
Physica D 133 (1999) 371–389

Size and heterogeneity effects on the strength of fibrous composites
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Abstract

Probabilistic fiber composite strength distributions and size scalings depend heavily on both the stress redistribution
mechanism around broken fibers and properties of the fiber strength distribution. In this study we perform large scale Monte
Carlo simulations to study the fracture process in a fiber composite material in which fibers are arranged in parallel in
a hexagonal array and their strengths are given by a two-parameter Weibull distribution function. To calculate the stress
redistribution due to several broken fibers, a realistic 3D shear-lag theory is applied to rhombus-shaped domains with periodic
boundary conditions. Empirical composite strength distributions are generated from several hundred Monte Carlo replications,
particularly for much lower values of fiber Weibull modulusγ , and larger composite sizes than studied previously. Despite the
localized stress enhancements due to fiber failures, predicted by the shear-lag model, composite response displays a transition
to equal load sharing like behavior for approximatelyγ ≤ 1. Accordingly, the results reveal distinct alterations in size
effect, failure mode, and weak-link scaling behavior, associated with a transition fromstress-drivento fiberstrength-driven
breakdown. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Continuous fiber composites have much potential for high performance under high temperature and high loading
conditions. A variety of material systems for such composites have been developed for a variety of specific applica-
tions, such as carbon fiber polymer matrix composites used for several structural civil engineering and automotive
applications and ceramic fiber–ceramic matrix composites used in high temperature corrosive environments as say,
gas turbine engine components.

Fiber composites have a reputation for being superior in their stiffness, strength, and creep resistance but reliability
is difficult to predict, compared to their isotropic counterparts. Unlike composite elastic constants, there exists
a substantial variation in the maximum mechanical stress which can be sustained (under compression, tension,
fatigue and long term creep). Therefore, predicting composite strength naturally lends itself to reliability (or failure
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probability) analyses. So, for example, in high reliability composite designs, engineers strive to minimize failure
probabilities (e.g. one failure out of 106 components) for a given lifetime (e.g. 50,000 h) with knowledge of the
material microstructure and phase properties. Requirements for efficient design are therefore not only the accurate
knowledge of composite average strength, but also a characterization of the probability distribution for composite
strength. As composite strength varies with composite size (length and width), interface properties, and the statistical
properties of the fiber, it is of considerable interest to determine their influence on composite strength.

For fiber composites of interest here, variability in the fiber strength is primarily responsible for the variability and
size effects observed in composite strength. High strength and brittle fibers, such as non-oxide (e.g., SiC), ceramic
oxide (e.g., alumina), and graphite fibers typically exhibit large variability in strength due to flaws of varying
severity that are randomly distributed along their lengths. The two-parameter Weibull model [1] has typically been
the empirical statistical distribution of choice among both experimentalist and theoreticians, for representing fiber
strength. Though not addressed in this paper, the variation in the tensile strength of a unidirectional composite
may also be enhanced by the variation in its geometry, such as length and number of fibers, constituent material
properties, including interface, and also features of its microstructure (fiber volume fraction, fiber arrangement etc.).

In statistical analytical modeling approaches, it has proven a formidable task to model composite failure evolution
without resorting to major simplifications, particularly on the scheme for redistributing stress from broken fibers
onto intact fibers. One such simplification is to assume that stresses borne by broken fibers are transferred according
to a simple rule, such as the equal load sharing (ELS) or local load sharing (LLS) rule. In ELS, all the intact
fibers share the applied stress equally and thus equally carry the loads lost from broken fibers, but in LLS, only the
immediate unbroken neighbors carry these lost loads, thus causing more severe overloads than those that occur by
ELS. The classic asymptotic fiber bundle strength distribution model as pioneered by Daniels [2] considers a dry
bundle of fibers (with no matrix) which assumes ELS among non-failed fibers. Under LLS or similar localized stress
transfer, a common approach has been to proceed with certain assumptions on the fiber fracture sequences and their
probabilities as for example in, Zweben [3] and Zweben and Rosen [4], Argon ([5], p.79), ([6], p.153), Batdorf [7],
and the chain of bundles probability models of Harlow and Phoenix [8,9]. In particular, the chain of bundles model,
wherein fiber bundles are arranged in series, has enjoyed much success since its development with extensions to
time-dependent fiber failure, matrix creep, 3D hexagonally-arranged fibers, and hybrid fiber composites [10–13].
Despite the use of idealized rules, these models have provided much insight into the characteristics and size effects
in composite distributions as a function of fiber strength. However, stress redistribution in actual composites falls
somewhere in between LLS and ELS, since a substantial portion of the stress is also redistributed to other non-failed
neighbors. More realistic micromechanical models, like the one used in this study directly account for fiber and
matrix deformation. They also allow for the possibility of matrix cracking, localized matrix plasticity, and interfacial
debonding and thus, can potentially be more useful in design. Most notable amongst these is due to Hedgepeth and
Van Dyke [14]. Monette and Anderson [15] give an energy based failure criterion for square and triangular lattices.

