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Abstract

A minimum plastic power principle is proposed for a rigid-viscoplastic crystalline
domain subdivided into two sets of lath-shaped regions, called bands. The lattice
orientation in each band is assumed uniform and to differ infinitesimally from that
in the other band. The proposed minimum principle yields the slip activity in the
bands and semi-analytical expressions for the misorientation axis and orientation of
band boundaries. These band boundary characteristics are predicted for f.c.c. lattice
orientations near the ideal rolling texture components. Surprisingly, it found that
the predicted band boundary characteristics closely match those of microstructural
features called cell block boundaries reported in the experimental literature, except
when the dislocations of activated slip systems are known to interact very strongly.
This suggests that except when precluded by strong dislocation interactions, con-

tinuum extremum principles may also govern microstructural characteristics.
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1 Introduction

A characteristic substructure forms within the grains of medium to high stack-
ing fault energy f.c.c. metals and alloy polycrystals subjected to plastic defor-
mation. This substructure is comprised of one or two sets of approximately par-
allel and regularly spaced geometrically necessary dislocation boundaries (Ev-
ers et al., 2002), called cell block boundaries (CBBs). CBBs demarcate regions
that are termed cell blocks, or microbands. (Steeds, 1966; Bay et al., 1989).
CBBs have attracted much recent interest (Winther et al., 1997; Christoffersen
and Leffers, 1998; Winther et al., 2000; Winther, 2003; Hurley and Humphreys,
2003; Hurley et al., 2003; Winther et al., 2004; Huang, 2005; Humphreys and
Bate, 2006; Huang and Winther, 2007; Winther and Huang, 2007; Winther,
2008; Albou et al., 2010; Afrin et al., 2011) not only because their study can
yield fundamental understanding of the substructural mechanisms that ac-
company plastic deformation of crystalline solids, but also because they are
an important source of plastic anisotropy of grains (Peeters et al., 2002). The
latter contributes to bulk plastic anisotropy, the control of which is desirable
in metal forming processes (Hughes and Hansen, 1993). Understanding the
microstructural arrangement of CBBs is therefore an important step toward
understanding the development of plastic anisotropy in polycrystalline mate-

rials.

The sizeable literature on theories of microstructure or CBB formation permits
broad classification into three approaches. The first approach phenomenolog-

ically seeks to identify patterns in experimentally observed CBB characteris-
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tics. The second approach is based on the minimisation of functionals repre-
senting free energy of the crystalline domain using the methods of variational
calculus. The third approach seeks to identify minimum principles that un-

derlie CBB structure.

The crystallographic explanation for CBB orientation using the concept of
duplex slip planes, due to Wert and Huang (2003), follows the first approach.
They proposed that CBBs align with a pair of duplex slip planes that in-
tersect along the axis of zero extension (the transverse direction in rolling
deformation), which may not coincide with actual slip planes. Based on the
set of slip systems activated during plane strain deformation of high symme-
try orientations such as copper, cube, rotated cube and Goss orientations,
they identified pairs of such duplex slip planes and showed that experimen-
tally observed CBBs coincide with these duplex slip planes. The procedure
of Wert and Huang (2003) to identify duplex systems is, however, limited to
highly symmetric lattice orientations wherein coplanar or co-directional sets

of active slip systems can be identified.

Winther and Huang (2007) have classified slip activity in f.c.c. crystals into five
slip classes: single slip, coplanar slip, co-directional slip, two fold activation of
easily cross-slipping systems and dependent coplanar and co-directional slip.
They concluded that CBB orientation is determined only by the slip class
and is independent of the macroscopically imposed deformation. Winther and
Huang (2007) have given an exhaustive correspondence scheme between slip
class and CBB orientation. However, their empirical correspondence scheme

does not amount to a physical explanation of the observed CBB orientation.

The work of Ortiz and Repetto (1999) and Ortiz et al. (2000) pioneered the



second variational calculus based approach. They proposed a free energy func-
tional comprised of contributions from the elastic strain energy, the plastic
dissipation and the stored energy of dislocation walls that form due to plas-
tic incompatibility between sub-domains (called laminae) and postulated its
minimisation during deformation. The last contribution renders the plastic-
ity model non-local and introduces a microstructural length scale, which is
characteristic of strain-gradient plasticity. In the presence of latent hardening,
homogeneous deformation of the crystalline domain by multislip does not min-
imise the proposed functional. Instead, the minimum is achieved by replacing
homogeneous multislip activity with spatially separated single slip activities
within the laminae. Dislocation walls are generated between neighbouring lam-
inae in order to accommodate the plastic incompatibility due to different slip
activities in the laminae. Significantly, these dislocation walls are assumed
to be sessile, i.e., to be fixed with respect to the material. Carstensen et al.
(2002) posed the finite strain evolution problem in a more general context and
showed that it reduces to non-convex minimisation. Bartels et al. (2004) and
Carstensen et al. (2008) applied relaxation theory to obtain the minimising
lamina structure for an important class of functionals. A multi-field formula-
tion for dissipative solids was given by Miehe (2011). Yalcinkaya et al. (2011)
proposed a variant of strain-gradient plasticity for rate-dependent crystalline
materials by augmenting the free energy functional with non-convex terms.
Approaches for the representing dislocation wall energies have been proposed
by many authors, including Gurtin (2002); Svendsen (2002) and Hurtado and
Ortiz (2012). These have been evaluated by Bittencourt et al. (2003) and

Nicola et al. (2005) against discrete dislocation simulations.

Non-local variational theories are able to predict the scaling of misorienta-



tion angle and the spacing of microstructural boundaries, in accord with ex-
perimental observations, when infinite latent hardening is assumed (Aubry
and Ortiz, 2003; Sivakumar and Ortiz, 2004; Conti and Ortiz, 2005). How-
ever, in contrast with the literature following the first phenomenological ap-
proach (Wert and Huang, 2003; Winther et al., 1997; Winther and Huang,
2007; Albou et al., 2010), detailed comparison of predictions of misorienta-
tions across CBBs/dislocation walls and their orientations based on these the-
ories with observations reported in the voluminous experimental literature is
conspicuously absent for two reasons. First, construction of the free-energy
functionals involves constitutive assumptions such as hardening induced by
slip-system interactions and energy associated with dislocation walls. Their
proper choice needs considerable experimental guidance, which is not yet avail-
able (Nicola et al., 2005). Second, the assumption of sessile dislocation walls
in the variational theories is not realised up to plastic strains of about 0.5 in
f.c.c. metals (Humphreys and Bate, 2006), so that the theories are not appli-
cable in the small plastic strain regime (< 0.5) wherein a rich variety of CBB

patterns are observed.

