite strength in
a Weibull approximation to Hy,,(c). We examine the dependence of the critical
cluster size on n at failure probability level p, and want to know the size of the
critical cluster at the point where it becomes unstable. Extending these results to

the full composite is simply a matter of replacing n by mn.
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We know that
Go(@)m1—-[1-W()]"~1—e ™, (1.42)

Equating this further to 1 —e™!, we find that the characteristic é-bundle strength,
denoted o, is the stress o solving W (o) = 1/n where W (o) is given by Eq. (1.40).
While this equation can be inverted asymptotically to get o7, it turns out to be
useful to think also in terms of a critical cluster size £* associated with failure
probability p. This is obtained by setting Wy, = 1/n in Eq. (1.34), that is, £* must
solve

(k* +b) ¢PE+) — 0, (1.43)

which is an implicit relation between £* and n.

To obtain an explicit relation between £* and n, we observe that
—o¢log(k* + b) + B(k™ + b) = log(nC). (1.44)

Substituting £* + b = (1 + €) log(nC) /B and using log(1 + €) = € gives the critical

cluster size k* for a d-bundle approximately as

K b= (1+¢) log(ﬂnC), (1.45)
where
o~ 9 1log[log(nC)] — log(5)} (1.46)

log(nC) — ¢ ’

and log is the Napierian logarithm. To obtain an integer valued £k*, one must
round up the £* from Eq. (1.45) to the next largest integer. To obtain £* for the
full composite simply replace n by mn in Eq. (1.45).

To obtain the characteristic strength ¢ of a d-bundle we first use Eq. (1.30)

to recast Eq. (1.45) in terms of o, yielding the critical stress

- g
o _aa‘s\/log(n(])(lﬁ—e). (1.47)
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This expression, however, does not account for the crack stalling probability ¥y (o).
It can be interpreted as the stress associated with formation of a cluster of crit-
ical size k* where the probability of further propagation becomes likely but not
guaranteed to be catastrophic. Including U,(o) as well yields the characteristic

d-bundle strength

. Bp
7e = Y9\ og(nC)(1 + ¢(BB))’

where €(B/3) is given by Eq. (1.46) with 3 replaced by BB. Again, to obtain the

(1.48)

characteristic composite strength, replace n by mn in Eq. (1.48).

-0.2

— Model
Simulations

6 8 10 12 14
log(n)

Figure 1.11: Comparison of Eq. (1.47) with size effect predicted from the simulated

empirical strength distributions of a 900-fiber §-bundle under 1D HLLS.

Figure 1.11 shows plots of the characteristic strength o versus d-bundle size n
based on Eq. (1.48). The agreement is good even for p = 1/2, which did not show

failure by cluster growth over this range of n.
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1.4.3 Characteristic distribution W (o) under 2D HVLLS

The approach taken to approximate W (o) for 2D HVLLS is identical to that used
in 1D HLLS except that the possible geometries of break clusters introduce addi-
tional complexities. We model the cascade event defining W (o) as the formation
of a break cluster at stress o that goes unstable. The diameter D of a tight circular
cluster of r breaks was defined earlier as 1D?/4 = r. The circumference of the
circle, 7D = /4nr is approximately the number of intact fibers surrounding this
r-cluster. Let N, be the number of these neighbors that are severely overloaded.
The first step is the failure of a given fiber in the J-bundle under o, followed by
the failure of one of its Ny = 6 equally overloaded neighbors under stress K;o.
The resulting pair of fiber breaks has eight intact neighbors of which only Ny = 2
are severely overloaded under stress Kyo. The next likely event is the failure of
one of these, to form a break triplet with N3 = 3 severely overloaded neighbors,
of which one fails, and so on. The critical event is thus the evolution of a growing
“tight” r-cluster (Figure 1.12), with each added break being the failure of one of
the N, severely overloaded fibers surrounding it.

As in the 1D case, we write this as

Wa(o) = F(o){1 - [1 - F(K,0)]™}
(1.49)
x {1 =[1 = F(K0)]™} -+ {1 = [1 = F(Kyu_10)]"" '},
where K is the stress concentration on the N, most severely overloaded neighbors

of a tight r-cluster. We introduce a two-parameter, power law to account for the

actual number of neighbors at high risk,
NT — 777'7’ (150)

with parameters 1 and +y satisfying > 0 and 0 < v < 1/2. This power form for N,
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Figure 1.12: One possible sequence of tight cluster growth to 10 fiber breaks in a
hexagonal fiber array. The numbers (1,2,...,10) indicate break sequence. Also

included are the associated stress concentrations computed under HVLLS.

is essential for W, (o) in Eq. (1.49) to agree with the simulated W (o) distribution
as p becomes small. Observe that if n = V47 ~ 3.55 and v = 1/2, then N, is
simply the total number of intact fibers surrounding a circular r-cluster.

Applying approximations as in Section 1.4.1 we rewrite Eq. (1.49) as

o () 1 L3 (%)
L e (6 ()] o
= {Wito) (o)} {91(0)} {¥a(0)}

Again the explicit dependence on £ in the first product Wy, (o) is retained, and

k(o)—1

it may be written as

kp
o
Wk(O') == NlNQ'"Nk_l(KlKg"'Kk_l)p <0_—5> . (152)
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As in the case of 1D, we relate o to k by setting Wy (o) = Wyy1(0). Doing so and

recalling Eq. (1.16) for K, which we rewrite as

K, =1/ \/;b“’, (1.53)

we obtain
T = kP (VE+ b)7V2, (1.54)
of)
where
a=Vb/n'/* and b=n"?/2. (1.55)

Using Egs. (1.50), (1.53) and (1.54) in Eq. (1.52) and simplifying we obtain

=D)L (VG + b
Wy = N ST (1.56)

We can evaluate Eq. (1.56) as follows: By Stirling’s formula,
(k—1)! ~ V2rkE=1/2e7k, (1.57)

Also,

k—1

H(ﬁ-ﬁ- b) = exp {Zlog(ﬁ-l— b)}

~ ‘ ¢ 1dlog(vz +1b)

SO {/UZO log(v/u +B)du = /uzo dex} (1.58)
— (\/%—1— b)k—b2—1/2b(b2+1/2)

1 ) 30
X exp {—5(\/E+b) +2b(VE +b) — 7} .

Using these two approximations in Eq. (1.56) and noting that

] " x (VE+b)7, (1.59)

o = B [
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while

exp{vk} = exp{y[(Vk + b)? — 26(VE + b) + b?]}, (1.60)

we may reduce Eq. (1.56) to

Wy = C(Vk +b)%exp {—51 (\/E+ b— %)2} , (1.61)

where

ol 2
o = P2 o2 o {_bz (3_P N 7) N _2} ’

n 4 461
0 =1+ (b + 3), .
g =P 247, and
Po =b(p +27).

To get an expression in terms of o, we first write Eq. (1.54) as

o i 25/ b —2v/p
— = (Vk+40b) /7 [1— } , 1.63
il ) N (1.63)
which can approximately be inverted to give
o —p/(2B1) by bZ,Y o p/(2p1)
k+bx | — — 4+ — - — . 1.64
VE+ <a05> - B + 20 (B =) <a05) (164
Dropping the last term leads to
b —2B1/p
o _ (\/E+b——7> , (1.65)
aog 61

which for given o results in a slightly lower value of k£ as compared to Eq. (1.64).
Substituting Eq. (1.64) into Eq. (1.61) for W), gives

o aogs

Wiio@) = 00ie) (2)" e {00 (2)™ ) (s

aog

where

91(0') =

aos aos

by [ o p/(2B1) B2y o \*A ¥
1+ 5 (—) + 282 (B =) (—> , (1.67)
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and

206, \ao;s acs

0.(0) = [1 _ e <i>p/%) + 22—% (B — ) (i)p/m] 2. (1.68)

Next we approximate the second product ¥(o) in Eq. (1.51) as

k(o)—-1 P
H N; (Ko
=0 2 ags
. ’“%1 N; (Kjo\’
R exp { — el
P - 2 (oF
=0 (1.69)

where the last step involves applying Eq. (1.64) and keeping only the dominant

terms, and where

o bp(Bi+1) [0\
Oy(0) =1— 3R 1) (E) . (1.70)

Finally we evaluate the third product ¥o(o) in Eq. (1.51) as

= T 1o (- (5)')
e o (52
o[ {5 o

1 1 aos\P/B
%exp{—af (EJ) O3(0) (7> },

(L) e (1.72)

(1.71)

where
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Multiplying Wi (o), ¥1(0), and ¥s(o) in Eq. (1.51) and dropping the subscript
‘o0’ finally gives our main result

W (o) = CQi(0) (i) e exp {_92(0) (@)p/ﬂl} ; (1.73)

aos o

where )

_ & g i ©3(0)
QQ(O') = ﬁ1®1(0) + 9 @2(0’) +F (ﬂl, 1) 161 . (174)

Figure 1.13 compares two versions of W (o) in Eq. (1.73) against W (o) from

the Monte Carlo simulations, for p = 1,2, 3,5, and 10. The dashed lines (Model 1)
assume y = 1/2 and 7 = /47 = 3.55 as is the case in Eq. (1.50) if we assume all
fibers in the first ring around the cluster are equally at risk of failure. The solid
lines (Model 2) assume 7 and 7 values corresponding to the respective p values
as shown in the table within the figure. The fit in the dashed line case, which is
excellent for p = 20 (not shown) and quite good for p = 10, rapidly deteriorates
for p < 5. However, except for p = 1 the agreement is excellent when v and 7 are
adjusted as shown in the table. This suggests that the growth in the number of
neighbors to the cluster at high risk of failure must be retarded after the first three
or four breaks. For p < 3 it was retarded completely by setting v = 0 and n = 6
so that the number of neighbors remained fixed at 6 regardless of the cluster size.

Many approximations were made in deriving W (o) in Eq. (1.73), but using
the root equation, Eq. (1.49), does not improve the agreement with the simula-
tions. Furthermore we have assumed the clusters are round, when in reality they
will become increasingly irregular as p is decreased. Thus for moderate p, i.e.,
2 < p < 10, this irregularity may mean that relatively fewer of the neighbors
should be viewed as highly stressed, perhaps only those that protrude the most

into the cluster. The emergence of powers of 7y less than 1/2 for smaller p may also
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Figure 1.13: Comparison of the theoretical W (o) from the cluster growth model
under 2D HVLLS and Weibull fibers with the empirical version W (o) obtained
from simulations. Model 1 assumes 1 = v/47 and v = 0.5 for all p. In Model 2,
the parameters 7 and v are adjusted for each p to provide the best fit as shown
in the table. Results corresponding to p = 0.5 are not shown because the plots of

W (o) for both models lie off scale.

mean that the cluster roughness around the perimeter has fractal character as it
grows and this somehow determines the effective number of neighbors at risk. In
Section 1.6 we will suggest another possible explanation for the adjustment involv-
ing decreasing the value of v in Eq. (1.50) for N,. Note also that the parameter
B = (p+ 4v)/4 plays a role in the behavior of W (o) through Qs(0), Eq. (1.74),
as p and 7y diminish. Curiously, when v = 0 we have 3; = p/4 suggesting that the
value p = 4 has special significance, as is also pursued further in Section 1.6. We

find that (2,(0) starts to increase rapidly when p diminishes below 4 reflecting an
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increased cluster stalling probability. This has the effect of decreasing W (o), and
thus, the probability of failure, though the effect is not strong enough to explain
the behavior of the simulations for small p in Figure 1.13.

The weakness of the fit for p = 1 is consistent with the earlier observation in
Figure 1.9 that once p decreases below about 2, the j-bundle failure distribution
develops strong Gaussian character as seen under ELS, which is truly a dispersed

failure mode.

1.4.4 Size effect for critical cluster and composite strength

under HVLLS

We now derive formulas for the variation of the critical cluster size k* with the
size n of d-bundles under 2D HVLLS and at failure probability level p =1 — 1/e.
We then derive the dependence of the characteristic 6-bundle strength o on n.
Converting this result to apply to the full composite only requires replacing n by
mn.

The first step is to set Wy, = 1/n or, using Eq. (1.61), we have

C’(\/%—i-b)(pexp{ﬂl <\/%+b—25—51>2}:nc. (1.75)

For moderate k*, we note that v k* + b is close to (32/23;, which makes the expo-
nential function in Eq. (1.75) amenable to a power series expansion. Asymptotic

inversion leads to

log (\/E + b) = log(nC) ;_ log(wl)’ (1.76)

where the correction term log(w;) grows slowly with log(nC') following

B2 |log(nC B 2
- 9 un (1)

B3 [log(nC) 8 )
ey [ s (3]

log(wy) = (1.77)
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The correction term wy, while small, can have a major effect on the resulting k*.
The above formula for k* works for a wide range of n (e.g. n < 10%). However, for

larger n, an expansion arises of the form

Vi +b= ( loggfc) + 2%21) (1 — w), (1.78)

where the correction term w, is

log(nC) | 5
¢ log ( BL + 2;1)
Wy = p og(n0) . (179)
og(n
¢ +2log(nC) + 2, /=E722

B1
For astronomical n such as n > 10?® we have
1 C
Vi b= 08nC) (1.80)

B
Substituting for £* in terms of o* we estimate the size effect for the stress when

the critical cluster forms. From Egs. (1.65) and (1.76) we get

b")/ —Qﬂl//’
o* & aog ((nCwl)l/“’ - ﬂ_) : (1.81)
1

For extremely large n, Egs. (1.65) and (1.78) lead to

1 ( C) 5 ; —2B1/p
o* & aos (( Ogﬂ? + 2—51> (1 —wy) — —7> : (1.82)

Finally, as n — oo, this behaves as

o" =ao ( b )51/9 (1.83)
— " \log(nC) ' '

To obtain the characteristic stress for composite failure, o}, we must account
for ¥y (o) and ¥y(0) leading to complex expressions. We estimate the main effect

by noting that Qy(c) — B as 0 — 0 where

1 1. /1
B=lt oy T (EJ). (1.84)
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Thus for large n we may obtain ¢} from ¢* upon replacing log(nC') /3 by log(nC)/(Bf)
in Egs. (1.82) and (1.83). For smaller n, of the order used in our simulations, and
larger values of p we can still use Eq. (1.81) for ¢}. For smaller p, say p < 5
where B differs appreciably from one, Egs. (1.82) and (1.83) may be applied but
are likely to be very conservative as Bf; is a poor reflection of the full effect of

Qs(0) in Eq. (1.73).

T
Simulations

—— Model, Eq. (1.81)
-0.4 - - Model, Eq. (1.82)
p=10

log(n)

Figure 1.14: Comparison of the size effect predicted by the cluster growth model,
Egs. (1.81) and (1.82), with that derived from a W (o) interpretation of the em-

pirical strength distributions of a 900 fiber d-bundle under 2D HVLLS.

Figure 1.14 shows a plot of ¢} given by Eq. (1.81) against the size effect pre-
dicted using simulations from the d-bundles of size n = 900 as though they posses
weakest link character in terms of W (o), as is supported by Figure 1.13. The size
range covered is 100 < n < 1,000,000, which is the relevant range for Eq. (1.81).

Clearly the formula works well for p = 10 and reasonably well for p = 5, but
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breaks down for smaller p, because of the above mentioned lack of treatment of
the cluster stalling probability in the derivation. For extremely large n, Eq. (1.82)
with the B(; modification shows the anticipated poorer performance. One one
hand, discrepancies in Figure 1.14 may be due approximation errors, but on the
other hand this could also serves to point out that composites of the size that can
presently be treated by Monte Carlo simulation may not reveal the true size effect

as might be relevant in applications.

1.4.5 Power-law fiber strength and /-bundle behavior

In Section 1.4.1, we observed for 1D HLLS that the tight cluster growth model
accurately predicts the empirical strength distribution for p > 1, but not for p < 1.
In 2D HVLLS, when the fiber strength is Weibull, Eq. (1.1), the tight cluster
growth mode does not seem to apply to p < 2 as seen in Figure 1.13. These
departures may be due to non-tightness of cluster growth, or to the presence of
occasional strong fibers, or both.

To resolve this we consider a cluster growth failure model for a d-bundle with
fiber strength that follows a power-law distribution, F,(co), given by Eq. (1.2).

Using F,(0) in the arguments to develop Eq. (1.51), we have

Waolo) (Uid)k(f[ [Nj (i—:)}
Fnle) o\ "\ Y (1.85)
L2

{Wi)(0)} {T2(0)},

where k., (o) is such that Ky, (sy0/05 = 1. Here Wy (o) is still given by Eq. (1.66),
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but the factor ¥y(0o) is different and is approximated as

Uy (o) =exp{—4—b2@2( )(“5) } (1.86)

o

where

Os(0) = B (77/?7(0) 11, %) {1 —~ I<\/@U)o (nlﬂ(a) +1, %)}

(1.87)
() ( Iy (1)
(2 B0y +1,2) 1 : o) 1,2
s o)+ 1 (ve=ge)” p
where B(a,b) = fo t1(1 —t)>dt is the beta function and I,(a, b) = f ta1(

t)*~1dt/B(a, b) is the incomplete beta function. The critical cluster size k(o) is

o o 2
A (2T e Ve (0 N\
k(o) ~ {(a(jé) 15, + T (aag) } : (1.88)

Figure 1.15 shows W, (o) from Eq. (1.85) together with the W (o) distributions

obtained through Monte Carlo simulation, assuming the power-law distribution
F,(o) for fiber strength. For all three sizes shown, the theoretical and empirical
distributions agree even at p = 1, whereas in Figure 1.13 assuming Weibull fibers
they began to diverge at p = 2. Apparently, as p decreases in the Weibull case,
the stalling probability of a growing cluster is increased by occasional strong fibers
thus promoting dispersed breaking, but this does not occur under the power-law
version of F,(o), which has no fibers with strength exceeding 0. Surprisingly, even
at p = 0.5, reasonable agreement of the cluster growth model with the simulations

occurs under Fy(o).



49

_2 T
—— Model
- m=15x15
-4 + n=25x25 .
© n=30x30
PN 7
b 056 o |
— 1 6.0
© -8F —
g 3 6 0
\%5_10 5 4 0.19 |
-~ 10 2.8 0.34
_127 -
_147 -
-16 I I I I I
-25 -2 -15 -1 -0.5 0

log(c/as)

Figure 1.15: Comparison of the characteristic distribution function W (o) from
the cluster growth model under 2D HVLLS and power-law fiber strength F,(o)
with the empirical version W (o) obtained from Monte-Carlo simulations. The

values of (7, ) used here are identical to those in Figure 1.13 for Model 2.

1.5 Analysis of Composite Strength Distribution
for Small p

In the case of dispersed fiber failure in a §-bundle, it is reasonable to conjecture that
for small enough p the details of the fiber load-sharing model are not important
provided that the model conserves load. Thus we consider behavior under the equal
load-sharing rule, or ELS, where the stress concentration factor for each intact fiber
in an n-fiber §-bundle with j broken fibers is x,; = n/(n — j), as described in
Section 1.1.2. [12] showed that if the strengths of individual fibers are independent

and identically distributed according to an arbitrary distribution function B(o),
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and certain conditions are met such as lim,4o 0(1 — B(0)) = 0 and the peak in
the maximum of this function is unique, then the strength distribution G, (o) of
a 0-bundle asymptotically converges, as n — oo, to the normal or Gaussian form
®((0 — pz)/53) where

Py = P = 07(1 - B(U‘r))a (189)

and

st = o.n" % /nB(0,)(1 — B(o,)), (1.90)

and where o, gives 0(1—B(0)) its maximum value. Here ®(-) denotes the standard

Gaussian distribution.

O(z) = \/% /z e P du. (1.91)

As mentioned in Section 1.1.4, [40] gave a correction to the asymptotic mean
to speed up convergence to the asymptotic limit. Applying Daniels’ formula with
Smith’s correction to the Weibull fiber case, one obtains a very accurate prediction
of the true strength distribution, even for quite small n. The parameters of the

resulting normal strength distribution are then the asymptotic mean
= os(pe)”V* {1 +0.996n% (¢*/#/ p) 1/3} , (1.92)

and the asymptotic standard deviation

sy = a,;n’l/Qp’l/”\/e—l/P(l —e~1/r). (1.93)

In Subsection 1.3.2 we observed from Monte Carlo simulations that, when p | 0
and the variability in fiber strength increases, the J-bundle strength distributions
under both HLLS and HVLLS converge to the Gaussian or normal form of ELS, for
the bundle sizes n considered. Two reasons were cited: The first was the tendency

for small clusters to stall from the dominance of strong fibers from the Weibull
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upper tail, and the second was increasing numbers of very weak fibers causing
many more scattered clusters. The question arises as to whether this behavior
persists as n increases by orders of magnitude.

We conjecture that, no matter how small the value of p and no matter how
much initial dispersed fiber failure, if a J-bundle is large enough final failure will
eventually be locally initiated and a cluster will eventually propagate catastrophi-
cally to fail the rest of the surviving fibers. That is, unlike ELS, wherein material
damage truly accrues globally, we conjecture that in HLLS and HVLLS there is a
p-dependent size scale within which damage initiates and propagates. This must
remain a conjecture because we are unable to simulate J-bundles much beyond
n = 900, yet under 2D HVLLS and p = 0.5 the critical cluster size is proba-
bly greater than 900 fibers. Nevertheless evidence for this assertion is seen from
simulations on large 1D HLLS §-bundles.

For 1D HLLS, Figure 1.16 shows the evolution of fiber breaks that occur in the
median strength (out of N = 500) é-bundle with n = 900 fibers and for p = 0.5,
1, and 10. For p = 0.5 a cluster does not initiate, as the fiber failures are largely
dispersed to the very end. This happens even though the bundle size n = 900 is
much larger than the critical cluster size. The final load increment occurs when
90% of the fibers have already failed. For p = 1, however, although breaks are
initially dispersed up to the failure of slightly less than half of the fibers, the
remaining fibers fail as a sharply growing cluster. For p = 10 there are just a few
initial dispersed breaks, but then a sharply growing, catastrophic cluster develops
near fiber number 600.

For p = 1/2, Figure 1.17 shows the break evolution sequence for the weakest

and median among N = 100 §-bundles with n = 1500 fibers. The weakest speci-
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Figure 1.16: Fiber break sequence in median strength (among 500 simulations)
900-fiber 0-bundles under 1D HLLS with (a) p = 0.5, (b) p = 1 and (c¢) p = 10.
A dot is plotted at coordinates (N, N,) if fiber number N, is the N,-th to fail.
The first fiber to fail with the last load increment is labeled *. The strengths of
these specimen are 0.5089 for the p = 0.5 specimen, 0.3075 for p = 1, and 0.5964
for p = 10.

men develops a cascading cluster after about two-thirds of the fibers have failed.
However, it develops considerable dispersion at the cluster edge and eventually
stalls. Further load increments lead to additional dispersed failures followed by
a final cascading cluster from a new location when only one-tenth of the fibers
remain. The median 1500 fiber specimen, however, initiates cluster growth af-
ter about four-fifths of the fibers have failed and this cluster propagates without
stalling until the composite fails.

Comparing with Figure 1.16, the conclusion from Figure 1.17 is that for small
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p the cluster growth mode may not dominate until the §-bundle reaches a certain
large size well beyond the critical cluster size. Even then the network is drastically
diluted by the dispersed failure mode. As it weakens with increasing size, however,
we conjecture that the cluster growth mode will increasingly dominate, at least in

1D HLLS bundles.

1500 oz

1000

00

Figure 1.17: Fiber break sequence in a 1500 fiber §-bundle under HLLS for p = 0.5:
(a) weakest (lower tail) and (b) median specimen among 100 simulations. The
strength of the weakest specimen is 0.3872 and of the median specimen is 0.5053.

The first fiber to break with the last load increment is labeled *.

Although clusters may eventually form, there remains considerable dispersion
and diluting of the number of intact fibers under ELS-like behavior. Thus the
localized nature of the load-sharing rule is finally superimposed onto a diluted
set, of fibers following ELS failure statistics. One possibility for the breakdown
mechanism is that local patches begin to break down following the statistics of
a scale limited version of ELS, and if a patch is beyond critical size it propa-
gates catastrophically. The statistics of the weakest ELS-like patch determines

the strength distribution of the J-bundle. A second possibility is that broad dilu-
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tion of the number of surviving fibers occurs due to ELS-like behavior and local
cluster growth eventually develops under a revised local load sharing mechanism
on the randomly diluted set of survivors. Along these lines a 1D model under a ta-
pered local load-sharing rule was recently developed by Phoenix and Beyerlein [33]
where a weakest-link model with a characteristic distribution function W (o) was
derived of the form given by Eq. (1.40) for 1D HLLS. In their work a nontrivial
exponent arose from the local combinatorics of the dilution playing a role similar
to the values of (n,~) in Figures 1.13 and 1.15.