With this in mind, several researchers have used Monte Carlo simulations to study fiber composite breakdown
incorporating finite difference, finite element methods, influence function techniques [16–18], and lattice Green’s
functions [19], for stress redistribution around fiber breaks. Examples of such studies, particularly using a Weibull
distribution for assigning random strengths to fiber elements, include Manders et al. [20], Ochiai and Osamura [21],
Goda and Phoenix [22], Baxenvanakis et al. [23], and Beyerlein and Phoenix [24,25] for simulations of 2D planar
composites and Ibnabdeljalil and Curtin [26,27] and Landis et al. [28] for simulations of 3D composites with regular
square packing. Both Beyerlein and Phoenix [24,25] and Ibnabdeljalil and Curtin [26,27] generated composite
strength distributions for both pristine and notched composites and developed analytical probability models for the
distribution of composite strength, which achieved good agreement with simulation results. However, in virtually
all these studies, especially ones involving 3D composites, the regimes of extreme heterogeneity in fiber strength
and large numbers of fibers could not be simulated within a reasonable amount of time.
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Several network or lattice models of failure of heterogeneous materials have been developed to treat conductivity
and dielectricbreakdownin networks and catastrophic failure of elastic lattices, particularly in connection with
percolation theory. Most of these studies deal with discrete 0− 1 models for strength rather than continuous
distributions, such as the Weibull distribution used here. Network sizes of 200× 200 are common with these
0 − 1 models but not with composite materials with Weibull fibers. However a majority of the proposed size
scalings (logarithmic or power-law) from percolation theory and strength distributions have not been observed in
simulations of breakdown and are often based on limited size networks [29–33]. Nonetheless for fiber bundles,
such results are highly dependent on the stress redistribution model and distribution for fiber strength. Thus, in the
present study, we employ a realistic elastic 3D computational technique for stress redistribution and compare the
results to those assuming the more idealized ELS rule.

Li and Duxbury [31], Duxbury and Leath [32] and Duxbury [33] were the first to show repeatedly that the standard
percolation models do not work in describing breakdown in lattice systems. As will be seen later, composite failure
can occur when a non-percolating fiber break cluster reaches a certain critical size. On the other hand, formation of
a percolating cluster does not imply composite failure with probability 1 either.

There are some common results of both analytical and computational work on fiber composites using LLS or
numerical techniques for stress redistribution andγ ≥ 3. As one would expect, as the mean fiber strength increases,
the mean composite strength increases accordingly, and remains less than that of the fiber. Also, the variation in
fiber strength appears to play an important and peculiar role. Firstly, it is the spread in fiber strengths which leads
to multiple break accumulation prior to failure and in turn, suppresses the simple Weibull weak link size scaling
of simple flaws seen in the fracture of monolithic ceramics and brittle fibers. Consequently, the composite strength
distribution is non-Weibull, even when generated from controlled Monte Carlo simulations beginning with Weibull
fibers. Secondly, when variation in fiber strength is above a certain threshold, fiber breaks occur at the weaker
flaw sites and tend to be widely dispersed. Also the composite is insensitive to initial flaws. However when stress
concentrations dominate, fiber breaks tend to cluster and localize, and composite strength is extremely sensitive
to the size and location of preexisting flaws. Indeed, most composite systems studied in previous works display a
complex interplay between the two factors. The objective of this work is to study the two extreme situations,stress
dominance(in low fiber strength variability systems) andfiber strength dominance(in high fiber strength variability
systems) and relate their resulting failure modes to composite strength and size effects.

The remainder of the paper is now outlined. We begin by describing the two primary components of the fiber
composite model, the probabilistic fiber model and the two stress redistribution models considered. Next we develop
the computational algorithm of the Monte Carlo simulation and follow that with results on the influences of fiber
properties, composite size, and the stress redistribution scheme on composite distribution.

2. Probabilistic fiber model

We consider an infinitely long unidirectional fiber composite consisting of aligned, linear elastic fibers. They
are assumed to have equal cross-sectional area, length, and elastic properties and to be independent and identically
distributed in strength. The composite is loaded in tension in the fiber direction with stress per fiber ofx.

The statistical nature of brittle fibers is due to flaws of random strengths distributed randomly along the fiber
length. As is observed experimentally for such fibers, we assume that the random strength of a fiber of lengthL

follows a two-parameter Weibull [1] distribution,

Pr[X ≤ x] = 1 − exp

(
− L

L0

(
x

x0

)γ )
, (1)
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whereX is the random variable for fiber strength,γ is the shape parameter andx0 the scale parameter for a
fiber of lengthL0. Thus the mean fiber strength is given byµf = x00(1 + (1/γ )) and the variance,σ 2

f =
x2

0{0(1+ (2/γ ))−02(1+ (1/γ ))} which decreases with increasingγ . Thus,γ is a measure of the variability of the
fiber strengths: fibers with smallerγ have larger strength variability and vice versa. The two statistical parameters,
γ andx0, can be readily obtained from laboratory static tensile tests on several fibers at a given gauge lengthL0

[34,35] or by single fiber fragmentation tests [36]. The common values forγ of pristine fibers range from 2 to 20.
However, fiber flaws inevitably introduced in composite fabrication tend to lowerγ of the in-situ fibers [35]. Also,
low γ composites may be used as a surrogate for investigating effects of discontinuous fiber composites since upon
initial loading a large number of distributed breaks tend to form.