The third approach to predicting microstructure formation in crystalline do-
mains is perhaps the earliest and was initiated by Chin and Wonsiewicz (1969)
in an era when CBBs had not yet been experimentally observed. Chin and
Wonsiewicz (1969) sought to explain the formation of coarse microstructural
elements called deformation bands in wire drawn single crystals. They pro-
posed that an inhomogeneous deformation mode of the grain will be favoured
over the homogeneous deformation mode if the former were associated with
less plastic power than the latter. Motivated by experimental observations of

deformation band shapes, they assumed the grain to be divided into two sets



of lath-shaped ‘bands’ deforming at different rates. They also proposed that
the interface between the two types of bands be so oriented as to minimise
strain-rate incompatibility across the band boundaries. It is noteworthy that
banding, according to Chin and Wonsiewicz (1969), was not connected to la-
tent hardening in any way. In order to overcome the convexity of plastic power,
Chin and Wonsiewicz (1969) relaxed the imposition of certain components of
the strain-rate imposed on the grain. Also, Schmid’s law is not necessarily

satisfied in their banded grain.

The principles of minimum plastic power and minimum deformation incom-
patibility across band boundaries due to Chin and Wonsiewicz (1969), were
applied to explain CBB orientation and misorientation by Mahesh (2012).
The most significant novelty of the latter work was that bands were assumed
to be slightly misoriented with respect to each other. By this devise, both
shortcomings of Chin and Wonsiewicz’s banding theory were overcome: (1)
the inhomogeneously deforming grain accommodated the imposed deforma-
tion exactly, and (2) Schmid’s law was strictly satisfied in both bands. Also,
dislocation wall formation between inhomogeneously deforming bands did not

require latent hardening.

Mahesh (2012) predicted the misorientation axes between neighbouring bands
and the orientations of CBBs in the grains of an f.c.c. Taylor polycrystal sub-
jected to uniaxial tension. The model grains were assumed rigid-plastic and
rate-independent. The predictions are found to be in quantitative agreement
with experimental observations of the three types of CBB structure in medium
to high stacking fault energy f.c.c. materials during uniaxial tension (Huang
and Hansen, 1997; Huang, 1998). Application of this method to predict CBB

orientation during plane strain deformation of f.c.c. metals, however, encoun-



ters difficulties which are attributable to the assumption of rate-independence.
For, during plane strain compression, grains rotate toward highly symmet-
ric orientations, which are called the ideal rolling texture components. Rate-
independent models predict non-unique solutions for the slip rates in these
orientations (Van Houtte and Aernoudt, 1975). Since the predicted band char-
acteristics depend sensitively on the slip activity selected, highly disparate
sets of band characteristics are obtained from rate-independent simulations of

plane strain compression.

In the present work, non-uniqueness of slip-rates in the rate-independent the-
ory of Mahesh (2012) is overcome by considering viscoplastic rate-dependent
grains (Pan and Rice, 1983; Kocks et al., 1998), for which slip activities are
unique. A local theory of inhomogeneous rigid-viscoplastic grain deformation
in the small plastic strain regime is developed following the third approach.
CBB predictions are independent of latent hardening of slip systems, and are
based on the assumption of perfectly glissile dislocations. In this respect, the
present work is complementary to the variational theories of the second ap-

proach.

The present work is built upon the classical idealisation of a grain as a homoge-
neously deforming entity. This framework is briefly reviewed in Sec. 2 prior to
the study of inhomogeneous grain deformations in Sec. 3. This analysis results
in semi-analytical expressions for the misorientation axis between neighbour-
ing bands and for the orientation of the band boundaries, given at the end of
Secs. 3.5 and 3.6, respectively. In Sec. 4, predictions of these band characteris-
tics are obtained for grains in the vicinity of five ideal texture components of
the f.c.c. rolling texture and the predictions are compared with experimental

observations of the misorientation axes between neighbouring microbands and



the orientation of CBBs. A discussion of the results then follows in Sec. 5.

2 The homogeneous viscoplastic grain

The classical formulation for a homogeneously deforming rigid-viscoplastic
grain is outlined below following e.g., Kocks et al. (1998). Consider an ideal
grain with a uniform lattice orientation specified by an orthonormal tensor
2 that transforms vectors from the crystallographic coordinate system to the
macroscopic coordinate system. Let D denote the imposed rate of strain on
this grain, which is accommodated internally by slip on S slip systems indexed
by s. Let the slip plane normal and slip direction of the s-th slip system be
denoted mg and by, respectively; these satisfy b, - ngy = 0. The Schmid tensor

of the s-th slip system is (Kocks et al., 1998)

ms = (bs ® ng + ng ® by)/2. (1)

T

Clearly, ms = m;, i.e., my is symmetric. Also, tr m; = b, - ng = 0, i.e., My

is traceless.

Neglecting elastic strains, the prescribed strain-rate D in the grain is accom-
modated by slip in all the S slip systems:
5
D = Zl Y5110, (2)
where the slip-rates 7, are assumed to depend on deviatoric stress o following
the power-law,

n

g M sign(o : my) (3)

VS:‘
TS

in a viscoplastic grain (Asaro and Needleman, 1985; Canova et al., 1988; Anand

and Kothari, 1996; Miehe and Rosato, 2007). The exponent n is termed the



reciprocal rate-sensitivity and 7, is called the critical resolved shear stress of
slip system s. In Eq. (3), o : m, = tr(om,”) = tr(em;). Substituting Eq. (3)
into Eq. (2), one obtains

n

g sign(o : my). (4)

S
D = st
s=1

Ts

The gradient of D in o space is called the tangent modulus of the grain (Kocks

et al., 1998):

M- 6D:§:nms®ms o:m,|"!

T o

()

M is symmetric and positive-definite and hence, invertible. The inverse is

Ts Ts

s=1

denoted S
S :=M" (6)

The plastic power associated with plastic deformation per unit volume is
5

P::G:D:ZTS

s=1

n+1 S

POEACA (7)

s=1

o :my

The second and third equalities in Eq. (7) are obtained using Eqs. (4) and
(3), respectively. It is shown in Appendix A.1 that subject to the constraint of
Eq. (2), the plastic power P (%1, %, ...,%s) is minimized by slip-rates 55 given

by Eq. (3).

3 The banded viscoplastic grain

3.1 Lattice orientation perturbations

Next, let the domain of the grain be divided into two alternating band-shaped
regions, (1) and (2), as shown in Fig. 1. It is assumed at the outset that the

two regions are of equal volume, so that their volume fractions are 1/2 each.



Fig. 1. Schematic diagram of a grain showing two types of bands of alternating

lattice orientations, (1) and (2).