A model consistent with the first scenario is that failure initiates following an
ELS-like failure mechanism in a patch of n fibers smaller than n when sufficiently
large. The strength of this patch has Gaussian character, and d-bundle failure
corresponds to the failure of the weakest of the m = n/n, n-fiber patches. That
is,

Gul0) = 1= {1 = B[( — u3) /s))]}"™, (1.94)
where ®(-) denotes the standard normal distribution and p} and o} are defined in

Egs. (1.92) and (1.93). For small o, we may replace ®(-) with

d(2) exp(—22/2), (1.95)

1
Rz
which is the asymptotic form of the lower tail of the standard normal distribution.
Likewise, that for the composite, H,,,(c), is simply the above result with m
replaced by mm. Use of this result in other composite settings is found in [34].
The parameters of the Gaussian weakest-link distribution are given by the Smith
corrected, Daniels formula Eq. (1.92) and (1.93).

In Figure 1.18, for p =1, 2, 3, and 5 we have plotted the strength distribution

of the smallest sized J-bundle (n; X n;) to which weak-link scaled distributions for
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larger bundles collapse. This minimum ¢-bundle size approximately corresponds
to the critical cluster size defined previously. We also show the distributions of
larger bundles of size (ny X ny) or (n3 X n3) weak-linked to the size (ny X ny). Note
that as p is decreased, the weak-linked distributions become increasingly Gaussian
(indicated by the straightness of the strength distribution on normal coordinates)
and are better approximated by the ELS asymptotic distribution, though a shift
exists for p > 1.

In the case p = 0.5, despite the excellent agreement of the 900-fiber, weak-
linked strength distribution with the 625-fiber, weak-linked distribution, it turns
out that they do not agree with a 2500-fiber, weak-linked J-bundle strength distri-
bution (of which limited results were generated but are not shown). This suggests
that the smallest catastrophic failure event of the bundle occurs over more than
625 or perhaps even 900 fibers. The same may also hold in the p = 1 case. How-
ever, for p > 2, the maximum simulation cell size of n = 30 x 30 seems to be
adequate to contain the catastrophic failure event.

In the cases p < 1 it is unclear if the upper-tail, strong fiber dominance will
continue for much larger bundles (with smaller strengths). Unfortunately, sim-
ulating such bundles is presently computationally infeasible. If it is so that the
weakest link involves strong fibers and ELS dispersed failure over limited scale,
Eq. (1.94) will hold for the ¢-bundle strength distribution. If not, the weakest
link mechanism will revert to the cluster growth model, though with dispersed
fiber breaking ahead of the cluster tip, and Eq. (1.73) may hold when modified to

account for the extensive dilution by fiber breaks.
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Figure 1.18: Comparison of ®((c — 1)/sk) given by Daniels’ formula for ELS
d-bundles, Eq. (1.95), with weak-linked strength distributions obtained from sim-
ulations. Strength distributions for sizes n = 625 and 900 are weak-linked to size

n?. as listed in the figure. For p = 2, 3, and 5, the distributions of n = 625 and

min

2

900 6-bundles when weak-linked to size n; appear to collapse into the strength

distribution of a d-bundle with nZ . fibers chosen to be the smallest with this prop-
erty. For p = 0.5 and 1 no such collapse is observed. For p = 0.5 the agreement
of the strength distribution of the n = 625 J-bundle and the n = 900 é-bundle

weak-linked to size 625 is spurious. Such agreement is not observed for a 2500

fiber §-bundle weak-linked to size 625.
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1.6 Analysis of Effect of p on Statistical Failure

Mode

We have seen that d-bundle failure for both 1D HLLS and 2D HVLLS shows a
transition from a break cluster growth mode to a dispersed fiber failure mode
somewhere in the neighborhood of p = 1 to 2. We now investigate certain statisti-
cal aspects of cluster growth that may suggest the potential for such a transition.
While the stress concentrations on the neighbors of an r-cluster increase their
probabilities of failure, the extent appears to depend on p thus influencing the

onset of instability.

1.6.1 Effect of p on Tendency for Cluster Stalling

To investigate the effect of decreasing p on r-cluster growth, we add one break
to form an (r + 1)-cluster and let A(r,n') be the mean number of additional
fibers among its n’ nearest intact neighbors that will fail due to the increased load
from the break, assuming all fibers have survived the previous load. We let the
applied fiber stress o be small enough that the fiber failure probability F(K,.o)
from Eq. (1.1) is well approximated by F'(K,0) ~ (K,0/05)” in the case of Weibull

fibers and is exact in the case of power-law fibers. Then,
A(r,n') = n'(KF , — KF) (c/05)" . (1.96)

Since K, ;1 > K, > 1, we see that K/ ; — K? is an increasing function of p so that
for fixed n’ and o, A(r,n’) increases with p. Thus, when p is small the addition
of a fiber break to an r-cluster causes fewer neighbors to fail due to overloads.

We may specialize Eq. (1.96) to the case of a penny-shaped r-cluster in a 2D
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planar fracture surface. In this case, n' = 2,/7r and we get using Eq. (1.16)

sonie {1550 (126) ) ()

05

(1.97)

p_1 o p
~COri 2| — for large r.
05

Thus the number of breaks around a large cluster tends to increases with r for
p > 2 but decreases with r for p < 2 where the cluster will tend to stall.

This argument, however, does not account for the fact that the addition of a
single break at the cluster edge will expose a few fibers in its vicinity to a much
larger jump in stress of the order of from (1/2)K,0/0s to K, 10/0s, and the
associated probability of failure for each of these is of order (K, 10/04)”, which
does not show this transition to an expected decrease as p decreases. This aspect
of the problem may explain the need for Eq. (1.50), and the values of N, based on

the values 17 and 7y given in Figures 1.13 and 1.15 seem reasonable in this light.

1.6.2 Effect of p on Break Dispersion Near Cluster Edge

Another important aspect to consider as p decreases is the location of new breaks
due to an r-cluster introduced into a d-bundle. Figure 1.19 shows a simulation of
the fiber failures that immediately occur due to the presence of a penny-shaped
cluster of » = 239 breaks introduced into a 2D §-bundle under the numerical
version HVLLS. In each of the four cases, the fiber strengths were derived from
the same set of uniformly distributed random numbers U;, so the Weibull strength
of the j-th fiber in each case is (—log(U;))'/?. The applied stress o was chosen
in each of the four cases so that the probability of failure of a fiber adjacent to
the cluster edge was about 1/2, i.e., (Kao390/05)” =~ 0.69, where Ky39 = 2.56 from

Eq. (1.16). These breaks would typically cause even more breaks without a change
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Figure 1.19: Transition from dispersed fiber failure to cluster enlargement around

an initial, tight 239-break cluster, which occurs as p increases.

in applied load, but these secondary breaks are not shown. Observe that for the
same approximate number of fiber failures in the ring around the cluster, serving
to extend it, an increasing number of fibers fail away from the cluster as p is
decreased. Many of the ones appearing for p = 1/2,1 and 3 would have occurred
anyway under the applied stress /o5 with probability F (o) given by Eq. (1.1).
Nevertheless, as p decreases, dispersive effects at the edge begin to appear.

To understand these dispersive effects, we may evaluate the probability of
failure of a fiber at distance s away from an r-cluster. Its probability of failure is
(K, s0/05)? or, using Eq. (1.17),

1 p/2 K,o p

1) (oF) '

Pr{fiber failure at distance s} = W
7T J—

(1.98)

This result holds approximately for 1 < s < eD where € is about 1/10, and
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D = 2./r/w is the cluster diameter. This is roughly the range of influence of
the cluster “tip” (analogous to the K-field in linear elastic fracture mechanics).
Clearly the first factor in Eq. (1.98) increases with decreasing p and leads to an
increased number of fiber failures away from the cluster edge as compared to fibers
right at the edge (s = 1). Beyond this range the stress is close to the far field value,
0. In the present case r = 239, D ~ 18, and the range is 1 < s < 2 covering just
two fibers from the edge. Nevertheless one can see increasing numbers of breaks
near the edge in the sub-adjacent neighbors as p decreases.

We can use Eq. (1.98) to illustrate a more subtle aspect of the effect of p as
suggested in Figure 1.19. Suppose that as p is decreased, the applied stress o is
chosen such that (K.o/0s)? = C < 1, where C is independent of p. We may
estimate the number of fibers that immediately fail due to the introduction of the

penny-shaped r-cluster where r is large. This requires evaluating the integral

<KTU>P /12\//_ 2(s + \/r/7)

% (s =12
where 27 (s 4+ /7 /m) is the number of fibers in a ring of radius s + /7 /7 outside

the cluster and the rest of the integrand is the probability of a fiber failure in that
ring. Upon evaluating the integral we notice that the result asymptotically has the
factor 7'=?/%. Thus as r increases this integral behaves differently for p > 4 versus
p < 4, converging in the former case and diverging in the latter. This suggests that
as p decreases below 4, in the vicinity of a large 2D break cluster under HVLLS,
new breaks are more likely away from the cluster than around its edge. Repeating
this calculation for a 1D cluster of r breaks under HLLS, one finds that p = 2 is
the transition value for divergence.

On the other hand, as a d-bundle fails when ¢ is increased, intact fibers will

typically have survived previous stress levels. Thus a variant of the above calcula-
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tion is to assume that all fibers have been “proof-tested” just enough to support
stress o on the d-bundle with the penny-shaped r-cluster, and that a small stress
increment Ag is required to induce failures. It can be shown that p effectively is
replaced by p — 1 in the result so the threshold for divergence increases to p =5
in 2D HVLLS and p = 3 in 1D HLLS.

[43] conducted an investigation somewhat like the one above, except that he
concentrated on the stress transferred from only one break to other fibers over the
whole composite. In the plane of the break this overload scales as s~2 in the 1D
HLLS case and s 2 in 2D HVLLS. To this he added the applied stress o, which
the fibers were assumed to have previously survived. Because he integrated the
decaying overload along fibers (far outside our ¢-bundles) he concluded for all
p > 0 that divergence occurs in the number of flaws broken in all fibers over the
whole composite due to one break. However, repeating his calculation over fibers
within a d-bundle leads to convergence for all p > 0, so little insight into the role
of p is gained without focusing on large clusters with 1/4/s fiber stress decay at
their edges.

These arguments indicate that during 6-bundle failure under increasing o, the
tendency towards dispersed fiber failures versus cluster growth increases as p de-
creases, but the values of p determined above are too high to directly explain the
transition. Also, when p is small, the probability of finding very weak fibers below
strength o is much more than when p is large, and thus many dispersed fiber
breaks are to be expected. This aspect appears to be borne out by Figures 1.3
and 1.7, and Figure 1.19 as well as by inspection of many simulations.

In addition to p, the number of fibers n in the d-bundle also plays a role in the

occurrence of a dispersed versus a cluster growth failure mode. Smaller composites
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tend to be stronger, and thus, show a higher proportion of dispersed fiber breaks
caused by the applied stress . Also, clusters are smaller when they become
unstable. In larger composites, the cluster size required for instability is larger,
mainly because the applied stress o is smaller (i.e., the composite is weaker) and a
higher stress concentration at the cluster edge is needed to fail fibers. Nevertheless,
it appears that no matter how large the cluster is before instability, the tendency
when p is small is to form dispersed breaks at the cluster edge as it grows, thus

spreading the stress redistribution.

1.7 Conclusions and Relations to Other Results

In Egs. (1.40) and (1.73) we have the weakest-link, characteristic distribution
function W (o) for 1D and 2D é-bundles under HLLS and HVLLS, respectively.
These bundles are links in the chain-of-bundles model for the failure of large 2D and
3D unidirectional composites, respectively. For sufficiently large Weibull modulus
p, say p > 2 in 3D composites and p > 1 in 2D planar composites, the strength
distribution of a composite of length L = md and with n fibers is H,,,(0) =~
1—(1—W(o))™. When p decreases below these values, however, the details
of the load-sharing become increasingly unimportant, and the -bundle strength
distribution for fixed n is not only increasingly Gaussian up to quite large n but
also converges to that for ELS whose analytical form was given. For fixed p,
however, this Gaussian nature is expected to persist only up to a d-bundle size of
the order of the critical cluster size increased to eliminate the likelihood of stalling.
Then the distribution function for §-bundle strength appears to be that for a chain

of Gaussian ‘patches’ of n fibers in the d-bundle, particularly under 2D HVLLS.
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Thus the composite can be viewed as a weakest-link arrangement of mm such
Gaussian patches. As the number of fibers n in the composite increases by orders
of magnitude, it is not clear that this Gaussian nature will persist, especially in
1D HLLS.

Simpler versions of the form for W (o), Eq. (1.40), have been derived in related
failure models where elements have strength 0 or 1 with probability p and 1 — p,
respectively. See for example [13], [20] and [33], where in the latter two works
power prefactors were obtained in W (o) as here. Very recent work, carried out by
Wu and Leath [44, 45] under similar assumptions, has yielded distribution forms
very similar to those here. Earlier versions are also given in [32]. In the time
dependent setting, analogous versions, W (t), have been obtained without a power
prefactor by [10] and [11], and with a power factor by [31]. In these works hard
transitions to Gaussian lifetime behavior were noted when a breakdown parameter
decreased below a certain critical value.

Fiber break clusters need not lie in a transverse plane but can wander out
of plane since new breaks can form next to old ones anywhere within length ¢.
However the tendency towards alignment is fairly strong unless the variability in
fiber strength is large. Nevertheless, the idea of using a single length-scale ¢ for
fiber load transfer may be unrealistic when large break clusters develop before
instability. Thus the chain-of-bundles concept may be too restrictive in certain
cases and the load-sharing model may require revision beyond using the fiber load
values obtained along a single break plane.

To account for some of these features, simulation results have been generated
by [26] for a true 3D model using a modified, square array version of HVLLS

with eight matrix shear couplings rather than four. Their results were successfully
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modeled by [32] using the Gaussian-link approach of the dispersed failure mode at
the end of the last section, but generalized to elastic global load-sharing. Using the
W (o) cluster growth approach here [32] were only able to model quite well their
results for p = 20 but not p = 10 and 5 where misfits similar to those appearing
in Figure 1.13 occurred. As here, using Eq. (1.50) for N, and adjusting 7 and 7
may greatly improve the fit, but nevertheless, the range for p corresponding to a
dispersed failure mode may have a higher transition value than observed here.

We also mention work by [24] for a lattice-based model similar to HVLLS but
with the added features of fiber slip and pullout at breaks causing tractions across
the final fracture plane. Their Monte Carlo simulation results for p = 5 and
10 were successfully modeled using the Gaussian-link approach of the dispersed
failure mode described at the end of the previous section, but generalized to global
load-sharing as in [8] and [34]). Using a version of the cluster growth model here,
which assumes v = 1/2 in W (o), [32] were able to model fairly well their results
for p = 10 but not p = 5 where misfits occurred similar to those appearing in
Figure 1.13. Again, using Eq. (1.50) and adjusting v and 1 may greatly improve
the fit but once more the transition p value for a dispersed failure mode may be
higher than observed here. In practice there may actually be considerable overlap
in the ranges for p where the two models may apply.

We have set the length of a d-bundle to be § of Eq. (1.9). In reality this
definition tends to produce too large a composite failure probability in the chain-
of-bundles model because of the stress decay along a fiber from its peak in actual
composites. This reduces the probability of finding a flaw. A more realistic defi-
nition of § involves p (or one can modify the definition of K, also involving p) as

discussed in [32]. Except for a shift in stress scale and change in the value of m,



65

revising the definition of § has negligible effect on our results. Although we use the
same characteristic length scale, §, in HLLS and HVLLS, the physical decay length
along a fiber is about one-half that in the HLLS case for the same volume fraction

of fiber since there are three times as many fiber-to-fiber couplings in HVLLS.
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Chapter 2

Asymptotic Strength of a Planar
Local Load Sharing Composite

with Discrete Fiber Strengths

2.1 Introduction

A unidirectional composite tape is a fiber-matrix assemblage in which long aligned
continuous fibers made of one material are embedded in a planar matrix made of
a different material. Commonly the fibers are stiff and brittle while the matrix is
relatively compliant and ductile. When loaded in tension along the fiber direction,
most of the applied load is carried by the stiff fibers. Some of these fibers may fail
due to the loading. The role of the matrix is to transmit the load dropped at fiber
breaks to other intact fibers in their vicinity.

The matrix accomplishes this load transfer mostly by undergoing deformation

in shear. Its action of concentrating loads dropped by a broken fiber on fibers in

70
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the near vicinity of the break is known as local load sharing. Transverse to the fiber
direction in the plane of a fiber break, this produces large stress concentrations on
the intact fibers nearest the break and possibly smaller ones on fibers further away.
Along the fiber direction, it effects a stress recovery on the broken fiber to the far
field applied load over a characteristic length scale §. 0 generally depends upon
the geometry of the fiber arrangement in the matrix as well as the constitutive
properties of the fiber, matrix and the interface.

Various local load sharing models have been proposed. The simplest model,
used in this work is the idealized local load sharing model due to Harlow and
Phoenix [1]. In this model, the overload on an intact fiber adjacent to ¢ fiber
breaks summing on both sides in a planar tape is assumed to be K, = 1 + (¢/2).
This amounts to assuming that each broken fiber simply transfers half its load to
each of its two nearest intact neighbors in the same transverse plane. If the load
applied to the composite per fiber is x, an intact fiber adjacent to £ broken fibers
will carry load (1 + (¢/2))z. A more realistic model for elastic fibers in an elastic
matrix is due to Hedgepeth [2]. Hedgepeth uses shear-lag arguments to deduce
the stress and displacement fields due to a single break and derives the stress field
due to multiple breaks by a weighted superposition of the single break solutions.

Owing to the presence of small crack-like flaws of varying strength present in
fibers, fiber strength often tends to show considerable variability. The Weibull

distribution is often used to fit experimental fiber strength data.

F(z) =Pr{X <z} =1—exp(—(L/Lo)(x/x0)"), ,x>0. (2.1)

Here p is the shape parameter, x, the scale parameter, L the fiber length and L the

gauge length of the test. If < xy, the Weibull distribution is well approximated
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by the power law distribution

F(z) ~ L% (£>p. (2.2)

Zo

In this paper, we are concerned with the strength distribution of large idealized
local load sharing composite tapes. Following numerous previous studies, we slice
the composite longitudinally into bundles of length 25 and make the so called
“chain-of-bundles” assumption. Since stress recovery in a broken fiber is nearly
complete within length § on either side of the break, we assume that the bundle
strengths are mechanically and statistically independent of each other. Thus we
assume that the composite fails when the weakest of its independent bundles fails.
More formally, if an L-long n-fiber composite is subjected to tensile strength z
per fiber and the strength distribution of each of its m = L/(2§) bundles is G, (),

then composite strength distribution is given by

Hyn(z) =1—(1-Gu(z)™, z>0. (2.3)

I

The problem is therefore reduced to determining G, (x) under idealized local load
sharing given the strength distribution F(z) of the individual fibers.

Harlow and Phoenix [1] first recognized the existence of a weakest link basis
to bundle strength by exactly evaluating the strength distribution of small planar
bundles under a continuous distribution F'(z) for fiber strength. They found nu-
merically that there is a characteristic distribution function W (z) independent of

n such that
Wa(z) =1 — (1 - Gp(z)Y" = W(z), for z > 0, as n — co

and observed that convergence in relative terms was nearly complete for n as

small as 9 when the fiber strength variability was typical. However they were
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unable to evaluate the error in relative terms as is important in characterizing
the lower tail behavior of G, (z). In [3], Harlow considers a bundle in which fiber
strengths are either 0 or 1. He set up a primitive recursion matrix which gave the
probability of failure of a j + 1-fiber composite given the probability of failure of
an j-fiber composite and using the Perron-Frobenius theorem proved the existence
of the characteristic distribution function and related the speed of convergence of
1—(1—W(z)" to Gp(x) to the relative magnitudes of the largest and second
largest eigenvalues of this matrix. This same approach was used by Harlow and
Phoenix [4] to determine tight bounds on the probability of occurrence of a k-
cluster when composite size, n is large. Kuo and Phoenix [5] considered the more
general case in which fiber strengths are continuously distributed and by means of
a recursion analysis, obtained the characteristic distribution function as the largest
eigenvalue of a sparse infinite matrix. Harlow and Phoenix [6] applied the Chen-
Stein method to the composite with 0-1 fiber strength and obtained an expression
for the asymptotic strength as composite size increases together with a tight error
bound. Leath and Duxbury [7] gave an alternative approach to doing this with
similar results.

In this work, we begin with an n-fiber bundle under idealized local load shar-
ing whose fibers can take on one of r < n distinct strengths following a pre-
scribed discrete distribution. Specifically we suppose that the fiber strengths
(Sit € {1,2,...,n}) are i.i.d. and distributed according to P{S; = o,} = £,
7 =0,1,...;r and 09 < 07 < --+ < 0,. Using the idealized local load sharing
model we may determine integers ¢;, j = 0,1,...,r such that (1+ (¢; —1)/2)z <
o; < (14 (¢4/2))z. As will be shown in Section 2.3, we may assume that

by < ¥y < -+ < ¥l and that 09 < x < o1 so that ¢, = 0. All other cases are
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either trivial or readily collapsible into this case. Our first main result loosely

states that the probability of bundle failure, u,(n) is approximately

:u‘r(n) =~ Cﬁl(fg — fl) ce (Er _ Er—l)(n _ gr)
gl (B0 + ﬁl)b—ﬁl o (Bo+ B+ ﬂr_l)lr—zr,l

provided min(¢y, 4y — 41,..., 4, — ,_1,n — £,) is sufficiently large. Here C is a
constant that depends only on fy, 31,..., 3, and not on any of the ¢;’s.

Our second main result deals with bounds on bundle failure probability when
fiber strengths are continuously distributed according to a power law distribution.
This bound is obtained by sandwiching the power law distribution between two
discrete strength distributions and applying the first result. It is also found that

this bound is tight.

2.2 The Chen-Stein Method

As described by Arratia et al [8], the Chen-Stein method of Poisson approximation
is a powerful tool for computing an error bound when approximating probabilities
using the Poisson approximation. Let I be an arbitrary index set and suppose
{Y;,i € I} are 0 — 1 Bernoulli random variables with p; = P{Y; = 1} > 0. Then
p; = E[Y;] and we let

/\:Zpi andT:ZYi. (2.4)

1€l i€l

Also let W be a Poisson random variable with mean A € (0,00). For each i € [

let J; denote an arbitrarily chosen set of near neighbors of 7 and let

Vi=T->Y, (2.5)
J=Ji



75

We think of J; as the neighborhood of dependence of ¢ such that Y; is independent
or nearly independent of Y; for j € J;. Then for A C Z, the Chen-Stein theorem

asserts that

P{T € A} —P{W € A} <AFY D pipj +AFY D E[VY]]

i€l jEJ; i€l jEJ;
+ S E{(Y - p) (Vi + 1)} (2.6)
i€l
= b1 + bQ + bg

where f is a function for which ||f|| < min(1,1.4A\""/?) and Af < min(1,1/X).
The by, by, bg notation follows from Arratia et al [8]. Loosely b; measures the
neighborhood size, by the expected number of neighboring occurrences of a given
occurrence and b the dependence between an event and the number of occurrences

outside its neighborhood of dependence.

2.3 The Discrete Fiber Strength Bundle

Let I ={1,2,...,n} be an index set and let (Z; : i € I) be i.i.d. random variables
distributed according to P{Z; = 0} = 6y = o, P{Z; = 1} = 51, P{Z; = 2} = (3,
..., P{Z; =r} = B, where a+ 1+ fo+---+f, =1,and §; > 0forj =0,1,...,r.
Since we repeatedly discuss the event U’;Z q{Zi = j} where p and ¢ are integers,
with 0 < ¢ < p < r in what follows, it is helpful to introduce a shorthand notation
for it. We will henceforth take the shorthand {Z; € p,} to be synonymous with
{Zi€{q,9+1,...,p}}. Then P{Z; =p,} = Z?:q B;. For example, if we specify
{Z; = 3,1}, it implies the event {Z; = 1} U{Z; = 2} U{Z; = 3}. Also let us define

(0%
a+ B+t B

Vi = (2.7)
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for j=1,2,...,r and 7 = 1.

Consider an n-fiber bundle whose fibers are indexed by the set I. Let the
strength S; of its i-th fiber be oz where 0 < 0y < 0y < 093 < -+ < 0o, are
arbitrary but fixed real numbers. Let this composite be subjected to far-field
tensile stress nx in the fiber direction so that the normalized stress per fiber is x.
If x < 0g or 0, < x, all the fibers and hence the bundle survive or fail respectively
with probability 1. If however oy < x < o,, the applied stress z causes partial
failure of the bundle by breaking those fibers whose strength is smaller than z.
To ensure force equilibrium, the failure of these fibers must overload intact fibers.
We assume that this overloading occurs according to the local load sharing rule
described below. Some of the overloaded fibers may fail and produce even greater
overloads on the remaining intact fibers. This process of fiber breaking and intact
fiber overloading may possibly lead up to failure of all the fibers in the bundle,
which we take to be the same as bundle failure.

