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Abstract

Although high-temperature material response is known to be history-dependent,
many models of creep crack growth assume the history-independent Norton
constitutive law. Even so, these models capture the experimentally observed
creep crack growth by adjusting only the damage model. This is explained
presently by showing that the damage evolution ahead of a stationary crack in
a material obeying a history-dependent unified creep-plasticity constitutive law
due to Robinson can be ‘fit’ by simply adjusting the damage parameters in a
model implementing Norton’s law. The implication of this result to the case of
propagating cracks is discussed.

Keywords: creep crack growth, constitutive law, stainless steel, continuum
damage

1. Introduction

Crack growth in a creeping body has been the subject of a large number
of theoretical, computational and experimental studies extending at least over
the past five decades [1]. A number of models of creep crack growth, based
on the local approach, have been proposed to predict the creep crack growth
history in standard test specimen [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Many of these
models successfully capture the experimentally observed creep crack growth rate
in many high temperature materials including austenitic stainless steels.

Creep crack growth models based on the local approach are based on finite
element analysis and continuum damage mechanics. The finite element analysis
accurately predicts the spatiotemporal variation of all mechanical and damage
fields for arbitrary inputs of inelastic constitutive law, and damage evolution
law. The constitutive law typically accounts also for the current local damage.
The exceedance of a threshold by the damage variable at select points in the
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domain is taken to indicate local material failure. In creep crack growth sim-
ulations, local material failure typically occurs ahead of the pre-existing crack,
and signifies crack propagation. Algorithmic schemes such as setting the local
stiffness to zero [4, 11, 12] or releasing displacement continuity constraints on
nodes [4, 5, 10] are employed to represent crack propagation within the finite
element analysis. Progressively more sophisticated damage evolution laws are
due to Nikbin et al. [3], Saanouni and Chaboche [4], Yatomi et al. [5, 6, 8], Oh
et al. [10] and Wen et al. [11, 12].

The creep constitutive law in all aforementioned models is independent of
the loading history, i.e., the strain-rate depends only on the instantaneous state
of stress and damage. Commonly, the assumed constitutive law is a variant of
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Here, ϵ̇cr denotes the creep strain-rate, σ′ denotes the deviatoric stress, σeq

denotes the scalar equivalent stress, and σ0 denotes a reference stress. ω, 0 ≤
ω ≤ 1 denotes the damage variable, and n is called the Norton exponent. Eq. (1)
demonstrates also the involvement of the damage variable in the constitutive
response.

The creep constitutive response is well-known to be history dependent. This
dependence has been modelled phenomenologically using internal variables by
a number of authors including Rice [13], Lagneborg [14], Miller [15, 16], Ponter
and Leckie [17], and Robinson [18]. Robinson’s model was motivated by the
observations of Swindeman [19] in 304 stainless steel, who found that stress
relaxation in the samples held at constant strain over a fixed time interval was
strongly dependent on its prior deformation. In this model, creep and plasticity
are accounted for simultaneously as irreversible inelastic deformation processes
driven by a single thermodynamic force. The model includes a tensorial internal
parameter, the backstress, whose evolution produces kinematic hardening for
the viscoplastic yield surface. Robinson’s model was extended by Murakami
and Ohno [20], by the introduction of creep hardening surfaces. Peng and
Zeng [21] proposed a generalised endochronic creep-plasticity theory without a
yield surface.

