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Abstract

The strength of metal matrix composites shows wide scatter on account of

variability in the strengths of individual fibres. The relationship between the

strength distribution of the fibres, and that of the composite is also affected by

the non-linear matrix and fibre/matrix interfacial responses. The present study

aims to describe the strength distribution of 2D and 3D commercial Ti/SiC com-

posites. This is accomplished by performing Monte Carlo failure simulations of

these composites, comprised of up to 128 fibres. A detailed deformation theory

based model, developed and validated against experimental data in previous

work, is used to calculate load redistribution in the course of each simulation.

The empirical composite strength distribution obtained from the simulations

follows weakest-link scaling. A stochastic model for the clustered propagation

of fibre breaks, akin to a model proposed for polymer matrix composites in the

literature, captures the empirical weakest-link strength distribution. A scaling

relationship is derived between the composite strength and composite size for a

number of reliability levels.
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1. Introduction

Substantial weight savings can be realised by replacing conventional metal-

lic components in the hot stages of aerospace gas turbines with components

made of metal matrix composites (Martin and Carrére, 2012). Yet, their adop-

tion in practice has been limited, partly on account of their poor reliabil-

ity (Singerman and Jackson, 1996). In order to overcome this limitation, devel-

oping a good understanding of the probabilisitic strength distribution of these

materials, especially in the lower tail of the distribution, is necessary. Access-

ing the high reliability regime (probability of failure ≤ 10−6) through specimen

testing requires a prohibitively large number of tests. However, a modelling

methodology can yield the strength distribution in the high reliability regime.

This methodology is based on obtaining mechanical and statistical insights into

the dominant failure mechanisms, and deducing the probabilistic strength dis-

tribution from this information (Mahesh et al., 2002).

A well-developed reliability theory, based on an understanding of the dom-

inant failure mechanism, exists for polymer matrix composites. The classical

theory, which assumed linear material response has been summarised by Curtin

(1998a) and by Phoenix and Beyerlein (2000). More recent work has focussed on

accounting for the non-linear effects of matrix yielding and interfacial debond-

ing/sliding. Okabe et al. (2001) developed a shear-lag model for polymer matrix

composites, including these effects. Using Monte Carlo simulations, they pre-

dicted the size-scaling of the composite tensile strength. Their model, however,

neglects the tensile stiffness of the matrix. The stress concentrations in the

neighbours of a broken fibre are appreciably altered when the tensile stiffness of

the matrix becomes comparable to that of the fibre. This was shown for the case

of a composite with linear elastic phases, and a perfectly bonded fibre-matrix

interface by Beyerlein and Landis (1999). In a metal matrix composite, the

matrix and fibre stiffnesses are comparable. Therefore, the shear-lag model of

Okabe et al. (2001) cannot directly be used.

Pimenta and Pinho (2013) proposed a hierarchical arrangement of failure
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events starting at the level of individual fibre breaks up to coupon-sized spec-

imen failure. They derived analytical strength distributions based on this as-

sumption. Behzadi et al. (2009) demonstrated the effect of matrix shear yield-

ing on diminishing stress concentrations due to clusters of breaks through finite

element analysis, and on the strength distribution through Monte Carlo simu-

lations. Both Pimenta and Pinho (2013) and Behzadi et al. (2009) emphasise

that the length scale of interest along the fibre direction increases with increas-

ing size of transverse damage. A similar observation also emerges from the

present study.

The reliability theories of metal matrix composites with weak interfaces also

share many similarities with the well-developed theories for ceramic matrix

composites. In a ceramic matrix composite, the load dropped by a broken

fibre is equally distributed over the extent of the matrix crack, following global

load sharing (Curtin, 1991; Phoenix and Raj, 1992). This renders the bundle

strength Gaussian distributed. Curtin (1993) proposed that onset of global ma-

trix plasticity in a metal matrix composite and extensive matrix cracking in

ceramic matrix composites were analogous. On its basis, he deduced the tensile

strength of metal matrix composites.

A detailed multiscale model of failure of a Ti/SiC composite was developed

by Xia et al. (2001). Using finite element analysis, they obtained the stress field

due to a single fibre break. Their finite element model realistically accounted

for matrix plasticity and interfacial frictional sliding. However, due to compu-

tational limitations, they could only represent a few fibres in their finite element

model. Xia et al. (2001) derived a Green’s function from their single break fi-

nite element solution, and linearly superposed the Green’s functions to obtain

the stress-fields due to multiple breaks. They used this approach to update the

stresses in their Monte Carlo fracture simulations. By this devise, they made

the failure simulations computationally tractable. However, because the matrix

and interface responses are strongly non-linear, the superposition principle does

not apply. Linear superposition introduces significant non-conservative errors in

the predicted stress fields due to multiple breaks. These errors then propagate
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into the composite strengths obtained from the failure simulations.

It is presently aimed to develop an understanding of the distribution of metal

matrix composite strength for the case of a strong fibre/matrix interface. To

this end, Monte Carlo failure simulations on more than 1000 computer compos-

ite ‘specimen’ have been performed on model composites. A typical specimen

in these Monte Carlo simulations passes through a number of damaged states.

Load redistribution is computed at each damaged state using a shear-lag model

that accounts for fibre breakage, matrix cracking and plasticity, and interfacial

debonding and sliding Mishra and Mahesh (2017). The most significant devia-

tion from the earlier work of Xia et al. (2001) is that linear superposition is not

presently employed to determine the stress fields in a damaged composite.

The Monte Carlo simulations yield empirical composite strength distribu-

tions, which obey weakest-link scaling, and show that the statistically dominant

failure event is the growth of a cluster of breaks. This agrees well with the lo-

calised failure observed in these materials experimentally (Gundel and Wawner,

1997; González and Llorca, 2001; Ramamurty, 2005; Li et al., 2008). For exam-

ple, González and Llorca (2001) found the failure of two neighbouring fibres to

be the critical precursor of fracture. Furthermore, when the stress concentra-

tions ahead of clusters of breaks are duly accounted for, the classical Harlow-

Phoenix-Smith (Harlow and Phoenix, 1978a,b; Smith, 1980) stochastic model,

developed for polymer matrix composites, is found to capture the empirical

distributions.

2. The model composite specimen

2.1. Geometry and mechanical properties of the constituent phases

Fig. 1 shows an undamaged composite computer ‘specimen’ comprised of nf

fibres aligned with the z-axis. As detailed by Mishra and Mahesh (2017), the

model specimen is comprised of parallel fibres, and intervening matrix. Two

types of fibre arrangements in the cross-sectional plane, as shown in Fig. 2,

are considered. These are henceforth referred to as two-dimensional (2D) and
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Figure 1: Model of an undamaged metal matrix composite ‘specimen’. Fibres are shown

shaded dark. The matrix domain is divided into two parts: The ‘shear matrix’ is assumed

to deform exclusively by shear, and the ‘tensile matrix’ in tension (dashed lines). Sliding dis-

placements at the fibre matrix interface are permitted (dotted lines). A transverse ‘bundle’ of

length ∆L, corresponding to the characteristic length of load transfer along the fibre direction

is shown hatched. The x and z directions are shown scaled differently for clarity.
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Figure 2: Cross-section of the (a) 2D and (b) 3D model composites. The insets show the ar-

rangement of the sliding elements, shear matrix elements, and tensile matrix elements between