Owing to the statistical nature of the fiber strengths, fibers in a composite do not necessarily fail in regions of
highest stress concentration. Also, many fiber breaks can accumulate before a running, catastrophic crack is created.
Therefore, the failure plane of the composite is, in general, a three-dimensional surface. However, in this study,
we make the simplifying assumption that the fibers have a constant strength along their length and limit the failure
surface to a 2D plane perpendicular to the fiber direction. This assumption removes the longitudinal size effect of
the composite, i.e.,L/L0 = 1 in (1).

With this restriction in place, we are able to simulate the failure process in composites with much smallerγ and
much larger number of fibers than in previous studies. Also it becomes easier to isolate the effects ofγ and number
of fibers on composite strength. This also allows us to focus on the competition between stress concentrations in
the composite (or stress dominance) and random fiber strength (or fiber strength dominance) to dominate the failure
process and thereby gain insight for further analytical modeling.

We next discuss the fiber tensile stress calculation due to multiple in-plane fiber breaks.

3. Stress redistribution due to fiber breaks: two models

This section surveys two models that describe the redistribution of the stress dropped by an arbitrary collec-
tion of broken fibers on the surviving fibers. The first one considers a fiber composite consisting of aligned,
hexagonally-packed fibers embedded in a low volume fraction of linearly elastic matrix, which is well-bonded
to the fibers. This numerical stress field model realistically accounts for the elastic deformation of the fiber and ma-
trix phases and interactions between multiple breaks. It is essentially the shear-lag model developed by Hedgepeth
and Van Dyke [14] for an infinite hexagonal array of fibers applied to a finite set of fibers with periodic boundary
conditions. In what follows, we will refer to the original Hedgepeth and Van Dyke model as the HVD model and to
our periodic version of their model as the HVDP model.

Several other stress redistribution schemes have been proposed which are extremely idealized, requiring very
little computational effort to simulate. The second stress model we use is one such idealization, viz., the ELS model,
for a loose bundle of fibers. This simple model was selected for comparison with HVDP since accurate relations for
composite strength distribution for an asymptotically large ELS composite are known [2]. Despite the significant
differences between these two models of stress redistribution, we will find that at smallγ ≤ 1, the failure behavior
of the composite turns out to be very similar. Both models are briefly discussed below.

3.1. HVD shear-lag model

The HVD model is more realistic than the ELS model for a composite as it accounts for the effect of the elastic
deformation of the matrix and the fibers on the redistribution of tensile stress. One assumption in this model is that
the tensile stress in the matrix is negligible. The matrix is assumed to be in a state of pure shear, the shear stress
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Fig. 1. Them–n–ξ coordinate system for fiber locations in model fiber composite.m andn include a 60◦ angle and theξ direction is perpendicular
to the plane of the paper.

being directly proportional to the relative displacement of the two flanking fibers. This assumption is appropriate
for composites, whereinEf Vf � EmVm whereEf andVf are the stiffness and volume fraction of the fiber andEm

andVm are the corresponding quantities of the matrix.
The stress redistribution produced by this model is long range and diffuse. When a fiber breaks, the stress dropped

by the fiber is transmitted through shear in the matrix to significantly overstress the surrounding intact fibers over
a 3D region whose size depends on the number of breaks and their configuration. Along the fiber, the stress at the
fiber break drops to zero but builds up to the remotely applied fiber stressx along the fiber direction due to shearing
in the matrix.

The HVD model also agrees with continuum theories when applied to infinite fiber arrays with large num-
bers of failed fibers. For the benchmark case of a straight crack in an elastic, anisotropic plate, the 2D shear-lag
model [37] predicts stress distributions in excellent agreement with continuum fracture mechanics [16]. Also these
shear-lag models of Hedgepeth [37] and Hedgepeth and Van Dyke [14] have been extended to treat other types of
shear deformation in the matrix (e.g. plastic, viscoelastic, frictional) alterations which greatly influence fiber stress
redistribution (see for example, Beyerlein et al. [17,18]).

We now present the HVD solution when applied to hexagonal arrays. Following Hedgepeth and Van Dyke [14], we
set up anm–n–ξ coordinate system as shown in Fig. 1 and use it to identify fiber positions. We useξ as the normalized
coordinate andz as the physical coordinate in the fiber direction with their relation beingξ = z

√
Gmh/Ef Ad, where

A is the fiber cross sectional area,d is the surface–surface distance between two neighboring fibers andGmh is the
effective matrix shear stiffness.

The stress concentration at the position(m, n, ξ) due to a fiber break at(m0, n0, ξ0) is given by

K(m,n,ξ),(m0,n0,ξ0) = 1 + u0

∫ π

−π

dθ

∫ π

−π

dφ ω exp(−ω|ξ − ξ0|) cos((m − m0)θ + (n − n0)φ), (2)

where

ω =
√

2(3 − cos(θ) − cos(φ) − cos(θ − φ)) (3)

andu0 is

u0 = 1∫ π

π
dθ

∫ π

−π
dφ ω

≈ 0.0107, (4)
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Fig. 2. HVDP stress concentrations near a single break in a 30× 30 periodic patch. The hatched fiber is broken. For this patch, the ELS stress
concentration on the surviving fibers is 1+ 1/899≈ 1.0011.

which is chosen to satisfy the traction free boundary condition at the fiber break. It also turns out that 2u0 is the
normalized opening displacement of the single fiber break. Note that the in-plane stress concentrations, (when
ξ − ξ0 = 0) in (2), are independent of fiber and matrix properties. In our simulations, all fiber breaks occur on the
ξ = 0 plane.

