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Abstract

A shear-lag and deformation-theory based model for a metal matrix composite

reinforced by continuous unidirectional fibres is proposed. The model accounts

for fibre and matrix cracking, matrix plasticity, and fibre-matrix interfacial slid-

ing through seven characteristic non-dimensional parameters, which combine

geometric, phase and interface properties. It allows arbitrary tensile loading and

unloading history along the fibre direction, and predicts the history-dependent

elastoplastic displacement, strain, and stress fields in all the fibre and matrix

elements. Broken elements may be present initially, or form during the imposed

loading history. Non-linear one-dimensional governing differential and algebraic

equations are formulated on the basis of the model. A computationally fast

solution methodology based on pseudospectral collocation is implemented. The

present model is employed to predict the elastic strain profiles in a Ti/SiC

composite tape near pre-existing breaks. These predictions agree well with ex-

perimental measurements reported in the literature.
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Nomenclature

a Fibre dimension, Fig. 1

A Dimensionless parameter, Eq. (29)

Af Cross-sectional area of a fibre

b Centre-to-centre distance between fibres, Fig. 1

B,C Dimensionless parameters, Eq. (29)

d Composite ply thickness, Fig. 1

E Dimensionless parameter, Eq. (29)

Ef Fiber elastic modulus, Eq. (4)

E1 Matrix elastic modulus in tension, Eq. (5)

E2 Matrix hardening modulus in tension, Eq. (5)

fi Fiber element i, Fig. 2

fsmk
Fibre element adjacent to the shear-matrix smk, Fig. 2

f+tmj
Fibre element to the right of tensile-matrix tmj , Fig. 2

f−tmj
Fibre element to the left of tensile-matrix tmj , Fig. 2

F Dimensionless parameter, Eq. (29)

G1 Matrix elastic modulus in shear, Eq. (13)

G2 Matrix hardening modulus in shear, Eq. (13)

h Surface-to-surface distance between adjacent fibres, Fig. 1

H Dimensionless parameter, Eq. (29)

i, j, k Element indices

I, K, L Dimensionless parameters, Eq. (29)

L Composite length, Fig. 1

ℓ Dimensionless fibrewise half-length of the composite, Eq. (37)

n Exponent in the interfacial sliding law, Eq. (18)

nC Number of Chebyshev grid points Eq. (43)

nf Number of fibre elements

P Total load imposed, Eq. (24)

P̂ Dimensionless imposed load, Eq. (38)

s Deformation step counter
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s+fi Slider element to the right of fibre fi, Fig. 2

s−fi Slider element to the left of fibre fi, Fig. 2

sk Slider element k, Fig. 2

ssmk
Slider element adjacent to the shear-matrix smk, Fig. 2

s+tmj
Slider element to the right of tensile-matrix tmj , Fig. 2

s−tmj
Slider element to the left of tensile-matrix tmj , Fig. 2

sm+
fi

Shear-matrix element to the right of fibre fi, Fig. 2

sm−

fi
Shear-matrix element to the left of fibre fi, Fig. 2

smk Shear-matrix element k, Fig. 2

sm+
tmj

Shear-matrix element to the right of tensile-matrix tmj , Fig. 2

sm−

tmj
Shear-matrix element to the left of tensile-matrix tmj , Fig. 2

tm+
fi

Tensile-matrix element to the right of fibre fi, Fig. 2

tm−

fi
Tensile-matrix element to the left of fibre fi, Fig. 2

tmj Tensile-matrix element j, Fig. 2

tmsmk
Tensile-matrix element adjacent to the shear-matrix smk, Fig. 2

wfi Displacement of the ith fiber element, Eq. (1)

ŵfi Dimensionless displacement of the ith fiber element, Eq. (28)

wtmj
Displacement of the jth tensile-matrix element, Eq. (2)

ŵtmj
Dimensionless displacement of the jth tensile-matrix element, Eq. (28)

wsk Displacement of the kth slider element, Eq. (3)

ŵsk Dimensionless displacement of the kth slider element, Eq. (28)

W Dimensionless parameters, Eq. (29)

x Co-ordinate normal to the fibre direction, Fig. 1

z Co-ordinate parallel to the fibre direction, Fig. 1

γround, γshift Numerical smoothing parameters, Eq. (16)

γsmk
Shear strain of shear-matrix element k, Eq. (3)

γplsmk
Plastic shear strain in the shear-matrix element k. Eq. (15)

γ̂plsmk
Dimensionless plastic shear strain in the shear-matrix element k, Eq. (31)

γpeaksmk
Peak shear strain in shear-matrix element k, Eq. (16)

εround Numerical smoothing parameter, Eq. (11)
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εengg Imposed engineering strain, Eq. (23)

ǫfi Axial strain in fibre element i, Eq. (1)

εtmj
Axial strain in tensile-matrix element j, Eq. (2)

εeltmj
Elastic strain in the tensile-matrix element j, Fig. 3

εpltmj
Plastic strain in the tensile-matrix element j, Fig. 3

ε̂pltmj
Dimensionless plastic axial strain in the tensile-matrix element j, Eq. (33)

εpeaktmj
Peak tensile strain in tensile-matrix element j, Fig. 3

σfi Axial stress in the fiber element i, Eq. (4)

σtmj
Axial stress in the tensile-matrix element j, Eq. (5)

σpeak
tmj

Peak axial stress in tensile-matrix element j, Fig. 3

σy Matrix yield stress in tension, Eq. (5)

τsmk
Shear stress in the shear-matrix element k, Eq. (13)

τy Matrix yield stress in shear, Eq. (13)

τ∗ Interface threshold stress, Eq. (17)

ζ Dimensionless co-ordinate parallel to fibre direction, Eq. (25)

1. Introduction

In the low and intermediate pressure stages of aerospace gas turbines, con-

siderable weight and cost associated with a compressor stage can be saved by

replacing conventional superalloy discs with titanium (Ti) alloy matrix compos-

ite bladed compressor rings (Winstone et al., 2001; Martin and Carrére, 2012).

Typically, continuous silicon carbide (SiC) fibres reinforce the Ti alloy matrix,

as SiC fibres have excellent high temperature properties and long-term chemical

compatibility with the Ti matrix material (Martin and Carrére, 2012). Failure

of SiC/Ti alloy metal matrix composites occurs by the localised failure of nearby

fibres, and is not preceded by much global damage (González and Llorca, 2001;

Martin and Carrére, 2012), provided the fibre-matrix interface is sufficiently

strong (Du and McMeeking, 1994). An accurate description of the stress dis-

tribution near damaged regions is essential to understand crack propagation in

these materials. This description is best obtained by constructing a sufficiently
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detailed model of load transfer in partially damaged metal matrix composites,

and by experimentally validating its predictions.

Microscopic damage in unidirectionally reinforced metal matrix composites

takes the form of fibre breakages, matrix cracks, matrix yielding, and fibre-

matrix interfacial debonding/sliding (Clyne and Withers, 1995). Models capa-

ble of representing some or all of these mechanisms have been developed in the

literature, and allow classification into two broad groups. Models in the first

group are based on the finite element method. These models resolve the detailed

microstructure (Du and McMeeking, 1994; Landis and McMeeking, 1999; Xia

et al., 2001; Xia and Curtin, 2001; González and Llorca, 2001), and incorporate

complex constitutive laws for the various microstructural phases, and interfaces.

They are able to predict spatially resolved mechanical fields in arbitrarily dam-

aged metal matrix composites. However, the complexity of these models limits

them to small volumes: Du and McMeeking (1994) and Landis and McMeeking

(1999) assumed axisymmetric distribution of fibres around a broken fibre, and

modelled three fibres only. González and Llorca (2001) modelled only three

neighbours of a broken fibre in their finite element study of a single ply. The

finite element models of Xia et al. (2001), treated nine and eleven fibre models

arranged in a hexagonal array. A finite element model of a composite comprised

of 400 fibres was utilised by Behzadi et al. (2009) to simulate composite failure.