a pair of adjacent fibres. Af denotes the fibre cross-sectional area.
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three-dimensional (3D) composites, respectively. In the 2D composite tape,

whose cross-section is shown in Fig. 2a, the fibres are positioned at regular

intervals centred within a line segment. Each fibre has two neighbours. Fibres

are identified by their position as fi, i ∈ {0, 1, . . . , nf − 1}. Adjacent fibres are

connected together by a matrix strip. In the 3D composite, shown in Fig. 2b,

the fibres are positioned at the points of a hexagonal lattice, contained within

a rhombus-shaped domain. Adjacent edges of the rhombus coincide with the

m- and n-axes, as shown. In this configuration, which is much more common

in applications (Winstone et al., 2001; Martin and Carrére, 2012), each fibre

is surrounded by six neighbours. Again, fibres are identified by their index,

fi, i ∈ {0, 1, . . . , nf − 1}. It is assumed that the index i depends on the fibre

coordinates (m,n) in the non-orthogonalmn coordinate system shown in Fig. 2b

as

i = m
√
nf + n, m, n ∈ {0, 1, . . . ,√nf − 1}. (1)

As in the two-dimensional composite of Fig. 2a, matrix intervenes between every

pair of adjacent fibres. It is clear from Fig. 2 that the number of intervening

matrix elements,

ntm =











nf , in a 2D model composite, and

3nf , in a 3D model composite.

(2)

In order to eliminate edge effects, the arrangement of fibres is assumed to

be periodic in the transverse direction. In the 2D model composite of Fig. 2a,

this amounts to assuming that the fibres at the left and right edges of the patch

are neighbours. In the 3D composite of Fig. 2b, each fibre at the right edge

of the rhombus patch (m =
√
nf − 1) is assumed to be a neighbour of the

corresponding fibre located in the left edge (m = 0). Similarly, the fibres at the

top (n =
√
nf − 1) and bottom (n = 0) edges of the rhombus patch are assumed

to be neighbours.

As in Mishra and Mahesh (2017), the matrix intervening between adjacent

fibres is treated as two separate entities termed tensile matrix and shear ma-

trix. These entitites undergo axial and shear deformation, respectively. Al-
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though this decomposition considerably simplifies the model, it introduces the

limitation that matrix yielding is not predicted based on a combined state of

stress. The tensile matrix and shear matrix yield when their respective stresses

attain the respective yield points. Interfacial sliding between a fibre and its

abutting matrix is allowed. This is accounted for by introducing zero thickness

sliding elements between the fibre and its abutting matrix element, as detailed

in Mishra and Mahesh (2017).

Because the present model only represents the mechanically effective parts

of the matrix, the model fibre volume fraction is typically greater than that

of the actual specimen. The 2D model composite, shown in Fig. 2a, does not

include the volumes devoid of fibres e.g., in the cladding Hanan et al. (2003)

or Majumdar et al. (1998). Additionally, in 3D specimens, lightly stressed me-

chanically ineffective regions of the matrix may be present even in the fibre rich

regions. These regions are represented by the empty equilateral triangles in

Fig. 2b.

Model elements are assumed to displace only in the z-direction. The dis-

placement fields in fibre fi, tensile matrix tmj and slider sk at position z are

denoted wfi(z), wtmj
(z), and wsk (z), respectively. The stress and deforma-

tion states in the fibre, tensile matrix, shear matrix, and slider elements are

assumed to be uniform in the transverse xy plane. Thus, the present model

cannot capture transverse stress and deformation gradients in the fibre and

matrix (Landis and McMeeking, 1999; Xia et al., 2001).

The following model details, which apply to both the 2D and 3D models,

are recollected from Mishra and Mahesh (2017), as they are used in the sequel.

Fibres are assumed to be brittle, and are taken to deform elastically obeying

Hooke’s law. Denoting the stress and strain at coordinate z in fibre fi, i ∈
{0, 1, 2, . . . , nf − 1} by σfi(z) and ǫfi(z), respectively, and the fibre modulus by

Ef ,

σfi(z) = Ef ǫfi(z). (3)

Let σtmj
(z) and ǫtmj

(z) denote the stress and strain at coordinate z in the
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j-th tensile matrix bay, where j ∈ {0, 1, 2, . . . , ntm − 1}. A deformation theory

description is adopted for the stress-strain response of the tensile matrix:

σtmj
(z) = σY tanh

(

E1 − E2

σY
εtmj

(z)

)

+ E2εtmj
(z). (4)

Here, E1, E2, and σY denote the tensile Young’s modulus, the hardening modu-

lus of plastic deformation and yield strength of the matrix material, respectively.

In order to determine if a tensile matrix material point is undergoing plastic

loading or unloading, it is important to keep track of the maximum strain over

the entire deformation history. This is denoted εpeaktmj
(z). Loading corresponds

to εtmj
(z) ≥ εpeaktmj

(z). Eq. (4) is valid only in loading. If, however, the tensile

matrix material point is unloading, i.e., εtmj
(z) < εpeaktmj

(z), a linear unloading

constitutive law of the form

σtmj
(z) = E1(εtmj

(z)− εpltmj
(z)), (5)

is assumed for the material response. In Eq. (5), the plastic set, εpltmj
(z) is

defined as

εpltmj
(z) = εpeaktmj

(z)−
σpeak
tmj

(z)

E1
, (6)

where, in turn,

σpeak
tmj

(z) = σY tanh

(

E1 − E2

σY
εpeaktmj

(z)

)

+ E2 εpeaktmj
(z). (7)

In the present model, loads are conducted transverse to the fibre direction,

by the shear matrix. Consider a shear matrix bay, smk. Let this shear matrix

bay be abutted by fibre fk, tensile matrix tmk, and slider sk (Fig. 1). Then, the

shear strain γsmk
depends on the displacement of the abutting tensile matrix

element wtmk
, fibre wfk and slider element, wsk through

γsmk
=

wtmk
− wfk − wsk

h
, (8)

where 2h is the width of the matrix bay, as shown in Fig. 1. Arbitrary loading

and unloading of the shear matrix is accounted for in analogy with the tensile

matrix. In this case, shear stresses, strains, and moduli replace tensile stresses,

9



strains and moduli of Eqs. (5)–(7), respectively. For example, the shear stress-

strain relation under monotonic loading reads as

τsmk
(z) = τY tanh

(

G1 −G2

τY
γsmk

(z)

)

+G2γsmk
(z). (9)

Here, G1, G2, and τY denote the shear modulus, the hardening modulus of plas-

tic deformation under imposed shear and yield strength of the matrix material

in simple shear, respectively.

In Ti/SiC fibre composites, there is little bonding between the fibre and

matrix at the interface. But a large normal compressive stress is induced at

the interface as the material is cooled from a high consolidation temperature

to room temperature (Withers and Clarke, 1998). Frictional sliding is thus the

primary mechanism of load transfer across the interface. The slider element sk

abutting shear matrix smk is assumed to obey the following laws of Coulomb

friction:

wsk(z)























≤ 0, if τsmk
(z) < −τ∗,

= 0, if − τ∗ ≤ τsmk
(z) ≤ τ∗,

≥ 0, if τsmk
(z) > τ∗.