It is also assumed that the critical resolved shear stress of the s-th slip system

in both bands are equal, i.e.,

7o =1 =73, (8)

Regions (1) and (2) differ infinitesimally in their lattice orientation. The lattice
orientation of region (1), 21, assumed uniform, is obtained by rotating the
lattice orientation of the homogeneous grain of Sec. 2, €2, through an infinites-
imal angle dw about unit vector . Likewise, the lattice orientation of region
(2), again assumed uniform, is obtained by giving an infinitesimal rotation dw

to €2, about unit vector —p. Thus,
QY = Qexp ((px)dw), and Q@ = Qexp ((—px)dw), (9)
where, (px) denotes the skew-symmetric tensor that satisfies
(px)v=p x v, (10)

for all vectors v (Gurtin, 1981). To first order in dw, Eq. (9) implies

QW ~ Q(I + (ux)dw), and
(11)



The lattice orientation perturbations imparted to the two regions produces in-
finitesimal variations in various lattice orientation dependent tensorial quanti-
ties (e.g., Schmid tensors, my) associated with the two regions. In general, the
infinitesimal change in the tensorial quantity g when the lattice orientation is
given an infinitesimal rotation dw about the vector p is denoted

dq

7 dw. (12)
"

If the lattice orientation is given an infinitesimal rotation dw about the unit
vector p, the s-th Schmid tensor, m,, rotates to (I + (ux)dw)'m (I +
(ux)dw) following Eq. (11). The change in my, denoted using the notation of

Eq. (12) is then

dm,

7 dw =~ (I 4+ (ux)dw) my (I + (ux)dw) — m,
" (13)

R (mg(px) — (px)mg)dw.

The ‘~’ symbols in Eq. (13) indicate its accuracy only to first order in dw.

In deriving Eq. (13), the property that (ux)? = —(ux) has been used. It

follows that

dm
dw

dm
dw
"

=my(px) — (px)ms = —

3.2 Plastic power variation to first order

It is shown below, in Eq. (30), that the plastic power of the banded grain

equals that of the homogeneously deforming grain to first order.

Let DM and D® denote the rates of deformation in regions (1) and (2),

respectively and let () and o® denote the corresponding deviatoric stresses.

11



Using the notation of Eq. (12),

dD dD
DY ~D+ —| dw, DP~D+ —| du, (15)
dw dw u
and
do do
Wy 2O @ g O _ )
o o+ €|, dw, o o+ 70 dw (16)

Terms of order (dw)? and higher have been omitted in the preceding equations.

The rate of strain imposed on the banded grain must be accommodated col-

lectively by the two families of bands, i.e.,

DW 1+ D®

15
D=2 P = S mlY LS 5 Om) a7)
s=1 sl

where 1/2 is the volume fraction of the two band families, as noted in Sec. 3.1.
The second equality in Eq. (17) follows from Eq. (2). Substituting Eq. (15)

into Eq. (17) gives

1 dD 1 dD
S L2 o 1
2 dw “ 2 dw| (18)
Differentiating Eq. (4), one obtains
dD idms ’O’stn ien( n
—| = sign(o : my
dw =1 dw “ Ts s
S (19)
nmg |o:mg|" ! | do dm
Z —| m,+o .
- Ts dw dw
I p

dD/dw|_,, is obtained by simply replacing p by —p in Eq. (19):

dD S dm o:m,|" .
- => T . sign(o : my)+
—n s=1 —n s
20
inms o:m,|" ! | do _— dm (20)
—| my+o: )
=T Te dw| dw u

Substituting Egs. (19) and (20) in Eq. (18), using the equality of the first and

third terms in Eq. (14) and recalling the tangent modulus from Eq. (5) yields

do
M (%“Jr _H) =0. (21)

d_a
dw

12



Since M is invertible, Eq. (21) implies

do| |
dw
©w

do

o =0 (22)

The plastic power density P of the homogeneous grain of Sec. 2 depends only
on the slip rates 45, s = 1,2,...,5, as seen from Eq. (7). The plastic power
density of the banded grain generally need not equal P, on account of the
infinitesimal lattice orientations dw given to the two bands about unit vectors

+p. Let the infinitesimal change in plastic power be denoted dP/dwl,,, dw.

Then,
AP W . PO 4 o@ . PO
Py = o +o
dw |, 2
H . | S (23)
1+1/n y[1+1/n
It is shown in Appendix A.2 that the minimum ofP(%l), o ,vg), %2), o 7592))

subject to the constraint given by Eq. (17) is attained provided

S

O < [ o
’& sign(a® : m®), i€ {1,2} (24)

Ts

and provided

o) =@, (25)

for s € {1,2,...,5}. Substituting Eq. (16) into Eq. (25) gives

do do
] === 26
dw dw| =~ (26)
" -
which, together with Eq. (22) implies that
do do
—| =—| =0o. 27
dw “ dw| (27)

Thus, a first order perturbation to the lattice orientation of the bands produces

13



no change in deviatoric stresses to first order, i.e.,
o=cV =c?. (28)

However, substituting Eq. (27) into Egs. (19) and (20), it is seen that the first

order lattice orientation perturbation produces non-zero equal and opposite

) o-wsl“/"}-
I

(29)

first order changes in the rates of band deformations, i.e.,

S|, dm, n dmg
- Z Vs + =M
dw "

—u s=1 S dw

dD

dD
dw

dw

n
Eq. (4) has been used in deriving Eq. (29).

To first order, the change in the plastic power due to the lattice orientation

perturbation is

dP dP
— dw =P+ — dw — P
dwiu dwiﬂ
(€) (1) (2) (2)
_ o DY +0'Y D oD
1) 2() (30)
DWW 4+ DG
=0 i —o:D
2
=0.

The third and fourth rows above follow from Eqs. (28) and (17), respectively.
Thus, it has been shown that a first order perturbation of the lattice orienta-

tion produces no first order variation in the plastic power.

3.8  Plastic power variation to second order

A concise expression is derived below, in Eq. (46), for the second order per-

turbation of the plastic power of a grain with lattice misorientation.

It is clear from Eq. (30) that the plastic power of a banded grain may, at best,

14



deviate from that of the homogeneous grain to second order in dw. If so, the

plastic power of the banded grain will take the form

1 d’°P 9
P + 5 w , (dw) s (31)
"
where,
d*P d [ dP
@, @ (@ ) )
+u +u +u

Paralleling Eq. (12), the second derivative of an orientation dependent tenso-

rial quantity, g, is defined as

d’*q d [ dq
2 = = 33
dw? dw (dw ) ’ (33)
Iz w)
in terms of the first derivative given in Eq. (12).
Using the notation of Eq. (33),
1 &*o
1) _ 1ado 2
o) = 2 dw? (dew), ”
o® =g 42 4 (dw)? o
2 dw?|_,

to second order in dw. The first order terms in Eq. (34) are zero, according to

Eq. (27). Substituting Eq. (34) into Eq. (28),

B d’o
 dw?
©w

ro
dw?