This model, however, treated the matrix as a multilinear elastic material, and

did not account for plastic unloading.

The second group is comprised of shear-lag models. This class of models was

pioneered by Cox (1952) for the stress state around a broken fibre surrounded

by an axisymmetric matrix ring. The fibre, and matrix ring are bounded by a

homogeneous effective composite medium. This simple model was considerably

extended by Hedgepeth (1961), and Hedgepeth and Van Dyke (1967). The latter

models account for an infinite regular array of elastic fibres carrying tensile load,

perfectly bonded to intervening shear carrying elastic matrix. The analytical

treatment of shear-lag models becomes difficult if non-linear material responses

or deviations from geometric regularity are incorporated.
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Much recent effort has been aimed at extending shear-lag models to account

for the non-linearities in material response. Although many of these pertain

to polymer matrix composites, they contain elements of direct relevance to the

metal-matrix composites of present interest. The shear lag model of Beyer-

lein and Phoenix (1996) extended the classical shear lag model to account for

perfectly plastic or sliding matrix material. Using this model, Beyerlein and

Phoenix (1996) predicted the stresses around single and multiple breaks. Lan-

dis and McMeeking (1999), extended the model of Cox (1952) by assuming a

matrix obeying the J2 flow theory. They showed that the interfacial shear stress

around an isolated fibre break approaches the matrix and interface constitutive

response assumed by Beyerlein and Phoenix (1996) with increasing far-field

strain. A three-dimensional shear lag based model for the case of fibres ar-

ranged in a hexagonal array is due to Okabe et al. (2001). This model accounts

for interface debonding and matrix yielding. Okabe and Takeda (2002) intro-

duced linear hardening into the matrix constitutive response. Most recently,

Zhang and Wang (2009) have proposed a model that also accounts for matrix

yielding, and interfacial debonding. Their model treats these phenomena as

special types of breaks and models their interaction through influence superpo-

sition. While the models of Beyerlein and Phoenix (1996), Okabe et al. (2001),

and Okabe and Takeda (2002) assume a compliant matrix incapable of carrying

tensile loads, the models of Beyerlein and Landis (1999) and Zhang and Wang

(2009) allow for non-negligible matrix stiffness as well. Pimenta and Robin-

son (2014) recently proposed a shear-lag model involving a a matrix obeying a

non-linear traction-separation law.

The effect of deviation from regular packing on stress concentrations, and

ineffective length was studied by Swolfs et al. (2012). In polymer matrix com-

posites, Swolfs et al. (2015) found that matrix cracks have an insignificant effect

on composite strength. Mishnaevsky and Brøndsted (2009) studied the stress

state produced in a partially damaged realistic microstructure using the finite

element method. They also studied the effects of matrix cracking, and interfacial

debonding on composite strength.

6



While most of the aforementioned models – both finite element based, and

shear-lag based – are computationally tractable for small clusters of breaks, they

are either unable to treat arbitrary damage and non-linear material response,

or treat it approximately using linear superposition of break influences. The

latter approximation is not justified in general, as the stress and displacement

fields in a non-linear material are not superposable. It has, however, been shown

to be satisfactory under certain conditions. For instance, errors of only a few

percent in the stress concentration were reported from linear superposition by

Xia et al. (2001) when the applied load is sufficiently high to produce gross

yielding in the matrix. Amongst the shear-lag models, the model of Beyerlein

and Phoenix (1996) replaces yielded matrix, or interfacial sliding by a system

of shear forces on the neighbouring fibres. This approach is feasible only when

the region of matrix yielding or interfacial sliding is known, or can be guessed

using symmetry considerations, a priori. A similar restriction also applies to

the shear-lag model of Zhang and Wang (2009), wherein, the extent of matrix

yielding, and interfacial sliding near a fibre break are assumed a priori.

Spatially resolved elastic strains in a partially damaged Ti-SiC composite

have been reported in the literature by Hanan et al. (2003). Their measurements

were made using synchrotron X-ray microdiffraction. The microdiffraction tech-

nique measures elastic strains only, even in elastoplastically deforming phases,

such as the present Ti matrix. This is because the experimental technique is

based upon changes in the diffraction pattern with changing lattice spacing,

which is, in turn, proportional to the elastic strain. The plastic strain is not

resolved, as plastic deformation leaves the lattice spacing nearly unchanged.

A model of the composite specimen of Hanan et al. (2003), accounting for

the full length of all their fibres, is presently analysed. The analysis is based on

a formulation wherein non-linear governing differential equations accounting for

non-linear deformation plasticity of the matrix, tensile stiffness of the matrix

and fibre-matrix interfacial slip are incorporated. The formulation incorporates

deformation plasticity and shear-lag theory. Loading to 850 MPa, and unload-

ing therefrom are computer simulated, exactly as in the experiment. Barring

7



the fibre-matrix interfacial strength, all material parameters of the constituent

phases are taken from the literature. The present model predicts elastic strain

profiles near the breaks in excellent agreement with the measurements of Hanan

et al. (2003).

The present model and computational methodology are described in Sec. 2.

Model predictions are compared with experimental observations of Hanan et al.

(2003) in Sec. 8, and the predicted fields are also discussed. These observa-

tions suggest the viability of the present model to realistically capture the load

distribution due to arbitrarily complex damage in unidirectional metal matrix

composites.

2. Model

2.1. Geometry

Fig. 1 shows the elements making up the model composite. Following the

classical shear-lag approximation (Cox, 1952), fibres are assumed to be inflexible

in all but their axial direction, z. The matrix domain, which physically expe-

riences both axial and shear deformations, is modelled as two distinct types of

elements, termed the tensile matrix and shear matrix regions. These are shown

separately in Fig. 1. The tensile matrix admits only axial deformation in the

z direction, while the shear matrix undergoes only xz shears. This modelling

treatment follows Budiansky et al. (1986) and Mahesh et al. (2004). Fibres in

the present composite are indexed as fi, where i ∈ {0, 1, 2, . . . , nf − 1}. Period-
icity is assumed. Thus, fnf

is equivalent to f0, as shown.

Each fibre in Fig. 1 is abutted by a pair of shear matrix elements, which in

turn are surrounded by a pair of tensile matrix elements. A slider element lies at

the interface between the fibre and the shear matrix. The deformation of each

element depends on those of its neighbours. In order to identify various elements

of the model, and their neighbours, a formal notation is presently introduced.

As shown in Fig. 2, the shear matrix elements to the right and left of fibre fi are

denoted sm+
fi
and sm−

fi
, respectively. Similarly, the right and left tensile matrix

neighbours of fibre i are denoted tm+
fi
and tm−

fi
, respectively, and the right and
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tensile matrix

shearing matrix

fibre

interfacial slider

L x

z

f0f0 f1 f2 f3

2h

2h

. . .

a b

d

fnf−1

Figure 1: The model metal matrix composite showing all the model elements. Fibres are shown
shaded dark. The matrix domain is divided into two parts: The ‘shear matrix’ is assumed
to deform in simple shear, and the ‘tensile matrix’ in pure tension. Sliding displacements
at the fibre-matrix interface is permitted. A fibre break and matrix shears around it are
schematically shown.
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PSfrag

fi

tm−

fi

tm+
fi

sm−

fi

sm+
fi

s−fi

s+fi

f−tmj

f+tmj

tmj

sm−

tmj

sm+
tmj

s−tmj

s+tmj

fsmk
tmsmk

ssmk
smk

Figure 2: Model elements neighbouring a typical fibre fi (labelled on the left side), neighbour-
ing a typical tensile matrix, tmj (labelled on the right side), and a typical shear matrix smk

(labelled below).

left slider elements as s+fi and s−fi , respectively. These neighbouring elements of

fibre fi are labelled on the left in Fig. 2. In an entirely similar manner, the

neighbouring elements of tensile matrix tmj are as shown labelled on the right

side of Fig. 2.