(10)

Here, τ∗ denotes the interfacial strength, which depends on the normal compres-

sive interfacial stress introduced during material fabrication. The step function

form of Eq. (10) makes it unsuitable for implementation in a gradient based

solver. It is therefore regularised to obtain:

wsk(z) = ws0

(

τsmk
(z)

τ∗

)2n+1

. (11)

where n is an integer rounding parameter, and ws0 is a scaling constant.

Fibre and tensile matrix element breaks in the present work are confined to

the transverse plane z = 0, and the transverse planes z = ±L/2 are subjected

to uniform and equal displacements, ±w0 in opposite directions:

wfi(z = ±L/2) = wtmj
(z = ±L/2) = ± w0, (12)

for all i ∈ {0, 1, . . . , nf−1} and j ∈ {0, 1, . . . , ntm−1}. On account of symmetry,

it suffices to focus attention only on the region 0 ≤ z ≤ L/2. Let εengg =

10



w0/(L/2), denote the engineering strain imposed upon the composite. It is

reasonable to assume that

εfi (z = L/2) ≈ εtmj
(z = L/2) ≈ εengg, (13)

provided L/2 is large compared to the length scale of load recovery in broken

tensile elements (Mishra and Mahesh, 2017). This assumption will be verified

in Sec. 3.3.

Let P denote the applied axial composite load. Assuming all the tensile

matrix elements at z = L/2 are in a state of loading, it follows from Eqs. (3),

and (4) that the load per fibre, p = P/nf is given as

p =
Af

nf

nf−1
∑

i=0

[

Efεfi

(

z =
L

2

)]

+

Atm

ntm

ntm−1
∑

j=0

[

σY tanh

(

E1 − E2

σY
εtmj

(

z =
L

2

))

+ E2εtmj

(

z =
L

2

)]

.

(14)

Here, Af and Atm denote the cross-sectional areas of a fibre and a matrix bay,

respectively. nf , and ntm denote the number of fibre and tensile matrix bays,

respectively. Further, invoking the assumption of Eq. (13) leads to

p ≈ AfEfεengg +Atm
ntm

nf

[

σY tanh

(

E1 − E2

σY
εengg

)

+ E2εengg

]

. (15)

It is straightforward to invert Eq. (15), in order to obtain the εengg corresponding

to p using the numerical method of successive bisection.

The geometric and material parameters in the foregoing equations are as-

signed the same values as in Mishra and Mahesh (2017), which are listed in

Table 1. The same parameters are used in both 2D and 3D model composites.

2.2. Composite strength distribution

Following Gücer and Gurland (1962), for the purpose of determining the

strength distribution, Hnf ,L(p), the composite is regarded as a ‘chain of bundles’.

The fibre-wise length of each bundle is denoted ∆L, as shown in Fig. 1. The

bundles are assumed not to interact mechanically, i.e., fibre breaks in one bundle
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Parameter Value

Fiber area, Af 0.0154 mm2

Fibre spacing, b 240 µm

Ply thickness, d 124 µm

Fibre dimension, a Af/d = 124 µm

Composite half guage-length, l 13 mm

Fiber elastic modulus, Ef 400 GPa

Matrix elastic tensile modulus, E1 110 GPa

Matrix plastic tensile hardening, E2 1.25 GPa

Matrix elastic shear modulus, G1 42 GPa

Matrix plastic shear modulus, G2 0.5 GPa

Matrix tensile yield stress σY 820 MPa

Matrix shear yield stress τY 550 MPa

Interfacial strength, τ∗ 270 MPa

n 4

Table 1: Geometric and material parameters of the present model.
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are assumed not to affect the stress-state in any other bundle. In experiments

on Ti/SiC composites, (Gundel and Wawner, 1997; González and Llorca, 2001)

it is found that fibre breaks are localised within a few fibre diameters of the

fracture plane. Much of the damage prior to failure thus appears to be localised

within a single bundle. The assumption of non-interaction between bundles is

therefore well-satisfied by the present material.

Subject to the above assumptions, weakest-link considerations (Gücer and Gurland,

1962) imply that

Hnf ,L(p) = 1− (1−Gnf
(p))

(L/∆L)
. (16)

It remains to determine Gnf
(p) through simulations and modelling.

2.3. Fibre strength distribution

In pristine SiC fibres with a smooth surface, failure nearly always initiates

from the carbon core. The strength of such fibres is well described by the Weibull

distribution. When embedded into a matrix, the in situ strengths of SiC fibres

get modified (Li et al., 2008), as fibres develop surface damage during material

fabrication. This is especially true for the present material, consolidated by hot

pressing through the popular foil-fibre-foil technique.

Liu and Bowen (2003) have shown that the fibres in a similarly processed

material have three distinct major failure modes. Accordingly, for SiC fibres,

they proposed the trimodal Weibull strength distribution:

F (σfi ; l) = 1−
3
∑

ι=1

pι exp

(

− l

l0

(

σfi

σ0
ι

)mι
)

. (17)

Here, l represents the gage length of the fibre, and F (σfi ; l) represents the prob-

ability of fibre failure under fibre stress σfi . Liu and Bowen tested a number

of fibre samples with gage length l0 = 40 mm, and found that the parameters

appropriate to virgin SCS-6 fibres are p1 = 7/63, p2 = 15/63, and p3 = 41/63;

m1 = 6.8, m2 = 7.3, and m3 = 14.6; σ0
1 = 1781 MPa, σ0

2 = 3240 MPa, and

σ0
3 = 4447 MPa. In the foregoing,

∑3
ι=1 pι = 1. In terms of fibre strain, using
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Eq. (3), Eq. (17) can be written as

F (σfi ; l) = 1−
3
∑

ι=1

pι exp

(

− l

l0

(

Efεfi
σ0
ι

)mι
)

. (18)

The mean fibre strength is

〈σfi〉 =
∫ ∞

0

σfi

dF (σfi ; l)

dσfi

dσfi =

3
∑

ι=1

pισ
0
ι

(

l0
l

)1/mι

Γ

(

1 +
1

mι

)

. (19)

Here, Γ(t) =
∫∞

x=0
xt−1e−xdx denotes the gamma function (Abramowitz and Stegun,

2012).

2.4. Characteristic length

In the load sharing of ceramic matrix composites, an important dimension

along the fibre direction is the characteristic length, δc (Henstenburg and Phoenix,

1989; Curtin, 1991). Let load recovery in a broken fibre occur through a uniform

shear stress, τ , transmitted across a sliding interface. Then, the characteristic

length of load recovery at a characteristic stress σc is given by δc = rσc/τ . In

this expression, r is the fibre radius, and σc itself is the mean strength of length

δc of fibre. Substituting this condition into Eq. (19) yields

σc =

3
∑

ι=1

pισ
0
ι

(

l0
δc

)
1

mι

Γ

(

1 +
1

mι

)

=

3
∑

ι=1

pισ
0
ι

(

l0
rσc/τ

)
1

mι

Γ

(

1 +
1

mι

)

,

(20)

a non-linear algebraic equation for the unknown σc. In the strength theory of

ceramic matrix composites (Curtin, 1991) fibre breaks more than δc apart in

the z-direction are regarded as non-interacting.