Define non-negative integers (¢; € Zy : j = 0,1,...,r) such that (1 + (¢; —
1)/2)x < 0; < (14 (¢;/2))x if 0; > x and ¢; = 0 if 0; < x. That is, ¢; is the
smallest number of broken neighbors that must surround an intact fiber of strength
o; in order to overload it to failure. We may assume €y < 41 < £y < --- < 4, for if
l; = ;4 for some j € {0,1,2,...,r — 1} then fibers of strength ¢; and o, are
indistinguishable in terms of their failure behavior at fixed applied x and we may
eliminate one, say £;1; from consideration and set P{Z; = j} = §; + f,41.

Let X,, denote the smallest applied tensile stress x at which the bundle fails;
X, is then called the bundle strength. We seek the distribution function G, (z) =
P{X, < z} for x > 0. The analysis is readily extended to a network, which

we view as a chain of m statistically and structurally independent bundles, each
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consisting of n fibers. The distribution of network strength X, ,, is readily derived
once G, (z) is known: H,,,(z) = P{X;, <2} =1—(1—-G,(x))™, for x > 0 due
to the serial nature of the network.

The problem of G,(z) determination is the subject of this paper. For the
purpose of a better overview, we give here a short sketch of the arguments made
to this end in the following sections. In what follows, a sub-bundle will refer to a
continuous portion of the n-fiber bundle. We begin in Section 2.4 by evaluating
the probability of failure of a sub-bundle within which fibers are restricted to have
strengths oy and o7 (such a sub-bundle will be called a 0-1 sub-bundle). The
approach follows that of Harlow and Phoenix [6] although we pay more attention
here to the boundary effects. Then in Section 2.5 we consider all the possible
ways in which a sub-bundle whose fibers are allowed strengths oy, o1 and o9
(a 0-1-2 sub-bundle) can fail. By evaluating the probability of each of these so
called failure configurations we show that two of the configurations dominate the
rest in the magnitude of their probability of occurrence. These two dominant 0-1-2
configurations contain a 0-1 sub-bundle in them; to evaluate the failure probability
of the 0-1-2 sub-bundle one therefore needs the probability of failure of a 0-1 sub-
bundle evaluated in Section 2.4 to arrive at the failure probability of a 0-1-2 sub-
bundle. Continuing this process inductively to a 0-1-2-3 sub-bundle we have in that
case another set of failure configurations all but two of whose probabilities turn
out to be negligible as well. Carrying on in this manner, we finally arrive at (2.77)
which is our main result for the strength of a 0-1-2-- . --r bundle. The error bounds

on y,(n) become increasingly small as 3 A (by —€1)A- - - Al —L,—1) AN (n—¥,) — oo.
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2.4 Strength of a 0-1 Bundle

Let I = {p,p+1,...,p+n; —1} C I, p < n—ny+ 1 be the index set of a
sub-bundle in the n-fiber bundle such that Z; = 1, for ¢ € I, i.e., all the fibers
within the sub-bundle indexed by I; have strength either oy or oy. Let Z;,7 € I,
be distributed as stated in Section 2.3 so that the probability of occurrence of a
sub-bundle consisting entirely of fibers with Z; = 1g is (« + ;)™ for any p. Let
ny > £1. We also define two imaginary fibers at positions p — 1 and p — 2 such
that Z,_1 = Z,_» = 1. Observe that the sub-bundle indexed by I; fails if and only
if the sub-bundle indexed by I; U {p — 2,p — 1} fails so that their probabilities
of occurrence are equal. As will be seen shortly, these imaginary boundary fibers
simplify the consideration of failure configurations close to the boundary while
leaving the probability of failure of the sub-bundle unchanged.

We wish to approximate the probability of failure of this sub-bundle, which we
shall refer to as a 0-1 bundle, using the Chen-Stein method. We begin by defining
events associated with fiber ¢ € I U {p — 2,p — 1} that produce Y; = 1 where Y;
is the dependent Bernoulli process defined in section 2.2. Following Harlow and
Phoenix [6] we define YV; = 1,i € I if Z; =1, Z;yp,01 =0,i+ ¢ +1 € I; and
there is exactly one 1 amongst Z; 1, Z; 9, .., Z;s - Otherwise we set Y; = 0.

It is convenient to express this definition pictorially as

i 1

0<s<ty £1—s

(2.8)

We will henceforth refer to such depictions of the definition of ¥; = 1 as fail-
ure configurations. Observe that we have not shown the n; — (¢; + 2) 1p-fibers

surrounding this configuration in the sub-bundle indexed by I;. On this configu-
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ration, we have marked fiber 7 and have also labelled the pressured element with
a J. This pressured fiber is surrounded by at least ¢; broken fibers so that it will
fail. Note that the failure of the pressured fiber results in catastrophic failure of
the 0-1 bundle since it implies that all other 1’s in it will be overloaded as well.

Following the Chen-Stein method, we first evaluate P{Y; = 1}:
(

oo+ B)m—h ifi=p—2,

GBeb (a+ y)m =Gt if i =p—1,
B[V = P{Yi = 1} = 1

0328 (a+ B)m G2 ifp<i<pdn —b —1,

\
(2.9)
where Y, 5 =1 if the event
p—2 p—1
) (2.10)
1 1 0 --- 0
¢

which is a special case of (2.8) occurs and Y, _; = 1 if the event (2.8) occurs with
i =p—1. Also for i > p + n; — £; configurations of the form (2.8) cannot occur
since they necessarily specify ¢; 4+ 1 fibers to the right of the starting fiber of the
configuration.

Observe that our special assignments Z, o = Z,_; = 1 enable us to treat the
special configurations associated with the left boundary as also being configura-

tions of the form (2.8). If we set A, = E[T] = S*7" ' P{Y; =1},

i=p

(1) = (n1 — 4) (P 8%) (a + By)m—a+2) {1 +0 <n1 1_ 61) } (2.11)

Then from (2.6) we approximately have P{T" = 0} ~ exp(—A;) with error

b1 + by + b3 whose magnitude we presently bound. We first choose J; = {j :
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|7 — 1| <41 4+ 1} to be the neighborhood of dependence of fiber 7. This choice for
J; gives by = 0 because then Y; and {Yj : j & J;} are independent as there are no
common fibers involved between them. Since V; depends only on {Y;:j & J;}, Y;
and V; are independent and therefore b3 = 0. Also from (2.6) we have for b,

bl S min(l, 1/)\1)2(77,1 — gl)(gl + ].)(/\1/(77,1 - gl))Q

A ()
(n1—£)

Here we have only multiplied by the factor n; — £; because p;p; = 0, when either

(2.12)
=min(1,1/X;)2(¢, + 1)

1>mny— ¥t or j >ny — ¥ — 1 or both.
Bounding b, in (2.6) requires finding pairs of failure configurations such that

Y;Y; =1 for j € J;. For 0 < s < {;, we have Y;Y; = 1 only for configurations of

the form
? J
! \
10 01 L0 -0 0 .0 1 0 0
0<s<t l1—s 0<t<s s—t
Y;
Y
(2.13)
which has, for fixed s, probability sG3af15(a + 3;)"~(1F5+3) 50 that
011 11
D EVYig] <Y sflat T (a+ gy)mm it
s=0 s=0
< ot (a+ BN sy (2.14)
s=0

— ﬁ1a£1+1(a+181)n1*(e1+2)

when 7 < p+mn; —¥¢; — 1 and 0 otherwise. Also when i=p—2ori=p—1, the
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probability of those configurations is A;O(1/n — £;). Therefore,

by < min(1,1/A1)(ng — £)Bra™H (a+ By) 6 +2)
20!)\1
b6

by is therefore \;O(1/¢;) as A; | 0. For small A, exp(—A1) &~ 1 — \; and we

(2.15)
< min(1,1/X;)

may write the probability of failure of an n;-fiber bundle, y;(n;) including the

Chen-Stein bound as

ul(nl) = (TLl — El)(glaﬁﬁl?)(a_i_ ﬂl)nl—(zl+2)

(eo(t+it)

For reasons that will be clear at the end of the next section, we rewrite this as

pi(ny) = (n1 — 6)Colra" (o + By)™ 4
1 1 (2.17)
{1i0(z+n1—€1)}

Bt
(Oz + ﬂ1)2

where

Co = =(1—m)’

2.5 Strength of a 0-1-2 Bundle

In the previous section we approximated the failure probability of a 0-1 sub-bundle.
As a first step towards an approximate formula for the probability of failure of a 0-
1-2-- - --r bundle, for r > 2, we approximate in this section, the failure probability
of the 0-1-2 sub-bundle, i.e., one whose fibers have Z; = 2.

As in the previous section, let I = {p,p+1,...,p+ny — 1} C I index a sub-
bundle for some p < n —ny + 1 such that Z; = 2, for i € I,. Let Z; be distributed

as stated in Section 2.3. Similar to the case of the 0-1 bundle, set Z, o = Z,_; =2
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for fictitious fibers at positions p — 2 and p — 1 to simplify the consideration of
boundary effects. As in the case of the 0-1 bundle, the sub-bundle indexed by I,
fails if and only if the sub-bundle indexed by I, U {p — 2,p — 1} fails. Also let
ng > {o.

Our procedure for approximating the failure probability of this sub-bundle
is similar to that of the 0-1 bundle although it is more complicated. We begin
by defining failure configurations in the 0-1-2 sub-bundle in Section 2.5.1 and
in Section 2.5.2 we evaluate their probabilities. Section 2.5.3 is concerned with

bounding the Poisson approximation error b; + by + bs.

2.5.1 Failure Configurations

The simplest failure configurations of the 0-1-2 sub-bundle are direct extensions

of (2.8)
i \J
(2.18)
2 0 0 2 0 0
N— N—
0<s<ty £y—s
and
i \
2 0 0,2 0 0 (2.19)
——— ———
11<5<l Lo—s

In scanning the 0-1-2 sub-bundle from left to right if either of these configurations
is found, we set Y; = 1 and consider the sub-bundle failed. Besides these direct
extensions, there are configurations in which a pressured fiber with Z; = 2 is
overloaded to failure by the first failure of a nearby 0-1 sub-bundle. In the following
configurations,

o -+ 19 {0-1) 1o --- 1g

[\ J/
-~

lr—s
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denotes a failing 0-1 sub-bundle with /5—s fibers and L is taken as a positive integer
such that L < ¢; Aly—(¢1+1). In this representation, (0-1) denotes the 0-1 failure

configuration (2.8). It turns out later that optimally L = —log,, (min(¢y, fo— (¢ +

1)))-

i \
20 0 -+ 0, 2 1g---1g{0-1) 1 --- 1 (2.20)
1. , 20 0N/ o 9
0<s<L la—s
i \:
2.21
2 0 - 0 2 1o+ 19(0-1) 1o -~ 1p (221)
L<s<liA(f2—(1+1)) s
i 4
2 0 --- 0, 2 1g---19(0-1)15 ---1 (2.22)
¥0 0 — 0 9
[1§5<£2—(£1+1) lo—s
i l
2.23
2, 0 0, 2 }O"'10<0;1>10"'1g 2. 0 0 (22
0<t<s lo—s 1<s<L
i 1
2.24
2 1p--- 1,011, 2 0 --- 0 (2.24)
Z;s L<s<f3—(£1+1)

Or, the 0-1-2 sub-bundle can fail by failing a pressured 2 by the failure of two 0-1
sub-bundles:

i {
2 1g - 19{0-1)1p --- 1g 2 1o --- 1o (0-1) 1y -~ 1o (2.25)
51+2§5<}g—(£1+1) l;:s

Failure configurations of a 0-1-2 bundle need not necessarily have a 2 at the pres-

sured position. The following are valid failure configurations in that their presence
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signifies 0-1-2 bundle failure, but which are not counted by the failure configura-
tions listed hitherto. In such cases, we take the 0-1 bundle’s failure configuration

as the pressured element.

0 \
(2.26)
O 0 2 \ ]_0 g ]_0 , R <O_]_> ]_Ov ]-0 ,
Ly—f1—s—1 0V (£2—261)<s<ba—(£1+2) la—s
0 \
(2.27)

9 1yl (0-1)
Lo —(l142)<s<l> 01+2

and indeed, a sufficiently long failing 0-1 bundle can double as a failing 0-1-2

sub-bundle as well.

i \J
oo 1 () (2.28)
S—— e ——
1) 0142

A few remarks about these configurations are in order. Firstly, we claim that the
above collection of failure configurations is exhaustive in that a failing sub-bundle
of Z; = 2y, i € I, fibers must contain at least one of the configurations listed
above. Secondly, not all the above listed configurations are possible for arbitrary
¢y and ¢y. If, for instance ¢; > ¢y — (¢1 4+ 1), the configurations (2.22) and (2.25)
are impossible. Thirdly, notice that in configurations (2.23) and (2.26) we specify
certain fibers to the left of fiber ¢ whereas in the other configurations, we do not do
so. This is done to reduce overlap between configurations so that the dominating
part of the Poisson approximation error, by can be kept small in comparison to

the probability of bundle failure. Without fibers to the left of fiber i in (2.23), we
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have the configuration 2 1p---1g 2 0---0 which may overlap (2.20) as

i J
) '
20 - 02 1p-- 10<0;1>10 o ly Joclo 2 0 o 0
0<s1<L ly—s1 £y —s2+s1 1<sa<L

and results in b, being of the order of the probability being estimated. Using the
methods of the next section, the probability of this event may be seen to be of
order comparable to the probability of occurrence of either (2.20) or (2.23) which
dominate the probability being estimated. Since a tight error bound is desired,

this possibility is to be avoided.

2.5.2 Failure Probability

The probability of occurrence of any of the various failure configurations listed in
section 2.5.1 depends on 7 € I,. Since each configuration specifies at least £y + 2

fibers to the right of fiber 7,
Y;=0 fori>p+no—4y—1

Let L < i < p+ nyg —¥fy — 1. For this case we now evaluate the probability
of configurations (2.20) and (2.23) and show that these are the dominant failure
configurations in that their probability of occurrence is of higher order than that

of all other failure configurations listed in Section 2.5.1.



From (2.20) and (2.17) we have

-1
P{(2.20)} = (B + Ba)Bolx + B + Bo)"2~ (22 ZGSM(@ )

s=0

= ﬂ?(ﬁl + ﬂQ)Coglael (a + 51 + ﬁQ)nz—(Zg—}-Q)
1

L
ZQS(KQ _ El _ 8)(0& + ﬂl)&—&—s
s=0
1 1
{1:EO<Z+£72_£1_8>}

P{(a0)) =T ANAERR

(4B +B)" 2 {1+0 (1)}

which reduces to

Also, for configuration (2.23) we have

L—1 s—1

P{(2.23)} = (b1 + )3 Z Za5+tu1(£2 — 8)(a+ B + Bo)n2 (laHiHD)

s=1 t=0
= ﬁg(cofmzel)(a + 6+ ﬁQ)nz—(eHz)
L-1
Zozs (1 - ’Y;) (fg -l — 3)(a + ﬂl)fz—zl_s
s=1

1 1
1+ —
{ O(£1+£2—€1—8)}

where 7, is defined in (2.7) and which when evaluated gives

_ Broa+ B1) (61 + o) "
Gila+ B+ B (a+ ) (B + o) +afi}

(ot B+ Bo)™ ™ {1+0 (1) }
Adding the disjoint probabilities (2.30) and (2.32) we get

Bo(a+ B1)(2a + B1)(Br + B2)?

P{(2.23)} (£2)

P{(2.20) U (2.23)} = ; p1(f2)

B Bi(a+ B+ Bo)* {(a+ B1)(Br + B2) + oy
(a+ B+ Bo)> {1£0(+)}

86

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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It remains to be shown that all other configurations listed in Section 2.5.1 have

probability whose order of magnitude is smaller than P{(2.20)U(2.23)}. We begin

with the configurations (2.18) and (2.19). Their union starting at fiber ¢ is a subset

of the event

so that
P{(2.18) U (2.19)} < P{(2.34)}

= (b1 + ) Boloc
= P{(2.20) U (2.23)}O(+})

Next consider the superset of events (2.21) and (2.22):

i \J
2 0 --- 0 2 \10'”10(0;1”0“'19
L<s<f3—(£1+1) la—s

Then

P{(2:21) U (2.22)} < Bo(B1 + Bo)(a + Bu + )" 4+

£27(Z1 —|—2)
o’ py (b — s)
s=L

= P{(2.20) U (2.23)}0(+¥)

(2.34)

(2.35)

(2.36)

(2.37)

By a similar calculation, it may be seen that the probability of (2.24) is also
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P{(2.20) U (2.23)}O(7¥). Next for (2.25) we have

Lo—(£1+2)
P{(2.25)} =f3(a+ B+ o)™ D Y ()it )
s=01+2
2C,
SG(OJ +ﬂ,281 (')i‘ ﬂ2)2 (CY + ﬂl + /62)712782/1’1 (62) (2 38)
(Zl((fz —24;) Vv 0)3 Zl)
Uy — 0 "1
_ 01((y — 201) V0)®
= P{(2.20) U (2.23)} O ( =t ~E )

Note here that if
01 (g — 24,)3 L

0y — 0 v =Q(1)
the contribution of P{2.25} will be quite substantial in comparison to P{(2.20) U
(2.23)}.
Next

P{(2.26)} <A, (Cobra®)(a+ )2~"

52—(f1—|—3)
Z afz—fl—s—l(a_i_ﬂl +62)7‘!,2—@2—}-1)—(@2—[1—8—1)
5:0V(£2—2£1)

52042

B+ Bo)(a+ Bi + fB2)?
=P{(220)u(223)} O (&%&)

na—t, 11 (£2)
(a+ B + ) t—

=1

and

lr—1

P{(227)} <A(b87a")(a+ Bi+ B) @ N (a+ )’

s=lo—(£1+2)

ng—(fz—l—?) /1,1(62)
(a+ B+ Ba) l— 0,

<52(04+51 + B2)
1—(a+ )

=P{(2.20) U (2.23)}0(1/(t> — £1))



89

Finally we have
P{(2.28)} <(£1048?)(a + B)"

<pi(b2)0 (M)

« 1 b
=P{(2.20) U (2.23)}0 (%)

Adding all these probabilities, we have for p+ L <i<p+4+mng— 4y — 1

Ba(a+ B1) (2 + B1)(B1 + B2)? o)
Bila+ Br + B2)*{(a+ 1) (51 + B2) + b} pis

(a+ B+ Ba)"2 " (2.40)
{1 o (75 bl -2t)v 0}37&> }

P{Y;=1} =

by — ¥y !

Next consider ¢ such that p < ¢ < p+ L and evaluate the probabilities of
the configurations listed in Section 2.5.1. (2.30) continues to hold for P{(2.20)}.
However, the event (2.23) maybe decomposed according to whether i < s or not.

i \J

- v

-~

lo—s 1<s<L

If i > s, the configuration remains (2.23) with s constrained to lie in the range

1 < s<i. P{(2.23)} is now given by

L-1 s-1
P{(2.23)} = (81 + )53 Z Za”t,ul(fz — $)(a+ By + fo)2~(LH13)
s=t—p+1 t=0
i—p
+ ﬂzz Z Oés,m (62 — 3) (a + ﬁl + ﬁQ)nz—(ég—l—Z)
- L—-1 s—1
= (Bi+ BB Y Y oty — ) (a+ By + o)D)
i—p+1 e
+ ﬁQZ Z (OVY2)S,U,1 (f2 — 3) (a + ﬁl + /82)71.2—([2—1—2)
s=1

(2.42)
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The first term in (2.42) reduces to (2.32). The second term when simplified be-

comes

0?63

(a+ B1)(B1+ B2) + afhy
(1= (m72)™) {1 +0 (% " - €1) }

{second term of (2.42)} = p1 (o) (a0 + By + Bo)m(B2F2)

(2.43)

That the probability of all the other configurations is dominated by P{(2.20) U
(2.23)} may be seen in the same way as before.

Next consider the case 1 = p — 1. Then

P{(?.QO)} :w N1(£2)(a’+ﬂ1 +ﬂ2)n2—(€2+1) (2_44)
and
P{(2.23)} = aﬂ—fz p1(la) (o + By + Bo)m2 (2 FD) (2.45)

Again all other configurations’ probabilities are dominated by these two. Finally,
when i = p — 2, P{(2.23)} = 0. However, P{(2.20)} = p1(f2)(a + By + Bo)™
which once again dominates all other probabilities.

Setting Ay = E[T] = Y27 ' P{Y; = 1}, we have

i=p

Aa(ng) = (ng — £)Crp (b)) (v + By + Bo)"2 %

040y — 20,) v O3 L (2.46)
{1i0(’7{:+ 1{(262_2 }%IJ“T—@)}

where

(1 =7) A +7)(1 =)

C, =
' 71(1 - 71)(1 - ’Yl’Yz)

Choosing L = [—log,, ({1 A (€2 —£1))], we have the error term close to its smallest
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value and

Ao(ng) = (ng — £)Crp (o) (e + By + ﬁQ)anz ( |
3 —lo . 2.47
{1 +0 (El{(@ —24,) vV 0} - [—log,, (1 A (b2 — £1))] ) }

62—61 ! n2_€2

2.5.3 Poisson Approximation Error

We now bound the Chen-Stein error b; +b,+bs arising from the Poisson approxima-
tion of the dependent process Y;. We begin by defining J; = {j : |j—i| < fp+L+1}
so that random variables Y; and {Y; : j ¢ J;} are independent and consequently,

bs = 0. As before,

b1 S min(l, 1/)\2)2(77,2 — —62 - 1)([2 + L + 1)()\2/(77,2 - 62 — 1))2
(2.48)

=min(1,1/X)2(la + L+ 1)X5/(ng — £y — 1)
Bounding b, requires finding pairs of failure configurations such that Y;Y; =1,
j € J;. If one or both of ¥; and Y; arise from a configuration different from (2.20)
and (2.23), we know that the probability of the resulting overlapped configuration
is P{(2.20)U(2.23)YO(¢; ! 4 (b, — £1)~1). Therefore we only need consider overlaps
of (2.20) and (2.23).

Configurations of the form (2.20) may overlap themselves to produce Y;Y; =1,

for j € J; as
i \J J
2, 0---0 2 \10...1()((1;1)10...101 1 0---0
0<s1<L w<s2<L

ly—s1—w—1

(2.49)
.

2 1g -+ 19 (0-1) 19 -~ 1g

v
lo—s9
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and
1 4 J
2, 0---0 2 10---1(]((2:1)10---10 ‘20v20’ 21
0<s1<L fo—s1 0<w<L—1 (2.50)
\J
0 .. 0, 2 Lo (Nl
0<sa<L ly—s5
or they may overlap configurations (2.23) as:
i \J
2, 0---0 2 \10...1()(9_,1)10...101 1 0---0
0<s1<L fo—s1—w—1 w<t<s2 (251)
J \J
2 lo o L(0DL 1l 2 0.0
PR 0<s2<L
and
i \J
20 000 2 1o 1 <(1;1> Lol 2 - %
0<s1<L lo—s1 0<w<I—1 (2.52)
J \J
2 1 1 (0;1> o1l 2 0.0
lo—89 0<so<L

Turning next to configurations in which (2.23) overlaps itself, we have Y;Y; =



1,7 € J; when
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\

1o -+ 1o {(0-1) 1g+++ 1, 2 0---0

0<t<s1 g;,rsl

——

1<s1<L

(2.53)

2 1o ---19{0-1)1g---1p 2 _0...0

..

0<sp2—s1<L—s1

and

2, 0---0, 2

ly—s2

0<s2<L

0<t<s1 lo—s1 1<s1<L
l
\20"'20310...0/ 2 \10"'10((1—F1>10“‘101 2 00,
0<w<s2 lo—so 0<s2<L
(2.54)

and finally for configurations in which (2.23) overlaps (2.20) to produce Y;Y; =

1,7 € J;, we have

i )
2, 0---0 2 10...10@;1)10...10 2 0---0
0<t<s1 ly—s1 1<s1<L
(2.55)
J \
2 12 2 0.0, 2 11 (ql}> lo - 1o
0<w<L 0<s2<L fo—5o
In bounding the probability of these configurations the configuration
2 \]_0 e ]_0 <0—1> 10 e ]_0J (256)

lo—L+1<tly—s9<L>
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arises repeatedly and has probability

L—1
P{(2.56)} <f > (a+ )2 (g — 5y — 4 — 1)
=0 (2.57)

1
= %0 ((a + ﬂ1)L)
With this result in hand, it is readily seen that P{(2.49)} = XM0((a + 61)%).
For, the probability of the fiber arrangement to the left of the second pressured
element 2 is bounded from above by \,, the arrangement to the right of the second
pressured element has probability bounded from above by AO((c + 31)~%) and
these two events are independent.

Similar arguments for the other configurations establish that the Poisson ap-
proximation error is AoO(XAo/(a + B1)F). Since Xy = o(al), the Poisson error is
bounded more loosely by AO(al/(a + B1)F) = MO (vE).