(35)

is obtained. By virtue of the equality in Eq. (35), the following notation is

introduced:

d’o

dw?
n

d*o

==
tp dw

d’o

dw?

(36)

-

Similarly, the rate of strain in the two bands is expressible to second order in

15



dw as

d 1 d*D
DY =D+ — - 2
+ 0 (dw) 5 22 (dw)?, -
dD 1 &®D
DY =D+ —| (d - dw)?
+ dw|”( w)+2 dw? ”( w)

Substituting Eq. (37) into Eq. (17) and utilising the first equality in Eq. (29)

gives

d’D d’>D
102 12 = 0. (38)
7 —p

d’D/dw?|, is obtained by further differentiating Eq. (29) and applying Eqs. (35)

as
’D| i ’mg| . +2_71 dm, dm, N
dw? | — | dw? s T dw dw 7
pooos= p p p
2
—1
=) s(dms :") 412/ sign(4,) +
T3 dw
g (39)
m,@mg oy, &0
n oA 72 +
T Wy,
n d? . |1-1/n
T_s (ms ® de ) Uh/S‘ / } )
where, following Eq. (14),
Trmal A ) — () B
2| = _
dw " dw “ dw “ (40)
= (m(px) = (px)m) (px) — (px) (ms(px) = (px)m;).
It is clear from Eq. (40) that d®m,/dw?|, is even in y, i.e.,
d? d? d?
mg _ d'my|  d'm, (41)
dw? |, dw? dw? |
p I I

Furthermore, a term by term consideration of the right side of Eq. (39), in light

of Eq. (41), reveals that every term is even in . This implies that d>D/dw?|,

is even in w, i.e.,
d*D
dw?

__d°D

dw?

_ &D

dw? (42)

tp © —p

16



Egs. (38) and (42) together imply that

d*D

dw?

—0. (43)

+tp

Substituting Eq. (39) into Eq. (43) finally gives

B S d?m,| . N 2n [ dm, .
N 2 dw? s Ts \ dw
" s m m

) o+
"
n—1) [dm ’
n{n — s . - 11-2/n - .
72 ms( dw N-”) s "sign(7:)+ (44)

n d*m L
—|m s : —1/n
T, ( s @ duw? ,,,) 0"’)/5| } )

which can be inverted to obtain the unknown tensor d*e/dw?|, "

d*o

dw?

dm,
dw

The second order change in the plastic power due to the infinitesimal dw lattice

orientation perturbations of the two band families about g is

1 d*P
P+- — dw)?
JrZdqu (dw)

tp

—P

| 2o dD )
S0 (@) [ D+ | (dw)+
+2d2i(”)) ( T | TS
1 | Po ) d )

(45)

The third row in the above expression follows from substituting Eqgs. (34),
(35) and (37) into the second row. Expanding the last expression above and
applying Eqgs. (29) and (43), it is found that all terms of zeroth and first order

in dw vanish. The final expression for second order variation in the plastic

17



power accurate to second order becomes

. d*o
" dw?

d*P

dw?

+u +u

where D is the known imposed deformation and d?*c /dw?| +,, Is given by

Eq. (44).

In summary, the plastic power perturbation depends on the misorientation

vector p, and is of second order in the lattice orientation perturbation dw.

8.4 d*P/dw?|., as a quadratic form

d*P/dw?|,, given by Eq. (46) will be now be shown to be a quadratic form

n p,

d2P/dw2‘iu = pu- Ep, (47)

where E is a symmetric 2-tensor. The components F;; in a sample fixed or-
thonormal coordinate system xyz will also be obtained. Let e;, i € {1,2,3}

denote the unit vectors along the x, y and z axes, respectively.

An orthonormal basis for the space of symmetric traceless matrices, due to

18



Leibfried et al. (1978), is recalled:

—-100 -1 00
1 1
pV] = . PP = — ’
0] /2 010 0] /6 0 —-10
000 0 0 2
000 001
#9)=—=loo1| B1=—=|oo0|, md @)
¥ v
010 100
010
1
poN = —
M= 100
000
These basis matrices are orthogonal in the sense that for o, 5 € {1,2,...,5},
1, ifa=0,
] o) = (49)
0, ifa#p.
In the sequel, Greek indices are taken to range over {1,2,...,5}. Also, sum-

mation over repeated Greek indices is implied. In light of Eq. (49), the s-th
symmetric and traceless Schmid tensor, m,, whose matrix of components in

the zyz frame is denoted [m],,., may be expressed as
(M) y. = mga) [b(a)] (50)

where,

m® = (M) [b(a)]. (51)

s
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It is also readily seen from Eq. (14) that [dm/dw|,]sy. is symmetric and
traceless. It, therefore, lies in the span of {[bV)], ..., [b®]} given by Eq. (48).

Contracting both sides of Eq. (14) with [b®)] gives

dm dm®) N
|: dw lj Yz ) dw K [b( )]’ (52)
where,
dm§“> = m® L(p® LAY - [p@
|, = {0700 - ol BT 6

In order to express Eq. (53) explicitly in terms of p, coefficients

K = [[0)](e;x) = (exx)[b]] = [b] (54)

(2

are defined for i € {1, 2, 3}. These coefficients are skew over the Greek indices,
i.e., they satisfy

K = — K. (55)
Taking Latin indices to range over {1,2,3} and implying summation over

repeated Latin indices, Eq. (53) may be expressed compactly as

dmga) Q
i i K@) ®) (56)
Analogously,
¢mP | dm |
2 t '
dw? |, dw |, (57)
a 5
= K"K mP s,
dm dm 7
s s a\ g
( dw dw ) = KV K mPml s, (58)
"
d*m o
s a A Ad
(ms © ) = m® KV Km0 s, (59)
"
and
2
( | d;ns ) = KO K09 600 50 (@) 8). (60)
W
"

20



Substituting Eqs. (56)—(60) into Eq. (44) and substituting the result into

Eq. (46) gives

d*P
T2| = Fukk, (61)
tp
where,
N ) ) N ) (89 () o e m?)
F; = — D@ SN [ K; D®) 4 2D 5N K| K; pu )Z s s
s=1 Ts

(M) 977,(8) 47, (B)
« « ov 0 v ms ms ms : —2/n_: :
n(n —1)D@ 5N K 15 50 50 Z,lT‘%‘l 2/msion () —
DB ¥ g (Bv) 1(6)
7 7 .