Unlike fibre and tensile matrix elements, shear matrix element smk is abutted

by unique fibre, tensile matrix, and slider elements, denoted by fsmk
, tmsmk

, and

ssmk
, respectively. These elements are labelled below in Fig. 2. The same is also

true of slider elements: the fibre, tensile matrix, and shear matrix neighbours of

slider element sk are fsk , tmsk , and smsk , respectively. These elements are not

marked in Fig. 2.

2.2. Displacements and strains

Displacement and strain fields evolve over the deformation history. Let the

deformation history be discretised into steps, s ∈ {0, 1, 2, . . .}, and let step s = 0

correspond to the initial unloaded state. Let w
(s)
fi

(z) and w
(s)
tmj

(z) denote the

axial (z-direction) displacements at step s in fibre fi and tensile matrix tmj ,
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respectively. Assuming small deformations, the corresponding axial strains are:

ǫ
(s)
fi

(z) =
dw

(s)
fi

dz
(z), (1)

and

ǫ
(s)
tmj

(z) =
dw

(s)
tmj

dz
(z). (2)

Let w
(s)
sk (z) denote the displacement in slider sk. Then, the shear strain in shear

matrix smk is given by

γ(s)smk
(z) =

(

w
(s)
tmsmk

(z)− w
(s)
fsmk

(z)− w(s)
ssmk

(z)
)/

h . (3)

The denominator, h = (b−a)/2, is the x-thickness of the shear matrix, which is

equal to the distance from the tensile matrix to the fibre surface. Eqs. (1), and

(2) are simply the normal strain-displacement relations corresponding to small

strains. The form of the shear strain, given by Eq. (3) follows that of Mahesh

et al. (2004).

3. Constitutive assumptions

3.1. Fibre

As in Mahesh et al. (2004), fibres are assumed to remain linear elastic. Let

σfi(z) denote the stress at coordinate z in fibre element i. Then, neglecting

thermal residual strains,

σ
(s)
fi

(z) = Efǫ
(s)
fi

(z). (4)

3.2. Tensile matrix

The elastoplastic matrix is treated in the deformation theory framework (Jones,

2009). Following Hill (1998), and Mahesh et al. (2004), the stress-strain rela-

tionship under monotonic loading from step 0 to step s is taken to follow:

σ
(s)
tmj

(z) = σY tanh

(

(E1 − E2)ε
(s)
tmj

(z)

σY

)

+ E2ε
(s)
tmj

(z). (5)

In Eq. (5), E1, E2, and σY denote the tensile Young’s modulus, the hardening

modulus of plastic deformation and yield strength of the tensile matrix material,

respectively. Eq. (5) is plotted as the monotonically increasing curve in Fig. 3.
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σ t
m

σpeak
tm (z)

εtmεeltm(z)εpltm(z)

εpeaktm (z)

E1E1

Figure 3: Stress-strain response of a tensile matrix element during loading and unloading. A

plastic set εpltm is associated with unloading from the peak stress σpeaktm (z).

The deformation theory stress-strain relationship given in Eq. (5) is ade-

quate to study monotonic loading of material points in the matrix. However,

even in a tensile specimen that is loaded monotonically at the grips, tensile ma-

trix breakage will cause unloading of the tensile matrix material points in the

vicinity of the break. A novel methodology is developed presently to track such

unloading. The final result of this development is Eq. (12) below.

Consider the composite at the end of step S (the ‘current state’). An impor-

tant state variable is the maximum or peak strain experienced by the material

point up until the current state:

ǫpeaktmj
(z) = max

s=0,...,S
max

(

ǫ
(s)
tmj

(z), 0
)

. (6)

Here, non-negativity is enforced upon the peak strain in tensile matrix ele-

ments. The material point is defined to be ‘loading’ during step (S + 1) if

ǫ
(S+1)
tmj

(z) ≥ ǫpeaktmj
(z). (7)

Otherwise, the material point is said be unloading. As shown in Fig. 3, if

unloading occurs from the maximum stress σpeak
tm (z), the tensile matrix element
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will deform elastically, following:

σ
(s)
tmj

(z) = E1

(

ε
(s)
tmj

(z)− εpltmj
(z)
)

. (8)

Here, εpltmj
(z), the plastic set in the element, is given by

εpltmj
(z) = εpeaktmj

(z)− σpeak
tmj

(z)
/

E1 . (9)

σpeak
tmj

is the stress that results by substituting εtmj
(z) = εpeaktmj

(z) in Eq. (5).

The loading/unloading history of a tensile matrix element is captured by

the internal variables εpeaktmj
(z), and εpltmj

(z). The constitutive law for the tensile

matrix can be expressed by combining Eq. (5) and Eq. (8) as:

σ
(s)
tmj

(z) =











σY tanh

(

(E1−E2)ε
(s)
tmj

(z)

σY

)

+ E2ε
(s)
tmj

(z), ε
(s)
tmj

(z) ≥ εpeaktmj
(z)

E1(ε
(s)
tmj

(z)− εpltmj
(z)), ε

(s)
tmj

(z) < εpeaktmj
(z).

(10)

Eq. (10) ensures continuity of σ
(s)
tmj

(z) with ǫ
(s)
tmj

(z), over an arbitrary load-

ing history, involving arbitrary switches between loading and unloading states.

There is, however, a discontinuity in the slope,
(

dσ
(s)
tmj

(z)
/

dǫ
(s)
tmj

(z)
)

at ε
(s)
tmj

(z) =

εpeaktmj
(z). The slope discontinuity is inconducive to application of efficient gradient-

based numerical methods. Therefore, a differentiable function that smoothly

transitions between loading and unloading states is introduced as follows:

I
(s)
tmj

(z) =
1

2

(

1 + tanh

(

ε
(s)
tmj

(z)− εpeaktmj
(z)

εround

))

. (11)

Here, εround > 0 is a smoothing parameter. For ε
(s)
tmj

(z) ≫ εpeaktmj
(z) (loading),

I
(s)
tmj

(z) ↑ 1. Similarly, for ε
(s)
tmj

(z) ≪ εpeaktmj
(z) (unloading), I

(s)
tmj

(z) ↓ 0. The rates

of approach increase with decreasing εround. In terms of I
(s)
tmj

(z), a differentiable

approximation of Eq. (10) is:

σ
(s)
tmj

(z) = I
(s)
tmj

(z)

(

σY tanh

(

(E1 − E2)ε
(s)
tmj

(z)

σY

)

+ E2ε
(s)
tmj

(z)

)

+

(1 − I
(s)
tmj

(z))
(

E1(ε
(s)
tmj

(z)− εpltmj
(z))

)

.

(12)
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Figure 4: Schematic representation of the deformed configuration of a partially damaged com-
posite,whose undamaged and undeformed state is shown in Fig. 2. The sign of the maximum
and plastic shear strains in shear matrix element k (ψsmk

) is assumed to depend only on the
broken or unbroken state of its abutting fibre and tensile matrix elements, as described in the
text.

3.3. Shear Matrix

The shear stress-shear strain relationship in the elastoplastic shear matrix

can be written, in analogy with Eq. (5), as (Mahesh et al., 2004):

τ (s)smk
(z) = τY tanh

(

(E1 − E2)γ
(s)
smk

(z)

τY

)

+ E2γ
(s)
smk

(z). (13)

Yielding at a matrix material point strictly depends on both the tensile and

shear stress at that point. For simplicity, however, yielding in the tensile matrix

and in the shear matrix are assumed to be independent of each other. That is,

σY and τY are assumed independent parameters, as in Zhou et al. (2002).