Thus, the probability of failure of a 0-1-2 sub-bundle accounting for both
boundary and Poisson approximation error is

pa(n2) = (ng — €2)Crp () (a+ B + 52)712_42
{1 L0 <€1{(€2 —201) v 0}3 b 1

bt T T
[—log,, (€1 A (£y — £1))] ) }

o —62

+ (2.58)

where
_ Bala+ B1) (20 + B1) (B1 + o)
Bi(a+ B+ Bo) { (a4 1) (51 + Ba) + af }
(m = 7)1+ 7)(1 = 1)
(1 =) (1 = 7172)

2.6 Strength of a 0-1-2-3 Bundle

Gy

Let, as before I3 = {p—2,p—1,p,p+1,...,p+n3—1} C I for some p < n—nz+1

such that Z; = 3¢ for « € I3. Let Z; be distributed as described in Section 2.3



except that Z,_o = Z,_1 =2 = 1. Also let ng > /.
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The generalization from the 0-1-2 bundle to the 0-1-2-3 bundle proceeds on

much the same lines as the generalization from the 0-1 bundle to the 0-1-2 bundle.

Let L be as defined in Section 2.5.1 and let us denote a ¢35 — s fiber long failing

0-1-2 sub-bundle with

2 -+ 20 (0-1-2) 29 -+ 2 .

-

v

-~

l3—s
Configuration (2.20) generalizes to
i \
33 0 --- 0 3 go---20(0-i-2)20---29
0<s<L s
and
i \J
310 0 0,03 1o {011 L
0<s<L lses
and configuration (2.23) generalizes to
U \
31 O -2 03 2 - 2(0-1-2) 2 2 3 0 -
0<t<s 53‘:8 1<s<L
and
U \J
B0 s 0,03 T o@Dl lg 30
0<t<s 1<s<L

l3—s

(2.59)

(2.60)

(2.61)

(2.62)
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Then,
L1

P{(2.59)} = (81 + B2 + B3)Bs(a + By + B2 + B3)™ 1D "0y (L5 — )

s=0
= (81 + Bo + B3)B3(Crus (o)) (e + By + B2 + B3)"a EaF2)
o (2.63)
Dol — b —s)(a+ By + B) 0

s=0

{1i0<e1{(£2—2£1)v0}3721+ L )}

by — b Lol —ty—s

which reduces to

(a+ B+ B2)(B1 + B2 + (3) 03

P{2.59} = (ﬁl +ﬂ2)(01+ﬂ1 +,62+ﬂ3)2

po(Cs)(a+ By + Ba + B3)™ 7% (2.64)

Similarly,

L-1
P{(2.60)} = (B + B2 + B3) Bs(cx + B + Bp)ne~ s *2) Z o’y (s — s)

= (2.65)
- (aﬁzfﬁ(gll igj:gj))?ﬁgm () (a0 + Br + Bo + )"0

pa(fs) o b3 — 4 ( a+ b )%22
pa(ls) (b3 — L2)(by — £1) \a+ Br+ B2

1 1 72)&—@2
{(£3—£2 fz-&) (71

(2.64) dominates (2.65). Next,

L—1 s—1

P61} = (B+ Bt BB . D0 palle = 9)(a-+ B+ o+ s
s=1 t=0
= ﬁg(CLul (b)) (v + B1 + Bo + ﬂ3)n3—(€3+2)

L-1

Z a’ (1 - 75) (63 — Aty — 8)(a + 61 + 52)53—62—5

s=1

0 {(6y —20,) V 0}, L
1+ 1y =
{ O( 62_61 /Yl+€3—£2—s

Since

(2.66)
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which upon reduction becomes

Bia(Br + Po + B3)(a+ B1 + ()

Pl26)} = (81 + Bo){(a+ b1 + B2)(B1 + B2 + B) + a(Br + B2) } ol
(o + B1 + Bo + B5)"e~ (672
(2.67)
and
1 51
P{(2.62)} = (Bi+ B+ 83)05 D D i (bs — s)(c + By + Bo + fBy)"e T3
e (2.68)
which when simplified gives
P = 5l G e sy e M) (2.69)

(a+ By + Bo + B3)me 22
(2.69) maybe seen to be of smaller order of magnitude than (2.67) exactly as (2.64)

is seen to dominate (2.65). Also, adding (2.64) and (2.67) gives

Bs(a+ B1 + B2)(2a+ B1 + B2) (B + B2 + (3)?
(61 + Bo){(a+ B + Bo2) (1 + B2+ B5) + a(f1 + (2)}

pa(l3) (o + By + Bo + By)"e~ G +2)

P{(2.59) U (2.61)} =

(2.70)
We must also consider the configuration of the form
i \J
3 2 -+ 20(0-1-2) 29 -+ 29 3 29 -+ 2 (0-1-2) 29 --- 2 (2.71)
tr42<s<ls (241) A
which has probability
£3—(£2+2)
P{(2.711)} = ﬂ?? Z p2(s)pa(ls — s)
s=ls+2
_ -9 3 £o
_ P{259uU (261)) 0 [ Al AUl —26) VO, (ﬁ)
l3 — £y "

(2.72)
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In a manner similar to the 0-1-2 case, we may show that all other failure
configurations of a 0-1-2-3 bundle are dominated by the configurations (2.20) and
(2.23). Accounting for the discrepancy in the probability of (2.23) when p < i < p+
L exactly as in the 0-1-2 bundle, we finally have for Ay = E[T] = Y27 ' P{Y; =

i=p
1}
A3(ng) = (n3 — ls)(Copz(ls)) (e + By + P2 + 53)713%3
1102 1 L L
{ <Z+£2—£1+€3—£2+n3_£3+
af( —20) VOP 4, (2.73)
Uy — 0, "t
0 (b — 0){ (63 —26) V O} (E)fz
b= L n M
where
C, = Bs(a+ B+ B2)(2a + By + 52)(By + B2 + B3)?

(B + Bo)(a+ B + B2+ B3)*{ (o + By + B2) (51 + Bo + B3) + (B + B2) }
(72 = 713) (1 + 72) (1 = 13)?
Yo (1 —72) (1 = 7273)

The Poisson approximation error can be bounded exactly as in the 0-1-2 case. It
turns out to be of the order of the error term in (2.73) and including that as well,

we have u3(n3) = A3(n3) for the probability of failure of the 0-1-2-3 sub-bundle.

2.7 Strength of a 0-1-2-.-..--r Bundle

The above steps of generalization from a 0-1-2-- - --j—1 sub-bundle to a 0-1-2-- - -5

sub-bundle can be carried out indefinitely. For the 0-1-2-----5, 7 > 2 sub-bundle
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which is n; fibers long, the dominant failure configurations are

i \

BoO e 0,5 g=Do G e {012 (= 1) = o -+ G Vg
(2.74)

and

Li—s
4
i 0 - 0
———
1<s<L
(2.75)
and evaluating their probabilities as before, we have
pi(ng) = (nj = ) (Cijmapj-1(4)) (@ + B+ -+ f)™ 4
-1 Ui N (b — 1
{1i0<[ og,, (&1 A (b 1))1+
n; — Ej
Gl — ) -~ (4o — 42){(4; — 2¢;_1) V O} (2.76)

fj — fj_l
12 ) £i—1
1 Yi—2

Co = (-1 =) (A + 7-0) (1 = )2
’ Yi—1(1 = 1) (1 = ¥57j-1)

where

This is the relation between the probability of failure of a 0-1-2-----j and a 0-1-
2-+---7 — 1 bundle and it brings out the hierarchical nature of the failure process.

Explicitly, by substituting for p;, 7 = 1,2,...,r — 1 and replacing n, by n we
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obtain
pr(n) = CoC1Cy -+ - Cry
Ol = £)(ls — G) - (b — £u_y)(n — £,) (2.77)
a4+ B) s (a+ B+ Bo) T (1 £ )

where we have used o + 5y + -+ + 3, = 1. Here,

B [—log,, (b1 A (€2 — £1))]
==0 ((n — L) N (Njoy (8 = £5-4))

\T/ [T { (b1 = o) (Y1 /Am2) = } {(4 = 265-1) V 0F° (2.78)
i — 1ty

Jj=2

where terms involving ¢,, p < 0 must be dropped. Also note that

f[cj—l _ (1 _ 71)(1 _ ’Yr) ﬁ (ijfl — fyj)(l + ijl)(l — 7j) (279)

= P V11 = 575-1)

2.8 Power Law Fiber Strength

We now use (2.77) to estimate the strength distribution of a local load sharing

n-fiber bundle whose fiber strengths are distributed according to the power law

)
0, <0
Fly)=qy, 0<y<1 (2.80)
1 y>1,
\

where p is the shape parameter of the distribution. To do so we must discretize
F(y) sufficiently coarsely. For simplicity, we will restrict the applied load per fiber

to take on one of the discrete values

1 1
_ - k=0,1,2,... 2.81
T RE2S T 1+ (k2c/2)’ 0,1,2, (2:81)
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where c is a sufficiently large integral constant so chosen that the discretization of
F(y) is suitably coarse. For each k and x;, we consider the bounding distributions

F,.(y) and Fy(y) of F(y) defined as follows:

01 yﬁﬂfk

F(K((G—D%)z), K((G— 1%z <y < K(5%c)zs,
Fi(y) = < (2.82)

and
0, y<0
F(K(c)zp), 0<y<K(c)xy

F(K(]2C)xk) ; K((] - 1)26)xk S y < K(jQC)xka .7 = 2: 37 R k

1, y > 1.
(2.83)

Figure 2.1 shows a sketch of such discretization with £ = 3, and ¢ = 2. Thus,
for all y,

Fy(y) < F(y) < Fi(y)- (2.84)

Let Gy (xk), Gn(zx) and G, (zx) be the bundle strength distributions corresponding

to fiber strength distributions Fy(y), Fx(y) and F,(y) respectively. Then,

Gn(zk) > Gn(zr) > G, (xk) (2.85)

This can be seen by investigating the realizations of fiber strength. For any set of
realizations Sr of n-fiber bundles drawn from the distribution F(y), a set of equal

probability Sr drawn from F,(y) can be constructed by horizontally projecting
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Figure 2.1: Schematic of the discretization of a continuous power law distribution

using k = 3, and ¢ = 2.

fiber strengths in S onto the distribution F',. More specifically, suppose wp =

{51, 89,...,8,} € Sk is a realization of an n-fiber bundle drawn from F(y). From
it we may then construct the realization wp = {s;, S5, ...,8,} € Sr according to
2
cl| 2 [s;
=14 2 /21 2.86
S * 2 [ c\ xg -‘ (2.86)

For the discretised distribution function (2.82) we note that the error term in
(2.77) is O(1/c). Also, we have £; = ¢j?, for j = 1,2,..., k. It turns out that this
choice of ¢; maximizes G,,(zy); i.e., {; = ¢j* approximately satisfies dyy,/9¢; = 0,
for j = 1,...,k. Similarly, ¢; = ¢j?, j = 1,...,k — 1 minimizes G,(z)) thereby
supplying tight bounds on G, (zy).

Corresponding to the discrete distribution function F,(y) we have the proba-
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bility masses

a=
(2.87)
ﬁ] = (K(]QC)xk)p - (K((] - I)QC)xk)p’ for .7 = ]-a 2a SRR k
where we have identified the masses with underlined versions of «, 3, ... defined
in Section 2.3. Similarly, corresponding to F(y) we have
a = (K(c)zp)”
(2.88)

B; = (K((j +1)*c)ax)” — (K(j%c)ax)’, for j=1,2,...,k—1
We now apply (2.77) to compute the probability of failure of a 0-1-2-----k
bundle, G,,(xx) whose fiber strengths are distributed according to F(y) under
applied load z; per fiber. Observe that in this case

N
1=K (20

The first product in (2.77) becomes

k k _ 1 1

e =(1-=)(1-— H(Kf1 w) (L) (- #)

1 Jj—1 Kf o 1 (1 - 1 )

J= J= K?_, K?_ K? (2.89)

G5 i1 ()

To further simplify (2.89) we note that

Nz |20/, for j > [3p]
1— (1 - —,) ~ (2.90)

! exp (e 2/7), for j < [3p]

where we have picked the transition point from one form to the other by comparing
the numerical values of each form on the right side with the form on the left side.

Then,

Hc,-,1 ~ H (1 - (1 — l) ,,) ~ ®(p) (2]5!) (2.91)

J
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where
[3p] —2p/3j
exp(—e2P/7)
o(p) = [ =2
(°) H 2p/j
[3p]! Bl (2.92)
~ 2p) exp —/0 e tdt
[3p]!

= gy P {1301 xp(=20/ [391) + 20120/ [30]) + ¢ '}

where Ei denotes the exponential integral

T et
Ei(m):/ St @ #0

o0

The second product in (2.77) may be reduced as
k

2 k!
j

1

(6t =T+ 107 ey = (5) O (2.99)

Finally, the third product in (2.77) becomes

9 pc(2j+1) k=1 /.9 pc(2j+1) pc(2+1)
J°c _ . J°cT) 2
{05)=) - I(5) (o)

k—1

2
j=0 j=1 e (2.94)
; 2p kN2 \ %
~ (k%e)*(2/c)" exp (‘x_k) (k(Z(k—)f—l)>

Upon applying Stirling’s formula k! ~ v/27e *k¥t%5 and making the substitution

k%c/2 =~ 1/z}, for large k, we have
j%c peAZi+1) A7\ [ 2 \** [cxp\rel2
1+4— )z ~|— — (—)
2 c cTy, 2
( . 2 )
exp | —— —2pcy [ —
T CIp,

Multiplying (2.91), (2.93) and (2.95), we have for G, (zy)

k-1

<.
Il
)

(2.95)

G () = () = (0 — 2/ ¥erp) (Z2) 5T exp (—BQ—”) (2.96)

7 T Xk
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where
A e%r

)=o) (1) 5 (2.97)

and

log(4pc), [z
B=1 2c— ———— )/ — 2.
B + (2¢ p ) 5 (2.98)

A similar calculation may be carried out for G, (z)) which is the probability
of failure of a bundle with fiber strengths distributed according to the law F(y).

Manipulating the expression for p,.(n) in (2.77) as before, we get

Gulr) = ) = (0~ 2/ e ) (5) "o (-BL) (29

2 Tk
where
- 1\ e?1
N = — —_— 2.100
=20 (5-) 5 (2.100)
and
il log(4pc), [z
B=1-(2 — N = 2.101
(2c-+ B [ (2.101)
The bounds G, (7;) and G, (x;) are hardly asymptotically convergent as xy, . 0.
In fact,
G () 32p2c
~ 2.102
G (o) /X €Xp 0 ( )

which blows up as xj | 0.

2.9 Discussion and Conclusion

Despite their not being tight bounds, the forms of G,(z;) and G, (z;) suggest
the following form for the strength distribution of n-fiber bundles with power law

distributed fibers:

Go(z) = (n — 2/20)R(c, ) (%’“) T (—Bi—f) (2.103)
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where B = 1+ (o —log(4pc)/p))v/zk/2c with —2¢ < s < 2cand 1/4 < ¢; < 3/4.
Also R must be bounded between X and X.

The question arises as to the choice of ¢. Clearly, choosing ¢ = 1 or close
to one in (2.82) and (2.83) results in the finest possible discretization, one which
will capture the true fiber strength distribution. However if such a choice were
made the error bounds in (2.78) will become O(1). Thus ¢ should be chosen large
enough that the errors in (2.78) are well bounded, while not so large that it is an
extremely coarse discretization of the given power law distribution.

It is interesting to note that a form for G, (x) similar to (2.103) was arrived
at by Phoenix and Beyerlein [9] using heuristic arguments for growth of clusters
of breaks in a composite with fibers of continuously distributed random strengths.

For the n-fiber bundle distribution they obtain

a0 (5) e (-5%)

“ 1 e [—nN(p) (g) exp <_Bic_p)}

[1 ¥ % <r(1/p, 1)+ ﬁ)} (2.105)

where I'(1/p, 1) refers to the incomplete gamma function. Also, for X they have

(2.104)

where

o=

B=2"

03P
N(p) = 25/235p/2

(2.106)
This formula has been verified against Monte Carlo simulations and found to be
very accurate when p is large, say p > 5. It will be observed that although the
scale factor N does not match, the other dominant terms including the power of
(z/2) and the argument of the exponential functions in (2.103) and (2.104) match
very closely by setting ¢ = 1 in (2.103). This suggests that the error bound (2.78)

is much too conservative when p is large when c is taken to be small.
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Chapter 3

Theoretical and Monte Carlo
Study of Lifetime Distribution for
Fibrous Composites in

Creep-Rupture Loading

3.1 Introduction

This work considers the lifetime statistics for unidirectional fiber-reinforced com-
posite materials in which aligned elastic creeping fibers are embedded in a vis-
coelastic matrix and which fail by stress- or creep-rupture under tensile creep
loading (sustained load over long durations). The failure process involves both
random time dependent fiber failure and matrix viscoelastic creep. If the fibers
are much stiffer than the matrix, as is commonly the case, the bulk of the tensile

load applied in the fiber direction is borne by the fibers. Accordingly composite

108
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lifetime is for the most part determined by stochastic fiber failures which intro-
duce considerable statistical variability in composite lifetime itself. In this work
we construct probabilistic failure models of such materials under creep loading, de-
rive composite lifetime distributions from these models and validate them against
empirical distributions obtained from Monte Carlo simulations of their failure.

Common examples of fiber-matrix systems which undergo creep rupture when
subjected to creep loading include polymer matrix composites such as aramid,
graphite, S-glass, or kevlar fibers embedded in a polymer matrix such as epoxy
or polyester resin or metal matrix composites such as silicon carbide fibers in an
aluminum matrix. Pressure vessels, engine components, flywheels, and reusable
rocket motor casings are some of the structures in which these fiber-matrix sys-
tems find application and in which they may fail by creep rupture. In life safety
applications, structures must be designed so that their probability of failure is
extremely low (smaller than say 107%) and for this reason accurate knowledge of
their lower tail lifetime distribution is valuable.

Fiber creep-rupture originates at the molecular level in the form of inter-
molecular slipping and bond breaking due to thermal activation especially in kevlar
fibers and to a lesser extent also in graphite fibers. In time, these microstructural
defects are thought to overload other neighboring molecular bonds eventually form-
ing microcracks or flaws of random strength at random locations in the fiber which
grow in time and eventually travel across the fiber, thereby failing it. Conceptu-
ally, fiber failure models capture the growth of defects within small fiber segments
by accounting for the time taken by some defect in a small fiber segment to reach
a critical size. This time depends on its load history and the inherent variability

of the material.
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Damage accumulation within a unidirectional composite under creep loading
begins with the failure of the weakest fiber flaws some time after load applica-
tion. Fiber failure may be accompanied by one or more of fiber-matrix interfacial
debonding, matrix yielding, fiber pull-out and frictional sliding of the fiber in re-
lation to the matrix. In all cases, stress dropped at a broken fiber gets transferred
primarily by means of matrix shear to neighboring intact fibers whose failure it
then proceeds to hasten. This in turn may lead to successive failure of nearby
fibers culminating in the formation of a propagating catastrophic crack which will
fail the entire composite. While the complex phenomena accompanying fiber fail-
ure undoubtedly affect composite lifetime statistics, they are secondary in that
they merely modify the composite lifetime determined by fiber breaking and the
interaction between fiber breaks.

A comprehensive study of the composite failure process including all the details
of the failure mechanisms is yet impossible both from a mechanics and from a
stochastic process standpoint. We will therefore first describe an idealization of
composite structure and failure processes in terms of successive fiber failure and
load redistribution by means of matrix shear which, while still preserving its key
physical aspects and capturing the dominant statistics of its lifetime, will render

its consideration tractable.

3.1.1 The Idealized Unidirectional Composite

Our idealized composite consists of a parallel array of n stiff, brittle, elastic fibers
of cross sectional area Ay and length L, embedded in a flexible, perfectly bonded,
elastic or viscoelastic matrix. Two fiber arrays are considered: a linear array

forming a 2D planar composite (“2D Array” ) and a hexagonal array forming a



111

3D composite (“3D Array”), as shown in Figure 3.1. As shown in the figure, fibers
in the 2D array are indexed from left to right by a single integral coordinate ¢
whereas in the 3D array, each fiber is identified by its £ and m coordinates. We
assume a high fiber-matrix stiffness ratio so that the fibers carry virtually all the
tensile load. The composite is loaded by applying a far-field, tensile load p, to the
fibers so that total tensile load is approximately np,,. The matrix acts primarily
to transfer load locally from broken to intact fibers through shear. This is idealized

in terms of specific fiber load-sharing models in Section 3.2.

Peo

Figure 3.1: The two fiber arrays considered: (a) planar array and (b) hexagonal
array. The far-field stress applied to the fibers is ps. Fibers in the 2D array are
indexed by a single integer ¢ whereas in the 3D array, they are indexed by the

ordered pair (£, m).

Fibers typically have random flaws distributed along them which are formed

during their manufacture or processing. In Section 3.3 we adapt a fiber lifetime
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model due to Coleman to our particular situation wherein the lifetime of a fiber
is determined by the breakdown of its weakest flaw which depends on its load his-
tory. As would be expected, for fixed weakest flaw strength the lifetime decreases
with increasing fiber load and for fixed load history, the lifetime decreases with
decreasing flaw strength. As the strength of the weakest flaw tends to be random,
so also is the fiber lifetime for a given load history.

When a constant tensile load of p, per fiber is applied to a composite specimen,
the first few weakest fibers successively fail and the matrix surrounding each fiber
break serves to transfer the lost fiber load to neighboring fibers through shear
deformation. This stress transfer occurs over a length scale, which in general is
time-dependent, and of the order of a few fiber diameters. The resulting local stress
concentrations may cause neighboring fibers to fail earlier than the next weakest
fiber in the composite under far field load of p.,, thereby possibly diverting the
fiber break path from that which follows the weakest flaw strengths to that which
follows the highest stress concentrations. In turn, as time progresses, these new
breaks will cause even more fiber failures in their vicinity, and so on. Elsewhere
in the composite, removed from this growing cluster of breaks other fiber failures
continue to occur; these may merge and become part of the cluster as it grows. As
the size of a cluster of breaks grows, the stress concentration on the fibers ahead
of the cluster tip steadily increases and the time between the formation of breaks
extending the cluster decreases. In other words as time progresses, cluster growth
accelerates and effectively forms a running crack which propagates until it fails all
the fibers in the composite. The lifetime of a specimen is defined as the time to

complete failure of the composite since the time of application of a far-field load.
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3.1.2 Results from Previous Literature

We may classify previous literature pertinent to the present study into two cate-
gories. The first category consists of work on fiber lifetime model formulation and
the determination of asymptotic lifetime of equal load sharing bundles by Cole-
man [1, 2, 3, 4, 5], and Phoenix [6]. Equal load sharing is the manner of load
redistribution in a partially failed composite wherein the load dropped by broken
fibers is equally divided amongst all the surviving fibers. We detail Coleman’s
fiber lifetime formulation in Section 3.3 and Phoenix’s conclusion that the lifetime
of an equal load sharing bundle of Coleman fibers is asymptotically normally dis-
tributed in Section 3.4.1 and will therefore not go into them here. Ibnabdeljalil
and Phoenix [7] study the lifetime distribution of composites by means of Monte
Carlo simulations where global load sharing, a more continuous version of equal
load sharing in which stresses dropped by a break is regained a certain character-
istic distance away from the break, applies and find that under certain conditions,
their empirical distributions have a weakest link structure in terms of links with
log-normal lifetime.

The second category of work relates to local load sharing composites. Here,
unlike in equal load sharing bundles, stress concentration ahead of a transverse ar-
ray of fiber breaks (a discrete crack) in the composite is concentrated at the crack
tip and fibers further away feel little overload due to the crack. The asymptotic
lifetime in such a case is not normal. Instead it has a weakest link basis in terms
of a certain characteristic lifetime distribution as Tierney[8, 9] and Phoenix and
Tierney[10] have shown. These authors consider idealized load sharing rules, which
in the case of a planar array of fibers translates to the stress concentration on the

two fibers adjacent to an r-cluster of breaks being equal to 1 + r/2. While this
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idealization captures the important characteristic of crack formation and propaga-
tion in the composite, it is far too severe. Hedgepeth [11] and Hedgepeth and Van
Dyke [12] give a mechanically consistent means of calculating the stress state in a
partially damaged composite by their shear-lag analysis which results in more re-
alistic stresses in the composite. Their analysis is restricted to the case where both
the fiber and matrix are elastic. It was extended by Lagoudas et al [13] to the case
when the matrix may be viscoelastic and all the fiber breaks in the composite lie
in a single plane perpendicular to the fiber direction. Beyerlein and Phoenix [14]
however give a shear-lag methodology to compute the stress state in the compos-
ite under arbitrary arrangements of breaks. To our knowledge, lifetime studies of
Hedgepeth composites with fibers undergoing time-dependent breakdown and an
elastic or viscoelastic matrix have not been done and we address that question
here.

A class of problems closely related to the lifetime problem of composites is
the strength problem where fibers have random strengths according to some pre-
scribed distribution function and the composite is loaded quasistatically under
increasing tension. The strength distribution of the composite is usually sought.
The strength problem can be viewed as a limiting case of the lifetime problem and
affords insights into the dominant composite failure modes near the limit. In this
connection we note the works of Beyerlein and Phoenix [15, 16], Landis et al [17],

Wu and Leath [18], Newman and Phoenix [19], and Mahesh et al [20].
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3.2 Load Sharing in Unidirectional Arrays

In this section we extend the method of Beyerlein and Phoenix [14] and Landis
et al [17] to calculate the stress state in a finite partially failed arbitrary array of
fibers embedded in an elastic or a viscoelastic matrix. In addition we provide for
the application of periodic boundary conditions in all directions which will enable
us to consider a periodically repeating unit cell and determine stresses in it in the

presence of fiber breaks.