3.2. HVDP shear-lag model

This section describes the geometry of the finite periodic patches used in this study. We want the shape of the
finite patch be such that (i) it would allow for periodic repetitions in them andn directions and (ii) the geometry
yields rotational and translational invariance in the stress field produced by a single break. Rhombus-shaped patches
satisfy these requirements. (Hexagonal patches do not meet criterion (ii) above.) We will refer to the number of fibers
in a patch as the patch size,s. More commonly, we will specify rhombus patches by giving the patch dimensions
in terms of the number of fibers on each side (for instance, a 30× 30 patch has 30 fibers on each side and has size
s = 900). The method of computation of the single break solution in a periodic patch with a hexagonal lattice is
similar to that given in Landis et al. [28] for a square lattice.

In Fig. 2 we show the stress concentrations on fibers around a single break in a 30×30 periodic patch as predicted
by the HVDP model. In an infinite composite, the stress concentrations are known to decay proportional toρ−3,
whereρ is the radial, in-plane distance from the fiber break [38]. In comparison, under ELS, the stress concentration
in all these fibers would only be 1+ (1/(900− 1)) ≈ 1.0011. As shown in Fig. 2, the HVDP stress concentrations,
within the first four fibers around the break, are higher than this ELS value.

The general influence function technique used to solve for the 3D stress field around multiple fiber breaks consists
of two steps. First, the solution for the stress redistribution due to an isolated break in a periodic patch of sizes

(HVDP) or a patch of infinite extent (HVD) is determined. Then, the multi-break solution is obtained as a weighted
superposition of the unit break solutions with the weights determined such that the stress field satisfies the traction
free boundary condition at all fiber breaks. The power of these influence function techniques is that the computation
time depends on the number of breaks rather than the volume or number of fibers in the composite.

The HVD model was originally developed to handle fibers all lying within the same cross-sectional plane. Later,
the fundamental framework was altered to calculate stress redistributions due to out-of-plane breaks [39]. Therefore,
the HVDP can treat out-of-plane breaks as well with no increase in computation time. For details on the general
method of solution, we refer the reader to Beyerlein et al. [16] for 2D and Landis et al. [28] for 3D.
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3.3. Equal load sharing (ELS) model

In the ELS model, the stress dropped by a broken fiber or fibers is equally distributed among the intact fibers.
That is, if there arer fiber breaks in a bundle ofs fibers, the in-plane stress concentration (ratio of fiber stress to far
field applied stressx) on each of the surviving fibers is

Kr = s

s − r
. (5)

In this model, the relative positions of the broken fibers are irrelevant as well as fiber arrangement, and there is no
localization of stress concentrations. The only random quantity that governs the probability of failure at each time is
the numberof fiber breaks at the previous time. ELS is a realistic model for a loose bundle of fibers (without matrix
in between) and an approximate model for fiber–matrix composites, wherein the shear strength of the interface or
friction between the fibers is negligible, i.e., it is much less than(1/2)

√
Gm/Ef times the average fiber strength

[40]. Here,Gm andEf are the shear modulus of the matrix and tensile modulus of the fiber respectively.
Under ELS, Daniels [2] showed that the strength of asymptotically large loose bundles is normally distributed,

irrespective of the form and properties of the fiber strength distribution. According to the Daniels bundle model, for
Weibull strength fibers following (1), the mean of the bundle strength is

µ = sx0c
ce−c (6)

and the standard deviation

σ = x0c
c
√

se−c(1 − e−c), (7)

where

c = 1

γ
. (8)

In general, given any configuration of breaks, the differences in the stress concentrations predicted by ELS and
HVDP diminish as the bundle sizes decreases. Despite the significant differences between these two models of
stress redistribution, we will find that at smallγ , the failure behavior of the composite turns out to be very similar.
Where the above formulae are given for the entire composite, in comparison of the ELS model simulations with
those of the HVDP simulations, we shall normalize all strengths by the number of fibers in the composite.

4. Monte Carlo simulation of the failure process

Before detailing the simulation procedure itself, we motivate the need for such a study by showing the infeasibility
of direct calculation of the probability of failure of a HVDP composite. Consider a rhombus-shaped patch ofs

hexagonally-arranged Weibull fibers loaded atξ = ±∞ with stress per fiberx (i.e., the total stress applied to
the composite patch issx). Consider the situation in whichx is instantaneously applied to the composite and the
progression of fiber breaks in “time increments” is monitored. This stressx first fails those fibers that have strengths
smaller thanx (at time 1). The load dropped by these fibers is now redistributed among the intact fibers according to
either the ELS or the HVDP model. This overload may cause more fiber failures (at time 2) which in turn overload
yet another set of fibers beyond their strengths and fail them (at time 3) and so on. Failure must be achieved by
times (which is the number of fibers) or less for the composite strength to be less than the applied stressx. Though
failures occur sequentially in time, this is still considered to be a static problem.
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LetBi = (b1i , b2i , . . . , bsi), i = {1, 2, 3, . . . , s}, be a collection of random vectors, in whichbki = 0 or 1, when
fiberk is broken or intact, respectively, at timei. Since failures are restricted to occur on one plane in both ELS and
HVDP, the occurrence of additional breaks cannot reduce the stress on unbroken fibers. Therefore,{Bi} is Markov
with state space [0, 1]s . That is,