(62)

Since Fijpip; = (Fij+ Fji)pip;/2, Eq. (61) can be replaced by Eq. (47), where,

Eij = (Fij + Fji) /2. (63)

3.5  Plastic power minimisation

The minimum principle of Appendix A.2 for banded grains yields the slip
rates in the two band families with prescribed lattice orientations. In the
present grain, the lattice orientations of the two grains are not prescribed;
in particular, the axis pu* about which the two bands must be given lattice
orientation perturbations dw is not a priori known. In the same spirit as the

minimum principle of Appendix A.2, and in light of Eq. (31), it is proposed

that the optimal misorientation axis p* is that which minimises d*P/dw?| W
d*pP
p' =argmin —| =argmin p- Ep, (64)
Iz dw? P w

where the second equality follows from Eq. (47). Thus, p* is the eigenvector

corresponding to the smallest eigenvalue of E, provided this least eigenvalue
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is negative. If the least eigenvalue were non-negative, plastic power will not

be reduced by banding and hence, homogeneous deformation is predicted.

3.6 Accommodation of inter-band incompatibility

A simple criterion for determining the inter-band normal, v* is given presently.

Let the two families of bands (1) and (2) be rotated dw about the axes +p*
with respect to the lattice orientation of the homogeneous grain, 2. The in-
finitesimal rotations will produce infinitesimal variations d¥;/dw|, . dw in the

slip-rates in the two bands, where

dys d |o:mg|" . - dm
dZ; * = % ‘U Tzn s1gn(a : ms) ) = %|%|1 L/n (0’ : ;Z ) , and
w W w
d~s d |o:mg|" . . M —iyn ~dmy
R ‘ - sign(o : my) » = 7_S\fys| o: = B )

(65)

Eq. (3) has been used in obtaining the first equality in both rows of the above

) . (66)

Inhomogeneity of slip-rates will engender inter-band displacement incompati-

equation. Egs. (65) and (14), together imply that

2n . 1=1/n ~dm
e = T |’78| (U o

ds
dw

ds
dw

n*

bility, which in turn, must be accommodated by geometrically necessary dis-
locations (Ashby, 1970; Cermelli and Gurtin, 2001) in order to preserve con-

tinuity of the total deformation.

Regarding the homogeneous grain of uniform lattice orientation 2 as the ref-
erence geometrically necessary dislocation free state (G = 0), the rate of

accumulation of geometrically necessary dislocations, G, is given by Cermelli
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and Gurtin (2001, Eq. (11.11)) as
' s
G =->"(n, x Vi4) ®b,, (67)
s=1

where V1 denotes the gradient transported to the lattice. Since slip is homo-
geneous within each band, V;4s = 0 within each band. Any geometrically
necessary dislocation density can only arise at the inter-band boundaries. Let
the inter-band boundaries, denoted S, be planar with normal v and be of

negligible thickness. Then,
s
dw

u*

drys
dw

VL'ﬁ/s =V (

)MS—mL (68)

—p*
where §(S — @) denotes the Dirac delta function that vanishes everywhere

except at the inter-band boundaries, and v is directed from band (1) to band

2).

The geometrically necessary dislocation density per unit surface area is ob-

tained by substituting Eq. (68) into Eq. (67) as

) n, ® b,
—p*

s
2n sy, dm
=v X — s P —
v ;:1: (Ts [l (0 g

)) n, ® b (69)

The second row above is obtained by substituting Eq. (66) into the first row.

dG

aG s
dw

dw

5[ dis
:sz(dw

" s=1

n*

=v X A.

Also, the cross product between vector v and 2-tensor A is given in component
form as (VX A);; = e€;pqVpAgj, Where e;,, denotes components of the alternating

tensor.

If the dislocation density at a point is given by the scalar p, a reasonable

approximation for the stored energy density is given by pGb?/2, where G
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denotes the elastic shear modulus and b the Burgers vector (Hirth and Lothe,

1992). The square-norm
dG/dw| :dG/dw| = A:A—v-AATY. (70)
I p

is proportional to the square of the rate of dislocation storage per unit inter-
band surface area (Nye, 1953). Since G' and b are uniform throughout the

grain, the energy storage per unit inter-band surface area is approximately

pG*(A: A—v-AATY)/2.

In the spirit of the minimum principle of Appendix A.2 it is proposed that the
optimal band normal v* is oriented so as to minimise the stored energy. It is
clear from the right side of Eq. (70) that the stored energy is minimised if v* is

parallel to the eigenvector of AAT that corresponds to the largest eigenvalue.

4 Results
4.1 Polycrystal simulations

The present theory is now applied to predict the misorientation axis, p*,
across band boundaries and their normals, v* in the grains of model f.c.c.
polycrystals deforming by {111}(110) slip. For this purpose, the present the-
ory is implemented within a binary-tree based model of a polycrystal (Mahesh,
2009). In this model, sub-aggregates are represented as the nodes of a binary
tree. The lowest (leaf) nodes of the binary tree represent grains. Higher binary
tree nodes represent increasingly larger sub-aggregates of grains, culminating
with the root of the tree, which represents the entire polycrystalline aggre-

gate. Thus, unlike in the Taylor (1938) or the self-consistent (Lebensohn and
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Tomé, 1993) models, interactions between neighbouring grains are directly but

approximately accounted for in the binary-tree based model.

Component | (ND)[RD] Euler angles

b1 ® b2
Brass (110)[112] | 54.74° 90.00° 45.00°
Copper (112)[111] | —90.00° 35.26°  45.00°
Cube (001)[100] | 0.00°  0.00°  0.00°
Goss (110)[001] | 90.00° 90.00° 45.00°
S (123)[634] | —58.98° 36.70° 26.57°

Table 1

The ideal f.c.c rolling texture components presently studied.

For the purpose of determining p* and v*, attention is restricted to the part of
the orientation space close to the ideal f.c.c. rolling texture components listed
in Tab. 1. For each of the ideal orientations, a uniform random sample of 256
grains disoriented at most 15° from the ideal orientation or from one of its
orthonormal sample symmetric variants is generated. A balanced binary tree
model of the polycrystal is then built out of these grains (Mahesh, 2009). This
approach to studying the vicinity of the ideal texture components in lattice ori-
entation space follows that adopted by Kuroda and Tvergaard (2007) in their
study of shear banding. The 15° disorientation condition presently adopted
mimicks that used in the experimental works of Hurley et al. (2003) and
Huang and Winther (2007) for defining lattice orientations near the ideal tex-
ture components. The {111} pole figures of the five polycrystals whose grains

are oriented near the five ideal orientations are shown in the left column of
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Fig. 2. {111} pole figures showing the initial (e,m = 0) and final (eymq = 0.25)

texture of the five polycrystals, each comprised of 256 grains, presently studied.
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Fig. 2. All pole figures presented in this work use equal area projection (Kocks

et al., 1998).