Despite assuming the internal variable-free history-independent creep consti-
tutive relationship, Eq. (1), a number of models of creep crack growth success-
fully capture the crack propagation observed experimentally. It is the objective
of the present note to inquire into the reason for their predictive success. To
this end, a cracked compact tension specimen obeying Robinson’s constitutive
law, henceforth referred to as the ‘Robinson specimen’, is considered. The mate-
rial constants of an equivalent Norton’s power-law material are deduced so as to
match the steady state response of the Robinson material during uniaxial tensile
tests. The ‘Norton specimen’ is identical to the Robinson specimen, except for
the creep constitutive law, which is taken to be the history-independent equiva-
lent Norton’s power-law. For two types of damage evolution, viz., a stress-based
law, and an inelastic strain-based law, the time to failure of material points
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ahead of the crack tip, in the crack plane, predicted in the two specimens are
compared. It is found that in compact tension specimens subjected to dead
loading, the influence of the constitutive model can be subsumed into the dam-
age law. In other words, the time to failure predicted in the Norton specimen
can be matched to that in the Robinson specimen simply by a change of the
damage parameter in the former. This is true for both stress-based and inelastic
strain-based damage laws.

Two significant simplifying restrictions imposed presently must be noted:
(i) The crack is assumed to be stationary and (ii) the damage evolution law
and constitutive laws are presently assumed to be uncoupled with each other,
in contrast to e.g., Eq. (1). The former assumption corresponds to the limit
whereat the time-scale associated with crack propagation is much larger than
that of creep deformation, i.e., to slow crack growth. The former assumption
will apply also during the crack initiation period [1, 22, 23]. Assumption (ii)
enables damage evolution offline of the finite element simulations. Since the of-
fline calculation corresponds to larger normal stresses ahead of the crack tip,
the times to failure predicted following assumption (ii) will be conservative.

The constitutive laws and damage models studied are first reviewed in Sec. 2.
Numerical experiments performed on compact tension specimen are then de-
scribed, and their predictions compared in Sec. 3. The implications are then
discussed in Sec. 4.

2. Constitutive laws and damage models

2.1. Robinson’s constitutive law

Figure 1: Geometric interpretation of Robinson’s [18] creep constitutive law. Sij denotes the
imposed deviatoric stress, αij the kinematic back stress, and ξij the effective stress. The
circular yield locus demarcates the elastic zone from the inelastic one.

The constitutive law due to Robinson [18] represents deformation rate due
to both creep and plasticity using the tensorial deviatoric strain-rate, ε̇ieij . The
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strain-rate is taken to depend on the imposed deviatoric stress Sij following:

2µ0ε̇
ie
ij =

⎧

⎪

⎨

⎪

⎩

F
n−1
2 ξij , if F > 0, Sijαij > 0 and Sijξij > 0

0, if F > 0, Sijαij > 0 and Sijξij ≤ 0

0, if F ≤ 0.

(2)

In Eq. (2), αij represents the tensorial back stress, and ξij represents the effective
stress, defined as ξij = Sij − αij . F (ξij) =

1
2ξijξij/k

2 − 1 = 0 denotes the yield
locus of radius k. The back stress evolves following:
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⎩
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Gβ/2 ε̇

ie
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ε̇ieij −RG
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2

0 αij , if G ≤ G0 and Sijαij ≤ 0,
(3)

where,
G = αijαij/(2k

2). (4)

The circle in Fig. 1 represents the Robinson’s yield surface centered at the
current back stress αij with radius k. The applied stress Sij imposed on the
material point produces an effective stress ξij due to the back stress. The
inelastic strain rate is normal to the yield surface, following Eq. (2), so that the
flow rule is clearly associative.

Eq. (3a) describes the evolution of the kinematic back stress αij in the di-
rection of ε̇ieij and a simultaneous annihilation in the direction of the current
value of the backstress, αij . These processes are controlled by rate constants
H and R, respectively. Eq. (3a) becomes degenerate as G ↓ 0; Eq. (3b) repre-
sents a regularisation of the first case in this limit purposed to avoid numerical
degeneracies.