3.2.1 Governing Equations and Boundary Conditions

We consider a collection of n < oo fibers aligned parallel to the z-axis and em-
bedded arbitrarily in a matrix. According to Hedgepeth’s shear-lag assumptions,
fibers deform in pure tension and the matrix deforms in pure shear. The fibers are
loaded uniformly in the far field at £ = oo in simple tension under load p., per
fiber (i.e., the entire composite carries load npy ), where z is the coordinate along
the fiber direction. We will frequently refer to the fiber direction as longitudinal
and to the planes perpendicular to it as transverse. We assume that fibers are lin-
ear elastic and let Ef be the fiber tensile modulus and A its cross sectional area.
Let p;(x,t) and u;(z,t) be the tensile load and displacement respectively in fiber
i, 1 <i < n at position z and time . Clearly p;(x,t) = py for all z and ¢ when all
the fibers are intact. However if some fibers break, loads redistribute from broken
to intact fibers through shear stresses in the matrix. Let the shear force per unit
length transmitted from fiber j to fiber ¢ through the matrix at (z,t) be ¢;;(z,?).
Then for force equilibrium of a fiber element of length dz, we need

opi - .
Afag;d“’+ (ZQU> dxr =0, i=1,2,...,n. (3.1)

i=1
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Hooke’s law for the fiber gives

Ou;(z,1)

ACE :EA
pi(z, ) A

. (3.2)

To relate g;; to the relative displacement of fibers we must assume a matrix
constitutive law. Here we assume a matrix with power-law viscoelastic creep com-

pliance in shear,

tem

T = J (i>a (3.3)

and limit ourselves to 0 < o < 1. If Gy, () is the corresponding relaxation modulus,

it can be shown using Laplace transforms and the fact s2J,(s)Gw(s) = 1 that

Gunlt) = Go (t—’“> (3.4)

t

where G, and J, are related according to
Ge=1/(JJL(1+ a)T'(1 - ). (3.5)

Then
w0 = [ Gult= ey (@) - wode  (30)

The form (3.3) assumed for creep compliance is a reduction of the form
Jrln(t) = Je(l + t/tcm)a (37)

which, unlike (3.3) also accounts for instantaneous elastic shear response of the
matrix. Form (3.3) is used because it is more amenable to algebraic manipulations
than (3.7). Asymptotically as t/tcm — 00, the two forms converge but differ in the
initial response at smaller times. It turns out that the instantaneous stress and
displacement response of (3.7) is well approximated by (3.3) by setting ¢ = tcp.
In (3.6), ¢i;(uj(z,v) — u;(z,v)) is the matrix displacement in shear and g,

represents the shear force on fiber 7 due to fiber j as a hereditary integral. ¢;;,
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1 # j is a non-negative non-dimensional geometric parameter that may quantify
the proximity of fibers ¢ and j.

In simulating 2D arrays, we impose periodic boundary conditions on the string
of n fibers so that fibers £ = 1 and ¢ = n are adjacent. In this case ¢;; is readily
expressible in terms of composite geometric parameters. Let the effective matrix
width between the fibers be w, and the matrix thickness (perpendicular to the
plane of the fibers) be h. A simple case is to assume h is also the main fiber
cross-sectional dimension. In the matrix bay between adjacent fibers ¢ = ¢ and

¢ =i+ 1, we take the effective shear force per unit length ¢; ;11(z) to be

qij(x,t)Z/ Gm(t—v)g(%(uj(x,v)—ui(x,v))dv, iflicjl=1 (38

and ¢;;(z,t) = 0 otherwise. Thus for the 2D array, we take

h/w if |i — j| mod n =1,
Yij = (3.9)

0 otherwise
when 7 # j. In our 3D array simulations of n fiber unit cells we assume they have
rhombus shaped transverse sections of side length /n with periodic boundary
conditions imposed upon them so that each edge of the rhombus cross section is
contiguous with the edge opposite to it. We label the fiber at (¢,m) = (0,0) as
1, then we label the remaining fibers in the composite with integers in sequence
first proceeding along the m = 0 row, then the m = 1 row and so on until the
m = /n — 1-th row. Thus, the fiber with label i is located at £ =4 mod /n and
m = [i/y/n]. Conversely, the fiber at (¢, m) is indexed by ¢\/n + m + 1.

In such an array, a similar argument for ¢;; as in the 2D array can be carried
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through with w representing an effective matrix thickness.

h/w if max((¢; — £3) mod /n, (m; —ms) mod v/n) =1,
D(t1,m1),(€2,m2) =
0 otherwise

(3.10)
where (¢;, m;) are the coordinates of fiber ¢ and (¢5, my) are the coordinates of fiber
j and 7 # j. We will specify ¢;; later. While we have delved into the consideration
of these two arrays owing to their relevance in the following sections, the shear-lag
methodology presented in the remainder of this section is applicable to arbitrary
fiber arrays as long as their ¢;; is chosen appropriately.

Combining (3.1), (3.2), and (3.6) we have for the governing differential equation

0?u;(z,t) t 0 | < &
EfAfW—i-/ Gm(t—v)% ngijuj(x,v)— ngij ui(z,v) | dv

o Jj=1 j=1

JFi

=0 1=1,2,...,n

(3.11)
Defining
i = — Z Pij; (3.12)
j=li
(3.11) can be shortened to
0?u;(z,t) t "L Ouj(z,v)
EfAfT + /_Oo Gum(t —v) ; Vi g, dv =20 (3.13)

We now turn to the boundary conditions in conjunction with which this system
of differential equations must be solved. Let B be the set of r breaks in the periodic
patch at time t. We locate each break by the fiber on which it occurs and its z

coordinate in the fiber direction. That is, let

B = {(ir, 1), (i, 23), - - -, (i, 1) }. (3.14)
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Also let us consider a composite in which these breaks occur periodically along
the fiber direction with periodicity L. That is, if x;, < L, k = 1,...,r, fiber breaks
repeat at xp = jL, 7 = 0,1,2,.... This is actually a generalization of the case
wherein infinite boundary conditions are considered; the case of infinite boundary
conditions is retrieved by letting L. — oo. If L is finite, periodicity demands that
fori=1,2,...,n

pi(z =0,t) =pi(x = L,t), t>0, (3.15)

for traction continuity in the fiber direction across unit cells and if ¢(t) denotes

some arbitrary function continuous in ¢
u;(0,t) = u;(L,t) +¢(t), t>0, (i,0)¢ B (3.16)

for displacement continuity in the absence of boundary cracks. ¢(t) is independent
of 7 but in general must depend on the position and number of fibers in the array.

By way of the traction free boundary condition at fiber breaks, we have

auik (mj)

pi, (@) = ErAs .

=0, (zk,mk) €EB, k=1,...,r (317)

And finally in order that the applied load be carried by all the fibers, we must
have

> pi(@,t) =npe, t>0, 0<z<L. (3.18)
=1

In Section 3.2.3, we solve the problem of determining stresses in a periodic
patch in the presence of a single break and in Section 3.2.4, we detail the approach
to superpose single break solutions in order to handle multiple interacting breaks
which may or may all form at once. But first in Section 3.2.2, we express the

boundary value problem in non-dimensional terms by suitable change of variables.
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3.2.2 Normalized Governing Equations and Boundary Con-
ditions

We define the quantities ¢ and 9, as

o= max o, (3.19)
1#£]

| B Ac .
5, = f(pf‘]. (3.20)

0y is a viscoelastic characteristic length and is approximately the length of the

and

unload zone around a fiber break after time t.,, of its formation. Correspondence
can be made between the elastic and the viscoelastic matrix problems by choosing
the parameters of the creep compliance such that é, ~ d, = \/m where GG
is the shear modulus of the elastic matrix.

In terms of ¢ and 4, we define ¢;;, &, p; and U;, for 1 <14,j <n as

Pij
bij = — 3.21
=, (3.21)
x
=< 3.22
£=5 (322)
4
= 3.23
T (3.23)
G(7tem)
Gm(T) = 3.24
) = =% (.24
) 5va tcm
O-i(faT) — M (325)
Poo
E:A
Uz(é-, T) = U’i(géva thm) ! 5f (326)
The normalization of u; is such that Hooke’s law takes on the form
o s (3.27)

3
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In accordance with (3.22), the normalized composite unit cell length becomes

= _. .2
e=7 (3.28)

Also from (3.9), (3.12), and (3.21) it follows that for 2D arrays,

e

—2 ifi=j,
$ij =91 ifli—j| modn=1, (3.29)

0 otherwise

\

Similarly, for 3D arrays, we have from (3.10), (3.12), and (3.21) that

(
—6 if 61 = EQ and mip = Moy,

Pler,;m)(2me) = 1 if max((¢; — £3) mod \/n, (m; — my) mod \/n) =1,

0 otherwise.

(3.30)
With these normalizations, the governing equation (3.11) becomes
277, T n .
0 Uz(éa T)+/ gm(,l_ _ ’U) Z(ﬁ”aUJ(fa U) dv = 0
0&? _ ; ov
®© j=1 (3.31)

i=1,2,...,n

As for the normalized version of the boundary conditions (3.15)—(3.18), we have

oi((=0,7)=0;((=L,7), T>0, i=1,...,n (3.32)

0i, = Wi (&) _ 0, (ix,&)€B, k=1,...,r (3.33)
0¢

Ui =0,7)=U;(¢=L,7)+c(r) (i,0) ¢ B (3.34)

and

Y oi&m)=n, 0<E<EL, T>0. (3.35)
=1
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¢(7) in the third boundary condition is the normalized version of ¢(t¢) in (3.16).
The problem can be cast in influence function terms by effecting the change of
variables
Ui(&,7) =Ul€,7) = € (3.36)
so that if o} = QU] /0¢,
oi(§) = 0:(§) — 1. (3.37)
Primes here do not denote differentiation. To obtain U], we must solve the system

of differential equations

o*U! (&, T) “, OU(¢
8§§ / Gon(T — v (Z¢m ) dv =20

(3.38)
i=1,2,...,n
subject to the boundary conditions
oj(6=0,7)=0(E=¢&,7), T7>0, (i,0)¢B (3.39)
Ul(¢=0,7)=Uj(=L,7)+d(r), (i,0)¢ B (3.40)
oU!
o) = ag(gj) =1, (ix,&)€EB, k=1,...,r (3.41)
and
Y o€, 7)=0, 7>0, 0<E<E (3.42)

The stress field o}(¢, 7) is therefore the stress in a periodic patch due to a unit
normalized compressive load at each of the fiber breaks; i.e., o; so determined
corresponds to the influence of the compressive force applied at the break on the
rest of the composite. If we solve for U], it is simple to obtain the displacement
field due to the far-field unit normalized tensile load using (3.36) and (3.37). In
the next section, we give the solution for a single break and in Section 3.2.4 we

extend the solution to multiple breaks by linear superposition.
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3.2.3 Single Break Solution

Let U;(€, s) be the Laplace transform of U}(¢,7),i=1,...,n.

Ui(&,s) = /000 U(&,m)e""dr. (3.43)

In terms of U;(€, s), (3.31) becomes

62@- , S = " _
T () (Z (ijj(g,s)) =0
j=1 (3.44)

1=1,...,n
Corresponding to the presence of a single break at (i, 0), the boundary conditions

(3.39)—(3.42) become

oU; oU;

-t = — > = .. .
o€ (0, s) o (£,s), s>0, i=1,2,...,n (3.45)
Ui(0,5) = Ui(L,8) +¢(s5), s>0, i#ig (3.46)
aU; 1 .
= =_= > = .
ag (Oa S) S’ § = Oa ? %0 (3 47)
and
%(g,s)zo, 0<EL<E, s>0 (3.48)
i=1

For the power law matrix creep function, we have

s9Y(s) = Ta+a) a>0 (3.49)

In terms of the vector U = {U;Us---U,}", and the matrix ® = [¢;;], (3.44)

can be rewritten as

Tira)) & . ]
(T) a—gg{U} — [@{U} = {0} (3.50)

To solve this equation, we need the eigenvalues and eigenvectors of ®. ® is a sym-

metric diagonal dominant matrix with zero row (and column) sums. This implies
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that the eigenvalues \?,4 = 1,...,n are real and according to Gershgorin’s theo-
rem, \? € [0, 2 max;<i<n |@iil),t = 1,2,...,n. We make the additional assumption
that the system of differential equations is semi-connected, that is, given any dis-
tinct integers p, and ¢, there is a sequence of integers p = ki, ko, ks, ..., by = ¢,
such that the matrix entries ¢g,k,, Grokss - - -» Pk,,_1k,, are Non-zero. Since A\; = 0
lies on the boundary of the Gershgorin disk, to it corresponds the eigenvector
cl = {11...1}T, unique up to the multiplicative constant c. Thus, the null space
of ® is one-dimensional and has the basis 1. Also, since the remaining n — 1
eigenvectors are orthogonal to 1, their rows must sum identically to zero.

Let the normalized right eigenvectors of [-®] be E;, j = 1,2, ..., n correspond-
ing to the eigenvalues A?, j=1,2,...,n where the normalization can, for example,
be done so that Y " | |E;;| = n for each i. As noted above, A\; = 0, and E; = 1.

The solution to the system of equations (3.50) is

_ 1
U(§7 ) 1—|—a/2 {€1E1+

A5 2jse2( — 2) (3.51)
em oo (i) () )

where e; = e;(s), 7 = 1,2,...,n are scalar multiples of the eigenvectors which

must be chosen appropriately. Then

ouU 1< A
3—6(6’ 5) =7 {ZejEjir(l o)

=2

_ _ A Ajs* (€ - £)
P\ v P fara

Boundary conditions (3.45) and (3.48) are already satisfied by this solution, the

(3.52)

former being obvious by substitution and the reason for latter being that the row
sum of each eigenvector other than the first is zero. To satisfy the remaining two

conditions (3.46) and (3.47), we must scale the eigenvectors E;,; 7 = 1,2,... n by
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choosing e; appropriately. (3.46) is satisfied if for ¢ # g

“ \is®/2g
erFi + Y eE;|1—exp| ——F——
o ; s p( F(1+a)>

and (3.48) is satisfied if
)\jsa/ZS
Z Eioj —eXpP | T =
5 VT 1 +a I'l+a)

(3.53) and (3.54) together give n linear equations to solve for n unknowns e;,

=0, 0<s<o0 (3.53)

=-1, 0<s<oo. (3.54)

j=1,...,n at any s. To obtain normalized stresses and displacements in the time
domain, we must invert (3.51) and (3.52). Exact inversion is intractable. However

according to Schapery’s direct method for approximate Laplace inversion,

F#&)=5F(8)|yeer s (3.55)

where v = 0.577 is Euler’s constant. Beyerlein et al discuss the regime of accurate
validity of Schapery’s approximate inverse formula. In terms of the approximate

inverse, the solution becomes

a/2

U'(g7) ="

&) .
> eE;
j=2

{€1E1+

exp [ — AjHE exp Ain(€ — £)
7¢/2, /T (1 + ) 72/2, /T (1 + )

}

(3.56)
and
ou’ “ A
(&) :{ Y] .
e3 (1
7= (1+2) (3.57)
[_ . (_ M€ ) - ( Nulé — 2) ) }
p exp
7e/2,/T(1 + ) 72, /T (1 + )
where

p=e 1%/2 (3.58)
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and E;, j =1,2,...,n are scaled so that

l—exp| — Aing
P 72/2,/T(1 + )

—1—exp| — A&
P 72, /T (1 + )

We reiterate that e; = e;(7) represent time varying scales for the eigenvectors E;.

=0, 0<7T<oo (3.59)

n
€1EZ‘1 + Z GJEZ]
j=2

and

3

Aj

——__F;
I'l+a)

=1

of , 0<7<0

=2

(3.60)

At this point it is worth making explicit the tacit assumption in the notation

so far that

Uj(&,7) = Uj(&, 340, & = 0) (3.61)
, 1.e., the displacement at a certain point indexed by j in the unit cell is determined
by the location (ig, &) of the fiber break in the unit cell. The displacement field
Ui (&, 7340, €%) due to a single break on fiber 7y at £ = &F for arbitrary 0 < & < €

is obtained by translating U, (&, 7;149,& = 0) as
U(E, 30, %) = Uj((€ — &) mod £, 731, & = 0). (3.62)

If we wish to obtain the displacement field due to a break on fiber 7; # iy, simple
solution shifting is inadequate in general and the entire procedure described above
may have to be carried out for fiber ;. However a computationally attractive
feature of the 2D and 3D arrays of Section 3.1.1 is that for these arrays translational
invariance holds in the transverse direction also. In 2D arrays it suffices to carry
out the above analysis for a fiber break at £ = 0, { = 0 and determine U;(&, 7;0,0).
Then the displacement of fiber ¢, U*((, &, ;4% &%) due to a break at ¢ = ¢, and

¢ = ¢ is given by

Ui, 6,704 6 = U((f — £*) mod n, (€ — ) mod £,7;0,0) (3.63)
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Similarly in 3D arrays, the displacement of a fiber (¢, m), U*(¢,m, &, 75 £, £%) due

to a break at £ = #*, m = mf, and & = ¢ is given by

UH(l,m, &, 73 8, &) = U((£ — /) mod /n, (m — m) mod v/n, (3,60
3.64
(g - é‘ﬁ) mod ‘Sa T 05 0)
That completes the solution of the single fiber break problem. Next in Sec-

tion 3.2.4 we consider the linear superposition of single break solutions to deter-

mine the stress state due to r fiber breaks formed at different times.

3.2.4 Multiple Break Solution

As briefly discussed in Section 3.2.1, the single break solution can be superposed
to obtain the multiple break solution. We wish to determine the displacement and
stress state in a periodic composite cell at normalized time 7 > 7, due to r breaks
formed at normalized times 77 < 79 < ... < 7, and located at (i1,&1), (i2,&2), - -,
and (i, &) where the first coordinate identifies the fiber and the second coordinate
the normalized position of the fiber break within the periodic cell.

For 1 <4,j <, let A;;(7) denote the normalized stress at the location of fiber
break j due to a unit compressive load applied at fiber break i after normalized
time 7 of application of the load. That is, let

oU;

be the influence at (j,&;) due to a fiber break at (7,&;) as determined by (3.57) in

the notation of (3.61). We need to find weighting functions w;({),7 = 1,2,...,r

such that
—1= i [Aij(T — )wi(m) + /T Ay (T — C)augg(odc , j=12....r (3.66)
=1 Ti
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Analytical solution for w;(¢), ¢ € {1,2,...,r} and 0 < ¢ < 7 is generally
intractable. A numerical procedure consists of stepping though normalized time
from ( = 0 to ( = 7 as follows. Define 0 = (, < (1 < ... < (}, = 7, as a partition
of the time interval [0, 7] such that for each 7;, ¢ = 1,...,r, there is a (,, such that
7; = (p,- Then, we may approximately express condition (3.66) in terms of the (;’s

as

—122 Aij(T wz Tz Z Azg (wz(gm) wi(Cm—l)) )
i=1 m=pi+1 (3.67)

Clearly, the choice of (;, i = 1,...,k determines the accuracy and speed of the
numerical approximation. We discuss these aspects further below. Beyerlein and
Phoenix [14] discuss alternative methods of solution, and their merits and demerits.

In terms of

T

Ci(r) == 1= [Aij(r — T)wi(ms) — Aij (0" )wi(Cen) +

i=1
T7,<T

Z Aig (7 = Gm) (Wi(Gm) = wi(Gm1)) |

m=p;+1

(3.68)

i=1,2,...,r

(3.67) can be rewritten as a matrix equation

(A7) {w(r)} = {C(7)} (3.69)

where A(07) is the matrix of instantaneous influences of the r breaks on each other
and C = {C1,Cy,...,C,}*. This system of equations can then be solved for the

weights w;(7), j = 1,...,7. It can be shown that [A(07)] is negative definite.
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3.2.5 Results and Approximations

The shear-lag approach described in previous sections is applicable to arbitrary
arrays of aligned fibers. Here forward however, we focus solely on the 2D and 3D
arrays discussed in Section 3.1.1 subjected to periodic boundary conditions both
in the fiber direction and in the transverse plane. For these arrays, we will examine
composite stresses in the presence of certain special configurations of breaks that
will be of utility in the course of probabilistic modeling in Section 3.4.

In terms of the similarity variables

z= % and 7 = % (3.70)
(3.57) becomes
! n .
8£(Z’ Z) = Ci#x
o€ Py 'l + «)
- (3.71)

—ex —7)\”62 — €ex 7)\““/
P I'l+a«) P I'l+a)

Setting £ — oo in this expression, we see that the dependence of stress state on

¢ and 7 enters exclusively through the similarity variable z. Also, in this case,
as n is increased, the stress solution quickly approaches that of Beyerlein and
Phoenix’s[16] n = oo solution obtained using an influence function approach. In
the results presented in the rest of this section, this condition will be met. In fact,
convergence to the n = oo solution is numerically complete if we take n = 400 in
the presence of fewer than 20 fiber breaks even when contiguous in both arrays.
Under these conditions, the transverse interaction of fiber breaks across unit cells
can be neglected.

Figure 3.2 pertains to the stress profile in the fiber adjacent to a transverse

cluster of breaks in a 2D array with £ = co. Kj(z) is the stress concentration in
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the fiber adjacent to the k-cluster at & = 0 formed at 7 = 0 in adjacent fibers. An

approximation of the form
Ki(2) = Ki(2) =14 (Kx(0) — 1)(1 — 2/Vk) exp(—2) (3.72)

accurate for small £ where

Ki(0) =~ K (0) = %k +1 (3.73)

is also plotted in this figure. Throughout, we will use ~ to denote approximations.
If we let wy be the “overload length” on the fiber adjacent to a cluster of k£ breaks,
that is, the length over which its stress concentration exceeds 1, then in 2D with

£ = oo we can approximately take
wi R O = VET/2, (3.74)

A more convenient expression which becomes a better approximation than (3.72)

for larger £ is
Ki(2) ~ Ki(2) = 1+ (Kx(0) — 1) exp(—2z(1 + 1/Vk)) (3.75)

Unlike (3.72), (3.75) however results in Kj(z) > 1, for all 2.

A similar observation also holds for the 3D array if we identify the tight cluster
as the 3D counterpart of the cluster of £ contiguous breaks in 2D. A tight cluster
of breaks in a 3D array is an ordered collection of fiber breaks in a transverse
plane wherein each successive fiber to break occurs on an intact fiber facing the
greatest overload due to the previous set of breaks. Figure 3.3 depicts the ordered
10-break tight cluster together with the peak stress concentrations faced by the
intact fiber on the periphery of the pre-existing cluster that faces the highest

stress concentration. This sequence of stress concentrations is not monotonic.
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35

—— 2D Shear-Lag Theory
- - Approximation (3.72
- - Approximation (3.75

Ki(z)

Figure 3.2: Stress decay in 2D on the fiber adjacent to a cluster of £ breaks in the
¢ = 0 plane. £ is set to oo so there are no longitudinal images of the cluster. The
number of fibers is taken large enough that the transverse interaction of clusters

is negligible.

k = 6 for instance fails at a higher stress concentration than £ = 7. This is due
to the jaggedness of the tight cluster as it grows. The k = 7 fiber is for instance,
surrounded by three broken fibers when it fails as opposed to the k = 8 fiber which
has two broken neighbors. Aspects of these irregularities are discussed in further
detail in Mahesh et al [21] and accounting for them will be key to probabilistic
modeling of the lifetime distribution in 3D arrays.

For the fiber under the greatest overload from the critical cluster (which may

therefore break and thereby extend it), it can be seen in Figure 3.4 that

Ki(2) = Ki(2) = 14 (Kz(0) — 1)(1 — 22/Vk) exp(—22) (3.76)

is a reasonable approximation for the stress decay on the fiber adjacent to the

cluster away from the cluster plane. The overload length in 3D with £ = oo



ko Ky(0) Ki(0) 132

0 1.0000 1.0000

@ @ 1 1.1046 1.1658

2 1.2337 1.2280

@ ‘ 3 1.2828 1.2736

4 1.3205 1.3109

@ @ 5 1.3644 1.3428

6 1.5889 1.3711

@ 7 1.4107 1.3965

8 1.4596 1.4198

9 1.6163 1.4414
Figure 3.3: One possible sequence for tight cluster growth to 10 fiber breaks in
a hexagonal fiber array. The numbers (0,1,2,...,9) denote the order of fiber

breaking. Also included are the associated stress concentrations in the & = 0

plane if £ = oo and their estimates according to (3.78).

approximately is

Wg ~ d)k = Ta/Z\Ll/E/Q (377)

As indicated before, the edge jaggedness of a tight cluster is reflected in the fluctu-
ations of the stress concentrations experienced by its neighbors and hence in Kj(0).
An accurate approximation for the peak stress concentration around a smooth k-
cluster, none of whose neighbors is adjacent to three or more fiber breaks is given

by

. Wk

Among clusters of fewer than 20 breaks, £ = 6, 9, 11, 13, 15, 17 and 18 are not
smooth clusters; all the others are. The actual Kj(0) for clusters that are not

smooth is always somewhat greater than that given by (3.78). As in the 2D case,
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for larger k, K (z) is better approximated by
Ky(2) ~ Ki(2) = 14 (Kx(0) — 1) exp(—22z(1 + 1/VE). (3.79)

1.7

—— 3D Shear-Lag Theory
- - - Approximation (3.76)
1.6 !