Substituting the statistical parameters obtained by Liu and Bowen (2003)

into Eq. (20) yields σc ≈ 5000MPa. Taking τ = 270MPa, and r = 70 µm for the

SCS-6 fibres (Mishra and Mahesh, 2017), δc ≈ 1.3 mm is obtained. According

to the theory of Curtin (1993) and Xia et al. (2001), it is reasonable to take

the length of a bundle, ∆L = δc in Fig. 1. Fibre breaks separated axially by

more than δc are assumed to be non-interacting (Curtin, 1991; Phoenix and Raj,

1992). A similar assumption has been made by Xia et al. (2001) in Monte Carlo
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simulations of titanium matrix composites. Thus, the composite is regarded as

a chain of L/δc bundles, each of length ∆L = δc.

2.5. Monte Carlo composite failure simulations

The purpose of the Monte Carlo simulations is to determine the strength

distribution, Gnf
(p), of a single bundle, spanning −(∆L/2) ≤ z ≤ (∆L/2). This

bundle is shown hatched in Fig. 1. Each fibre in this bundle is assigned a random

strength drawn from Liu-Bowen’s extended Weibull distribution, Eq. (17), with

l = ∆L. A fibre breaks when its stress equals its strength. The failure strain

of tensile matrix elements is assumed to be deterministic. Tensile matrix j fails

when εtmj
(z = 0) reaches a preset strain limit, which is arbitrarily taken to be

1.5 times the yield strain. The predicted strength distributions are found to

insensitive to this factor. Fibre and tensile matrix breaks are restricted to the

plane z = 0. This assumption is conservative because the stress concentration

ahead of staggered breaks is smaller than that ahead of breaks aligned in the

transverse plane z = 0. Further, the stress distribution will be symmetric about

the plane z = 0. Therefore, only half the specimen (0 ≤ z ≤ L/2) needs to be

analysed. The number of fibres, nf , in the simulation cell is, however, variable.

Four sizes are presently considered in 2D composite simulations: nf = 32, 64,

96, and 128, and two sizes in 3D composite simulations: nf = 36, and 64.

To obtain stable crack propagation, computer simulated tensile tests are

performed under displacement control imposed at z = L/2. Each simulation is

sub-divided into a number of steps. At the beginning of each step, the residual

strength of each fibre and tensile matrix element is determined. The residual

strength is the additional stress that a fibre or tensile matrix element requires

in order to fail, starting from the current state. The minimum increment in

the far-field displacement needed to fail at least one more fibre or tensile ma-

trix element of length ∆L at z = 0 is determined by solving a reduced lin-

ear model (Mishra and Mahesh, 2017). An elastoplastic analysis, detailed by

Mishra and Mahesh (2017), is then performed over this displacement increment.

The displacement and stress state in all the elements are updated. It is then
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checked if the strength of any fibre or tensile matrix element is exceeded. If so,

those elements are also broken and the elastoplastic state is reanalysed. The

residual strengths are then determined, and the far-field displacements are in-

cremented, as before. The simulation terminates when the number of broken

fibres exceeds nf/3.

Following the ‘chain of bundles’ assumption, a fibre break is introduced at

z = 0 if the stress at z = 0 equals the randomly assigned strength of a ∆L

segment of the fibre. This assumption amounts to assuming that the broken

fibre regains no load over the entire ∆L length of the bundle, and that the

stress concentration over intact fibres within a layer equals the maximum value

realised at z = 0. Experimental observations suggest that this is a good approx-

imation for the present Ti/SiC composite. González and Llorca (2001, Fig. 3)

observed two or three fibre cracks in each fibre spaced 0.1–0.3 mm apart, near

the specimen fracture plane. Similar observations have also been reported by

Majumdar et al. (1998) and Gundel and Wawner (1997). These fibre breaks

would unload most of the length ∆L in the broken fibre, in accord with the

‘chain of bundles’ idealisation.

Curtin (2000) compared the ‘chain of bundles’ model with a pull out model

of load transfer, and found that the mean composite strength may be underes-

timated by as much as 25%. To arrive at this result, Curtin (2000) assumed a

single centrally located break in each ∆L segment of the fibre, and that load is

regained following a triangular profile within the ∆L bundle. Since the experi-

mental observations noted above differ significantly from these assumptions, it

is expected that the composite strength is not as underestimated by the present

‘chain of bundles’ model as predicted by Curtin (2000). In fact, it is found later

in Sec. 3.8 that the mean strength is underestimated by as little as 3% in a 3D

composite.
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3. Results and discussion

Following the classical linear elastic shear-lag models, Mishra and Mahesh

(2017) introduced the elastic recovery length along the fibre direction

K1/2 =

(

G1√
h2AtmEfE1

)1/2

. (21)

In the sequel, the applied load per fibre, and the imposed engineering strain are

normalised as

p̂ =
pW

EfAf
, (22)

and

ε̂engg = εenggW, (23)

where, W = G1−G2

τY
1

h
√
K
. Similarly, the fibre and tensile matrix strains are

normalised as ε̂fi = εfiW , and ε̂tmj
= εtmj

W . The normalised quantities are of

the order of unity.

3.1. Bundle length

A common assumption in the literature, e.g., (Beyerlein and Phoenix, 1996;

Mahesh and Phoenix, 2004; Behzadi et al., 2009), maintains that the bundle

length, ∆L, is given by the fibre-wise distance over which the stress in an intact

fibre adjacent to a single break exceeds the far-field stress. Thus, if zc is a

critical distance such that εf1(±zc)/〈εfi(z = L/2)〉 = 1, it is typically assumed

that ∆L = 2zc.

Fig. 3a shows the strain profiles in all the fibres of the nf = 128 fibre com-

posite with a single break placed at z = 0 in fibre f0. Sufficient far-field dis-

placement is imposed to induce gross yielding of the matrix. Fig. 3a shows that

zc = 0.57 mm. Interestingly, zc ≈ δc/2 = 0.65 mm. That is, the assumption

that ∆L = δc, derived from considerations originally applied to ceramic matrix

composites, is nearly consistent with that obtained from the load decay ahead

of a single break.

With increasing number of breaks in the cluster, the critical distance over

which the neighbouring intact fibre is overloaded also increases. For clusters of
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Figure 3: Fibre overstrain profiles in all the fibres (i ∈ {1, 2 . . . , nf}) under imposed strain

ε̂engg = 2.55 in an nf = 128 fibre composite with (a) k = 1, and (b) k = 10 cluster of breaks.

The imposed strain is sufficiently large to cause gross matrix yielding in the specimen.
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two and three breaks, for instance, zc = 0.86 mm and 1.07 mm, respectively.

As seen in Fig. 3b, the critical distance of stress decay is in excess of 2 mm

ahead of a cluster of k = 10 breaks. In fact, the load in the broken fibres does

not fully recover, even at the end of the gage section located at z = L/2 =

13 mm. Clearly, as the size of the cluster of breaks increases, the assumption

of mechanical non-interaction between breaks separated by more than δc along

the z-direction becomes increasingly invalid. However, it must be noted that

the assumption of non-interaction is conservative, i.e., leads to a larger failure

probability, Hnf ,L(p). Accordingly, the chain-of-bundles assumption (Eq. (16))

is presently adopted.

3.2. Empirical strength distribution

Figs. 4a and 4b show the cumulative distribution functions of bundle strength,

Gnf
(p) of 2D and 3D model composites, respectively. The 2D empirical dis-

tribution functions are obtained from nsim = 250 computer simulated Monte

Carlo tensile tests of statistically identical composite specimen comprised of

nf = 32, 64, and 96 fibres. nsim = 303 simulations were performed on compos-

ites comprised of nf = 128 fibres. 3D empirical distributions were obtained from

nsim = 250 computer simulated Monte Carlo tensile tests of model composites

with nf = 36, and 64.