Under constant applied ε̇ieij or Sij , the backstress, αij will evolve to a steady
state and saturate. This helps the constitutive law capture both primary and
secondary creeping response. According to Eqs. (2) and (3), an evolving αij

characterises the former and a saturated αij the latter. Let αss
ij denote the

saturated value of the backstress under constant ε̇ieij . Substituting α̇ij = 0 in
Eq. (3a), the steady-state or saturated backstress αss

ij is given by

αss
ij =

2µ0H

R
[

2[µ0H]2

[Rk]2

]

n−1
2n

ε̇ieij

(ε̇ieklε̇
ie
kl)

n−1
2n

. (5)

Use has been made of Gss = αss
ijα

ss
ij/(2k

2) obtained from Eq. (4) in deriving
Eq. (5). Eq. (5) implies that αss

ij is parallel in stress space to ε̇ieij , i.e., in Fig. 1,
ε̇ieij points in the direction of the join of the origin and αss

ij .
An expression of αss

ij in terms of stresses is obtained by substituting Eq. (2a)
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into Eq. (5). Let A = 2µ0H/R
[

2[µ0H ]2/[Rk]2
]

n−1
2n . Then,

αss
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F
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(Sij − αss
ij),

=
A
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[

1

2k2
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1

(Skl − αss
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]
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2n

(Sij − αss
ij).

(6)

Eq. (6) indicates that the tensors αss
ij and Sij −αss

ij are parallel, which is tanta-
mount to asserting that αss

ij and Sij are parallel:

αss
ij = CSij (7)

Substituting Eq. (7) into Eq. (6) yields the following non-linear equation for
scalar C:

C =
A

[2µ0]1/n

[

1

2k2
−

1

(1− C)2(SijSij)

]

n−1
2n

[1− C] (8)

2.2. Norton’s Power Law

Norton’s power law [24] relates the inelastic strain rate to stress in the sec-
ondary creep regime as:

ε̇ieij = (3/2)Bσn−1
e Sij , (9)

where, σe = (3SijSij/2)1/2. The constants B and n in Eq. (9) are identified
from the Robinson’s law, Eq. (2a) corresponding to the special case of uniaxial
tensile loading at constant Cauchy stress σ along, say the x1 direction. This
approach mimics the standard experimental procedure for identifying secondary
creep constants.

In uniaxial tension, S11 = 2σ/3, S22 = S33 = −σ/3, and S12 = S13 = S23 =
0. SijSij = 2σ/3, and Eq. (9) reduces to

ε̇ie11 = Bσn. (10)

B and n are obtained by fitting the steady-state ε̇ie11 − σ response determined
from Eq. (2), i.e., the response after α11 converges to αss

11 using the equation 7
and 8.

2.3. Short and long time limits

Instantaneously after load application, the stress state in the specimen is
identical to that given by linear elasticity [1]. At this instant, the crack tip
stress fields are completely characterised by the linear elastic stress intensity
factor, K [25]. With time, creep deformation develops to relax the near crack
tip stresses. At long times, the stress field approach a steady-state, given by
the Hutchinson-Rice-Rosengren field.

σij =

(

C∗

In B r

)1/(n+1)

σ̃ij(θ). (11)
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Here, r denotes the distance from the crack tip, and In a parameter dependent
only on n. The intensity of this field is characterised by the C∗ parameter.
Expressions for K and C∗ for compact tension specimens based on their geom-
etry and material properties are given by Tada et al. [25] and Shih et al. [26],
respectively.

2.4. Stress-based damage model

A simple and widely used expression for damage evolution [2, 1] is presently
adopted:

dω

dt
(r, t) =

Dσχ
nn(r, t)

(1 + φ)(1 − ω)φ
. (12)

σnn denotes the opening component of stress acting normal to the fracture plane.
The damage variable ω, which is assigned the value 0 before loading, evolves
toward value 1 under the applied stress. However, ω does not correspond to
a physically measurable quantity. r denotes the distance from the stationary
crack tip to the material point under consideration. Integrating Eq. (12) at a
fixed r yields

∫ t

0
σχ
22(r, τ)dτ =

1

D
[(1 − ω1)

1+φ − (1 − ω2)
1+φ]. (13)

Letting ω1 = 0 and ω2 = 1 and correspondingly letting t = tf , where tf specifies
the time to failure of the material point r ahead of the crack tip yields:

∫ tf (r)

0
σχ
22(r, τ)dτ =

1

D
. (14)

For a given spatiotemporal variation of opening stress σnn(r, t), Eq. (14) iden-
tifies tf(r).