Rolling deformation to a von Mises strain of 0.25, which amounts to a rolling
reduction of 22%, is simulated. The three principal orthogonal directions in
the rolling process are the rolling direction (RD), transverse direction (TD),
and normal direction (ND). A sample coordinate system, xyz, which coincides

with RD-TD-ND is introduced. The macroscopic strain-rate

100

[Dley: = 00 0O (71)

00 -1

is applied to the root node of the binary-tree based model, which represents
the entire polycrystal. It is to be noted that the strain-rate of an individual
grain in the binary-tree based model, D, may differ significantly from the
macroscopically imposed deformation rate D on the polycrystal due to intra-
granular interactions. The post deformation {111} textures are shown in the
second column of Fig. 2. It is seen that in all five cases, the final texture is

similar to the initial texture, which indicates texture stability.

No hardening of slip systems is assumed. Thus in all grains,

=1 Vse{l,2,...,8=12} (72)

throughout the simulations.
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4.2 Ideal orientations

The present predictions are now juxtaposed with reports on the observed
characteristics of CBBs from the experimental literature in order to highlight

similarities and differences between them.

4.2.1 Macroscopic vs. crystallographic preference

In a rolled copper polycrystal, Christoffersen and Leffers (1998) observed that
regardless of the grain lattice orientation, CBBs preferentially align parallel
to the maximum shear stress (MSS) planes. They suggested that CBB ori-
entation is determined mostly by the macroscopically imposed deformation
and is independent of the grain’s lattice orientation. This viewpoint, which
holds the macroscopic influence to dominate, has been supported by Hur-
ley and Humphreys (2003); Hurley et al. (2003) and Humphreys and Bate
(2006). In particular, these authors have advanced the view that CBBs have
no particular bias for alignment with {111} planes. A contrary view, based
on transmission electron microscopy, advanced by Winther et al. (1997, 2000);
Winther (2003); Winther et al. (2004); Huang (2005); Huang and Winther
(2007); Winther and Huang (2007) and Winther (2008), suggests that CBB
orientation is determined by the crystallographic influence: the more slip con-
centrated in a single {111} slip plane, the closer the CBB aligns with it. In
this view, the proximity of the observed CBBs to MSS planes simply reflects

the orientation of the activated slip systems.

The pole figures of Fig. 3 depict misorientation axes across band boundaries,

*

p*, (columns (a) and (b)) and band boundary normals, v*, (columns (c¢) and
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Fig. 3. Misorientation axes p* predicted across band boundaries in the macroscopic
(column (a)) and crystallographic (column (b)) coordinate systems. Band bound-
ary normals v* in the macroscopic (column (c¢)) and crystallographic (column (d))

coordinate systems near the brass, copper, cube, Goss, and S orientations.
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(d)) in the macroscopic (columns (a) and (c)) and crystallographic (columns
(b) and (d)) coordinate systems. Each row in Fig. 3 corresponds to one of the
five ideal orientations listed in Tab. 1. There are 256 dots in each pole figure,
one for p* or v* in one grain. Circles in columns (a) and (c) identify the normal
to the MSS planes, i.e., the angle bisector of RD and ND. Circles and squares
in columns (b) and (d) identify the {110} and {111} crystallographic plane

normals, respectively.

No macroscopic or crystallographic preference for pu* or v* is built into the
present model. Nevertheless, it is seen from column (a) in Fig. 3 that the
predicted p* in the brass, copper and S orientations are concentrated close to
TD, while that of the cube orientation is concentrated near TD and ND and
that of Goss is concentrated near RD. RD, TD and ND represent the principal
directions of the macroscopically imposed deformation. Except in the case of
the Goss orientation, the p* concentration along particular crystallographic
directions, as seen in column (b) of Fig. 3 is weaker. It thus appears that the
misorientation axes across the predicted CBBs have a macroscopic character.
On the other hand, column (d) of Fig. 3 shows that the predicted CBBs v*
fall predominantly on {111} or {110} planes. No strong preference for the
macroscopic RD, TD and ND directions is seen in column (c). It may thus be
concluded that the crystallographic influence on the predicted v* is stronger

than the macroscopic influence.

The predicted band boundary misorientation p* and orientation v* given in
Fig. 3 are now compared with experimental observations of cell block bound-
aries (CBB) reported in the literature for each of the five ideal orientations

below.
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4.2.2  Brass orientation

It is seen from Fig. 3 (a;) that predicted misorientation axes are distributed
close to TD. This accords well with an experimental observation of Albou et al.
(2010) who noted in a channel die compressed Brass oriented single crystal
Al alloy that “the vast majority of the disorientation axes are situated in the
vicinity of the TD axis, but, more specifically, about 10-20° off TD towards
RD” after effective strains of 0.15 and 0.5. The symmetric spread of predicted
p* about the TD in Fig. 3 (a;) is because the present brass polycrystal contains
grains oriented close to all four sample symmetry variants (Kocks et al., 1998)

of the ideal brass orientation.

Fig. 3 (dy) shows that most band boundary v* are predicted to be aligned close
to {111} slip planes. This prediction compares well with the observations of
Huang and Winther (2007). In nine grains of an Al polycrystal oriented within
15° of the brass orientation, they found the CBB plane and the slip plane traces

in the RD-ND section to be within 7°.

In Fig. 3 (¢1) and (d;), * in some grains is also predicted to align with certain
{110} planes, which coincide with ND. CBBs with these orientations have not
been reported at small rolling reductions, even though they are common at

high rolling reductions (Wrébel et al., 1994; Albou et al., 2010).

4.2.3  Copper orientation

Fig. 3 (ag) shows that in the copper orientation, the predicted band boundary

*

misorientation axis p* is closely aligned with TD, in agreement with exper-

imental observations of Wagner et al. (1995) in rolled copper oriented Cu,
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Cu-Al alloy and Al single crystals. The latter experimental observation is also
confirmed by the observations of Godfrey et al. (1998) in pure Al subjected

to channel-die compression.

In pure Cu, Morii et al. (1985) and Wagner et al. (1995) have reported the
observation of CBBs parallel to the slip plane of the active {111} coplanar
systems in copper-oriented single crystals. Godfrey et al. (1998) have also
observed a set of coarse CBBs parallel to the slip plane of the coplanar systems
in parts of a copper-oriented Al single crystals channel-die compressed to
eym = 0.5. The presently predicted CBBs parallel to {111}, shown in Fig. 3 (cs)
and (dg) coincide with this experimentally observed CBB orientation. Band

boundaries of {001} orientation are not predicted presently.