In the coordinates of the normal probability paper used in Fig. 4, Gaussian

distributions plot as straight lines. The horizontal intercept of the straight line

corresponds to the mean of the distribution and the reciprocal of its slope corre-

sponds to the standard deviation. The obtained empirical strength distributions

shown in Fig. 4 are apparently Gaussian distributed. Both mean strength of

the bundle per fibre, 〈p̂〉 (x-intercept) and standard deviation (reciprocal slope)

decrease with increasing nf .

A classical result due to Daniels (1945) states that the strength of a loose

(equal load sharing) bundle of threads is Gaussian distributed. The mean

strength per fibre of Daniels’ bundles are, however, independent of nf to lead-

ing order. At higher order, they decrease as n
−2/3
f with a small pre-factor
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Figure 4: Empirical cumulative distribution functions of bundle strength, Gnf
(p), plotted

on normal probability paper for (a) 2D, and (b) 3D model composites. These distributions

are obtained from Monte Carlo simulations. Φ(·) denotes the standard normal distribution

function with zero mean and unit standard deviation. Dashed lines represent linear least

squares fits of the empirical distributions. The solid line depicts the strength distribution of

a loose bundles, as predicted by Daniels (1945) for nf = 32 fibres in (a), and nf = 36 fibres in

(b).
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(McCartney and Smith, 1983; Phoenix and Raj, 1992). The mean strength

per fibre of the present model bundles decrease with increasing nf much more

rapidly. Therefore, the statistics of the present bundles differ qualitatively from

those of Daniels’ bundles. Nevertheless, the standard deviation of strength of

the nf = 32, 2D bundle, Gnf=32(p), agrees closely with that of a Daniels bun-

dle comprised of the same number of fibres (Fig. 4a). The empirical distribu-

tion functions and the strength distributions of larger Daniels bundles deviate

substantially. In 3D, the standard deviation of strength of an nf = 36 fibre

composite is already greater than that of an nf = 36 Daniels bundle.

3.3. Failure mode

Fig. 5 shows the normalised load-displacement curves at z = L/2 correspond-

ing to two nf = 128 2D computer specimens. The two graphs correspond to the

strongest and weakest specimens of nsim = 303 simulations. Fig. 5 also shows

the accumulation of fibre breaks with applied far-field displacement. Initially,

fibre breaks accumulate gradually with increasing imposed engineering strain.

Over this regime, the load-displacement curves remain approximately linear, in

accord e.g., with the experimental observation of Withers and Clarke (1998).

However, at a critical applied engineering strain, which also corresponds to the

maximum applied load, a large number of fibre breaks suddenly appear. In

both the specimen of Fig. 5, this increases the material compliance sufficiently

to decrease the applied load, as the computer simulations are performed under

displacement control. Under load control, the burst of fibre breakages observed

at the peak load would correspond to unstable crack propagation, and specimen

fracture. The failure of the simulated composites thus has a brittle character.

The evolution of the normalised mean fibre and tensile matrix strains at

z = L/2 with the normalised imposed engineering strain in the strongest and

weakest specimen are shown in Fig. 6. It is seen that up to the peak ε̂engg

the mean fibre and tensile matrix strains at z = L/2 equal the engineering

strain. In other words, the increase in specimen compliance due to fibre and

tensile matrix breaking prior to the peak load is negligible. However, once the
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Figure 5: Variation of the applied normalised load per fibre, p̂ over the course of a Monte

Carlo simulation of failure in the (a) strongest, and (b) weakest of 303 computer specimen.

Each composite is comprised of nf fibres. The circles indicate the number of fibre breaks.
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Figure 6: Evolution of the average normalised fibre and tensile matrix strain at z = L/2 with

imposed engineering strain during the simulation of the strongest and weakest 128 fibre 2D

specimen.

peak load is reached, catastrophic fibre breakage causes an abrupt increase of the

specimen compliance. The mean fibre and tensile matrix strains at z = L/2 then

drop abruptly at constant ε̂engg. These observations validate the assumption of

Eq. (13), up until the peak load is reached.

The step-by-step (Sec. 2.5) evolution of the spatial distribution of the fibre

and tensile matrix breaks in the strongest and weakest nf = 128-fibre 2D com-

posite specimen is depicted in Fig. 7. As noted previously, some steps involve

only an evolution of the elastoplastic fields in the composite; no additional fibre

or tensile matrix breakage occurs in them. The step at which the peak load is

imposed is indicated by a vertical dotted line in Fig. 7. In both the strongest

and weakest specimen, the fibre breaks formed before the peak applied load

is reached, appear positionally uncorrelated. This is similar to the pattern of

breaks in a Daniels (1945) bundle. Soon after a fibre breaks, the pair of ten-

sile matrix elements flanking the fibre nearly always break. Thus, the matrix

directly contributes little to the composite toughness. This observation, in con-

junction with the observations of Pini et al. (2017) suggests that the present
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Figure 7: Progression of breaks in the fibre (large circles) and tensile matrix (small dots)

elements over the course of a Monte Carlo simulation of failure in the (a) strongest and (b)

weakest nf = 128-fibre 2D specimens of 303 computer specimen. The vertical dotted line

denotes the step beyond which further breaks occur with no increase in applied load. No fibre

or tensile matrix element breakage occur in some steps; they involve only evolution of the

elastoplastic state, and/or of the interfacial sliding displacement.
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Figure 8: Normalised fibre strains near the critical cluster of breaks at peak load (step 14) in

the weakest 128-fibre 2D specimen.

composite may be toughened by strengthening the matrix.

At some step during the simulation, uncorrelated fibre breakage ceases, and

gives way to the propagation of a cluster of fibre breaks, starting from one of the

initial ‘seed’ fibre breaks. This happens at the peak load. In both the strongest

and weakest specimen, this propagation occurs, in part, by the coalescence of the

main cluster of breaks with small clusters ahead of itself. The observed clustered

sequence of fibre failures agrees with the observations of Gundel and Wawner

(1997), and González and Llorca (2001).

3.4. Elastoplastic fields at peak load

The elastoplastic fields at the peak load (step 14) in the weakest 128-fibre

2D specimen are next considered. As seen in Fig. 7b, the cluster of breaks that

extends catastrophically is comprised of two fibre breaks in fibres f57 and f59,

and tensile matrix breaks in tm57, tm58, tm59, and tm60. Fig. 8 shows the fibre

strains near the broken fibres. The greatest strain concentration occurs in f58.

Under the influence of this intense stress concentration, fibre f58 breaks in the

next step. The next largest strain concentrations are observed in fibres f56 and
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Figure 9: (a) Elastic and (b) plastic normalised strains in the tensile matrix, near the critical

cluster of breaks at peak load (step 14) in the weakest 128-fibre 2D specimen.
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Figure 10: Sliding displacements, wsk , near the critical cluster of breaks at peak load (step

14) in the weakest 128-fibre 2D specimen.

f60, which also fail shortly after step 14 (peak load).