Kk(z)

Figure 3.4: Stress decay in 3D on the fiber adjacent to a cluster of k breaks in
the & = 0 plane. £ is set to oo so there are no longitudinal images of the cluster.
The number of fibers in the unit cell is taken large enough that the transverse

interaction of clusters is negligible.

The approximations heretofore were derived for the case 2/ = oco. However
they are also accurate when z < z’. This is especially true for small « since
w/ \/m in (3.71) decreases very slowly with increasing « from its peak value
of 1 at @ = 0. In fact, even for o = 0.5, u//T(1+a) ~ 0.92. While the
stress still decays away from a break in 2D and 3D according to (3.75) and (3.79)
respectively, the approximations can be improved by modifying the expression for
K(0) to take into account the longitudinal interaction between breaks and their

images which finite 2’ entails. The following modified forms of (3.75) and (3.79)
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are good approximations if £ < oo but z < 2'; in 2D in terms of

£

AL = T2

we have approximately

Kip ~ K1 (0) = \/%k (1 —exp(—zz1/k)) +1 (3.80)

and in 3D,

Kk’L(O) ~ Kk,L(O) = \/% (1 — exp(—szwl/\/E)> + 1. (381)

If the matrix is viscoelastic with a small power «, then too these approximations
hold with reasonable accuracy if £ is replaced by e™7*/2¢/(7%/?T'(1 + «)) so long
as e 722 /(7%?T'(14+«)) > 1. Figures 3.5 and 3.6 compare these approximations
against stress concentrations obtained by the shear-lag procedure. Here v, (£) is
a fitting parameter such that as k — oo, Ky, (0) — /7Lt /4 + 1.

When z and 2’ become comparable however, the simple approximations for
K(0) in 2D and 3D break down. Figure 3.7 shows the stress concentration on
the fiber next to a single break in an o« = 0.5 bundle. For comparison, the time
invariant stress concentration in an elastic matrix composite is also shown. At

a/2

small times, when £/7%7 is large, the influence between a break and its longitudi-

nal periodic images is negligible and stresses in the vicinity of a break are entirely
driven by the break and not by its periodic images. However at larger 7%/2, in-
teractions between the breaks becomes larger causing the weights (which equal
the opening displacement of the breaks) to decrease from their value at smaller
times. This in turn prompts a decrease in the overload on the fibers adjacent to

the break as evidenced in Figure 3.7. However since the stress dropped by the

broken fiber must be picked up by the surviving fibers in its transverse plane so
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— 2D Shear-Lag Theor
- - - Approximation (3.8

Figure 3.5: Stress concentration ahead of a k-crack in a periodic 2D bundle of

n = 100 fibers of length £. v, is a fitting parameter in (3.80).

that equilibrium can be maintained, the overload on fibers further out from the
break will increase. Thus, stresses tend to equalize throughout the unit cell with
increasing time if o # 0 with the speed of equalization increasing with «. The
influence of periodic boundaries is enhanced by the presence of a large number of
breaks in each unit cell since then breaks interact with the images of their neigh-
boring breaks in addition to their own. This in turn causes a further decrease in
opening displacements at fiber breaks and the process of stress equalization in the
unit cell proceeds faster.

Finally we consider the stress ahead of a configuration of k£ staggered fiber
breaks on adjacent fibers which comprises of two limbs of equal length k/2. The
two limbs are staggered longitudinally through &. That is, the configuration

consists of fiber breaks on adjacent fibers 1,2,...,k/2 at £ = 0 and breaks on
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— 3D Shear-Lag Theory|
1.9 - - - Approximation (3.81) °© §
o Rough Cluster K, °

Figure 3.6: Stress concentration ahead of a k-crack in a periodic 3D bundle of
n = 100 fibers of length £. ¢y = 9;(£) is the fitting parameter in (3.81). Peak
stress ceoncentration ahead of rough clusters are shown separately and labeled

with o.

fibers k/2+1,k/2+2,...,k at &. In 2D, letting 2z, = &/7%/% and £ = oo we have

Ky ~ \/%k (1 ¥ exp(—%zs/\/lZ)) 41, (3.82)

an accurate approximation as seen from Figure 3.8. The corresponding formula

for 3D is approximately

Ky, & \/ﬁ (1 + exp(—wgzs/%)) + 1. (3.83)

73/2
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Figure 3.7: Time variation of the stress profile in the fiber adjacent to a single

break in a 2D array of length £ = 10 when a = 0.5. For comparison the time-

invariant stress profile corresponding to an elastic matrix («

35

Kk,zs

25

15

0) is also shown.

—— Shear-Lag Theory
- - - Approximation (3.8

:¢2:3
7w2:2
,w2:1.5

10

Figure 3.8: Stress concentration ahead of two adjacent k/2-long clusters staggered

by z = &/7%/? when £ = oo. 1, is a fitting parameter used in (3.82).



138
3.3 Fiber Strength Distribution

Coleman [4] introduced a lifetime model whereby the probability that a fiber of
length [ fails before time ¢ when subjected to the load program p,(s), 0 < s < t,
uniformly along its length (i.e., py(s) is independent of position within the fiber)
is given by

Futin) = 1= e {0 (1 [ st(ois) | (3.84)

with the functional forms

U(ly) = éyﬁ (3.85)
and
ra(s)) = LAY (3.56)

for U and k. Here [ is the gage length with respect to which other scale quantities
are given and t is a characteristic fiber time scale. Incorporating (3.85) and (3.86)

in (3.84) we get

Fultipul)) = 1 — exp {—li (] t (pp—())d)ﬂ} RN

If however the load p(z,t) in a fiber is non-uniform, i.e., both position and time
dependent as is the case in the vicinity of fiber breaks in a composite, a natural

generalization of (3.87) is

F(t,p(-)):l—exp{—%/oldy [%/Ot (p(z;s))pdsr}. (3.88)

Normalizing the fiber load according to

n(, ) =" (65;C:tcm) L (;fc’ft) (3.89)

1 1

lO 2 tcf 3
of = — — 3.90
- po<5v> (tcm) (3.90)

where
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the distribution (3.88) can be rewritten in terms of normalized quantities as

F(r,m(-)) =1—exp (— /0/\ d¢ [/OT(W(C))pdC} ﬂ) . (3.91)

where A\ = [/d, is the normalized length of a fiber element. Restricting (3.91) to

the case where loading on a fiber is uniform, we get the normalized form of (3.87)

Fulr, () =1 exp (—A [ / T(m(@)ﬂdcr) (3.92)

where 7, (7) = py(t)/per- According to (3.92) we have that a fiber element of unit
normalized length (A = 1) loaded uniformly for unit normalized time (7 = 1)
under unit normalized load (m, = 1) has probability 1 — 1/e of failure. Also, if we

denote the normalized far field applied load by 7 = Poo/Pet, then

i (&, 7) = 0:(&, T) Moo (3.93)

relates the normalized fiber load 7(&,7) to the fiber stress concentration o;(&,7)

defined in (3.25). For a fiber element of normalized length A,

Hour() = [ e[ [t owgr (3.9

is called the cumulative hazard of fiber failure. Let Z be an exponentially dis-

tributed random variable
Pr{Z <z} =1— exp(—2). (3.95)

The time to failure of a fiber has distribution given by (3.91) if the failure criterion
is taken to be

Z>H\7,7(). (3.96)

Stated otherwise, a fiber segment loaded (not necessarily uniformly) along its

length is broken if its cumulative hazard exceeds its exponentially distributed
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standard representative random variable Z. In the case of uniform loading, the
cumulative hazard becomes
T B
HOm) =4 | [ (o]
0
in terms of which the fiber failure criterion (3.96) holds.

As a simple example let us consider the constant load program
mu(T) =%, (>0. (3.97)

applied uniformly to a fiber of normalized length A. Then its lifetime distribution

in terms of the normalized variable calculated from (3.92) is
Fu(1) =1 —exp (-A\%""1F). (3.98)

Another example from which an interesting interpretation of fiber “strength”
emerges is the loading

mu(T)=%T, T>0 (3.99)

linear in time with loading rate % and uniform along the fiber. Then in terms of
the new parameters s = Z7, the strength and o = (p + 1)8, its effective Weibull

modulus, the distribution function for strength (3.92) becomes

Fu(s) =1 —exp <—ms"> : (3.100)

If we let p 1 oo and 3 | 0 such that p is fixed, then,

(0%)”

(o-+ 1)) =145

as # 1 0. That is, the strength distribution becomes increasingly independent of

the loading rate.
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3.4 Probabilistic Analysis of Composite Fracture

3.4.1 Equal Load Sharing Arrays

An asymptotic result for the lifetime distribution of a loose bundle of n fibers (no
matrix) loaded under tension has been obtained by Phoenix [6]. The load sharing
in such a bundle is termed equal load sharing, when the stress concentration in
each of n — k remaining intact fibers in a bundle is given by

n
n—=k

Ky, = (3.101)

According to Phoenix [6] the lifetime of an ELS bundle of n initially intact fibers

each of length )\ is asymptotically normally distributed as n — oo. That is,

T—p
¢ ——F— .102
Gn(1) = (o/ﬁ) (3.102)
where
p=m LA VBT (1 +1/p), (3.103)
0® = 2(pA " Pr L) (L (p, B) — Lo(p, B)] (3.104)
and
1 £ 2
®(z) = N e > 24z, (3.105)
Here
Li(p, B) = / / =007 =095 oy g (3.106)
o Jo
which is given by the series
n+1D)!(n+1) < (k+n)pk
hip,p) = I Ot D) sm (el (3.107)

pn+1(2p — 1)n—|—1 prs /6!(2,0 — 1)k

when 1/ = n + 1 where n is an integer and if not, by

_ 1 S (p = 1)T(2/B+ k)
100 = g, 1y 2 o BB+ 0 (AR O
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Also, I, is given by

//wz PT03) Gy, dupy = (L +1/8) (3.109)

2 ,02  9,2/3
The equal load sharing assumption is not generally valid in the presence of a
matrix which tends to concentrate stress on survivors near fiber breaks rather than
equally distribute them across the composite. We will find however that normality
of the lifetime distribution seen in large equal load sharing bundles appears also

for large local load sharing bundles in which fiber breaking is highly dispersed.

3.4.2 Chain of Bundles Model

w N

N -a—

— ’I’L’/Too

‘
1:: —
7 . - n
i -

Figure 3.9: Chain of bundles subdivision of a composite of normalized length £
into m smaller A-bundles each of whose failure is statistically and mechanically
almost independent of the others. A = £/m. 2w is the longitudinal length scale
of transverse cracking which we will later take to be the overload length ahead of

critical cluster of breaks (defined in Section 3.4.4).

Composite failure typically corresponds to the formation of a transverse crack

sufficiently long to become unstable. It has been common in the literature to
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idealize the failure process in terms of a longitudinal partition of the composite of
normalized length £ into m transverse slabs or short bundles as shown in Figure 3.9
and to regard composite failure as the failure of the weakest of these bundles. The
failure process within a given bundle is treated as statistically weakly dependent
on that in neighboring bundles.

£/m need not correspond to the longitudinal length scale of catastrophic trans-
verse failure initiation and propagation in the composite. Let w be the time de-
pendent stress overload length of a single break or a cluster of transverse breaks.
Approximations for w when fiber breaks are arranged transversely in 2D and 3D
are given respectively in (3.74) and (3.77). Then 2w and not £/m determines the
longitudinal length scale of transverse stress distribution and cracking. We will
refer to each of the m bundles of real length A and effective length 2w as A-bundles.
Typically, 2w > A and therefore, overload lengths of adjacent bundles may overlap
causing their failure events to be dependent. However, this dependence is only
local owing to the relatively short range of the overload region and many of the
results of the fully independent case are excellent approximations. In particular,
if G,,(7) is the lifetime distribution of a single A-bundle, and H,,,(7), that of the

entire composite, to an excellent approximation,

Hm,n(T) =1- [1 - Gn(T)]m (3'110)

3.4.3 k-Crack Formation Probability

We will now focus on the failure of a single A-bundle of n-fibers. First, we recognize
the failure of £ adjacent fibers in the A-bundle as a likely precursor to the failure
of the A-bundle for any £ < n and call the event of its formation k-cracking.

Let Zi,...,Z; be independent unit exponentially distributed standard repre-
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sentative random variables as described in Section 3.3. Let T'(Z1, . .., Zg; ') be the
normalized time required to fail a parallel arrangement of fiber elements of length

A where fiber ¢ has standard representative random variable Z;, for 1 < < k and
A= max(), 2w) (3.111)

where 2w is the longitudinal length scale of transverse cracking shown in Fig-
ure 3.9. Also let each fiber element be loaded at each instant of time such that the
normalized load profile along its length is determined by two constants — K and ¢
according to

m(€,7) = moo [1+ (R — 1) exp (—[¢|c/T/?)], (3.112)

for —\'/2 < & < N/2. The notational distinction we make between K and K
is that K is always thought of as the stress concentration ahead of a cluster
of breaks, whereas K more generally refers to the stress concentration due to a
set of arbitrarily located breaks. This choice of the functional form for 7 (&, 7)
is motivated by the approximate stress profiles (3.75) and (3.79) in 2D and 3D
respectively. K and ¢ may themselves be time-dependent quantities. It must be
understood that the form (3.112) is chosen for the stress profile because it is a
good approximation for the stress concentration ahead of a tight cluster of breaks
the formation of which is the dominant mode of composite fracture under certain
conditions to be discussed shortly. Configurations of fiber breaks other than a tight
cluster may result in stress profiles considerably different from that of (3.112). We
ignore such configurations owing to their small probability of occurrence. Also the
form (3.112), accurate for a cluster of breaks that form simultaneously may not
be so good when breaks in the tight cluster form at different times. However we

disregard these minor differences.
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The first scaling relation is an adaptation of Tierney’s [8, 9] to load profile

(3.112). It is independent of the far-field applied load 7. For 7 > 0, we have
TT(Zy, ... Zy N) =T (4027, rPHel2 7 - \re/?) (3.113)
or equivalently,
T(Zy,...,Z;: N =7T(r7 P02 7y, .. 77 P27 N 12, (3.114)

This relation can be established inductively. When some [ of the k£ fibers under
consideration are broken (not necessarily in a tight cluster), let I be the set of
k — [ fibers still intact and let &;(7) and ¢;(7) determine the stress concentration
in fiber 4, ¢ € I according to (3.112). The variation of & and ¢; with time is
mainly due to the formation of fiber breaks elsewhere in the bundle. Let 7;,; =
T1:1(Z1, ..., Zp; N') be the time to failure of the next fiber. Then, for any =z > 0,

if R, >1,foriel,

2Ty = 2Ti1 (21 - Zs N)

N T ge; B
= ?el}f {xﬂ- 1 Z; < / d¢ [/0 1+ (R — 1)e_gi/z]PdC] }

B
Ti _§ciaco‘/2

:mlf{ P Z; < d§ [/ 1+ (R —1e ¢ ]”dC]

S 0

Nz a/2 7§ciwo‘/2 B

— m;' T wﬁ—i—a/?Z < / / [1 + L 1) cal? ]pdC

1€ 0
— ($ﬂ+a/2Z ,@—|—a/2Z /\I a/2)

(3.115)

where intermediate steps involve no more than appropriate change of variables.

Similarly, a load scaling relationship can be established as follows. Let T'(Z1, ..., Zn; N Tso)
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be the time to failure as before, but under external load 7. Then,

T(Zy, ..., Zn; Ny7e) = T(Zy b8, .., Z, 7P N5 1)

s pBe/2 (3.116)
=Tos T2y, ..y Zyy N5 1)

where we have used (3.113) to obtain the second expression on the right hand side.

Equivalenty we have

o8 pBa/2
18P T( 20, .. 2y N [T ) = T( 24, .., Zny N3 1), (3.117)

Owing to their dependence on (3.113), the scaling laws (3.116) and (3.117) too
require that at each step K; > 1, ¢« € [ in order to be valid. In the case that
R; =1, for ¢ € I, (i.e., the each successive break forms under the far-field load,

and is completely uninfluenced by any other break), we have the scaling relation
T(Zryooy Zns N o) = 7T (Z1y ooy Zny N5 1). (3.118)

In actuality, in Section 3.6.1 we will find that composites pass through an initial
phase of disperse fiber breaking under far-field load when (3.118) is applicable and
then a phase of clustered fiber failure wherein the form (3.112) with & > 1 is
a good approximation for the stress concentration on fibers under risk of failure.
Hence the actual scaling rule between load and lifetime can be expected to follow
an load exponent in between p and pf3/(f + «/2). That this is the case will be

shown in Section 3.6.1.
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If W (7) is the distribution function of T'(Z1, ..., Zg; N Ts), then

Wk(T) = Pr{T(Zlv R Zka /\Ia ﬂ—oo) S 7—}

pBa/2

=Pr{r 'ne" T (21, ..., Zi; N &% 1) < 1}

= Pr{T(r; "~ 2y, 7 PP 2 N r0021) < 1)

_pB
B+a/2

letting 71 = 7m& ** and using (3.114)
= /]Rk Lo, ) (T (v, - - - U /\'/T‘”/2; 1))Tk(ﬂ+a/2)7r§§ﬂ>< (3.119)
exp (—T*BJ’O‘/Z iyz> dy; .. . dyy
i=1
upon setting y; = Tfﬂfaﬂzi

— XN {y € RSt T(y1, ..., yus N/7%%) < 1}rHBTe/Drkos
as 7 J 0 by monotone convergence

Here \* denotes the Lebesgue measure. Tierney provides an approximation for
My e RE : T(yr,. ..,y A'/7/?) < 1}. Adapted to the load profile (3.112), it

becomes,

Ny e RE - T(yr, ..., yk; N/r9?) <1} =T(1 + B)*T (kB + 1)1 x

klj [zNj /0 i dg { /0 14 (55(0) — 1) exp(—£c, /gaﬂ)]pdg}ﬁ] 120

where we will take ¢; = 1+ 1/4/7 for 2D arrays and ¢; = 2(1 4+ 1/+/7) for 3D

arrays. IV;, the number of neighbors around a tight j-cluster is

1, ifj=0
N; = (3.121)

2, ifji=1,2,....k

in 2D and
N;~7D =2+/7j (3.122)
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in 3D. Here D is the tight j-cluster diameter determined by 7D?/4 = j. The above
approximation is accurate only for large p. In that case we have by combining

(3.119) and (3.120):

Wi(r) = 26T (1 + B)*T(1 + k)~ kel ph(6+a/2)
T a7 51 (3.123)
H [Nj/o | df{/ 1+ (K500 = 1) eXP(_ij/C“/Q)]”dC} ]

If o = 0, the double integral collapses trivially into the single integral:

)\I

P= [ dl + (550~ D exp(—tey)? (3.121)
The integral in the product above may be approximated as follows for o # 0:
p= [ ae / 11+ (16(0) = 1) exp(€c, /caﬂ)]ﬂdc}
a7 * [1+ (K;(0) — 1) exp(—Ec;(w + 1))]° }ﬂ
= (60— 3.125
o-v* [ ae { / o aw} (3125)

Ne,;
_(6- 1) /2m/2 du; {/OO 1+ eXp(_/‘jw)]pdw}ﬁ
Cj 0 "o (w +1)°

upon making the change of variable w = (~%/2 — 1 where 6 = 2/a + 1 in the first
step and &c¢; = p; in the second and abbreviating (K;(0) — 1) exp(—py;) = €;. We

have an accurate approximation for the inner integral when p is large

/oo [1+¢; eXp(_’ujw)]pdw _a4 ij)f’/ [1 — e;JH (1 — e+ )}Pdw

(w+1)% (w+1)8
~ (1+€j)p/0 exp(—@ﬁi/;j,—oi_wl/)(e(’lj-l—l))dw
~(1+¢) /Oozxp (—% — flog(w + 1)) dw
~(1+¢;)° /Ooo exp (—% - Hw) dw
(1+@;)rt!

O+ G0+ puy)
(3.126)
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Whereas [1 + €; exp(—p;w)]? > 1 for all w > 0, our exponential approximation
in the second step including (1 + €;)”*! tends to zero for large w. To account
for this disparity, we notice that the exponential factor dips below one at w; =
(1/p)(1 4+ 1/€;)log(1 + €;) so that the error is bounded by fuff(w +1) Ydw =
(0 —1)""(w, + 1)~ In view of this correction term, we take our inner integral
to be of the following form which, in addition to being an improvement of the

approximation (as determined numerically) is exact when €; = 0.

1 . — P 1 ¢, pt+1
0 (w+1) (0 =1+ (0 = 1) + puy)
Substituting this expression into (3.125) yields
MNej;
1 [0z [1+ (K; — 1)e #]P+D8
sz—/2 P 1+ (K= e ] oy (3.128)
¢jJo 14 (Kj—1)em#(1+ %F)

in terms of the original variables. This formula is very accurate when p is large
(> 15 say) and 6 is moderate( > 5 say). Although the above analysis was done
for the case a # 0, (3.128) is well defined even if & = 0. Indeed, it collapses to
the integral for o = 0, (3.124) when that is so. Furthermore, we can approximate
(3.128) in a manner similar to the approach used to evaluate the inner integral
above if \' > )\ to obtain

J K7 (3.129)
I =X '

where

L[]

X= B+ Pl

The error involved in the approximation of the outer integral is larger than that

(3.130)

in the approximation of the inner integral since the rate of decay (p + 1) of the
dominant term, [1+ (K; —1)e~#](**1V8 is typically much smaller than p which was

the decay rate in the inner integral. This leaves asymptotic approximations such
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as the ones above focusing near the origin somewhat less accurate [22]. Therefore
in our numerical calculations, we numerically integrate (3.127) instead of using
(3.129). However the value of (3.129) lies in that it captures in closed form the
cumulative hazard ahead of a cluster of j breaks except perhaps for a scale constant
and can be used in a closed form evaluation of the Wj(7) in Section 3.7.

In simplified form we finally have
k—1
Wi(r) = 28T (1 + B)*T(1 + k) ' wktfr Ot T N, Py
Jj=0
(3.131)
k-1 B+1
g
T0/2 c; Kj—1
1 7 J

Jj=

~ (2X)F T (1 + B)*T(1 + kB)~akelf rhBter2)

where in the second step, we have extracted the anomalous j = 0 factor \/7%/2

from the product series. Unlike the other factors, this factor corresponds to the
initial break or the seed of the k-cluster, the probability of its formation, given by

(3.98) is therefore independent of a.

3.4.4 k*-Crack and Composite Lifetime

Let G¥ ](’T) be the probability of occurrence of at least one k-crack originating in

a A-long n-fiber bundle. Then,
G =1 —[1 —= Wy (7)]" (3.132)

If we treat the composite as a serial arrangement of m such bundles which are
mechanically and statistically independent then, the probability of occurrence of

at least one k-crack in the composite, HI¥%,(7) is

HE (1) =1 = [1 = Wi(r)]™ (3.133)

mn

Now, in cases where composite failure is driven by the formation and catas-

trophic propagation of a single cluster of breaks, composite failure may be regarded
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as a proper subevent of the formation of a k-crack. Consequently, the distribution

function for composite lifetime, H,,,(7) may be bounded as follows

Hpn (1) < min HM (7)

~ 1<k<n ™

= min 1—[1 — Wy(r)]™
fksn (3.134)

=1-[1 - min Wi(r)]"™

N
where £*(7) is the crack size that minimizes Wj(7) for each 7 and is called the
critical cluster size. In Section 3.6, when comparing to Monte Carlo simulations

we will find the above upper bound to be especially tight when p is large so as to

serve as a good approximation of the distribution function itself.

3.5 Monte Carlo Failure Simulation

3.5.1 Simulation Procedure

We will now describe the construction of a Monte Carlo composite model, which
while somewhat discretized for computational reasons reasonably approximates
the geometry of the flaw arrangement in the idealized unidirectional composite
described in Section 3.1.1. The discretizations described below are essential in
making the composite failure simulation algorithm reasonably fast. However, the
extent of these idealizations is much smaller than in the construction of the ana-
lytical model described in the next section.

We begin by conceptually partitioning the n-fiber 2D or 3D array of normalized
length £ into m bundles each of length A = £/m as in the chain-of-bundles model.