4.2.4  Cube orientation

In an Al single crystal cold rolled 15%, Liu and Hansen (1998) observed a
microstructure comprised of dislocation cells with some CBBs. They found
lattice rotations predominantly about TD across the CBBs. The predicted
misorientation axes, p*, concentrate near TD and to a lesser degree, near ND,
as seen from Fig. 3 (a3). The prediction that p* || TD, accords well with the
observations of Liu and Hansen (1998). However, the latter prediction of align-
ment with ND has, to our knowledge, not been experimentally observed. Also,
the band boundaries are predicted to be closely aligned with {111} planes, as
seen in Fig. 3 (ds3), which agrees with the observations of Liu and Hansen in
their 15% reduced specimen. In nearly cube oriented grains in polycrystalline
Al, Huang and Winther (2007) report occasional CBBs oriented along (101)

and (101). This CBB alignment is not presently predicted.
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At larger plane strain reductions, cube oriented single crystals are known to
sub-divide into matrix bands (Akef and Driver, 1991; Liu and Hansen, 1998).
The matrix bands rotate away from the cube orientation. Since matrix banding
is not accounted for in the present calculations, the present predictions cannot
be compared with experimental observations on cube oriented single crystals

at large reductions.

4.2.5 Goss orientation

In the vicinity of the Goss orientation, the misorientation axis across the band
boundaries is predicted to be aligned close to RD for most grains, and close
to TD for a few grains, in Fig. 3 (a4). The former alignment is predicted for
grains disoriented 2°-15° from the ideal Goss orientation while the latter set
of grains are those whose initial lattice orientations are within about 2° of
the ideal Goss orientation. In experimental observations of Ni single crystals
subjected to plane strain compression to effective strain 0.35 (Afrin et al.,
2012), the orientation spread is found to have a minor component along RD
(£3.5°) and a major component along TD (£7.5°). A similar conclusion was
also obtained in rolled Al single crystals by Liu et al. (2000). If it assumed
that the initial lattice orientation of the experimental single crystals closely
matches the ideal Goss orientation, it can be concluded that the presently

predicted alignment of p* || TD agrees with experimental reports.

Some of the band boundaries are predicted to be normal to the {111} planes
in Fig. 3 (d4), while others are distributed between {111} and {110} planes.
Again, in near ideal Goss oriented grains, v* || {111} is predicted, while in

the grains oriented further from ideal Goss, v* || ND is predicted, as shown
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in Fig. 3 (c4). The predicted alignment of band boundaries with {111} planes
is in accord with experimental observations of Afrin et al. (2011, 2012) in Ni
single crystals, Liu et al. (2000) in Al single crystals, Ananthan et al. (1991)
in the near Goss grains of a copper polycrystal and Hurley et al. (2003) in the

grains of an Al-Mg polycrystal.

4.2.6 S orientation

*, is oriented close to TD and a pre-

The predicted misorientation axis,
dicted boundary normals, v* are aligned close to {111} planes, as shown in
Figs. 3 (ag) and (dg), respectively. Although experimental measurements of
the misorientation axis across CBBs to compare p* with are lacking, the pre-

dicted v* agrees with the orientation of CBBs in an aluminum alloy (Winther

et al., 2004; Huang and Winther, 2007).

In addition to the crystallographically aligned CBBs, Winther et al. (2004);
Huang and Winther (2007) and Lin et al. (2009) have also reported the obser-
vation of a set of CBBs aligned with crystallographic {131} planes. Boundaries

of this alignment not predicted for reasons discussed below.

4.2.7 Unpredicted cell-block boundaries

It emerges from the results presented in Secs. 4.2.2-4.2.6 that while most

experimentally observed CBBs are predicted, the following three are not:

(i) {001} CBBs in copper oriented Al single crystals and grains (Godfrey et al.,
1998; Huang and Winther, 2007; Lin et al., 2009),

(ii) {110} CBBs in cube oriented Al grains (Huang and Winther, 2007), and
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(iii) {131} CBBs in S oriented Al alloy grains (Huang and Winther, 2007; Lin

et al., 2009).

It is important to note that boundaries of type (i) are not observed in copper
oriented Cu single crystals or grains (Morii et al., 1985; Wagner et al., 1995). A
commonality amongst the three unpredicted boundaries above is that each of
them occurs in an ideal orientation wherein cross-slip systems are activated® .
Moreover, each of the unpredicted boundary planes listed above contains the

cross-slip direction.

Dislocations on cross-slip systems in f.c.c. materials form the strongest dis-
location junctions through collinear interactions, as shown by Madec et al.
(2003) using dislocation dynamics simulations. Furthermore, cross-slip is eas-
ier in higher stacking fault energy materials such as Al than in lower stacking
fault energy materials such as Cu (Hirth and Lothe, 1992). These facts suggest
that the three unpredicted CBBs listed above are nucleated by sessile dislo-
cation segments formed out of collinear dislocation reactions in high stacking
fault energy Al or Al alloys. The present work, being based on the assumption
of non-reacting dislocations does not predict these CBB orientations as it is
unable to capture the effect of CBB nucleation from sessile dislocation locks

or junctions.

I Distinct slip systems s; and s are called cross-slip systems if they share the
same slip direction, i.e., bs, = bs,. The common slip direction is called the cross-slip

direction.
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5 Discussion

In the physical grain, CBBs form by the collective motion of dislocations,
which has not, however, been explicitly treated presently. Instead, the present
minimum power principle determines CBB characteristics: p* (Sec. 3.5), and
v* (Sec. 3.6). Thus, the present treatment has tacitly assumed that the req-
uisite dislocations can be nucleated and the collective dislocation motions re-
quired to achieve the two aforementioned minima will be physically realised.
This assumption is clearly satisfied in highly symmetric f.c.c. polycrystals
which have a large number of slip systems as seen in Secs. 4.2.2-4.2.6, except
when dislocation interactions become very strong, as noted in Sec. 4.2.7. It,
however, seems unlikely that this assumption will be met in lower symmetry

materials, such as h.c.p. polycrystals.