Fig. 9 shows the elastic and plastic strains in the tensile matrix elements near

the presently considered cluster of breaks. The elastic strain concentrations in

the tensile matrix elements (Fig. 9a) are generally smaller than that in the

corresponding fibres. In fact, the elastic strains are all smaller than even the

imposed engineering strain. However, the plastic strain concentrations are much

larger, as shown in Fig. 9b. The large plastic deformation shields the tensile

matrix elements from high stresses.

Fig. 10 shows the slider element displacements in the vicinity of the breaks.

Slider element s113 is abutted by the broken tm57, and intact fibre f56. This

produces sliding of about 2 µm in s113, at the plane z = 0 mm and thereby

shields f56 from intense stress concentration. The other sliders that also develop

high sliding displacements, s116, s117, and s120 are also abutted by one intact

and one broken tensile member. On the other hand, slider elements s114, s115,

and s119, which experience relatively smaller sliding displacements are abutted

by tensile elements that are both broken. It can be inferred that sliding is a

mechanism to blunt intense localisation of stress concentrations between broken
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and intact tensile elements in the model.

The present discussion has been restricted to 2D composites. The observa-

tions, however, carry over qualitatively to 3D composites as well.

3.5. Stress redistribution due to a tight cluster of breaks

The notion of a tight cluster of breaks is due to Smith et al. (1983). In

both 2D and 3D composites, a tight cluster of breaks is defined inductively,

beginning with a single break, k = 1. A tight cluster of k > 1 breaks is

constructed from a tight cluster of k − 1 breaks by breaking any one of the

most overloaded intact fibres surrounding the (k − 1)-tight cluster. Any tensile

matrix element neighbouring a broken fibre is also broken. In 2D composites,

this definition simply results in a linear array of k adjacent broken fibres, e.g.,

fi, i = 1, 2, . . . , k, and in k + 1 adjacent broken tensile matrix elements in tmj ,

j = 1, 2, . . . , k + 1, at z = 0. The progression of tight cluster growth in the 3D

composite up to k = 7 is shown in the inset of Fig. 11b.

The stress concentration ahead of a k-cluster of breaks in the plane z = 0 in

2D and 3D composites is defined as:

Kk =
nf

max
i=1

εfi(z = 0)

/(

nf
∑

i=1

εfi(z = L/2)/nf

)

, (24)

where fi denotes the i-th fibre in the composite patch. The denominator in

this expression denotes the average far-field fibre strain. Because of material

non-linearities associated with the matrix and the interface, the stress concen-

tration, Kk depends also on the imposed strain, ε̂engg. Figs. 11a, and 11b show

Kk for cluster sizes k = 1, 2, . . . , 10 at various imposed engineering strains,

which span the range of failure strains observed in the Monte Carlo simulations,

respectively. It is clear that at a fixed imposed engineering strain, Kk increases

monotonically with increasing k. Also, Kk decreases monotonically with the

imposed engineering strains, for a given cluster size, k.

Over the range of cluster sizes and imposed strains investigated in Fig. 11,

the computed stress concentrations, Kk can be bounded from above and below
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Figure 11: Stress concentration, defined in Eq. (24), in the first intact fibre ahead of a cluster

of k fibre breaks in (a) 2D and (b) 3D model composites. Because of material non-linearities

associated with the matrix and the interface, the stress concentration depends also on the

imposed strain, ǫ̂engg. Over the present range of cluster sizes and imposed strains, the stress

concentration can be bounded by two analytical curves, shown by solid lines.
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2D 3D

Parameter Lower bound Upper bound Lower bound Upper bound

τ0 1 1 1 1

τ1 0.4 1.2 0.4 0.45

θ0 0.5 0.5 0.2 0.5

θ1 0.07 0.10 0.00 0.03

Table 2: Parameters in Eq. (25) used to bound the computed values of Kk in Fig. 11.

by a simple analytical functional form. It is found that

Kk = τ0 + (τ1 + θ1k)(1 − exp(−kθ0/τ1)), (25)

bounds the calculated Kk from both above and below, as shown in Fig. 11, in

both 2D and 3D composites. The parameters corresponding to these bounds are

listed in Tab. 2, both for 2D and 3D composites. Let the stress concentrations

corresponding to the upper and lower bounds be denoted Khigh
k and K low

k , re-

spectively. The functional form in Eq. (25) was proposed by Tomé et al. (1984)

originally for the purpose of fitting plastic hardening curves. While the curve

fits for Khigh
k and K low

k are tight for the 2D composite, they are not so good

for certain k in the 3D composite. For example, the curve fits overestimate the

stress concentrations corresponding to k = 1, and underestimate the same for

k = 6. This is because the shape of tight clusters in 3D for certain small k

deviates significantly from the ideal of a penny-shaped cluster of breaks.

3.6. The Harlow-Phoenix-Smith cluster growth model

For polymer matrix composites, Harlow and Phoenix (1978a,b) and Smith

(1980) proposed a probabilistic model of failure. In their model, composite

failure occurs when at least one of nf weakest-link events occurs. That is, there

exists a weakest-link strength distribution, independent of nf , and denoted by

W (p) such that

Gnf
(p) = 1− (1−W (p))nf . (26)
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Figure 12: The empirical weakest-link strength distribution, Eq. (26), is well captured by the

Harlow-Phoenix-Smith cluster growth model, Eq. (28), in both (a) 2D and (b) 3D composites.
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Fig. 12a shows the weakest-link distribution, W (p), obtained from empirical

strength distributions Gnf
(p) for the four sizes nf = 32, 64, 96 and 128 of

2D composites. The corresponding 3D empirical weakest-link distributions for

nf = 36, and 64 are shown in Fig. 12b. These weakest-link distributions are

obtained by inverting Eq. (26). It is seen that the weakest-link distributions

obtained from all four sizes in 2D and from the two sizes in 3D collapse onto one

master curve, i.e., W (p) is indeed independent of bundle size, nf . Substituting

Eq. (26) into Eq. (16) yields

Hnf ,L(p) = 1− (1−W (p))
nf (L/∆L)

. (27)

Harlow and Phoenix (1978a,b); Smith (1980) and Smith et al. (1983) also

proposed a dominant weakest-link failure event underlying W (p). They pro-

posed that the probability of the weakest-link event equals the probability of

development of a tight cluster of breaks. The k-th break in this sequence forms

under the stress concentration generated by the (k − 1)-tight cluster of breaks.

These considerations are expressed mathematically as:

Wmodel
k (p) = F (Efεengg; ∆L)×

{

1− [1− F (K1Efεengg; ∆L)]N1

}

×
{

1− [1− F (K2Efεengg; ∆L)]
N2

}

× . . .×
{

1− [1− F (KkEfεengg; ∆L)]
Nk

}

,

(28)

where, Wmodel
k (p) is the probability of occurrence of a k-cluster of breaks, Kk

denotes the stress concentration due a tight cluster of k breaks, given by Eq. (25),

Nk denotes the number of most overloaded intact neighbours of a cluster of k

breaks, and F (·) denotes the probability of fibre failure, given by Eq. (18). εengg

in the right side of Eq. (28) is obtained by numerically inverting Eq. (15) using

successive bisection. The model weakest-link probability is defined as

Wmodel(p) = lim
k→∞

Wmodel
k (p). (29)

In a 2D composite, the number of most overloaded neighbours of a tight

cluster of k fibre breaks, Nk = 2 for all k ≥ 1. In a 3D composite, to a good

32



approximation, it is known that Nk ≈ 2
√
3k − 1 (Habeeb and Mahesh, 2015),

with the approximation being accurate for k ≥ 2. Thus,

Nk =











2, in a 2D model composite, and

2
√
3k − 1, in a 3D model composite.