We will term the part of a fiber belonging to a bundle as a fiber segment. Each
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segment is then further subdivided into 2f + 1 (> 1) fragments. Thus there
are m bundles, n fibers, mn fiber segments and ny = mn(2f + 1) fragments in
the simulation cell. Fragment lengths are geometrically proportioned with the
central fragment being the shortest in the bundle and each fragment going away
from the center longer than the previous fragment by a constant multiple. Let
us denote the length of the i-th fragment by /;, 7 = 1,...,n;. Each fragment is
then assigned an independent standard representative random variable Z; which is
exponentially distributed with rate /;. This is accomplished by producing uniform
U(0,1) random variables U;,i = 1, ..., ny, from which Z;,i = 1,..., ny, the desired

standard representative random variables are obtained according to

B log U;
li

Z; = i=1,...,n. (3.135)

The corresponding flaw is treated as though located at the mid-point of the frag-
ment.

Far field load of m is then applied to the virtual composite and the first
task is to determine the time to failure 7; of the weakest fragment. This time is

determined using (3.92) as

7.
B _ i 2
T = i:1,.1..1,1nf s (3.136)

The next step consists of transferring the break from the fragment where it oc-
curs to the center of the segment in which the fragment resides. This simplifi-
cation effectively renders the assumed flaw distribution more akin to the chain
of bundles model of Section 3.4.2 than to the idealized unidirectional composite
of Section 3.1.1. However this step is necessary for computational tractability of
the simulation algorithm, and we will shortly investigate its impact on the simu-

lated composite lifetime distribution. Fragments belonging to the fiber segment in
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which the break occurs are then eliminated from future consideration by setting
their Z; to co. This is done because the fragments within the broken segment will
be unloaded due to the fiber break and their failure probability in the future is
very small. Also, even if such a break did form within the broken segment, it will
be have minimal influence on the stress state in the composite. Eliminating the
broken segment from future consideration ensures that each segment fails at most
once.

Since every fiber break is transported to the mid-point of its segment, the peak
overload on its neighboring fibers occurs at the mid-points of the corresponding
segments and decays roughly exponentially along their length down to the far-
field value. For the purpose of determining the residual lifetime of each fragment
in these overloaded segments, we assume constant stress along the length of the
fragment at the same value as at its center. Fragments closer to the segment mid-
point were chosen earlier to be shorter so as to better capture the rapidly varying
stresses there.

Successive segments are broken in a recursive manner. Let the stress concentra-
tion and the standard representative random variables at the end of the (k —1)-th
recursive step be R;(k — 1) and Z;(k — 1), ¢ = 1,2,...,ny respectively. The k-th
recursive step consists of determining the time to failure of the k-th break starting
with a system of £ —1 breaks and updating the quantities &;(k) and Z;(k) to reflect
the presence of the new break. We begin the k-th recursive step by determining

the smallest residual fragment lifetime using

— Zi%(k —1)
Tres(k — 1) = itng (Ri(k — 1)moo)?”

Global time is then advanced by Ts(k — 1) and the time of the k-th fragment

(3.137)

failure, 7, = Tx_1 + Tres(k — 1) is recorded. The break is then repositioned at the
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center of its segment. The standard representative random variable of each of the

surviving fragments is then updated as

Zi(k) = Zi(k — 1) — (R(k — 1)7s )77

res?

i=1,2,...,n;

to reflect the elapsing of time 7,e5. Here R(k — 1) = max(R;(k—1),0). In order to
speed up the computations, £;(k) is determined from shear-lag calculations only

at segment centers and is interpolated to fragment centers according to
Ri(€) = A+ Bexp(—ct/T*?) (3.138)

where A and B are chosen so as to fit the stress concentrations determined by
shear-lag calculations at segment centers. 7 is taken to be 7, the time of formation
of the k-th break. That is, interpolation assumes that all k£ breaks were formed
at once at time 0. In keeping with (3.75) and (3.79) c is taken to be 1 + 1/Vk
in 2D and 2(1 + 1/v/k) in 3D. where k is the number of fiber breaks in the same
bundle as the fiber segments between which interpolation is done. These steps are
repeated until the failure criterion described in the next section is satisfied.

As may be expected, the most time consuming operation in the above recur-
sion by far is the computation of stress concentrations due to a set of pre-existing
breaks. It involves implementing the procedures of sections 3.2.3 and 3.2.4. Ef-
ficient implementation of this step is therefore critical. Recall that as breaks are
formed in succession, their weights are determined using (3.69). [A(0F)]xr for
the fixed set of breaks is the northwest corner of the [A(0)](41xr41) matrix with
a new break appended to this preexisting set. It would be imperative to exploit
this structure to efficiently compute weights using (3.69). To this end, we observe

that since —[A(0")]rxr) is symmetric and positive definite, it permits Cholesky
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factorization of the form

_[A(O+)]rxr = LT‘XTLT (3139)

TXT

where L is the lower triangular Cholesky factor (see Horn and Johnson [23]). We
make the solution for weights efficient by storing, updating and using the Cholesky
factor of the —[A(01)],«, as we step through fiber breaks. The procedure to update
L to account for the formation of break r+41 in the presence of r breaks is as follows.

Let B, be the vector of influences of the previous r breaks on the (r+1)-th break.

Then,
err 07"><1
L’I’—}-lXT—{-l - (3140)
X1><r P1><1
where X is obtained by solving
Lo, X" =B

by forward substitution and

P=+y1-XXT,

We now turn to the key difference which lies in the arrangement of fiber flaws
between the Monte Carlo model and the idealized unidirectional composite of
Section 3.1.1. In the Monte Carlo model, flaws are assumed to occur in a uniform
grid that passes through the centers of the fiber bundles. This has the effect
of unrealistically aligning fiber breaks perpendicular to the fiber direction and
thereby facilitating the extension of clusters of breaks since the configuration of
aligned fiber breaks produces the greatest stress concentration ahead of the cluster
tip. However such a restriction on fiber break arrangement is indispensable from

a computation time standpoint since the determination of influences in a uniform
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grid of break sites due to fiber breaks occurring at other sites in the uniform
grid can be done by translating the influences of a single break anywhere in the
grid according to (3.63) and (3.64). On the other hand, if the potential break
sites were situated arbitrarily, the entire influence field of each fiber break on all
other potential break sites would have to be evaluated anew using the shear lag
methodology. Alternatively stresses could be interpolated from a regular grid to
the locations of arbitrarily occurring break sites, but this approach tends to be
unsatisfactory because stresses can vary exponentially in the array.

Alignment of fiber breaks is not much of an issue when the length of a segment
A is much smaller than the overload length ahead of the cluster tip. Indeed, it
would be best to choose A as small as possible in order to reduce the effects of such
alignment. In our simulations, we take A = 0.5, since this is the smallest value of
A within our computational capability. Using a smaller A increases the number of
segments in the composite which in turn increases simulation time.

We simulate the failure of n = 100 fiber 2D and 3D arrays of fibers of normal-
ized length £ = L/§, = 10 under periodic boundary conditions. Fiber statistics
are determined by the parameters 3 and p in (3.92). In this study, we consider
three combinations of (3, p): (0.1,75), (0.3,25), and (0.5,15). In all cases, we have
pB = 7.5 which is at a value far exceeding the transition to dispersed breakdown as
observed by Curtin and Scher [24] and Curtin et al [25]. We investigate the role of
matrix viscoelasticity by considering three powers for the power law compliance:
a =0,0.1 and 0.5. a = 0 corresponds to the elastic case. Failure is studied under
three applied loads as well: 7, = 0.3, 0.5 and 0.7. For each set of parameter
values we test ngm, = 1024 virtual specimens. The simulations were performed on

a cluster computer of Intel 500 MHz processors. Depending on the parameters of
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the model, computations took anywhere between 0.5 and 1500 processor-hours.

3.5.2 Composite Failure Criterion

We now turn to the criterion which, when met, signals composite failure in the sim-
ulation algorithm above. Several reasonable possibilities exist for such a criterion
three of which we consider here. The first possibility is that failure is taken to oc-
cur with the exceedance of composite strain rate (¢) over a fixed threshold, ¢ > ..
Composite strain, proportional to the sum of fiber break opening displacements,
or, their weights in (3.69) is easily determined. However,

A second approach is to consider the composite failed if a bundle of some
appropriately chosen length (say the characteristic length or the overload length
for some fixed k) has all the fibers in it failed. k is to be chosen large enough that
it represents a critical cluster, i.e., one which will continue to propagate with a
high probability.

A third approach of a purely numerical nature is to identify composite failure
with the speed of occurrence of successive fiber breaks by considering the composite
failed if

Ti+1 — Ty

<e€ (3.141)
Ti+1

where 7; is the time of formation of the i-th break and € is a suitably chosen small
constant.

We use (3.141) as our failure criterion with € taken to be the computer’s ma-
chine precision (about 107'). This choice turns out to be the most conservative
failure criterion in that its satisfaction occurs only after the satisfaction of the
other two criteria discussed above. It is to be remarked however that the first

two criteria have a mechanical basis, while the third does not. It is based on the
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observation that the time between successive fiber failures becomes progressively
small after the composite goes unstable. Consequently, the satisfaction of the first
two criteria (which occur more or less at the same time) signal composite instabil-
ity and the continued simulation up to the satisfaction of the third criterion often
results in post-critical fiber breaking often removed from the cluster of breaks that
went unstable. These post-critical breaks however are of no concern since they are
formed well after the failure process in the composite has gone catastrophic and
they take negligible time to form, thereby hardly affecting the empirical lifetime

distribution obtained from the simulations.

3.5.3 Failure Configurations

We will now argue that depending on the fiber and matrix parameters and the
applied load 74, composite failure is dominated by one or the other of two quali-
tatively distinct modes of failure — a clustered failure mode which loosely accom-
panies high fiber failure probability sensitivity to load, high applied load and small
overload length and a dispersed global failure mode which goes with reduced fiber
failure sensitivity to load, small applied loads and large overload lengths.

We first examine a case wherein the clustered failure mode dominates. Fig-
ure 3.10 shows the arrangement of fiber failures in the vicinity of the composite
failure plane in the median specimen among ng, = 1024 simulations of n = 100
fiber, 8 = 0.1, p = 75, elastic matrix composite with o« = 0 under applied load
Too = 0.7. Longitudinally this composite is divided into m = 20 bundles so the
length of each segment is A = 0.5. In Figure 3.11 we have shown the evolution of
composite strain with time for this same specimen. On the one hand the strain

blows up after the failure of 44 fibers at time 744 = 0.5615 x 10~° while on the



159

other as is evident from Figure 3.10 the incremental times between fiber failures
after the formation of 44 breaks become negligible in sum suggesting that this
particular specimen goes unstable after the formation of 44 fiber breaks. Fiber
breaks before the 45-th are denoted in Figure 3.10 by a o while the 45-th break
and those after are marked with a x. Also observe that the number of contiguous
fiber breaks in the failure plane which propagates catastrophically is £* = 4. We
will return to this observation in Section 3.6.

The clustered failure mode transitions to the dispersed mode smoothly. Loosely
speaking, the transition occurs because the stress concentration ahead of a cluster
of breaks does not propagate it with sufficiently high probability (compared to
break formation under the far field stress) as we vary fiber and matrix parameters
appropriately. For example, keeping all else fixed, decreasing p in (3.92) reduces
the probability of a fiber failure with increasing fiber load. Such a variation of the
parameters causes the clustering mode to be suppressed by increasing the degree
of out of plane breaking ahead of the cluster tip. As an example of a case wherein
out of plane break staggering is prevalent while the composite still fails by the
formation of a cluster of breaks spanning several planes perpendicular to the fiber
direction, consider the median among ng, = 1024 specimen of § = 0.5, p = 15
composites under applied load 7., = 0.3. Figure 3.12 shows the evolution of strain
with time for this specimen. In contrast to Figure 3.11 here strain increments occur
rather continuously owing to the large number of initial dispersed breaks that form,
seemingly in an uncorrelated manner, before a cluster is initiated. While no sharp
point is identifiable where strain blow-up begins, we take this number to be 101
breaks, where the strain rate (not shown) shows a first large acceleration. We

show the configuration of fiber breaks at that time in Figure 3.13. Observe that
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a cluster of breaks straddling £ = 8 to £ = 9.5 forms and frequently switches from
one plane to the next.

At the other end of the failure mode spectrum we have composites that fail
by dispersed fiber failure almost entirely. Whereas, here too, by continuing sim-
ulations well past the strain instability criterion we induce cluster formation, it
represents localization in a global load sharing like system eventually. Figure 3.14
shows the break configuration in the entire composite with 8 = 0.5, p = 15 at
applied load 7o, = 0.3 with matrix o = 0.5 when the strain instability criterion
is satisfied and almost the entire lifetime of the composite has elapsed. The dif-
ference between this and the previous case lies in the length of the overload zone.
Whereas in the previous case, since the matrix was elastic, the overload zone is
confined to it its time independent value of approximately 2d,, in the present
case of Figure 3.14, the overload zone expands to almost the total length of the
composite, increasing the opportunity for staggering of a crack many-fold. This
increasingly becomes an issue as « increases. Also an important point to note is
that since normalized time 7 spans many decades, the overload length w oc 7/
varies considerably. Since staggered cracks propagate with less probability than
aligned cracks, owing to the smaller stress concentration ahead of them, this in

turn feeds into the general propensity towards dispersed breaking.
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Figure 3.10: Snapshot of damage near the failure plane in the median § = 0.1,
p = 75, a = 0 specimen under load 7o, = 0.7 among ng, = 1024 simulations
at time 7 = 6.536 x 107° when the failure criterion (3.141) is satisfied after the
formation of 77 breaks. Each of the horizontal lines denotes a bundle of n = 100
fibers and successive bundle centers are spaced A\ = 0.5 apart. Only five out of
the twenty bundles simulated are shown. Each o denotes a fiber broken before the
composite goes unstable according to the strain criterion (which is satisfied after
the formation of 44 fiber breaks) and each x denotes a post-critical broken fiber.
Notice that the critical cluster size k* = 4 and that staggering of breaks in the
catastrophic cluster occurs between planes £ = 8.5 and £ = 9. At the bottom of

the figure we plot the times at which fiber breaks occur in the composite.
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Figure 3.11: Plot of strain versus time in the median § = 0.1, p = 75, a = 0,
specimen under applied load 7o, = 0.7. Each o denotes the time of formation of a
fiber break. Initially the strain increases rapidly as breaks accumulate randomly in
the composite, then a cluster forms and takes time to extend. Finally the cluster
growth goes critical causing cluster extension to proceed rapidly prompting the
blow-up of composite strain. Here composite strain blows up starting at break

number 45.
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Figure 3.12: Plot of strain versus time in the median § = 0.5, p = 15, & = 0, under
applied load 7, = 0.3. Each o denotes the formation of a new break. Dispersed
initial breaks take up much of the lifetime of this composite with criticality ap-
parently reached when the disperse failures have reached a certain concentration.

This happens in this specimen when the number of breaks equals 94.
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Figure 3.13: Snapshot of the damage near the failure volume of a median 3 = 0.5,
p = 15, a = 0, specimen among ng, = 1024 under applied load 7, = 0.3, at
7 = 7.788 x 10* when the failure criterion (3.141) is satisfied. The meanings of the
horizontal line, o, and x are identical to those in Figure 3.10. Notice the extensive
stagger between bundles centered at £ = 8.5, ¢ =9 and £ = 9.5. The failure plane
is not identifiable; instead the bundles centered about these three planes maybe be
thought as a failure volume. After the critical cluster has formed, failure progresses
in the plane £ = 8 to a large extent. In the bottom most plot showing the times

of formation of breaks, only every fourth break has been marked for legibility.
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Figure 3.14: Completely dispersed failure snapshot of the median # = 0.5, p = 15,
a = 0.5, composite under applied load 7o = 0.3, at time 7 = 1.21 x 10* when it
goes critical as per the strain criterion. The overload length of a single break at

this time almost encompasses the whole of the composite.
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3.6 Comparison of Monte Carlo Empirical and
Analytical Lifetime Distributions

In this section, we will compare the empirical lifetime distributions obtained from
the Monte Carlo simulations just described and the analytical model developed in
Section 3.4. We will find that the gradual transition from a localized failure mode
to a global failure mode seen in the failure patterns of Section 3.5.3 is reflected
in their lifetime distribution going from a weakest-link form with a characteristic
distribution function in the cluster formation and growth case to a log-normal or
normal distribution in the dispersed failure case. Since the size of the unit cell
in the simulations is necessarily small, we must pay particular attention to the
role of boundary effects (here manifested as the effects of periodic boundary con-
ditions) on the failure mode of the composite and will find that periodic boundary
conditions impel small composites to a dispersed failure mode.

All empirical distributions discussed are those of n = 100 fiber composites of
normalized length £ = 10 divided into m = 20 bundles longitudinally. According
to this division in each fiber there are two fiber segments per characteristic length
8y. Therefore, the empirical weakest link distribution W (r) is derived from the

empirical composite lifetime distribution H,,,(7) according to

W(r)=1— (1 — Hypp(r))/m™ (3.142)

mn = 20 x 100 = 2000 in the remainder of this discussion.
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3.6.1 2D Arrays

A key quantity affecting the lifetime distribution function H,,,(7) is the stress
concentration ahead of a cluster of £ fiber breaks. As seen in the failure config-
urations of Section 3.5.3 the typical propagating cluster of k£ breaks tends to be
somewhat staggered. In view of this fact and our observations in Section 3.2.5
regarding the effect of periodic boundary conditions and staggering ahead of a
cluster of k breaks in (3.80) and (3.82) respectively, we take the form of the stress

concentration ahead of a cluster of £ breaks in 2D arrays to be

Ky(r) = \/ %’“wku +exp(—&/(kro/2))) + 1 (3.143)

where we provisionally let 1, be a free parameter. The dependence of K (7) on
7 is weak and 7 may be varied considerably without significantly affecting Ky (7).
We therefore can let 7 in (3.143) be the normalized time since the formation of
the first break in the k-cluster without affecting the approximation much.

This form for Kj, in addition to accounting for the influence of interaction
between periodic unit cells also accounts for the staggering of fiber breaks through

the parameter 1. We find that it is suffices to let

1 if k£ < ko
VY = (3.144)

v itk >k
where kq is appropriately chosen and % is maintained as a free parameter which is
fit so as to produce the tightest bound in the lower tail of the empirical lifetime
distribution produced by the simulations. We only allow 1 < ¢ < 2; v =1
corresponds to the k-cluster comprised of two equal limbs (as defined before (3.82))
infinitely apart while ¢y = 2 corresponds to the case the two limbs are aligned

transversely.
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It is to be emphasized that the form (3.143) with the restriction (3.144) at best
represents an attempt to capture the dominant effect of the stress concentration
ahead of a staggered cluster of k-breaks using the fewest number of fitting param-

eters. As will be seen, the chosen form results in predicted lifetime distributions

which accurately capture the form of the empirical distributions.
2D: =01, p=T75, =0, 1, = 0.7
’l/) = 11, k() =3
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Figure 3.15: Comparison of the empirical weakest link distribution with the k-
envelope given by (3.131) in a 8 = 0.1, p = 75 elastic matrix (o« = 0) composite
on Weibull paper under applied load o0 = 0.7. To get good agreement between
the two, we set the parameters ¢ = 1.1 and ky = 3. Points of intersection of the

k-lines are marked with squares.

Figure 3.15 shows the comparison between empirical W (7) obtained from
Monte Carlo simulations and Wy(7), k = 1,...,8, from (3.123) for the case of
a fiber matrix system under applied load 7., = 0.7 wherein the matrix is elastic
and fiber statistics are determined by the parameters 8 = 0.1 and p = 75. Accord-

ing to (3.134), the model predicts an upper bound which is the minimum envelope
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of the shown Wj(7). To obtain good agreement between ming Wy () and W (7),
we have set the free parameters 1y = 1.1 and kg = 3. As is evident, the minimum
envelope of W;(7) approximates the shape of W (7) well but divergence is seen in
the lower tail. Decreasing v for larger £ would amend this divergence. Doing so
is physically justifiable since larger k corresponds in general to a greater degree of
staggering to correct for which ¥ must be made smaller.

The empirical median lifetime of this composite is found to be LR 6.5 x 1076
at which time k* = 4 in the Weibull lower envelope. From Figure 3.10 it can be
seen that the critical cluster size £* in the failure plane of the median specimen is

indeed 4.
2D: 8 =0.1, p="75, e, = 0.7

Monte Carlo Simulations
— Cluster Growth Model

log(—log(1 — W))

16 ;
-20 -15 -10 -5 0

log(7)

Figure 3.16: Comparison on Weibull paper of the empirical weakest link distribu-
tion with the minimum of the k-envelope in 8 = 0.1, p = 75 fiber composites with
matrix of three different a: o = 0, 0.1, and 0.5 under stress 7o, = 0.7. The (1, ko)

pairs for these three « are respectively, (1.1,3), (1.4,3) and (1.75, 3).

Figure 3.16 shows the Weibull lower envelope of the § = 0.1 and p = 75
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composites when o = 0, 0.1 and 0.5 the first of which we just discussed. The
applied normalized load is 7o, = 0.7. Observe that the median lifetime of the
three cases varies in the reverse order of their overload lengths wy at the failure
time. The median lifetime of the &« = 0, @ = 0.1, and o = 0.5 composites are
respectively 71/ = 6.5 X 1078, 7.7 x 107% and 6.0 x 1073. In all three cases, the
median lies in the range of £* = 4. This implies that the approximate normalized
overload lengths in the three cases calculated using (3.74) are @, = 2, 1.11, and
0.56 respectively. Since the elastic (o« = 0) composite has an overload zone next
to a fiber break which instantaneously extends to w, = 2, a break in it subjects a
greater length of its neighboring segment to overload than it would in an o = 0.1
or o = 0.5 viscoelastic composite. This qualitatively explains the observed trend
in the median lifetime. In computing the model lines for the three different cases,
we have substituted 7 = 7/, in (3.143) without appreciable error. While &y = 3 is
fixed in all three cases, 1 = 1.1, 1.4, and 1.75 when « = 0, 0.1, and 0.5 respectively.
This is in keeping with the overload length argument suggested above; correction
necessary to account for staggering is smaller if the overload length is shorter. This
in turn results in 9 closer to 2 as « increases.

Also observe that the disagreement in the lower tail between the predicted and
empirical weakest link distributions seen for & = 0 decreases and almost disappears
as « is increased up to 0.5. Viewed in conjunction with the increased possibility of
staggering that accompanies increased overload length wy as a decreases according
to wy o< 7/2, this bolsters our earlier suggestion that the assumed forms (3.143)
and (3.144) for K} are imperfect and break down as fiber break staggering ahead
of a cluster becomes pronounced.

As indicated earlier, the cluster growth failure mode gives way to a dispersed
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Figure 3.17: The inability of the k-envelope model to fit the empirical weakest-
link distribution of § = 0.5, p = 15 fiber elastic matrix o = 0 composites under
T = 0.7. Lines of k > 5 appear to intersect almost at a single point. For the
parameters we have taken ¢ = 1.2 and ky = 3 here. Points of intersection of the

k-lines are marked with squares.

failure mode as cluster extension probability is decreased. In Figure 3.17, in at-
tempting to fit Wy (7) to the weak-linked lifetime distribution of an elastic matrix
composite with fiber parameters § = 0.5 and p = 15, we find that the lines of
Wy (7) intersect each other almost at a point when k& exceeds about 5. An expla-
nation follows from the boundedness of stress concentrations ahead of a k-cluster of
breaks in a unit cell under periodic boundary conditions in accordance with (3.80).

Let K be this upper bound for a unit cell of height £. That is, let K ; < Ky,
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for k =1,2,.... Then for sufficiently large k, the ratio W1 /W} becomes

Wiai(r) 200+ BATA+(k+1p) [, 1\ o8 B+a)2
Welr) T(1+ kp) ( K) (Kiameo) 7

~ 2T (1 + B) 8%y (k) (K7 )PP He/2,

(3.145)

where v(k) = O((k + 1)P) is a slowly increasing function of & when 3 is small.

From this we may define an accumulation time
Ta = (2XT(1 + B) APy (k) (K o)) a+28. (3.146)

Wia1(1) < Wi(7), for 7 < 7, and all k > kg for some kq. For 7 > 7, however, there
is a unique k* such that Wy« (1) < Wy(7), for all k£ at each 7 where k* = k*(7).
By this argument, accumulation of W}, of the above described nature should occur
for all values of # and p for sufficiently high .

After the stress concentration ahead of a cluster of breaks fails to substantially
increase with the size of the cluster, cluster extension must proceed at the same
speed irrespective of cluster length. In this condition a global damage mode ap-
pears to take over and fail fibers in a dispersed manner until they link up and fail
the composite.

Disperse failure is characteristic of equal load sharing bundles which as dis-
cussed in Section 3.4.1 have Gaussian lifetime distributions asymptotically as
n — oo. That gives us reason to expect the same distribution even in local
load sharing composites when fiber failure has a disperse nature. However we
do not find obvious normal tendency for any of our simulated lifetime distribu-
tions. A second possibility suggested by the longitudinal localization of disperse

fiber breaks within bands smaller than the composite length is that the empirical
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Figure 3.18: Plots of the weak linked empirical distribution of 8 = 0.5, p = 15

composites under applied stress mo, = 0.3 on log-normal paper. The linearity of

the plots suggests that the weak linked distributions are log-normal.

lifetime distribution follows

A~ ~

Hyn(7)=1— (1 =W(r))™ (3.147)

where W (7) is normally distributed and the composite may be thought of as a
weakest link arrangement of m equal load sharing bundles. However again, W(T)
determined from (3.147) fails to be Gaussian for all m as determined from our
simulation flmn data.