As with Eq. (5), Eq. (13) is adequate only for monotonic loading. In a

composite material with progressive fibre and matrix breakage, the assumption

of monotonicity will not be valid. Additionally, the peak and plastic shear

strains could be of either sign, in contrast with the peak and plastic tensile
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strains in the tensile matrix, which can be safely assumed positive (Eq. (6)). To

capture the sign, a factor ψsmk
, is introduced according to the following rules:

(i) If the abutting fibre fsmk
and tensile matrix tmsmk

are both intact, it is

assumed that γpeaksmk
(z) = γplsmk

(z) = 0 for all z, and ψsmk
= 0. That is, the

shear matrix bay between a pair of intact tensile elements is assumed not

to yield. In Fig. 4, this condition applies to sm1, sm2, sm3, sm7, sm10,

sm13, sm14, sm15, and sm16.

(ii) If the fibre abutting a shear matrix bay, smk is broken, and tensile matrix

abutting smk is intact, it is assumed that γpeaksmk
(z) ≤ 0, and γplsmk

(z) ≤ 0

for all z, and ψsmk
= −1. In Fig. 4, sm4, sm8 and sm9 are examples of

this case.

(iii) If the abutting tensile matrix is broken, but the fibre is intact, γpeaksmk
(z) ≥

0, and γplsmk
(z) ≥ 0 for all z, and ψsmk

= +1. Shear matrix bays sm6,

sm11, and sm12 are of this type in Fig. 4.

(iv) Finally, if both the abutting fibre and tensile matrix are broken, as in bay

sm5 in Fig. 4, it is assumed that the shear matrix bay will be in a state

of unloading. This does not mean that the peak and plastic strains in the

shear matrix elements are zero. However, no further evolution of the peak

and plastic strains in the shear matrix bay is allowed to occur after the

failure of both abutting tensile elements.

In terms of ψsmk
, the peak shear strain in a shear matrix element is defined,

paralleling Eq. (6), as

γpeaksmk
(z) = ψsmk

max
s=0,...,S

max(ψsmk
γ(s)smk

(z), 0). (14)

A development paralleling that leading up to Eq. (12) yields

τ (s)smk
(z) = I(s)smk

(z)

{

τY tanh

(

(G1 −G2)γ
(s)
smk

(z)

τY

)

+G2γ
(s)
smk

(z)

}

+

(1− I(s)smk
(z))

{

G1(γ
(s)
smk

(z)− γplsmk
(z))

}

,

(15)

where,

I(s)smk
(z) =

1

2

(

1 + ψsmk
tanh

(

γ
(s)
smk

(z)− γpeaksmk
(z) + ψsmk

γshift

γround

))

. (16)

15



The term ψsmk
γshift, which appears in Eq. (16) has no analogue in Eq. (11). It

is introduced here to ensure that I
(s)
smk

(z) is strictly monotonic for any ψsmk
∈

{−1, 0, 1}.

3.4. Slider elements

A simple threshold slip model is assumed at the fibre-matrix interface, akin

to that in Mahesh et al. (2004). The displacement w
(s)
sk (z) in step s of slider

element sk is taken to follow

w(s)
sk (z)























≤ 0, if τ
(s)
smsk

(z) < −τ∗,

= 0, if − τ∗ ≤ τ
(s)
smsk

(z) ≤ τ∗,

≥ 0, if τ
(s)
smsk

(z) > τ∗.

(17)

In the above equation, τ∗ is a material constant that describes the interfacial

interactions between the fibre and the matrix. The value of wsk(z) in the first

and third cases is left unspecified. A smooth regularisation of Eq. (17) is given

by

w(s)
sk

(z) = ws0

(

τ
(s)
smsk

(z)

τ∗

)2n+1

. (18)

Here, ws0 is a reference value for the interfacial sliding displacement. n is to be

a sufficiently large positive integer, so that 2n+1 is odd. This regularisation is

a simpler version of that used by Mahesh et al. (2004).

It is emphasised that according to Eq. (18), the sliding displacements are

history-independent. The sliding displacement at a given step depends only on

the shear stresses in that step.

4. Governing equations and boundary conditions

Following the classical shear-lag framework (Hedgepeth, 1961; Budiansky

et al., 1986; Mahesh et al., 2004), the z-equilibrium of fibre element fi, at step

s is expressed as:

ad
dσ

(s)
fi

dz
(z) + d

(

τ
(s)

sm+
fi

(z) + τ
(s)

sm−

fi

(z)

)

= 0. (19)
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As shown in Fig. 1, Af = ad is the fibre cross-sectional area, and d is the ply

thickness. Similarly, the z-equilibrium of an infinitesimal tensile matrix element

in tmj can be expressed as

d(b− a)
dσ

(s)
tmj

dz
(z)− d

(

τ
(s)

sm+
tmj

(z) + τ
(s)

sm−

tmj

(z)

)

= 0. (20)

The sliding displacement wsk(z) at the fibre-matrix interface is governed by

Eq. (18).

The normal and shear stresses appearing in Eqs. (18), (19), and (20) can

be expressed in terms of fibre, tensile matrix and slider displacements, w
(s)
fi

(z),

w
(s)
tmj

(z), and w
(s)
sk (z), respectively, using the constitutive laws of Sec. 3. These

displacement fields constitute the unknown variables of the present model.

Breaks in the fibres and tensile matrix elements are assumed to occur in a

single plane, taken without loss of generality as the plane z = 0, transverse to

the fibre direction. The boundary conditions imposed in this plane are

dw
(s)
fi

dz
(z = 0) = 0, if fi is broken, and

w
(s)
fi

(z = 0) = 0, if fi is intact.

(21)

In tensile matrix tmj ,

(

dw
(s)
tmj

dz
− εpltmj

)

(z = 0) = 0, if tmj is broken, and

w
(s)
tmj

(z = 0) = 0, if tmj is intact.

(22)

Because of symmetry, it is sufficient to treat only half the composite domain,

0 ≤ z ≤ (L/2), shown in Fig. 1. Displacement controlled loading is imposed:

w
(s)
fi

(z = L/2) = w
(s)
tmj

(z = L/2) = Lεengg/2. (23)

Here, εengg is the engineering strain imposed over the guage length.

The tensile load, P , applied to the composite for a given εengg can be ob-

tained by summing over the tensile loads of the fibres and tensile matrix ele-
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ments. This sum must be equal at any section, z.

P = ad

nf−1
∑

i=0

Ef

dw
(s)
fi

dz
(z)+

2ah

ntm−1
∑

j=0

[

(

I
(s)
tmj

(z)
)

{

σY tanh

(

E1 − E2

σY

dw
(s)
tmj

dz
(z)

)

+ E2

dw
(s)
tmj

dz
(z)

}

+

(

1− I
(s)
tmj

(z)
)

{

E1

(

dw
(s)
tmj

dz
(z)− εpltmj

(z)

)}]

.

(24)

Although the equilibrium equations, and boundary conditions, given above

are classical, the complex non-linear constitutive laws of the matrix phase, and

interface, render these equations not amenable to analytical solution.

5. Non-dimensional equations

Direct numerical solution of the system of equations derived in Sec. 4 pro-

duces significant round-off errors, as the various terms in the governing equa-

tions are not of the same order of magnitude. It is therefore desirable to non-

dimensionalise these equations with the aim of getting order of unity terms in

the latter form. The following novel non-dimensionalisation scheme is developed

for this purpose.