(30)

Employing the upper and lower bound parameters for Kk from Tab. 2 leads

to overprediction and under-prediction of the weakest-link strength distribu-

tion (not shown). Thus neither Khigh
k nor K low

k is a tight bound on the stress

concentration, Kk. A simple interpolative formula given by

Kk = exp(−k/k0)K
low
k + (1− exp(−k/k0))K

high
k , (31)

with k0 = 4, however, leads to the predictions of Wmodel
k (p), k = 1, 2, . . . , 12,

shown in Fig. 12a for 2D composites, and with k0 = 2 to the predictions of

Wmodel
k (p), k = 1, 2, . . . , 18, for 3D composites, as shown in Fig. 12b. In both

cases, it is clearly seen that the lower envelope of the predicted Wmodel
k (p) agrees

well with the empirical weakest-link distribution. Eq. (31) merely represents a

plausible smooth transition from K low
k to Khigh

k with increasing k. Its form is

not based on physical considerations.

Figs. 12a and 12b show that convergence ofWmodel
k (p) in the sense of Eq. (29)

occurs for smaller k at larger bundle strengths, p. The lower tail of the weakest-

link distribution thus corresponds to larger k, exactly as in the reliability theory

of polymer matrix composites.

3.7. Size scaling of strength for prescribed reliability levels

Some components in an engine are more critical than others. For example,

the engine risk due to the failure of bladed disks, bladed rings, and impellers

is rated high, that due to fan and compressor blades is rated moderate, and

that due to spacers is rated low (Singerman and Jackson, 1996, Table II). The

acceptable failure probability, q, of bladed disks, bladed rings, and impellers

must be lowest (say, q = 10−6), that of fan and compressor blades intermediate

(say, q = 10−4), while that of spacers can be relatively higher (say, q = 10−2).
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Figure 13: Size-scaling of bundle strength for four failure probability levels, q in (a) 2D, and

(b) 3D composites. The predicted mean strength corresponds to q = 0.5. Reliable material

strength decreases with increasing reliability and composite size. Experimental data points

obtained from the literature are discussed in the text below.
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The relationship between the composite size, nfL/∆L, and composite strength,

p̂ is now deduced for an arbitrarily specified acceptable failure probability, 0 <

q < 1. That is, given a bundle failure probability, q ∈ (0, 1), the relationship

between nfL/∆L, and p̂ is determined by requiring that

Hnf ,L(p) = q. (32)

It follows from substituting Eq. (27) into Eq. (32) that

nfL/∆L = ln(1− q)/ln(1−W (p))). (33)

Using the approximation W (p) ≈ Wmodel(p) (Eq. (29)) in Eq. (33) gives the

size-scaling with strength for various acceptable failure probabilities, q. Scaling

curves corresponding to the mean strength q = 0.5, and to higher reliability

levels, q = 10−2, 10−4 and 10−6) are plotted in Figs. 13a and 13b for the 2D

and 3D model composites, respectively.

3.8. Comparison with experiments

The present results are now compared with experimental data from the lit-

erature on 2D and 3D composites. In each case, the fibre (SCS-6 SiC) and

matrix (Ti-6Al-4V) materials of the present study are nominally the same as

those in the experimental material. However, details of material processing and

the spatial distribution of fibres may different.

Majumdar et al. (1998) report a tensile strength of 1160 MPa for a 2D

nf = 40-fibre composite of guage length 25.4 mm. In order to prevent com-

posite fracture in the shoulders of their test coupon, Majumdar et al. (1998)

employed a thick matrix cladding, resulting in a fibre volume fraction of only

11.6%. To compare with the present model, their specimen is idealised as two

matrix strips of thickness 270 µm sandwiching a fibre-reinforced strip of ply

thickness d = 124 µm. If the 270 µm thick cladding were taken to carry a uni-

form flow stress of 900 MPa at the point of composite failure, as suggested by

Majumdar et al. (1998, Fig. 4), the effective stress in the fibre-reinforced central

region comes out to be 2274 MPa. This amounts to force per fibre of 56.9 N,

35



which when non-dimensionalised following Eq. (22) yields p̂ = 2.24. Further, for

this specimen, nfL/∆L = 40×25.4/1.3 ≈ 781. The (nfL/∆L, p̂) point is shown

in Fig. 13a. The measured point falls above the q = 0.5 curve, i.e., Majumdar

et al.’s experimental specimen is found to be stronger than the average model

specimen at this size.

For 3D composites, the ASM metals handbook (Davis, 1998) lists the average

strength of SiC fibre reinforced Ti-6Al-4V composite with 37% fibre volume

fraction as 1447 MPa. Assuming that the fibres are arranged in a hexagonal

lattice, the fibre volume fraction corresponds to a centre-to-centre fibre spacing

of about 220 µm, which is only slightly smaller than the present assumption

of b = 240 µm in Table 1. The ultimate tensile force per fibre then works

out to p = 60.5 N, or in non-dimensional terms, using Eq. (22), p̂ = 2.39.

The cross-sectional area of an ASTM D3552 straight sided standard tensile

sample (ASTM, 2017), 10 plies thick is 10.00× 1.43 mm2, and its gage length is

L = 88.0 mm. For 37% volume fraction, this corresponds to nfL/∆L = 2.3×104.

The (nfL/∆L, p̂) point corresponding to the test data is shown in Fig. 13b. It

is seen that the average test data (p̂ = 2.39) is only slightly greater than the

predicted q = 0.5 value (p̂ = 2.32), an error of about 3%. This shows that the

present predictions based on the ‘chain of bundles’ model described in Sec. 2.5

are not too conservative.

Points corresponding to the single tensile tests reported byWithers and Clarke

(1998), and the average of the three tests of Li et al. (2008) are also shown in

Fig. 13b. It is seen that the former data point nearly falls on the predicted

average strength, but the latter is considerably stronger.

It is important to note that the fabrication route affects the extent of dam-

age imparted to the fibres, and thereby, the average tensile strength. The afore-

mentioned strength of 1447 MPa corresponds to a fabrication route wherein

multiple 2D plies are consolidated by hot pressing to form a 3D composite. A

much higher average strength (1820 MPa at only 33% fibre volume fraction) is

reportedly obtained by triode sputtering, which introduces minimal damage to

the fibres (Vassel, 1999). The present model may predict these higher strengths,
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provided the Weibull strength parameters of the fibres are modified to reflect

their more pristine surface condition in the triode sputtered material.

Because the diameter of SiC fibres is significantly greater than that of carbon

or glass fibres used to reinforce polymer matrix composites, usually, only modest

extrapolation is needed to predict the strength of components for a certain q. For

example, consider the metal matrix composite core of the bladed ring described

by Moriya et al. (1999). Their fibre and matrix materials are nominally the

same as those in the present study. It is therefore reasonable to assume ∆L =

δc = 1.3 mm. The reinforcing composite ring has a mean circumference of about

500 mm and is comprised of about 104 fibres in a cross-section. The number of

weakest-link sites is therefore nf = 104 · 500/1.3 ≈ 4 × 106, which is only two

orders of magnitude greater than that of an ASTM standard specimen.