2.5. Inelastic strain-based damage model

Damage evolution based on Eq. (12) leads to mesh-dependence of the nu-
merical results [27]. An alternative inelastic strain based damage evolution law,
due to Nikbin et al. [3], states:

dω

dt
=

ε̇ienn
εf

, (15)

where εf denotes the limiting creep strain, or creep ductility of the material.
εf also depends on the creep exponent and triaxiality. Again, ω evolves with
deformation from 0 to 1; local failure is implied when ω = 1. Integrating Eq. (15)
in time, the local failure criterion is obtained as

εienn(tf) = εf . (16)
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(a)
(b)

Figure 2: Finite element meshes of the (a) half compact tension specimen and (b) near crack-
tip region.
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Figure 3: Load point displacement predicted for the Robinson and Norton specimen for the
case of a stationary crack. The load point displacement evolves due to material deformation
and not due to damage evolution or crack growth.
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3. Results

Simulations are performed on a compact tension specimen, whose geometry
matches that of compact tension specimen #10 in the experimental study of
Maas and Pineau [22]. The ratio of the crack length to total length in this
specimen is 0.34, and the specimen is crept at an applied load of 12070 N. Plane
strain conditions are assumed. Large deformations are accounted for. The
global and crack tip meshes are shown in Fig. 2. All the elements are quadratic
brick elements with full integration.

The load point displacement predicted by both laws are shown in Fig. 3.
The load point displacements obtained from the two models diverge most sig-
nificantly from each other at short times, when the material is in undergoing
primary creep according to Robinson’s law, but secondary creep according to
Norton’s law. At longer times, the load point displacements converge by virtue
of the convergence of the mechanical response predicted by both models. It is
also important to note that both models do not account for damage evolution.
Therefore, the load point displacements predicted in Fig. 3 are only a conse-
quence of material deformation and not of material damage.
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Figure 4: Sensitivity of the predicted normal stresses ahead of the crack tip to the mesh-size
near the crack tip. Mesh sizes of 0.05 mm and 0.1 mm give practically identical predictions.

Robinson’s constitutive law has been implemented as a user defined material
(UMAT) in the finite element software, ABAQUS [28]. Details of the implicit
time integration and consistent tangent modulus calculation are given in Ap-
pendix A. The crack-tip region is meshed finely. The mesh size near the crack
tip is selected so as to eliminate mesh-sensitivity in the predicted stress fields.
Fig. 4 shows the normal stress ahead of the crack tip predicted for three crack
tip element sizes, 0.05 mm, 0.1 mm and 0.2 mm, 2000 h after load application,
i.e., well after the establishment of a steady state creeping zone ahead of the
crack tip. As seen, the stress variation predicted assuming the first two element
sizes are practically identical. Therefore, the element size selected in all further
calculations uses the smaller near-tip element size of 0.05 mm. Collapsed quar-
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ter-point quadratic elements surround the crack tip. The material parameters
assumed correspond to 21⁄4 Cr-1 Mo steel at 600◦ C, given by Robinson [18]:
µ0 = 3× 107 MPa h, H = 0.001/h, R = 0.0001/h, k = 10 MPa, G0 = 0.1 MPa,
and n = 4. Equivalent Norton law material parameters are determined as de-
scribed in Sec. 2.2: B = 3.467× 10−14 MPa−n/h and n = 4. ABAQUS’ in-built
power-law constitutive law is used for simulations assuming Norton’s law. Dam-
age exponent χ = 6.2 for 21⁄4 Cr-1 Mo steel [1]. For the present specimen, the
mode I linear elastic stress intensity, as given by Tada et al. [25] works out to
K = 1189 Nm−3/2, and the steady state C∗ = 0.0532 MPa mm/h according to
Shih et al. [26]. Riedel and Rice [29], in considering the stress fields ahead of a
crack tip, proposed a characteristic time t1, given by

t1 = K2(1 − ν2)/[(n+ 1)EC∗]. (17)

They suggested that elastic fields prevail ahead of the crack tip up to time t1 and
termed this regime as brittle. For time t > t1, they proposed assuming the time
independent C∗ field ahead of the crack tip, and termed this regime ductile. For
the presently studied material, t1 ≈ 0.03 h. For the time durations considered,
the present test conditions fall well within the ductile regime.