First, the axial coordinate z is non-dimensionalised as

ζ =
√
Kz, (25)

where,

K =
G1√

2h3dEfE1

. (26)

The inverse square root of K defines the characteristic length of load recov-

ery the model composite, provided all constituents are elastic. Let the axial

displacements of the various model elements be normalised by

W =
G1 −G2

hτY
, (27)

so that

ŵ
(s)
fi

=Ww
(s)
fi
, ŵ

(s)
tmj

=Ww
(s)
tmj
, and ŵ(s)

sk
=Ww(s)

sk
. (28)
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Furthermore, let

C =
G2

G1 −G2

A = (1 + C)

√

d

2h

Ef

E1
,

B = 2(1 + C)h2K
E1

G1
,

E =
τY
σY

(E1 − E2)

(G1 −G2)

h√
K
,

F =
1

(1 + C)

G1

E1

σY
τY

1

h
√
K
,

H =
E2

E1
, and

I =
τ∗

τY
.

(29)

The parameters listed in Eq. (29) are dimensionless and of the order of unity. In

terms of these variables, the normalised governing equations take the following

simpler forms. Eq. (19), describing fibre equilibrium, expressed in terms of the

normalised fibre, tensile matrix, and slider displacements becomes

A
d2ŵ

(s)
fi

dζ2
(ζ)+

{

I
(s)

sm+
fi

(ζ) tanh

(

ŵ
(s)

tm+
fi

(ζ) − ŵ
(s)
fi

(ζ)− ŵ
(s)

s+fi

(ζ)

)

+

I
(s)

sm−

fi

(ζ) tanh

(

ŵ
(s)

tm−

fi

(ζ)− ŵ
(s)
fi

(ζ) − ŵ
(s)

s−fi
(ζ)

)}

+

C

{

I
(s)

sm+
fi

(ζ)

(

ŵ
(s)

tm+
fi

(ζ) − ŵ
(s)
fi

(ζ)− ŵ
(s)

s+fi

(ζ)

)

+

I
(s)

sm−

fi

(ζ)

(

ŵ
(s)

tm−

fi

(ζ)− ŵ
(s)
fi

(ζ) − ŵ
(s)

s−fi
(ζ)

)}

+

(1 + C)

{(

1− I
(s)

sm+
fi

(ζ)

)(

ŵ
(s)

tm+
fi

(ζ) − ŵ
(s)
fi

(ζ)− ŵ
(s)

s+
fi

(ζ) − γ̂pl
sm+

fi

(ζ)

)

+

(

1− I
(s)

sm−

fi

(ζ)

)(

ŵ
(s)

tm−

fi

(ζ) − ŵ
(s)
fi

(ζ)− ŵ
(s)

s−fi
(ζ) − γ̂pl

sm−

fi

(ζ)

)}

= 0.

(30)

In this expression, the normalised shear matrix plastic strain is defined as

γ̂plsmk
=

(

ŵ
(s)
tmsmk

− ŵ
(s)
fsmk

− ŵ
(s)
ssmk

)

− tanh
(

ŵ
(s)
tmsmk

− ŵ
(s)
fsmk

− ŵ
(s)
ssmk

)

1 + C
. (31)
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Similarly, Eq. (20) transforms to

I
(s)
tmj

(ζ)B
d2ŵ

(s)
tmj

dζ2
(ζ)

{

H + (1−H) sech2

(

E
dŵ

(s)
tmj

(ζ)

dζ

)}

−
{

I
(s)

sm+
tmj

(ζ) tanh

(

ŵ
(s)
tmj

(ζ) − ŵ
(s)

f+tmj

(ζ)− ŵ
(s)

s+tmj

(ζ)

)

+

I
(s)

sm−

tmj

(ζ) tanh

(

ŵ
(s)
tmj

(ζ)− ŵ
(s)

f−tmj

(ζ)− ŵ
(s)

s−tmj

(ζ)

)}

−

C

{

I
(s)

sm+
tmj

(ζ)

(

ŵ
(s)
tmj

(ζ) − ŵ
(s)

f+tmj

(ζ) − ŵ
(s)

s+tmj

(ζ)

)

+ .

I
(s)

sm−

tmj

(ζ)

(

ŵ
(s)
tmj

(ζ)− ŵ
(s)

f−tmj

(ζ)− ŵ
(s)

s−tmj

(ζ)

)}

+

B
(

1− I
(s)
tmj

(ζ)
)

(

d2ŵ
(s)
tmj

(ζ)

dζ2
−
dε̂pltmj

(ζ)

dζ

)

−

(1 + C)

{(

1− I
(s)

sm+
tmj

(ζ)

)(

ŵ
(s)
tmj

(ζ) − ŵ
(s)

f+tmj

(ζ) − ŵ
(s)

s+tmj

(ζ)− γ̂pl
sm+

tmj

(ζ)

)

+

(

1− I
(s)

sm−

tmj

(ζ)

)(

ŵ
(s)
tmj

(ζ) − ŵ
(s)

f−tmj

(ζ)− ŵ
(s)

s−tmj

(ζ)− γ̂pl
sm−

tmj

(ζ)

)}

= 0.

(32)

In this expression,

ε̂pltmj
= (1−H)

dŵ
(s)
tmj

dζ
− F tanh

(

E
dŵ

(s)
tmj

dζ

)

. (33)

Finally, the slider constitutive law, Eq. (18), becomes

ŵ(s)
ssk

(ζ)−
{

1

I

{

I(s)smsk
(ζ)
(

tanh
(

ŵ
(s)
tmsk

(ζ) − ŵ
(s)
fsk

(ζ) − ŵ(s)
ssk

(ζ)
)

+

C
(

ŵ
(s)
tmsk

(ζ) − ŵ
(s)
fsk

(ζ)− ŵ
(s)
tmsk

(ζ)
))

+

(1 − I(s)smsk
(ζ))(1 + C)

(

ŵ
(s)
tmsk

(ζ) − ŵ
(s)
fsk

(ζ)− ŵ(s)
ssk

(ζ) − γ̂plsk(ζ)
)}}2n+1

= 0.

(34)

The normalised form of boundary conditions Eqs. (21), and (22) become,

dŵ
(s)
fi

dζ
(ζ = 0) = 0, if fi is broken, and

ŵ
(s)
fi

(ζ = 0) = 0, if fi is intact.

(35)
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Similarly, in tensile matrix tmj ,

(

dŵ
(s)
tmj

dζ
− ε̂pltmj

)

(ζ = 0) = 0, if tmj is broken, and

ŵ
(s)
tmj

(ζ = 0) = 0, if tmj is intact.

(36)

Finally, the imposed displacement can be normalised as

ŵ
(s)
fi

(ζ = ℓ) = ŵ
(s)
tmj

(ζ = ℓ) =W (Lεengg/2), (37)

where ℓ =
√
KL/2. Thus, the system of equations, Eqs. (30), (32), and (34) and

boundary conditions Eqs. (35), (36), and (37) describe the present composite

material, in terms of seven independent non-dimensional constants listed in

Eq. (29).

The total load imposed upon the composite is given by Eq. (24). The non-

dimensional total load is defined as

P̂ = P

/(

Ef

G1 −G2
h
√
Ka2τY

)

, (38)

where,

P̂ (ζ) =

nf−1
∑

i=0

dŵ
(s)
fi

dζ
(ζ)+

(

1 + C

A

)2 ntm−1
∑

j=0

[

I
(s)
tmj

(ζ)

{

1−H

E
tanh

(

E
dŵ

(s)
tmj

dζ
(ζ)

)

+H
dŵ

(s)
tmj

dz
(ζ)

}

+

(

1− I
(s)
tmj

(ζ)
)

{

E1

(

dŵ
(s)
tmj

dζ
(ζ) − ε̂pltmj

(ζ)

)}]

.

(39)

For equilibrium, the total load should be conserved across cross-sections. There-

fore, the above expression should yield the same P̂ for all ζ ∈ [0, ℓ].