Pr[Bi+1 ∈ A |Bj , j = 1, 2, . . . , i] = Pr[Bi+1 ∈ A|Bi ] (9)

for i ∈ {1, 2, . . . , s}with a fixed applied stressx. HereA is any set ofs-vectors of 0’s and 1’s andB0 = {0, 0, . . . , 0}.
Thus the problem is essentially one of finding the transition probability from{0}s to {1}s . In order to compute

the strength distribution of the composite exactly, one must first form the 2s × 2s transition matrix and then sum
probabilities over all the paths leading from{0}s to {1}s . However, the number of ways of traversing the state space
explodes asss rendering exact calculations of the composite strength distribution from the fiber strength distribution
intractable.2

For this reason, we seek to find ways of reducing the size of the state space. Our approach is to learn from the
Monte Carlo simulations what thedominant pathsof failure are and to sum probabilities only over those failure
paths. This investigation is a precursor to approximate probabilistic calculations for the strength distribution of fiber
composites, especially at extremely low probabilities, and for size scaling laws. By simulations alone we cannot
expect to reach low probability levels (10−6) for composite patches with a large number of fibers (106), as in real
materials, as the computation time will be prohibitively large.

We now describe the simulation algorithm. Fig. 3 shows the simulation flow-chart used for both the ELS and
HVDP cases. First a value ofγ and a patch size,s, are fixed and 500 simulations performed. In each of these
simulations, an independent and identically distributed sample of Weibull strengths are assigned to thes fibers in
the patch. The patch is then stressed by a load applied at±∞ to fail at least one fiber in it. The stress dropped by
the broken fiber(s) is(are) then redistributed among the surviving fibers using ELS or HVDP. Further failures due
to this overload are then checked for, giving rise to two situations. If one or more fibers are overloaded, then these
are broken and the stress redistribution is computed. If no such failures occur, the stress per fiber is increased so as
to break at least one more fiber. The entire process is then repeated until all the fibers are broken. The minimum
stress at which all the fibers are failed is the composite strength. From the 500 strengths for each set ofγ ands,
an empirical composite strength distribution is obtained. The failure mechanisms arising in different cases are also
obtained. As we shall see, the dominant failure mechanism is one of fiber break clustering in the case of fibers with
highγ (> 1) and one of dispersed breaking in the case of lowγ (≤ 1).

2 This also includes paths of zero probability. The paths with nonzero transition probability from{0}s to {1}s are the ones wherein (i) broken
fibers do not heal themselves and (ii) in all stages or times prior to failure, at least one break must occur. The number of these paths to failure
may be calculated as

N̂s =
s∑

m=1

Nm, (10)

whereNm is the number of paths with nonzero probability from{0}s to {1}s in exactlym times and is given by the recursion

Nm = ms −
m∑

j=1

(
m

j

)
Nm−j (11)

with

N0 = 0. (12)
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Fig. 3. The Monte Carlo simulation algorithm.

5. Monte Carlo simulation results

This section presents the empirical strength distributions obtained by the Monte Carlo simulations of composites
consisting of different numbers of fibers,s and fiber shape parameter,γ . Specifically, simulations fors = 15 ×
15, 25× 25, 30× 30, and 50× 50 were executed. For each of the first three sizes, 500 simulations were run for
casesγ = 1/2, 2/3, 1, 3, 5 and 10. Fors = 50× 50, however, only 100 simulations were run forγ = 1/2 and
γ = 10 owing to computation time constraints.

In general, the empirical strength distributions from the HVDP simulations are not consistently either Weibull or
normal. In agreement with Daniels’ theory, the ELS simulations are consistently normal. In comparing the HVDP
results to the ELS results, we are motivated by the normality of the asymptotic ELS strength distributions to plot the
strengths on normal probability paper. This is a plot of the standard normal scorezi versus the associated ranked
composite strengthx(i), wherei = 1, . . . , 500. On this probability paper, a normal distribution plots as a straight
line with the mean̄x given by thex-intercept and the standard deviationσ given by the reciprocal of the slope.

5.1. Weibull fiber modulusγ effect

Fig. 4 shows the effect ofγ on the distribution of composite strength normalized bysµf for a 30×30 patch using
HVDP and ELS stress redistribution. (Recalls is the number of fibers in the composite patch andµf the mean fiber
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Fig. 4. Effect of the fiber Weibull modulusγ on the strength distribution of a 30× 30 patch on normal probability paper.

strength.) If plotted with no fiber strength normalization or against fiber strength normalized with justsx0, it will be
seen that both the ELS and HVDP distributions achieve a minimum mean strength approximately aroundγ = 1 (or
when the fiber strength follows an exponential distribution). In other words, forγ > 1 the composite mean strength
increases withγ and forγ ≤ 1, it increases asγ decreases. The standard deviation increases monotonically with
decreasingγ for both HVDP and ELS.

As shown, the differences in the ELS and HVDP strength distributions diminish asγ decreases, though the ELS
composites are always stronger. However for 1/2 ≤ γ ≤ 1, we observe that this trend is not monotonic. That is,
there is a value ofγ , not always equal to 1/2, at which the difference between the ELS and HVDP composite is
the least. This value ofγ also depends on composite size. For instance, in the 15× 15 and 25× 25 composites,
the difference is the least forγ = 2/3 whereas for a 30× 30 patch, the difference is the least forγ = 1/2. In the
limiting case ofγ = 0, the difference between ELS and HVDP would vanish.