However it turns out, and this is curious, that W(T) is very linear on log-normal
coordinates which differs from the normal coordinates in that the horizontal axis
is log 7 instead of 7. Figure 3.18 shows the weak linked lifetime distributions of
B = 0.5, p = 15 composite specimens with matrix of « = 0.1 and « = 0.5 on

log-normal probability paper together with straight lines which are least squares
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fits of them. Here m is chosen in each case to be the integer which minimizes the
standard error of both the slope and intercept estimates of the fitting straight lines.
The line corresponding to a@ = 0 is excluded from this figure since the standard
error corresponding to it does not achieve a minimum at any reasonable m and
continually decreases as m is increased and the concept fails to work, i.e., the form
(3.147) does not capture the distribution of H,,, for & = 0. This observation is
in agreement with Figure 3.17 which shows that the k-cluster growth model is a
reasonable assumption until it is superseded by non-accelerating crack growth due
to the influence of its periodic images. o = 0 thus appears to be in between the
clustered and disperse failure modes in behavior for this limited unit cell size.

We follow the argument of Ibnabdeljalil and Phoenix [7] to explain the ob-
served log-normal link W (r) of H,,,(7). It hinges on the connection between
the lifetime problem and the static strength problems established through (3.100).
It is found from Monte Carlo simulations of the strength of equal load sharing
strength bundles that their strength distribution converges rapidly to the normal
distribution even when the bundles are as small as n = 5. This is in contrast
to the equal load sharing lifetime bundles whose convergence to their asymptotic
normal distribution is much slower so that convergence is not complete even for
n = 500. Since our weakest link bundles are quite small, their lifetime distribution
is non-normal in feature.

To see the log-normality of our lifetime distribution we must determine the
lifetime distribution corresponding to a normal strength distribution. Following

Ibnabdeljalil and Phoenix [7] and Phoenix [6] the standardized lifetime of an equal
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load sharing bundle has the scaling

T :
wP(s)ds =Tnl, ifn(s)=mw
T = J (3.148)

OTI 7P(s)ds = ‘gj;iTl', if m(s) = %s

where T and T' are the actual failure times under the two kinds of loadings -
constant and linearly increasing. Z is the loading rate and .7 is a standard time
assuming 7o, = 1. This remarkable result for both the fiber and the bundle emerges
from the factorization property of the power law breakdown rule in integrals [6].
Equating the two right hand sides and substituting the strength-time relationship

Y = ZT' in the linearly increasing load case gives

ZT S+
Tat — _ 3.149
o= 001" (p+ )% (3-149)
which implies that
S o T Ay log(7) + 1 (3.150)

p+1
where the latter approximation is accurate for large p (p > 10, say) and 7 close
to one. Since ¥ is normal, this suggests that .7 must be log-normal.

A scaling relation between the applied load and lifetime which holds in a bundle
wherein each fiber is subjected to the load profile (3.112) was derived in (3.116) and
the scaling relation in the absence of stress concentrations in (3.118). The actual
stress state in a partially failed composite lies in between these extremes and we
now look into the actual scaling relationship seen in our Monte-Carlo simulations.

Figure 3.19 shows the variation of the median composite lifetime with applied
load when fiber 3 = 0.1 and p = 75 and matrix a« = 0, 0.1, and 0.5. When
a = 0, the load-lifetime scaling relation (3.116) collapses into (3.118) which ap-

pears to hold. Thus, the median lifetime 71/, scales exactly as m_”. However
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Figure 3.19: Scaling of the median lifetime(7; /) with applied load(7) for com-
posites with 8 = 0.1, and p = 75 and different a. In the case of the elastic matrix,
a = 0, the scaling relation exactly is 7707 s2 = ¢ where c is a constant. When
a = 0.1, the scaling ngﬁ/z = c¢ is a good approximation. When a = 0.5, the

simple power law scaling fails to hold.

when « # 0, the situation is more complicated. While (3.116) suggests the form
o’ [(Btal 2)7'1 /2 = constant, for the load-lifetime scaling in this case and which, for
a = 0.1 becomes wggﬁ ,2 = constant it turns out that the actual scaling relation
for & = 0.1 goes as mo571 /o = constant. Thus the actual load scaling power(58) lies
in between the exponents given by (3.118) and (3.116). A possible reason for this
deviation is that while form (3.118) is written for the case wherein fiber failures
occur independently of each other and (3.116) for case wherein they form in a
way so as to extend a crack, in reality, the composite failure starts with disperse

breaking wherein (3.118) is more applicable and terminates with the growth of a

cluster of breaks when (3.116) is more applicable. Therefore it seems quite rea-



177

sonable that the actual scaling exponent be in between the exponents given by
either extreme case. Furthermore, (3.131) provides us a way to approximate the
actual load scaling exponent. It is readily seen from here that the dependence of

the characteristic lifetime distribution on load goes as
0B
Wi (1) ~ b 022 (3.151)
so it would be reasonable to expect
ng/(ﬁ”(k_l)/k)“mﬁp = constant (3.152)

so long as the composite fails by cluster formation and growth. Setting £ = 3
which is the observed critical cluster size in this expression for the median range,
we find that the load-lifetime scaling exponent is 56.25 which is very close to the
observed scaling exponent, 58.

Figure 3.20 shows the comparison of a single specimen under three different
applied loads. The scaled time of occurrence of fiber failures is plotted here against
the fiber break number with scaling done according to (3.118). The initial fiber
breaks, formed mostly due to the applied load and independent of other breaks
in the composite collapse into one under this scaling. However after about 91 =8
breaks form, divergence is noticed among the different load levels as fiber breaks
begin to interact.

Figure 3.21 shows the same plot except that scaling is done according to the
relation (3.116). This scaling fails to collapse the three curves into one master curve
towards the end of the failure process. Instead, the order of the scaled lifetimes
under the different load levels is reversed in this case from that in Figure (3.20)

suggesting an over-correction by the scaling exponent.
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In Figure 3.22, scaling is done according to (3.152) and a closer approach
although not collapse of the scaled failure times in the different cases to each
other is seen. k for each specimen is chosen to be the critical cluster size k* for
that specimen. It must be recognized that the sequence of breaks leading upto
composite failure is different in the different specimen owing to the different applied
loads although they have identical standard representative random variables. The
scaling (3.152) is derived by statistical arguments, not deteministic ones, unlike
(3.118) and (3.116). This makes the lack of collapse of the three curves unsurpising.
Another contributor to the disagreement between the three scaled lifetimes in
this figure is that length scale correction as suggested by (3.116) has not been
incorporated here.

Figure 3.23 shows the same scaling but of the median specimen under the
three loads. Since the scaling relation is statistical in nature, it is reasonable to
compare the statistically similar median specimen although they are not the same
realization in that they have different standard representative random variables.
As is seen, the failure times are close to each other; however this collapse is only
approximate suggesting that the somewhat non-linearity of the o = 0.1 line in
Figure 3.19. However the observed mismatch of the failure times is much smaller
than the lifetime variability in the three specimens.

When o = 0.5, as is evident from Figure 3.19, the power-law load lifetime
scaling breaks down especially for smaller loads. This is to be expected, for as «
increases, so does the overload length ahead of a crack prompting the dispersion of
breaks in the fiber direction as often observed above. This causes the breakdown
of the cluster-driven mode of composite failure, which in turn results in breakdown

of the power-law load-lifetime scaling relationship.



179

2D: =01, p=75,a=0.1

-30
-35
-40
—~
& o
i
) -55
Y
)
— 60
-65
0 Moo = 0.7
~70g 0 Moo = 0.5 ]
vV o = 0.3
-75 1 1 1 1 1 1 T T
0 05 1 15 25 3 35 4 45

log(9)

Figure 3.20: Damage evolution by way of fiber failures in time in a single g = 0.1,
p = 75 specimen (same standard representative random variables) under three
different loads: 7o = 0.3, 0.5, and 0.7. The time 7(M) of occurrence of break N
for each applied load 74 is scaled to unit applied load using 77 (M) = 72 7(MN)
which would be the scaling of composite lifetime is the breaks formed solely on
account of the far-field load as in (3.118). As this figure shows this scaling is valid
in the initial stages of failure when the fiber breaks are few and far apart but
breaks down after the formation of about Ot = 8 breaks at which point cluster

growth takes over.
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Figure 3.21: Figure 3.20 plotted with the scaling T»(M) = w8/ */2 (M) as

would be expected in a load sharing bundle according to (3.116).
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Figure 3.22: Figure 3.20 plotted with the scaling T3() = w82/ (F+(:=1a/CR) 1 o)
as would be expected in a load sharing bundle according to (3.152). The three

specimen have identical standard representative random variables.
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Figure 3.23: Figure 3.20 plotted with the scaling T3(9t) = w82/ (F+:=1a/Ck) 1 o)
as would be expected in a load sharing bundle according to (3.152). The three
specimen shown are the three median specimen among 1024 simulations and do

not have the same standard representative random variables.
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3.6.2 3D Arrays

In 3D, the effect of periodic images of a cluster of breaks in the fiber direction is
considerably smaller than that in 2D. For this reason, we assume the form for the

stress ahead of a k-cluster to be

Ky = ﬂ_ﬁiﬁk +1 (3.153)

where we have absorbed the smaller correction for periodicity
1+ exp(— Ly /VE)

into the factor vy itself. (3.153) is derived from the form (3.83) for the stress
concentration ahead of a staggered cluster of breaks. Also, we find that it suffices
to take v of the form

1, ifk=1
(I (3.154)
v if k> 1,

as in 2D where 9 is left as a free fitting parameter albeit subject to the bounds
1 < < 2. In (3.122) we noted that the number of neighbors surrounding a j-
cluster of fiber breaks is N; ~ (47)'/2j1/2. However the stress concentration varies
considerably from fiber to fiber among the neighbors of a cluster of breaks and in
a previous work [20] we have found it essential to accommodate this variability by
letting

N; =nj” (3.155)

where both  and v are fitting parameters. N; may be viewed as the number of
fibers surrounding a cluster that are effectively at high risk of failure.
Figure 3.24 shows the comparison of the cluster growth model against the

empirical weakest link distribution obtained from simulations of a 8 = 0.1, p = 75
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Figure 3.24: Comparison of the empirical weakest link distribution with the k-
envelope given by (3.131) in a # = 0.1, p = 75 3D elastic matrix composite under
applied load 7, = 0.7 on Weibull probability paper. To get good agreement

between the two, we set the parameters 1y = 1.86, n = 1.25, and v = 0.27.

elastic matrix composite under load 7o, = 0.7. To fit the data we have taken
N; = 1.255%2" and ¢ = 1.86. The closeness of the fitting parameter 1 to 2 suggests
that out of plane staggering of fiber breaks is minimal for this set of parameters.
Owing to the smaller stress concentrations ahead of a k-cluster in 3D than in 2D,
the probability range of the simulations encompasses more k* regimes in 3D than
in 2D. Figure 3.25 similarly compares the cluster growth model with the empirical
weakest link distribution in a § = 0.5, p = 15 composite in an o = 0.1 matrix
under applied load 7o, = 0.3 per fiber. As seen, the fit is exceptionally good in the
lower tail using the fitting parameters shown in the figure. Even though the times
are large in this case, the approximate normalized overload length @y, ~ Nk /2

here is much smaller than the normalized composite length £.
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Figure 3.25: Comparison of the empirical weakest link distribution with the k-
envelope given by (3.131) in a 8 = 0.5, p = 15 fiber, @ = 0.1 matrix 3D composite
under applied load 7., = 0.3 on Weibull probability paper. To get good agreement

between the two, we set the parameters ¢y = 1.7, n = 1.25, and v = 0.27.

Stalling of clusters due to the interaction between breaks and their periodic
images is much less of an issue in 3D than in 2D since these interactions, generally
speaking, are much smaller in 3D than in 2D arrays. As seen in Figure 3.6, stress
concentration ahead of a cluster of breaks is very mildly affected as £ is decreased
from oo to 5. The £ = 10 line is almost indistinguishable from the £ = oo line
and is not shown in that figure.

Figure 3.26 shows the lower envelope of the k-lines for § = 0.1 and p = 75
composites with matrices of different a. The observation and explanation in 2D
regarding the order of the median lifetimes is also applicable here.

As in 2D, we find that the weak linked lifetime distribution is log-normal as

shown in Figure 3.27 when 7o, = 0.3. (The simulation of @ = 0.5, 7o, = 0.3
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Figure 3.26: Comparison on Weibull paper of the empirical weakest link distribu-
tion with the minimum of the k-envelope in 3 = 0.1, p = 75 fiber composites with
matrix of three different a: o =0, 0.1, and 0.5 under stress 7o, = 0.7. In all three

cases we have set 1 = 1.86, n = 1.25, and v = 0.27.

is beyond our computational capabilities and is not shown here.) Unlike in 2D,
log-normality of the weak-linked lifetime distribution in 3D is not tied to cluster
stalling owing to interactions between breaks and their images. This suggests that
the tendency toward log-normality of the weak-linked lifetime distribution may
not be an artifact of our limited simulation unit cell size. But what is surprising
here is that H,y, is itself normally distributed as shown in Figure 3.28 although
its mean and standard deviation are far removed from the mean of 6.19 x 10® and
standard deviation of 2.76 x 10% predicted by the equal load sharing model for
both @ = 0 and o = 0.1 (since matrix characteristics are irrelevant to equal load
sharing). We however suspect that normality of H,,n(7) is coincidental and that

it will breakdown in the lower tail. Indications of such a breakdown are already
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Figure 3.27: Plots of the weak linked empirical distribution W (r) of 8 = 0.5,
p = 15 composites under applied stress 7o, = 0.3 on log-normal paper. The

linearity of the plots suggests that the weak linked distributions are log-normal.

seen among the last few specimens in Figure 3.28.
In the next section, we will speculate on the form of the weakest link distribu-

tion in large composites.
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Figure 3.28: Plots of the empirical distribution H,,,(7) of = 0.5, p = 15 com-
posites under applied stress 7o, = 0.3 on normal probability paper. The linearity
of the plot suggests normality of the distribution. However the parameters of the

normal distribution do not agree with those predicted by equal load sharing theory.

3.7 Large Composites

Hitherto we have confined ourselves to composites with n = 100 fibers and of height
L = 106y, or, mn = 1000 fiber segments which is very small compared to real
composites which typically have more than mn = 107 fiber segments of length of
the order of §, . On our small composite we imposed periodic boundary conditions
which prevented stress leakage from the unit cell as would occur had we imposed
patch boundary conditions which would in turn result in longer composite lifetimes.
However periodic boundary conditions resulted in spurious accumulation times
owing to the interaction of breaks with their images located in close proximity.

Furthermore, under the chain of bundles framework, we recentered the breaks
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appearing in each A-bundle both in the simulations and effectively in the modeling
of cluster growth. To reduce the artificial effect of recentering we set A = 0.5 which
is the smallest value given our computational constraints. While this turned out
adequate for large 8 composites, its effects were clearly discernable when (3 was
smaller resulting in shorter overload lengths. Now we will consider large composites
without these artificial restrictions which were imposed in order that failure can

be efficiently simulated.

3.7.1 2D Arrays

If £=o00, (3.73) and (3.74) express the stress concentration and overload length
ahead of a k-cluster. Out of plane staggering of fiber breaks during cluster growth

will still need to be accounted for and let us do so by introducing the parameter v

K;(0) :,/%jz/htl, 0<<1. (3.156)

We will now determine a closed form approximation for the weak-linked lifetime
distribution function W (7). The composite lifetime distribution can be extracted

from it as usual according to
Hypn(r)=1—-01-=W(r)™ (3.157)

We begin with (3.131) with N; =2, j=1,2,...,k— 1.

W (r) =r*(B+e/2) r(6+1) (4x)F! koB N

[k +1) © ra/2
lﬁ 1 Kj;_)ﬁ+1 ] (3.158)
1 L
el EE O

Let a = m/4 so that K; = \/1+aj. In terms of a we may express excellent
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approximations for the different factors as

kk/2

- —e~ (V1) 3.159
R S e P
1% ——e (71 (3.160)
ey (a+1)a*2
and
k-3
ﬁ —1( bta- 1+‘11> (k1)
(Kj—1)=~a 2z e 2\
o Ji+i—y/1+1 (3.161)
o Vil Vit
Setting
Wi(1) = Wit (1) (3.162)
now yields the intersection time of the W}, and Wy, lines:
1 1 Kg—1 T'(k+1)p+1) 1
Praf2 — (14— ) —=F — 3.163
oo = (1 02 ) 4 P T TR 1 178 (3:163)

Algebraic manipulations following the substitution of (3.159), (3.160), (3.161), and

(3.163) in (3.158) result in

Wk:% <k+%>azexp{— (g—l)ﬂ<k+2) (1—®k)} (3.164)

where

A Valvita—1]" (11(1)92

X (1-|-a)”2i

=~

(3.165)

0, = (1 - 1) pit1 (3.166)
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and

_ Va1 1)
O = 300721 <k+a) . (3.167)

Inverting (3.163), we get an expression for k in terms of 7

1 6
- — 3.168
b+ -~ (3.168)
where ,
0 3ﬂﬁ7ro—opﬁ (=2)8
o (16xapﬂ/2r<1 + /3)) |
and
0= ——(B+0af2)
=— o
(-2
Substituting (3.168) into (3.164) we finally have
S p 05
W(r) = 5 exp {— (5-1)p5-0-0m) (3.169)
where
05 = 9204 — ()1/2
and

a—1 70a/2

(p/2=1)B V05

W (7) will not be a distribution function unless it is non-decreasing in 7. Setting

dW (1)/dr > 0, we have a condition for its regime of validity, viz.,
(p/2 — 1)360504 /7% > 65. (3.170)

This condition is obviously not satisfied if p < 2 assuming all the # constants are
positive.
In Figure 3.29 we have compared (3.169) against empirical weak-linked lifetime

distributions obtained from Monte-Carlo simulations. It is notable that a good fit



191

in the case of the o = 0.5 composite requires a ¢ value slightly in excess of 2, the
supposed upper bound on . This is likely due to slight errors introduced during
the approximations. For, the effect of small changes in stress concentration on
lifetime is large, since lifetime scales as K*°. Although the lower tail of the o = 0,
W (r) distribution is a poor fit of the empirical distribution, we find that the fit
improves as « is increased (and the corresponding overload length is decreased).
This trend suggests that the failure of the @ = 0, and o = 0.1 lower tail stem
largely from the inability of the form (3.156) to capture the periodicity of boundary
conditions when the overload length is sizable. In Figure 3.16 where more elaborate
correction for periodicity conditions were made by assuming the form (3.143) for
the stress concentrations, the fit is much better.

An alternative form for the stress concentration which is likely to be more
successful in accounting for periodic boundary conditions while still amenable to

closed form W (r) determination is

i(0) = \/waﬂ. (3.171)

K

assigning as it does an effective crack length of 17" to the j-crack, where both
and v are fitting parameters to be determined in a way that results in W (7) being
a good fit to the empirical distributions.

Based on our experience with the simulations, we expect that with § and
a fixed, composites with large p will have ¥ ~ 2. When p is decreased, the
cluster growth will be less stress driven, prompting ¥ to decrease. Similarly, ¢
will decrease with increasing w o< 7%/2 for fixed p and 3 and for fixed p and o
decrease with increasing 3.

We imagine a cutoff ¢, such that when 1 < ., failure switches from a clus-

tered to a dispersed mode owing to insufficient hazard ahead of a cluster. The
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2D: 8 =0.1, p= 75, me, = 0.7

Monte Carlo Simulations
~4/| — Clustering Model (3.169)

16 I I I I I I I I
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2

log(7)

Figure 3.29: Comparison on Weibull paper of the empirical weakest link distribu-
tion with the 2D weakest link distribution given by (3.169) in g = 0.1, p = 75
fiber composites with matrix of three different a: o = 0, 0.1, and 0.5 under stress

Too = 0.7. The values of 1 used in (3.156) in the three cases are 1.8, 1.84, and 2.1

respectively.

simulations suggest that the weakest link in this case is driven by the lower tail of

a log-normal distribution of mean p; and standard deviation oy is given by

. . &xp (=2%(7)/2)

®(2(r)) ~ V20| (3.172)
where
1 T
0= ()
and the lifetime distribution H(7) is given by
H((r) = 1 - [1 = d(x(r))]” (3.173)

As the composite size gets large, so will 7. For large m, from Leadbetter et al [26,



193

Theorem 1.5.3] followed by algebraic manipulations we have
H(z(t)) =1—exp (- exp{ —a;, (e~ THT) — 1)}) (3.174)

with
am = (2log )/
and

1
by = (2log )2 — 5(2 log 1) "% (log log 7 4 log 4)

3.7.2 3D Arrays

Proceeding as in 2D we start by specializing (3.131) for 3D:

— K(B+a/2) T*(B+1) Xk—lﬂ_kpﬁi
I'(kB+1) © ro/2

- nj K;}ﬁ—l—l

j=1 1+ 4%6 Kj—1

Let a = 2¢/7%2 so that K; = y/ay/j + 1. As before, we first approximate the

different products in (3.175).

Wk(T)

(3.175)

k-1

k—1
Hm” ~ (2m)5nh e vhEY ke (3.176)
j=1
k-1
1 L/ 3/4  L1/2 9
— — k' 3.177
Ul"‘%j (\4/E+1)k—1ep{ 3 * 2 3} ( )

j=1 (a+1)> 2 a 2 @
and

lﬁK-—lz( a\/E+1—1)k%eXp{_;1+

el (Va+1-1) 1

[\/E mﬂ_m]}

(3.179)

1
3a
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Setting

Wi (1) = Wiy (7)

(3.180)
as before gives 7 in terms of £ as
1 1 Ky—1 I'((k+1)p+1) 1
fraf2 — (14 — . — 3.181
o= (1t ) nE e e T T 9
Substituting (3.176 — 3.181) into (3.175) and simplifying yields
0, 1]7% o8 172
Wy ~ VE+=| expl— ("5 —B+v) [VE+=| (1-6) (3.182)
/2 a 4 a
where
o) 2 Bt -8 (L+3)+]
01_)\(7r)2e\/_2(,—a+1_1)5a Mlj)x
o VB (sl (3.183)
va-+1 B , B—-v+5 2
oxp | Vo 0+ a1+ P .
pB+1 (1 1 1
92— D) (a2 2) +Z/+4, (3184)
and

i (0) sttt (e

2(1 — 4/(3a/2)) <\/E+ 1)—%_

pB—4(5—v) a
(3.185)
Inverting (3.181) we get
1 6
Vi+-r~— (3.186)
a T
where ,
36Pn P8 pB=4(B~v)
_ oo 1
% (477xa”ﬂ/2F(ﬁ+ 1)) ’ (3187)
and
2
0, B+«

= 17 (3.188)
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Upon substituting (3.186) into (3.182) we finally get

W) ~ 87 e {- (% — 5+ y> 702—‘354(1 _ @(T))} (3.189)

0>
03

where

05 = 0,0, + /2, (3.190)

and

- 4@9;1/2 04/2 4(p5 - Q(ﬂ - ,7) - %) 04
o)~ gy ab5(pB — 4(B—1))
2(1—4/(3a%?)) 304/2
05" (p3 — 4(8 — v))

Notice that while the power of the prefactor of the exponential, 65 is negative for

(3.191)

2D arrays, it turns positive for 3D arrays.
The transition to the disperse failure mode and the log-normality of the disperse
failure mode lifetime weak-linked distribution in 3D can be expected to be identical

to that in 2D.

3.8 Conclusion

We have discussed here the failure modes and lifetime distributions of fiber re-
inforced composites whose fiber lifetimes are random and whose matrix response
is viscoelastic. Based on Monte Carlo simulations of small composite unit cells
under periodic boundary conditions we find that the failure mode transforms from
a model which involves the formation and propagation of a cluster of breaks to
one wherein fiber breaks are disperse. This transformation of failure mode occurs
as fiber statistical parameters are varied in a manner so as to decrease the hazard

ahead of a cluster. The transformation is smooth with the clustered mode under-
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going more and more fiber stagger out of the transverse plane before merging with
the entirely disperse regime of fiber failure.

Irrespective of the model of failure we expect that when ¢ = (p+1)0 is reason-
ably large (say more than 4), there will be a weakest link basis to the composite
lifetime distribution H (7). That is, there will be a critical volume whose failure
will signal the rupture of the rest of the composite in arbitrarily small time. If
W (7) is the lifetime distribution of the critical volume, H(7) =1 — (1 — W(7))™
where m is typically larger than the ratio of the composite volume to the critical
volume owing to an effective overlap of the critical volumes. The question then is
to determine the distribution of the critical volume. As is shown here in the clus-
tered failure mode W (7) can be obtained from a simple mode of cluster growth. In
the disperse failure mode however, W (7) appears to be log-normal at least within

the range of our simulations.
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