6. Reduced linear model

The mechanical fields predicted by the present model, which accounts for

matrix plasticity, and interfacial sliding vary non-linearly with applied composite

stress σc. It will prove insightful to compare the predictions with those of a
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reduced linear model, which accounts for fibre and matrix stiffness, but not

for matrix plasticity, nor for interfacial sliding. The reduced linear problem is

governed by the equations

A
d2ŵ

(s)
fi

(ζ)

dζ2
+

(1 + C)

{(

ŵ
(s)

tm+
fi

(ζ) − ŵ
(s)
fi

(ζ)

)

+

(

ŵ
(s)

tm−

fi

(ζ)− ŵ
(s)
fi

(ζ)

)}

= 0.

(40)

for the fibre, and

B
d2ŵ

(s)
tmj

(ζ)

dζ2
−

(1 + C)

{(

ŵ
(s)
tmj

(ζ)− ŵ
(s)

f+tmj

(ζ)

)

+

(

ŵ
(s)
tmj

(ζ) − ŵ
(s)

f−tmj

(ζ)

)}

= 0.

(41)

for the matrix. The fibre boundary conditions remain those given by Eq. (35),

while the matrix boundary conditions become

dŵ
(s)
tmj

dζ
(ζ = 0) = 0, if tmj is broken, and

ŵ
(s)
tmj

(ζ = 0) = 0, if tmj is intact.

(42)

The loading boundary conditions remain the same as Eq. (37).

7. Numerical solution

Numerical solution of the present system of equations using the finite dif-

ference method applied over a uniform grid along the ζ-direction was found

infeasible. This is partly because of the well known Runge phenomenon as-

sociated with the uniform grid (Trefethen, 2013), and partly also because the

exponential load recovery profiles near fibre breaks require a very high order

approximation of derivatives to resolve sufficiently accurately. These issues are

avoided presently through the use of the pseudospectral collocation method

(Fornberg, 1998a) over a Chebyshev grid:

ζι = ℓ

(

1− cos

(

πι

nC − 1

))

, ι = 0, 1, 2, . . . , nC − 1. (43)

Here, nC is the number of Chebyshev points. The ζι grid is quadratically clus-

tered near the ends of the domain in order to suppress the Runge phenomenon.
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All axial elements – fibres, tensile matrices, and sliders – are discretised by plac-

ing regular nodes at the grid points. Eqs. (30) – (34) are enforced in discretised

form at the regular nodes. In doing so, the differential operators are discretised

using differentiation matrices (Fornberg, 1998a; Weideman and Reddy, 2000).

Let {ŵfi} denote the vector of normalised displacements at positions ζι in fibre

fi. Then, p-th order dense differentiation matrices [D(p)] are constructed, fol-

lowing the procedure given by Fornberg (1998b), which accurately approximate

the axial derivatives:
d(p){ŵfi}
dζ(p)

= [D(p)]{ŵfi}. (44)

Similarly, if {ŵtmj
} denotes the vector of normalised displacements in the tensile

matrix element tmi,
d(p){ŵtmj

}
dζ(p)

= [D(p)]{ŵtmj
}. (45)

The governing equation for the slider elements is purely algebraic, and hence

does not need any treatment of derivatives.

Fictitious nodes corresponding to ι = −1 and ι = nC are introduced in the

fibre and tensile matrix axial elements. The former node can be located at any

arbitrary ζ such that ζ < 0, and the latter node at any ζ such that ζ > ℓ,

as shown by Fornberg (1998b). These fictitious nodes are used to enforce the

boundary conditions.

The discretised equations are non-linear. Their iterative solution is accom-

plished using a standard solver, MINPACK (Moré et al., 1980). The determi-

nation of the Jacobian matrix for the system of equations proves to be tedious,

but straightforward.

In addition to the desirable numerical characteristics noted above, pseu-

dospectal collocation has exponential convergence rates, much faster than the

power-law convergence rates of the finite element or finite difference meth-

ods (Weideman and Reddy, 2000). The additional speed comes at the cost

of dense interaction matrices, and hence greater demand for computer memory.

Composite loading/unloading history can be simulated over a number of

steps. A number of iterations are performed within each step. Following the
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Figure 5: Broken and intact fibres in the metal matrix composite of Hanan et al. (2003)
showing the nomenclature of model elements.

standard procedure of plasticity simulations (Simo and Hughes, 2006), each it-

eration involves progressing toward global equilibrium, i.e., a reduction of the

residuals corresponding to Eqs. (30) and (32). This step is performed keeping all

the internal variables of the model fixed. Sliding displacements ŵsk are updated

after each iteration so that Eq. (34) is satisfied after each equilibrium itera-

tion. Iterations are terminated when all the governing equations and boundary

conditions in Sec. 5 are satisfied to a tight tolerance. At this point, the peak

and plastic strains in the matrix element are updated, and the next step is

commenced.

8. Results

8.1. Comparison with experimental results

Using synchrotron X-ray micro-diffraction, Hanan et al. (2003) measured the

stress redistribution in a damaged commercial Ti matrix composite laminate

(SiC fibres in a Ti-6Al-4V matrix). It is recalled from Sec. 1 that X-ray micro-

diffraction resolves only the elastic part of strain, even in an elasoplatically

deforming material. Hanan et al. (2003) introduced a fibre break by drilling a

circular hole with electric discharge machining. The hole fully cut one fibre, and
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one of its adjoining matrix bays. It was also suspected to have partially broken

the next fibre. This partial damage led to the breakage of the neighbouring

fibre during loading. At the moment of measuring elastic strains, Hanan et al.

(2003) report that two adjacent fibres and the intervening matrix were broken.

These breaks were approximately all located in a plane transverse to the fibre

direction. Fig. 5 shows a schematic diagram of the system of breaks and the

naming scheme for the various axial model elements that are either broken, or

in the vicinity of the broken elements. In this scheme, the two symmetrically

broken fibres are denoted f1, the broken tensile matrix element is denoted tm1,

etc. It is assumed that the process of hole-drilling would relax all residual

stresses in the composite, at least in the vicinity of the hole. For this reason,

and for simplicity, the present study assumes zero axial thermal residual stresses

throughout the model domain.

Exploiting symmetry, only half the specimen of Hanan et al. (2003), 0 mm ≤
z ≤ 13 mm, is modelled. The model domain, however, includes all the 29 fibres

in the experimental specimen, and has an axial extent in the fibre direction of

l = 13 mm, which is the actual half-length of the experimental specimen. Even

so, the present computation, which in involves loading up to 850 MPa in one

step, and unloading to 0 MPa in one step, requires only about 23 seconds of

wall-clock computer time.

The important cross-sectional dimensions in the composite of Hanan et al.

(2003) are shown in Fig. 6a. In the present model, fibres are idealised to have

square cross-sections, with side dimension a, as shown in Fig. 6b, and ply thick-

ness d = a. The dimension, a, is determined such that the fibre cross-sectional

area Af = a2 = π(140 µm)2/4. Also, the centre-to-centre spacing of fibres,

b = 240 µm is preserved in the course of the idealisation. These choices make

the volume fraction of fibres in the actual ply somewhat smaller than that in

the idealised ply.

The material properties of the fibre, and matrix are obtained from the lit-

erature, as listed in Tab. 1. n, εround, γround, and γshift represent numerical

smoothing parameter, and not material constants to be fit. Model predictions
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Figure 6: (a) Actual (Hanan et al., 2003), and (b) idealised xy cross-sections of the one ply
composite. Fibre cross-sectional area, Af , and the fibre centre-to-centre spacing are preserved
in the course of the idealisation.