3.1. Stress fields
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Figure 5: Predicted spatiotemporal variation of stress σnn in the crack plane, in the (a)
Robinson and (b) Norton specimen.

Comparing the stress contours obtained from a finite element simulation
assuming a linear elastic material with the asymptotic K field given by Tada
et al. [25] (not shown) suggests that the region of K-dominance is limited to
0 mm ≤ r ≤ 2 mm. A similar comparison of the steady-state asymptotic
solution given by Shih et al. [26] with the long time finite element solution
indicates that the C∗-dominated field also approximately has the same range.
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The spatiotemporal variation of the opening stress component σnn predicted
in the Robinson and Norton specimens is presented in Figs. 5a and 5b, respec-
tively. In each of these figures, σnn coincides at t = 0 h with the linear elastic
solution within the range of K-dominance and approaches the steady-state so-
lution at t = 2000 h. The stress fields vary rapidly in both cases near t = 0 h.
The rate of approach to the steady-state C∗ field is faster in the Norton speci-
men, Fig. 5b, than in the Robinson specimen, Fig. 5a. The stress evolution with
time predicted by both laws at each material point is seen to be non-monotonic
over a certain range of r. The timescales considered here (hours) is orders of
magnitude more than t1, given by Eq. (17), for the present specimen. Yet, the
stress-fields deviate substantially from the time-independent C∗-field given by
Eq. (11).

The stress-states predicted by the time-independent C∗ field (not shown)
will plot as a series of straight vertical contours when depicted in the format of
Fig. 5. It is clear that the stress-state in the Robinson and Norton specimen
approach the C∗ stress distribution only at very long times.

3.2. Primary and secondary creep
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Figure 6: Spatiotemporal variation of αnn/αss
nn. αnn/αss

nn ≈ 1 indicates secondary creep.

The stress fields in the Robinson and Norton materials differ because while
Robinson’s law accounts for primary creep through an evolving internal back-
stress, αnn, Norton’s law does not. The ratio of the current back stress to
the saturation back stress, αnn(r, t)/αss

nn(r, t) at each spatiotemporal point indi-
cates the stage of creep. αnn(r, t)/αss

nn(r, t) ≈ 1 indicates secondary creep, while
αnn(r, t)/αss

nn(r, t) ≪ 1 indicates primary creep. Fig. 6 plots the spatiotemporal
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variation of αnn(r, t)/αss
nn(r, t) in the Robinson specimen. Secondary creep is

first established close to the crack tip.

3.3. Time to failure

The times to failure, tf given by Eqs. (14) and (16) predicted for the Robinson
and Norton specimens using the two damage models of Sec. 2.4 and 2.5 are now
compared. These times to failure are also compared against the time to failure
predicted assuming the C∗ field.
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Figure 7: Spatiotemporal variation of time to failure tf ahead of a stationary crack, following
the stress-based damage model (Sec. 2.4), (a) assuming the same parameter D associated
with both constitutive laws, and (b) assuming different ‘fitting’ parameters associated with
Norton’s law, as given in Tab. 1.

Consider a reference damage rate coefficient D0 = 1.425× 10−21 MPa−χ /h.
Fig. 7a plots the spatial distribution of tf for three assumed damage coefficients:
D/D0 = 1, e2, and e4. tf decreases with increasing D, in accord with Eqs. (12),
and (14). For small D/D0 = 1 the rate of damage is slow and failure occurs at
long times. The significantly damaged region, i.e., the process zone, is confined
in this case near the crack tip. The rate of damage accumulation and the extent
of the process zone increases with increasing D/D0. It is reiterated that the
time to failure, tf is obtained presently under the assumption of a stationary
crack. The reciprocal of the slope of the contour lines of constant D/D0 shown
in Fig. 7a should not be interpreted as the speed of crack propagation.