5.2. Failure patterns

Many of these general trends in the strength distribution withγ can be explained by studying patterns of fiber
break accumulation prior to failure. Fig. 5 (a1) and (a2) show typical fiber break patterns in a 10×10 periodic patch
of a lower tail (weak) and upper tail (strong) HVDP composite, respectively, whenγ = 10. These figures capture
the failure pattern at a far field stressjust underthe composite strength. That is, for any far field stress exceeding
this stress, all the remaining fibers in the composite would fail. Fig. 5 (b1) and (b2) make the same comparison for
two γ = 5 fiber composite specimens as do Fig. 5 (c1) and (c2) forγ = 1/2 lower and upper tail specimen.
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Fig. 5. Failure patterns in a 10× 10 composite patch. (a1) and (a2) areγ = 10 lower and upper tail specimens respectively, (b1) and (b2) are
γ = 5 lower and upper tail specimen respectively, and (c1) and (c2) areγ = 1/2 lower and upper tails respectively. Open circles denote intact
fibers and circles with a “×” in them denote broken fibers.

As shown, the failure configurations at incipient failure are drastically different forγ = 1/2 andγ = 10. Some
qualitative conclusions may be arrived at from these figures. An immediate observation is that forγ = 10,γ = 5
and similarly for other highγ (≥ 3), failure is due to clustering of a few breaks and catastrophic growth of a
small and tightcritical cluster. (We shall refer the collection of neighboring breaks which initiates failure in all
remaining intact fibers without further increases in stress as the critical cluster.) On the other hand, in the case
of γ = 1/2, and similarly for other lowγ (≤ 1), clustering of breaks does not occur. Instead, fiber breaks are
formed in a very disperse manner. In this case, the critical cluster is not as easily distinguishable from the other
clusters and is rather large and dispersed. These observations are to be expected, since whenγ ≥ 3 or there is a
relatively small spread among fiber strengths, the intact neighbors are likely to have strengths only slightly greater
than the failed fiber. Consequently, the overload due to the failure of a fiber is very likely to cause additional
failures in the adjacent intact neighbors. Thus for HVDP composites, whenγ > 1, damage accumulation isstress
concentration driven.

Starting at aboutγ = 2 and particularly forγ ≤ 1, the spread in fiber strength is larger and the intact neighbors
of a failed fiber are more likely to be much too strong to fail without further increases in far field stress. At stresses
small compared to the composite strength, the location of the new breaks remain widely dispersed, governed by
the many relatively weaker fibers. Though clusters may form, relatively strong fibers can prevent further growth.
In addition, widely dispersed breaks produce less tightly concentrated break clusters which in turn can further
promote such random break patterns. Eventually catastrophic failure occurs when all the relatively strong fibers
are left surviving. Also we believe that for this dispersed arrangement of fiber breaks, the stress enhancements in
the surviving fibers are nearly equal, thereby giving the HVDP composite an “ELS-like” response for lowγ ≤ 1.
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Fig. 6. Effect of the composite patch sizes on composite strength withγ = 1/2 Weibull fibers on normal probability paper.

Thus whenγ ≤ 1, damage accumulation isstrength driven. Since the HVDP composites are consistently weaker
than the ELS composites, it suggests that localized stress concentrations do still play a small role in damage
accumulation.

Comparing the upper and lower tail specimen of theγ = 10 case (Fig. 5(a1) and (a2)), the lower tail specimens
show greater localization than the upper tail specimens. Though not illustrated, we find that the average critical
clusters grow asγ decreases and givenγ , the critical cluster is larger in a lower tail specimen than in an upper tail
specimen forγ ≥ 3 for a fixedγ . Upper tail specimens are strong because they happen to have their weaker fibers
dispersed. The lower tail specimens, on the other hand, are weak because they happen to have a region of weaker
fibers failing at a low applied stress producing higher stress concentrations to further propagate the cluster. The
upper and lower tail specimens of theγ = 1/2 fiber composites are typical of the otherγ ≤ 1 realizations and are
not significantly different.

5.3. Size effect

Figs. 6 and 7 show the effect of patch size,s on composite strength for theγ = 1/2 andγ = 10 fiber composites,
respectively. A common trend between these two values ofγ and two models of stress transfer, HVDP and ELS, is
that both the mean strength and the standard deviation decrease with increasing composite size. As seen from the
failure patterns, it is the relatively weak fibers in the composite which initiate the failure process and in turn govern
the strength of the composite. Larger composites contain a larger number of these weaker fibers. For the HVDP
composites, these weaker fibers may also serve as potential nucleation sites from which fiber break clusters can
grow. This provides one explanation as to why for fixedγ , the size effect is greater in the HVDP composites. The
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Fig. 7. Effect of the composite patch sizes on composite strength withγ = 10 Weibull fibers on normal probability paper.

variation in composite strength decreases with composite size as the failure process in larger composites involves
more fiber breaks up to the composite strength. More breaks are involved since in both ELS and HVDP, the stress
concentrations are lower ass increases for a given fiber break pattern.