Parameter Value Reference
Fiber dimension, a 124 µm Hanan et al. (2003)
Fibre spacing, b 240 µm Hanan et al. (2003)
Ply thickness, d 124 µm Hanan et al. (2003)
Composite half-length, l 13 mm Hanan et al. (2003)
Fiber elastic modulus, Ef 400 GPa Wessel (2004)
Matrix elastic tensile modulus, E1 110 GPa Welsch et al. (1993)
Matrix plastic tensile hardening, E2 1.25 GPa Ziaja (2009)
Matrix elastic shear modulus, G1 42 GPa Welsch et al. (1993)
Matrix plastic shear modulus, G2 0.5 GPa assuming G2/G1 = E2/E1

Matrix tensile yield stress σY 820 MPa Welsch et al. (1993)
Matrix shear yield stress τY 550 MPa Welsch et al. (1993)
Interfacial strength, τ∗ 270 MPa present work
n 4 computational parameter
εround 0.5 computational parameter
γround 1.0 computational parameter
γshift 1.3 computational parameter

Table 1: Geometric and material parameters of the present model.
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are not sensitive to their values, so long as they are sufficiently large. The

hardening rate of the yielded matrix in shear, G2 is assigned a value assum-

ing G2/G1 = E2/E1. However, the interfacial shear strength, τ∗, is treated

as a present fitting parameter. Its value is fit to τ∗ = 270 MPa, so that the

presently predicted load recovery near a cluster of breaks matches that exper-

imentally measured by Hanan et al. (2003). This value is considerably larger

than the typical values of 90–200 MPa obtained from push-out tests, conven-

tional full fragmentation testing, or synchrotron strain measurements (Preuss

et al., 2002).

The loaded strain measurements were made by Hanan et al. (2003) at a far-

field stress of 850 MPa. This corresponds to P = 850 MPa× 7 mm× 0.2 mm ≈
1190 N in Eq. (24). By successive bisection, the model displacement at z = L/2

is determined such that the model load matches the experimental load. This

condition is realised at wfi(z = L/2) = wtmj
(z = L/2) ≈ 0.07 mm, for all i, j

or εengg ≈ 0.005.

Elastic strains are predicted by the present model in the broken fibres, and

in an intact fibre neighbouring either of the broken ones. These predictions are

compared in Fig. 7 with the experimental measurements of Hanan et al. (2003).

The simulated elastic strain profiles broadly agree with the measured profiles

in both fibres f1 and f2. The strain variations predicted by the reduced linear

model (Sec. 6) are also shown in Fig. 7. It is clear that the latter model predicts

a more rapid load recovery profile than the non-linear model in the broken fibre.

This shows that the non-linear phenomena, viz., matrix yielding, and interfacial

sliding, modelled presently play an important role in determining the near-break

mechanical fields.

Systematic differences between the predicted and measured strains are, how-

ever, observed. Over 0 mm ≤ z ≤ 0.5 mm, the strains predicted in the

broken fibres are in excess of the measurements. Over the same range of z,

the strains are somewhat under-predicted in the next intact fibre, f2. For

0.5 mm ≤ z ≤ 1.4 mm, the agreement between predictions and experi-

ment is better. The error bars reported by Hanan et al. (2003) for the fibre
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Figure 7: Strain concentration predicted in the fibres by the model after loading to 850 MPa
(solid lines), compared with the experimental data (points) reported by Hanan et al. (2003).
Fibres f1 and f2 are identified with respect to the broken elements in Fig. 5.

strain measurements are too small to account for the observed discrepancy in

0 mm ≤ z ≤ 0.5 mm. A plausible explanation is that the assumption of a

uniform interfacial strength τ∗ may not be obeyed in the physical specimen.

Sizeable variation in τ∗ near the fibre breaks may underlie the observed discrep-

ancies in the fibre strains.

Hanan et al. (2003) also measured the change in the elastic strains,

∆εelfi (z) = εelfi(z)
∣

∣

850 MPa
− εelfi(z)

∣

∣

0 MPa
, (46)

in the fibres after unloading from the peak load of 850 MPa. These measure-

ments are compared with the predictions of the present model in Fig. 8. As

before, broad agreement of the predictions and measurements is noted.

Finally, the change in the elastic matrix strains,

∆εeltmj
(z) = εeltmj

(z)
∣

∣

∣

850 MPa
− εeltmj

(z)
∣

∣

∣

0 MPa
, (47)

upon unloading from the peak load are considered in Fig. 9. The tensile matrix
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Figure 8: Change in the fibre elastic strains between the loaded and unloaded states. Predic-
tions from the present model are compared with experimental data points taken from Figs. 8
and 9 of Hanan et al. (2003).
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Figure 9: Change in the tensile matrix elastic strains between the loaded and unloaded states.
Predictions from the present model are compared with experimental data points taken from
Figs. 10 and 11 of Hanan et al. (2003).
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Figure 10: Total and plastic strains in the tensile matrix elements tm1, tm2, and tm3 predicted
at the peak load of 850 MPa.

strains in the broken tm1 and intact tm3 are reasonably captured. However,

the tensile matrix elastic strain in the intact matrix bay, tm2, is over-estimated

by the model near z = 0. Hanan et al. (2003) report larger error bars in their

matrix strain measurements, than in their fibre strains. Yet, these these are

not big enough to explain the present discrepancy. They also report that the

adjacent matrix bays, tm2, were partially cut at z ≈ 0 either duringspecimen

preparation, or testing. Since a cut matrix bay will locally be more compliant

than an intact one, it will take smaller loads, and therefore develop smaller

elastic strains. This offers a plausible explanation for the smaller measured

elastic strains in these bays.

8.2. Matrix plasticity and interfacial sliding

The mechanical fields in the vicinity of the breaks in the Hanan et al. (2003)

composite predicted by the present non-linear model, corresponding to the peak

imposed stress of σc = 850 MPa, are now presented.

Fig. 10 shows the total and plastic tensile strains in tensile matrix bays

tm1, tm2, and tm3 as a function of position. Both total and plastic strain in
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Figure 11: Total and plastic shear strains in shearing matrix elements sm1, sm2, and sm3

predicted at the peak load of 850 MPa.

all the bays reach their far-field values at a distance of about 1.4 mm, or 10

fibre diameters. The far-field plastic strain is not zero, which implies that the

matrix is undergoing gross yielding. The fraction of elastic strain to total strain

decreases as the break plane, z = 0 mm is approached. In other words, the

plastic strain becomes the more important as the break plane is approached.

The shear strains predicted in the shear matrix bays near the breaks is shown

in Fig. 11. As noted previously in connection with Fig. 4, the sign of the shear

strain simply indicates the state of breakage of the abutting tensile members,

and is not in itself important. Plastic strains in the shear matrix are much more

localised than that in the tensile matrix. Only the shear matrix bay sm2, which

is abutted by a broken fibre and an intact tensile matrix yields in shear. This is

because shear stresses are developed only in the vicinity of breaks to transmit

axial loads from intact to broken fibres.

The sliding displacements predicted in the sliding elements near the broken

fibres are shown in Fig. 12. The sliding displacement is negligible in sliding

elements whose abutting tensile elements are either both broken, e.g., s1 or

both intact, e.g., s3. In element s2, one of whose abutting tensile elements is
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Figure 12: Sliding displacements in sliding elements s1, s2, and s3 predicted at the peak load
of 850 MPa.

broken, and the other intact, the sliding displacement is greatest, reaching as

high as 3 µm at the break plane z = 0. This large displacement serves to

blunt the shear stress in the associated shear matrix, sm2, and blunts the stress

concentration due to the breaks.