3.9. Curtin’s weakest-link scaling

An alternate approach to understanding the strength distribution has been

proposed by Ibnabdeljalil and Curtin (1997) for ceramic or metal matrix com-

posites with weak interfaces, and by Curtin (1998b) for polymer matrix compos-

ites. From Monte Carlo simulations, these authors observed that there exists a

critical sub-bundle size mf such that the bundle fails when any of the critically

sized sub-bundles fail, so that

Gnf
(p) = 1− (1−Wmf

(p))
nf/mf . (34)

Going further, Curtin (1998b) found that Wmf
(p) has the same normal strength

distribution as a Daniels bundle of mf fibres, with the same standard deviation,

but possibly a different mean strength. The scaling given by Eq. (34) was

applied to a Ti metal matrix composite by Xia et al. (2001).

Fig. 14a plots the weakest-link strength distribution, as given by Eq. (34),

deduced from Gnf
(p) corresponding to the four 2D bundle sizes nf = 32, 64,

96 and 128. In all cases, the sub-bundle size was taken as mf = 30. Fig. 14a

shows that the weakest-link strength distribution, Wmf=30(p), plots on Gaus-

sian paper as a straight line in the upper and middle parts of the distribution.
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Figure 14: Empirical strength distributions of (a) 2D composite bundles comprised of nf = 32,

64, 96, and 128 fibres, and (b) 3D composite bundles comprised of nf = 36, and 64 fibres.

Both 2D and 3D distributions are weak-linked to a critical size of mf = 30. In both (a) and

(b), the solid line is the Daniels (1945) strength distribution predicted for a loose bundle of

mf = 30 fibres. The dashed line is the solid line shifted horizontally through −0.26 in both

(a) and (b).
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Over this part, Wmf=30(p) agrees well in slope (reciprocal standard deviation)

with the strength distribution predicted by Daniels (1945) for an equal load

sharing bundle of 30 fibres. Such coincidence does not occur for other values of

mf . However, the mean strengths of the present bundle and the Daniels bun-

dle do not agree; an imposed shift in the mean strength is necessary to bring

the empirical Wmf=30(p) into coincidence with the Daniels bundle strength. In

the lower tail, however, the downward curvature of the empirical weakest-link

strength distributions indicates deviation from normality in the lower tail. The

beginning of the lower tail is indicated by the arrow in Fig. 14. This observa-

tion suggests that Eq. (34) should not be employed to extrapolate the strength

distributions into the lower tail.

Fig. 14b depicts the weakest-link strength distribution for 3D composites

with bundle sizes of nf = 36, and 64 fibres. This figure also shows the strength

distribution predicted for a Daniels bundle with mf = 30. Surprisingly, the best

agreement of the weakest-link strength distribution with Daniels bundle strength

occurs by taking the same mf and imposed shift in the mean strength as in 2D.

This is noteworthy, because the Gaussian bundle strength is independent of the

dimensionality of the composite. In the lower tail, Wmf=30(p) deviates from the

distribution of Daniels’ bundle strength. This deviation is less pronounced than

in 2D. This is reasonable because the stress concentrations, and hence tendency

toward local load sharing in 3D composites is lower than that in 2D composites.

It may be noticed that the strength of a Daniels bundle comprised ofmf = 30

fibres plots as two distinct lines in 2D and 3D in Fig. 14. This is because for

a given p̂, the far-field strain εf obtained from Eq. (15) are distinct in 2D and

3D, as the number of tensile matrix elements in the latter is thrice as many as

in the former (Eq. (2)).

The upper and middle tail of the empirical weakest-link strength distribution

can be explained by two different stochastic models: the Harlow-Phoenix-Smith

cluster growth model (Eq. (28)), and Curtin’s global failure model (Eq. (34)).

The two models however, diverge from each other in the lower tail. Fig. 15

shows the extrapolated predictions of both models into the deep lower tail, in
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Figure 15: Comparison of the extrapolated predictions of the Harlow-Phoenix-Smith cluster

growth model (Eq. (28)), and Curtin’s global failure model (Eq. (34)) in the deep lower tail,

for (a) 2D and (b) 3D composites.
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Weibull probability coordinates. The comparison shows that the Curtin global

failure model is conservative in the regime of the lower tail in both 2D and 3D

composites.

4. Conclusions

Using a recently developed shear-lag model (Mishra and Mahesh, 2017), 2D

and 3D Monte Carlo failure simulations of sizeable Ti/SiC fibre composites have

been performed while accounting for non-linear effects associated with the ma-

trix and interfacial response and their interactions. The simulations overcome

the limitations of earlier studies, which were either restricted to composites com-

prised of very few fibres (Liu and Zheng, 2006) or used approximate estimates

of the stress state based on the linear superposition principle Xia et al. (2001).

The present model itself, however, suffers from the limitation of not resolving

the three-dimensional stress state, on account of its shear-lag character. The

composite is also modeled as a chain of bundles in the present work, so that

the three-dimensional interactions between fibre breaks are treated somewhat

simplistically, but conservatively.

Using Monte Carlo simulations, and probabilistic modelling, it has been

shown that the strength of a single ply commercial Ti/SiC composite obeys the

classical Harlow-Phoenix-Smith weakest-link strength distribution (Harlow and Phoenix,

1978a,b; Smith, 1980), originally developed for local load sharing polymer ma-

trix composites. A strongly clustered mode of breaking is observed from the sim-

ulations. This is consistent with experimental observations reported in the liter-

ature (Gundel and Wawner, 1997; González and Llorca, 2001; Li et al., 2008).

Specimen strengths predicted by the model are also in reasonable agreement

with those reported in the literature. The stochastic model, validated against

empirical distributions generated by Monte Carlo simulations, can be used to

extrapolate the metal matrix strength distribution into the lower tail. Most

usefully, this model predicts the safe working loads for any desired level of relia-

bility, which in turn depends on component criticality (Singerman and Jackson,
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1996).

The empirical distributions obtained from the present simulations are also

compared with the stochastic model proposed by Xia et al. (2001). For a suit-

ably selected link-length, it was found that the stochastic model of Xia et al.

(2001) could capture the upper and middle tails of the present empirical distribu-

tions well. In the lower tail, however, the weakest-link distribution proposed by

Xia et al. (2001) overestimates the failure probabilities, i.e., is too conservative.

This effect is more pronounced in 2D on account of greater stress concentrations

ahead of a fixed number of breaks, than in 3D composites.
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J. Hanan, E. Üstündag, I. Beyerlein, G. Swift, J. Almer, U. Lienert, D. Ha-

effner, Microscale damage evolution and stress redistribution in Ti–SiC fiber

composites, Acta materialia 51 (14) (2003) 4239–4250.

B. Majumdar, T. Matikas, D. Miracle, Experiments and analysis of fiber frag-

mentation in single and multiple-fiber SiC/Ti-6Al-4V metal matrix compos-

ites, Composites Part B: Engineering 29 (2) (1998) 131–145.

C. M. Landis, R. M. McMeeking, A shear-lag model for a broken fiber embedded

in a composite with a ductile matrix, Compos. Sci. Tech. 59 (3) (1999) 447–

457.

P. Withers, A. Clarke, A neutron diffraction study of load partitioning in con-

tinuous Ti/SiC composites, Acta mater 46 (18) (1998) 6585–6598.
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