Though not illustrated, note that these ELS bundles closely approach Daniels asymptotic result, ass increases
and at a rate increasing inγ . For γ = 10, the normalized sample mean for the ELS 50× 50 size composite is
x̄/sx0 = 0.7207 compared to 0.7187 using Eq. (6). Forγ = 1/2, x̄/sx0 for the ELS 50× 50 and 100× 100 size
composites are 0.5511 and 0.5476, respectively, compared to 0.5413 using (6).

Figs. 6 and 7 reveal that the size effect is stronger forγ = 1/2 thanγ = 10, i.e. changes in mean and variation to
changes ins is greater forγ = 1/2. In theγ = 1/2 plot, we observe that the distributions for the three sizes cross
over in the lower tail. Due to the increase in variability in composite strength ass decreases, the size effect is negative
in the upper tail and positive in the lower tail. However for the sizes simulated and the probability range shown,
composite distributions forγ = 10 fibers do not cross. Based on the trends observed, theseγ = 10 distributions
would cross at lower probability levels than simulated for the sizes considered. In addition, distributions with greater
differences in size, say 15× 15 and 200× 200, could be expected to cross within the displayed probability level.
Comparing the HVDP and ELS cases, for theγ = 1/2 composites, the HVDP distributions follow the shape of the
ELS distributions for all sizes and also the size effects of the ELS composites quite well. However we speculate
that for much larger HVDP composites the size effect will be distinct from that of ELS since ELS-like stress
redistribution can only occur over a limited number of fibers in a cross section. Forγ = 10, however, these two
cases are drastically different, as typically observed in previous works.
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Fig. 8. A penny-shaped cluster of 187 breaks of radiusR = 7. R is the maximum number of inter-fiber spacings from the central fiber to a
peripheral fiber. For radii smaller than 7, the “penny shape” crack is actually hexagonal.

6. Modeling the failure process

6.1. Stress concentrations around a circular break cluster

As described in Section 3 the calculation of stresses in a HVDP composite with even a few fiber breaks is rather
involved. In analytical probabilistic calculations, it is useful to have simple formulae for stress concentrations around
fiber break clusters commonly observed in the failure patterns.

In the case of highγ (> 1) fiber composites, the critical cluster tends to form from one or more of the many clusters
of breaks which evolve in the failure process. The critical clusters assume complex morphologies and especially for
γ ≤ 5, tend to be created from the coalescence of two or more smaller clusters. For simplicity, we first consider a
tight penny-shaped cluster of breaks. We take a penny-shaped cluster to be one in which all the fibers whose centers
lie a fixed distanceR from the center of the fiber at(m, n) = (0, 0) are broken as depicted in Fig. 8. We assume
that this penny-shaped fiber break cluster sits in an infinite hexagonal array and examine the stress concentrations
around its perimeter. (Especially asR becomes large, this cluster can be reasonably identified as a penny-shaped
crack.)

In what follows we shall refer to those intact fibers that have at least one failed neighbor that belongs to the penny
shaped cluster as theperimeterof the cluster. Among other curves, Fig. 9 shows the maximum and minimum stress
concentrations on the perimeter of the circular cluster calculated by the HVD model. It is found (see Fig. 9) that an
excellent approximation for the minimum stress concentration on the perimeter is given by

Kmin =
√

R

π
+ 1, (13)

whereR is the number of fiber spacings along the radius of the penny-shaped cluster.
However, in modeling failure, one is interested in the maximum stress concentrations on the perimeter fibers.

This is found to be
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Fig. 9. Stress concentrations in the perimeter of a circular cluster of breaks of radiusR embedded in an infinite patch.

Kmax =




√
2

√
R

π
+ 1 = √

2Kmin if R ≤ 6,

√
3

√
R

π
+ 1 = √

3Kmin if R > 6.

(14)

Fig. 9 plots the two formulae forKmax for all R in order to show their regions of validity. This plot refers to the two
branches ofKmax asK2 andK3. The physical explanation for the transition in the behavior ofKmax from R = 6 to
R = 7 is based on the number broken neighbors surrounding an intact perimeter fiber. For penny-shaped clusters
with R ≤ 6, it is found that the cluster is hexagonal. Consequently, no perimeter fiber has more than two broken
neighbors. However, as seen from Fig. 8, penny-shaped clusters withR ≥ 7 are circular and there exist perimeter
fibers that have three broken neighbors. Since no fiber on the perimeter of a penny-shaped cluster can have more
that three broken neighbors for anyR, we believe that even forR > 20 (values beyond those shown in Fig. 9) the
maximum stress will be well approximated by (14).

Also based on classical linear elastic fracture mechanics results for an elastic, anisotropic continuum, the axial
stresses decay proportional toρ−1/2 in the near field from the edge of the penny-shaped crack. Fig. 10 shows the
decay behavior of the average axial stress concentrationsKρ with ρ/(d + h) for various crack sizes. As shown, the
extent of the overstress region (or value ofρ/(d +h) whereKρ = 1) grows proportional to the size of the crack, but
the decay behavior away from the crack perimeter is slower thanρ−1/2. Therefore, the overstressed region grows
faster than the crack-tip stress intensities with increases inR. Based on previous comparisons between an analogous
2D shear-lag model and linear elastic fracture mechanics [16], we speculate that as the crack size increases further,
the decay behavior will approachρ−1/2 over a larger crack-tip region. Also note the large drop in stress between
the perimeter fibers and the next nearest fibers. This implies that it is more probable for the next fiber break to occur
on the periphery of a growing cluster than elsewhere. In both Figs. 9 and 10, the circular cluster is assumed to be
embedded in an infinite patch.
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Fig. 10. Decay of the fiber stress concentration, normalized by (13) for different crack radiiR, for distancesρ measured from the tip of the main
diagonal of the crack. Recalld + h is the fiber-fiber center spacing.