Infinitesimal misorientations dw are essential for CBB formation according
to the present theory (Sec. 3). Small misorientations in physical grains oc-
cur across incidental dislocation boundaries both in annealed and plastically
deformed grains (Bay et al., 1989; Kuhlmann-Wilsdorf and Hansen, 1991).
The misorientation angle across these boundaries is typically of the order of a
few degrees, and the misorientation axis across these boundaries is uniformly
distributed over the surface of the unit sphere (Hughes et al., 1997, 1998;
Godfrey and Hughes, 2000). Incidental dislocation boundaries can thus be re-
garded as the physical source of lattice orientation perturbations dw about the
unit vector p, in Secs. 3.5 and 3.6. Then, the key hypothesis of Sec. 3.5 may
be restated as follows: Segments of incidental dislocation boundaries, whose
misorientation axes happen to coincide with p* are most favoured as nuclei of

geometrically necessary CBBs.
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The theory is based on the assumption that CBB orientations at any stage
of the deformation depends only the instantaneous slip activity in the grain
(Sec. 3); it is assumed that the deformation history does not influence CBB
orientations. This amounts to assuming that dislocations are glissile, so that
CBBs can move freely with respect to the material and achieve the config-
urations that satisfy the present minimum power principle. The assumption
of glissile dislocations is reasonable in the early stages of plastic deformation
when the dislocation density, and hence, the probability of forming sessile dis-
location junctions, is relatively small. In this regime, CBBs are experimentally
known to orient in accord with the instantaneous slip activity (Christoffersen
and Leffers, 1998; Humphreys and Bate, 2006; Albou et al., 2010). However,
with increasing deformation (e.g., for e,y > 0.5 in high stacking fault energy
f.c.c. materials), the dislocation density increases, and an increasing number
of dislocation segments become sessile through dislocation reactions (McCabe
et al., 2004). Dislocation walls comprised largely of such sessile dislocation
segments orient themselves in accord with the evolving grain shape; e.g., they
align parallel to the rolling plane, when the grain is subjected to high rolling
deformation (Albou et al., 2010). Thus, with increasing strain, the present min-
imum power principle will become increasingly invalid as the criterion that de-
termines CBB characteristics, and the assumptions underlying the variational

theories described in Sec. 1 will be realised.

Another consequence of the assumption of glissile dislocations is that the
present theory is local and is unable to predict the accumulation of dislocation
density or disorientation with strain across CBBs. Since CBBs are presently
assumed to be instantaneously nucleated from incidental dislocation bound-

aries throughout the deformation, the initial geometrically necessary disloca-
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tion density G = 0 (Eq. (69)). Predictions of the accumulation of dislocation
density or disorientation with strain are meaningful only for CBBs comprised
of sessile dislocation segments fixed with respect to the material, e.g., Ortiz

et al. (2000); Carstensen et al. (2002, 2008).

In obtaining the optimal p*, the rate of increase of stored energy associated
with accommodation of the incompatibility across the band boundaries has
been neglected. Thus, it has been tacitly assumed that the former component
of energy is much smaller than the reduction in plastic power of the grain
by banding. This assumption can be expected to be valid only for disloca-
tion boundaries such as CBBs across which the misorientation angle is small.
Across dislocation boundaries with large misorientation angles, e.g., deforma-
tion bands and shear bands, compatibility of deformation must be explicitly

imposed, as in Mahesh (2006) and Arul Kumar and Mahesh (2012).

As noted in Sec. 1, the plastic anisotropy of grains can be inferred from the pre-
ferred orientations of CBBs. The present methodology for predicting CBB ori-
entations offers a computationally efficient methodology to incorporate plastic
anisotropy due to dislocation structures at the sub-granular length scale into
polycrystal plasticity simulations (Kocks et al., 1998). The computational ef-
ficiency arises because CBB orientation prediction using present theory only
involves the computation of the eigenspace of two symmetric 3 x 3 matrices,
which are analytically obtained. This may be contrasted with the several or-
ders of magnitude greater computational resources required to obtain CBB
orientation predictions from methods such as dislocation dynamics (Bulatov

and Cai, 2006).
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6 Conclusion

Grains are modelled as crystalline domains divided into lath shaped regions,
each of which is infinitesimally misoriented relative to its neighbours. The mis-
orientation axis of band boundaries is derived using a minimum plastic power
principle, and the orientation of these boundaries is derived by minimising
the geometrically necessary dislocation density within grains. The predicted
misorientation axes and orientations of band boundaries are compared with
experimental observations pertaining to a type of dislocation boundary, called
the cell block boundary, reported in the literature. Good agreement is found
for the majority of cases, which is surprising in that no account is taken of the
mechanisms of the motion of single dislocations and groups of dislocations. The
cases wherein agreement between theoretical predictions and experimental ob-
servations break down pertain to the cases wherein the dislocations generated
in the course of slip are known to react particularly strongly. This suggests
that the hypothesised energy based criteria indeed govern CBB properties to
first order. However, correction for strong dislocation interactions is needed if

the predictions are to be applicable universally.
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A Minimization of plastic power

A.1  Homogeneous grains

It is shown that subject to the constraint of Eq. (2), the plastic power P (51,52, - . .

Eq. (7), of a homogeneious grain described in Sec. 2 achieves its minimum value

when the slip-rates 75 follow Eq. (3). To this end, consider the Lagrangian

S S
L, A2, 038, A) = 37l 36T+ A 0 (D =Y Aemy), (A.1)

s=1 s=1

where the first term on the right side is P and A is the Lagrange multiplier

for the constraint. Extrema of L(%1,%,...,7s, A) are characterized by

oL

L (1+1/n) |7V sign(%) = X:m, =0, Vte{l,2,...,S}. (A.2)
t

Eq. (A.2) is satisfied for all ¢ provided 4, is given by Eq. (3) and A is identified

as
A=o(l+1/n). (A.3)
Further differentiating Eq. (A.2),

9*L

=7 (1+1/n)(1/n) |7t|1/n_1 Oy > 0 (A4)

is obtained. The positive definiteness of the Hessian [0?L/37,07,] proves that

the extremum obtained above is a minimum.
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A.2  Banded grains

Subject to the constraint given by Eq. (17), P(%l), f'yél), o ,yg”, %2), f'yf), o ,f'yéz))

will be minimized only when
oV =g®. (A.5)

The proof of this statement parallels that given in Appendix A.1 for the ho-

mogeneous grain. Consider the Lagrangian

L, 47,380 400457 =

13 1+1/n 1 14+1/n 1& 13

SO S O A (D= 5 A m) - 34 m ).

2 s=1 2 s=1 2 s=1 2 s=1
The extrema of L are characterized by

oL (@) 1m0 (0) (i)
50 (1/2)n(1+ 1/n)|5,7 | "sign(4,”) — (1/2)A:my” =0, (A.6)
Tt

forall t € {1,2,...,5} and for all 7 € {1,2}. Eq. (A.6) can be satisfied for all

t and for both values of 7 by taking

n

sign(o® 'my)), (A.7)

() ol mgi)
Vel =
Tt

and

A=cY(1+1/n)=cP1+1/n). (A.8)
That the extremum obtained above is a minimum can be established by the
positive definiteness of the Hessian [0? L /94,07, exactly as in Appendix. A.1.

Eq. (A.8) immediately implies Eq. (A.5).
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