9. Discussion

A non-linear shear lag model of a metal matrix composite has been devel-

oped. This model accounts for fibre and matrix cracking, matrix plasticity, and

fibre-matrix interfacial sliding. The model has been used to predict the elastic

strains developed near a cluster of fibre and matrix breaks, both at a peak stress

of 850 MPa and after unloading. The predictions compare well with the exper-

imental measurements of Hanan et al. (2003). The role of the various elements

of the present model in producing good agreement is discussed below in the

context of the literature.

In a polymer matrix composite, Wagner et al. (1996) showed that the stress

concentration in the intact neighbour of a broken fibre decreases with increas-

ing fibre spacing. They used micro-Raman spectroscopy for their measurement.
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They attributed this observation to increasing tensile load the matrix, with

decreasing fibre volume fraction. Since the Hedgepeth (1961) model entirely

neglects the load carried by the matrix, it cannot account for the experimental

observation. The MSSL model, due to Beyerlein and Landis (1999), is an effort

to extend the Hedgepeth (1961) model to include matrix stiffness. The Beyer-

lein and Landis (1999) model, however, assumes linear elastic fibre and matrix

elements. Zhang and Wang (2009) also considered the effect of matrix stiff-

ness and also that of matrix yielding in tension. They however, unrealistically

assumed that the yielding was localised to an infinitesimally thin strip in the

matrix collinear with the adjacent fibre breaks. On the other hand, Landis and

McMeeking (1999) proposed a shear-lag model assuming an elastoplastic matrix

obeying J2 flow theory. This model represents the most detailed accounting of

the yielded state in the matrix. The matrix is assumed non-hardening. They

found that for an elastically rigid matrix, the axial and shear stress profiles ap-

proach the simple forms predicted by the simple sliding model, due to Kelley

and Tyson (1965).

The loading of the present Ti matrix cannot be sufficiently described either

by the linear model of Beyerlein and Landis (1999) or by the simple sliding

model of Kelley and Tyson (1965). This is because the present matrix yields

on the one hand grossly under the imposed load. On the other hand, the

present Ef/E1 ≈ 4, so that the matrix cannot be assumed elastically rigid.

Treating the matrix constitutive law using a flow theory, as in Landis and

McMeeking (1999), in the multi-fibre composite is computationally expensive.

Therefore, in the present work, matrix deformation is decomposed into tensile

and shear parts, which are assumed uncoupled, following Zhou et al. (2002). The

plastic and elastic strains in both the tensile matrix, and shear matrix elements,

adjacent to the initially broken models elements, are comparable. Despite the

decomposition of the matrix response into tensile and shear parts, it is seen that

the present model captures the measured elastic strains well. This is consistent

with a finding of Zhou et al. (2002) under dynamic loading conditions.

The importance of modelling the shear yielding of the matrix and interfacial
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debonding has been emphasised in the polymer matrix literature. Behzadi et al.

(2009) compared the strains to failure predicted with and without accounting

for matrix shear yielding with experimentally obtained values. They found that

while both models overestimate the failure strain, the model with shear yielding

produces the smaller overestimate. They attributed this to the reduced stress

concentration in the fibres neighbouring broken ones when the matrix yields in

shear. Accounting for both matrix strain yielding and interfacial debonding,

Okabe and Takeda (2002) could capture the measured composite strength of a

matrix. Mishnaevsky and Brøndsted (2009) studied the competition between

interfacial debonding, and matrix cracking. The aforementioned mechanisms

have been represented in the present model also. As in the aforementioned

studies, these mechanisms are essential for the predictive success of the present

model. Suppression of any of these mechanisms is found to lead to qualitatively

poorer predictions in Sec. 8.1.

10. Conclusions

A non-linear shear lag model capable of accounting for multiple realistic

damage modes in metal matrix composites and a fast computational algorithm

for its solution have been developed. These failure modes are fibre breakage,

matrix cracking, matrix plasticity, and fibre-matrix interfacial slippage. Model

predictions have been compared with experimental results given in the literature

and good agreement is found. The validated model has been used to elucidate

the effects of non-linear material response near fibre breaks. Large differences

in the mechanical fields have been found near the fibre breaks between the pre-

dictions of the present non-linear model, and that of a reduced linear model.

This shows that fully accounting for these non-linearities is essential for obtain-

ing good estimates of metal matrix composite reliability. This aspect will be

discussed in future work.
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Moré, J. J., Garbow, B. S., Hillstrom, K. E., 1980. User guide for minpack-1.

Tech. Rep. CM-P00068642, Argonne National Laboratory.

Okabe, T., Takeda, N., 2002. Elastoplastic shear-lag analysis of single-fiber com-

posites and strength prediction of unidirectional multi-fiber composites. Com-

pos. A 33 (10), 1327–1335.

Okabe, T., Takeda, N., Kamoshida, Y., Shimizu, M., Curtin, W., 2001. A 3D

shear-lag model considering micro-damage and statistical strength predic-

36



tion of unidirectional fiber-reinforced composites. Compos. Sci. Tech. 61 (12),

1773–1787.

Pimenta, S., Robinson, P., 2014. An analytical shear-lag model for composites

with brick-and-mortar architecture considering non-linear matrix response

and failure. Compos. Sci. Tech. 104, 111–124.

Preuss, M., Rauchs, G., Withers, P., Maire, E., Buffiere, J.-Y., 2002. Interfacial

shear strength of Ti/SiC fibre composites measured by synchrotron strain

measurement. Compos. A 33 (10), 1381–1385.

Simo, J., Hughes, T., 2006. Computational Inelasticity. Interdisciplinary Ap-

plied Mathematics. Springer New York.

Swolfs, Y., Gorbatikh, L., Verpoest, I., 2012. A 3D finite element analysis of

static stress concentrations around a broken fibre. In: Proc. 15th European

Conference on Composite Materials. pp. 1–8.

Swolfs, Y., McMeeking, R. M., Verpoest, I., Gorbatikh, L., 2015. Matrix cracks

around fibre breaks and their effect on stress redistribution and failure devel-

opment in unidirectional composites. Compos. Sci. Tech. 108, 16–22.

Trefethen, L. N., 2013. Approximation theory and approximation practice.

SIAM.

Wagner, H., Amer, M. S., Schadler, L. S., 1996. Fibre interactions in two-

dimensional composites by micro-raman spectroscopy. Journal of materials

science 31 (5), 1165–1173.

Weideman, J. A., Reddy, S. C., 2000. A matlab differentiation matrix suite.

ACM Trans. Math. Software 26 (4), 465–519.

Welsch, G., Boyer, R., Collings, E., 1993. Materials properties handbook: tita-

nium alloys. ASM international.

Wessel, J. K., 2004. The handbook of advanced materials: enabling new designs.

John Wiley & Sons.

37



Winstone, M., Partridge, A., Brooks, J., 2001. The contribution of advanced

high-temperature materials to future aero-engines. Proc. Inst. Mech. Eng. L

J. Mater. Des. Appl. 215 (2), 63–73.

Xia, Z., Curtin, W., 2001. Multiscale modeling of damage and failure in

aluminum-matrix composites. Compos sci tech 61 (15), 2247–2257.

Xia, Z., Curtin, W., Peters, P., 2001. Multiscale modeling of failure in metal

matrix composites. Acta Mater. 49 (2), 273–287.

Zhang, J., Wang, F., 2009. Modeling of progressive failure in ductile matrix

composites including local matrix yielding. Mech. Adv. Mater. Struct. 16 (7),

522–535.

Zhou, Y., Huang, W., Xia, Y., 2002. A microscopic dynamic Monte Carlo sim-

ulation for unidirectional fiber reinforced metal matrix composites. Compos

Sci Tech 62 (15), 1935–1946.

Ziaja, W., 2009. Finite element modelling of the fracture behaviour of surface

treated Ti-6Al-4V alloy. Arch. Comput. Mater. Sci. Surf. Eng. 1, 53–60.

38