6.2. Weakest link behavior

Following concepts introduced in Harlow and Phoenix [9] for LLS fiber bundles we ask the question: do the HVDP
composites follow the weak-link scaling law and if so, for what values ofγ . If Gs(x) is the strength distribution for
a composite of sizes, they find that there is a weak link characteristic probability distributionWs(x) ≈ W(x) such
that

Gs(x) = 1 − (1 − Ws(x))s ≈ 1 − (1 − W(x))s ≈ 1 − exp(−sW(x)). (15)

In words, this relation implies that the probability of composite failure equals that of the weakest ofs links, each
following W(x) independent ofs. In general, this function depends on the composite geometry, stress redistribution,
and the statistical parameters of fiber strength. Also,W(x) is not a power inx so thatGs(x) is non-Weibull. For
LLS fiber bundles and Weibull fibers withγ ≥ 5, Ws(x) is conjectured to converge toW(x) for s ≥ 9. They find
that ELS fiber bundles, however, do not follow weak-link scaling. Except for the simplest discrete fiber strength
distribution,W(x) has not generally taken a straightforward analytical form, not even asymptotically.

Plotting the weakest link function,Ws(x) (Fig. 11), we find that for the probability ranges simulated (> 1/500),
all the different HVDP strength distributions forγ ≥ 3 collapse onto a single master curve, i.e.Ws(x) → W(x) for
γ ≥ 3. As shown in Fig. 11,W(x) in these cases is not normal, and we find that it is also not Weibull. Admittedly, the
weak-link scaling behavior in theγ < 3 distributions shows evidence of breaking down in lower probability levels.
For someγ between 1 and 3 however, weak-link scaling breaks down, especially in the lower tail. We speculate that
this may be due to boundary effects, meaning the critical cluster size approaches the size of the rhombus-shaped
patch.
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Fig. 11. Weakest link behavior in composites with fiber Weibull modulusγ ≥ 1 on normal probability paper.

6.3. Stress versus strength-driven failure

To summarize, asγ decreases, the composite variation decreases, size effect increases, and differences between
the HVDP and ELS composites decrease. These results on the influences ofγ ands brings us back to the issue of
stress versus fiber strength-driven failure accumulation in the HVDP composites. Despite the fact that the HVDP
stress redistribution model produces localized stress enhancements (see Figs. 2,9 and 10), the value of the fiber
Weibull modulusγ plays a significant role in determining whether failure is stress or fiber strength-driven. When
stress-driven in the case ofγ > 1, overall composite behavior is not as sensitive to composite sizes, as it is
to localized stress concentrations. However, when fiber strength-driven, as in the case ofγ ≤ 1, the strength is
sensitive to size or effectively, thenumberof weaker fibers in the composite (even if the percentage of weak fibers
were to remain the same ass increases). Also whenγ > 1, many large fiber break clusters tend to form at lower
loads asγ decreases, which in this stress-driven regime, results in weaker overall composite strength. Lastly we
find that stress-driven failure process follows a weak-link scaling, whereas the fiber strength-driven process does
not. We speculate that this is because the cluster size in the latter case is greater than the size of the periodic
patch.

7. Closing remarks

Indeed much of the cost of implementing such advanced materials into component design goes into developing a
mature understanding and reliable predictive methods of its response in service. Clearly there is not enough time or
money to determine the desired high reliability levels through real-time or even accelerated experimentation alone.



388 S. Mahesh et al. / Physica D 133 (1999) 371–389

Computer simulation, complemented with experiments and analytical modeling, will certainly reduce the number
of iterations and parameter spacing in the design cycle.

In the current investigation, we develop a large-scale 3D Monte Carlo simulation model to study the relationships
between the statistical strength of the fiber and that of the parent composite for different sizes. The model employs a
realistic shear-lag model producing diffuse, long range stress redistribution and accounting for interactions between
multiple breaks. The scope of this study is to focus on competition between fiber stress concentrations (or stress
dominance) and random fiber strength (or fiber strength dominance) to dominate the composite failure process and
ultimately tensile strength.

To aid in this investigation, we limit failure to evolve within a 2D cross-sectional plane of the composite. In this
way, we are able to simulate composites with much lower and much larger number of fibers than calculated in previous
works. For fiber–matrix composites reinforced with extremely lowγ fibers the failure mode is non-catastrophic.
However, they fall short of being desirable structural materials due to the large spread in their strengths and small
lower tail strengths relative to theγ > 1 cases. Also asγ decreases, size effect in composite strength becomes
stronger and particularly in the lower tail region, which is important in high reliability design, the size effect is
positive (see Figs 6 and 7).

Understanding composite response in the regime of extreme heterogeneity brings further insight into the mecha-
nisms driving stochastic failure for all ranges of fiber strength variation. From the subtle details of these simulations,
we can investigate the dominant breaking sequences which lead to failure. Probabilistic calculations for composite
strength based on number of fibers and properties of statistical fiber strength are currently being pursued in light of
these results.
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