For small D/D0 = 1, a smaller tf is predicted in the Robinson specimen than
in the Norton specimen. At larger D/D0 ≥ e2, a switchover occurs: near the
crack-tip, the Norton specimen has a smaller tf , while away from the crack-tip,
the Robinson specimen has a smaller tf . The C∗ field, being a lower bound on
the stresses predicted by both Norton and Robinson laws, always over-predicts
tf relative to both.

Even though tf predicted in the two specimen differ systematically, the pos-
sibility of ‘fitting’ the tf predicted in the Robinson specimen by adjusting D
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Table 1: Damage parameter D/D0 used with Norton’s law to ‘fit’ the time to failure, tf ,
predictions obtained from Robinson’s law.

D/D0, Robinson’s law D/D0, Norton’s law
e0 e0.2

e2 e2.1

e4 e3.83

in the Norton specimen is now considered. Tab. 1 shows the adjusted D used
in obtaining the fit shown in Fig. 7b. The largest deviations between the tf
predictions of the two models occur at the smallest D/D0 = 1, and the smallest
deviations at the largest D/D0 = e4.
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Figure 8: Spatiotemporal variation of time to failure tf ahead of a stationary crack, following
the inelastic strain-based damage model (Sec. 2.5), (a) assuming the same parameter εf asso-
ciated with both constitutive laws, and (b) assuming different ‘fitting’ parameters associated
with Norton’s law, as given in Tab. 2.

Analogously, tf predicted in the Robinson and Norton specimens using the
inelastic strain-criterion, Eq. (16), are shown in Fig. 8a. tf predicted in the
two specimens are even more widely separated than in the stress-based model,
for εf = 0.001 and 0.004. It was attempted to match the tf predicted in the
Robinson specimen and with that obtained in the Norton specimen. The damage
parameter εf in the latter specimen were modified in order to obtain the best
match. The best match is shown in Fig. 8b. The corresponding εf used in con-
junction with Norton’s law are listed in Tab. 2. While reasonably good matches
are obtained for all three εf considered, the quality of fit clearly improves with
decreasing εf .

The times to failure, tf , of material points ahead of a stationary crack were
determined above for various D and 1/εf , in Figs. 7 and 8. Failure of material
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Table 2: Damage parameter εf used in the Norton specimen to fit the time to failure, tf ,
predictions obtained from the Robinson specimen.

εf , Robinsons’s law εf , Norton’s law
0.004 0.00235
0.001 0.00062
0.0001 0.00008

points ahead of the crack tip corresponds to crack propagation. The mechanical
fields ahead of a propagating crack will depend on the history of crack growth.
For slow crack propagation, which corresponds to small D or 1/εf , the mechan-
ical fields ahead of the propagating crack may still be approximated by those
ahead of the presently considered stationary crack. For fast crack propagation
corresponding to larger D or 1/εf, the stationary crack’s mechanical fields will
not apply even approximately [29]. The results presented in this section are
therefore, physically meaningful only for small D or 1/εf .

4. Discussion and conclusions

It has been shown that the time to failure of material points ahead of a
stationary crack predicted in a history-dependent Robinson specimen can be
matched to those predicted in an equivalent history-independent Norton speci-
men simply by altering the damage parameter D or 1/εf in the latter.

The present assumption of a stationary crack remains valid until the initi-
ation time of crack propagation. This time, defined by Maas and Pineau [22]
as the time needed for the crack to extend a microstructural distance of 50 µm,
has been reported as 207 h, which is about one-sixth of the total test duration,
for the presently studied specimen. When applied to this setting, the aforemen-
tioned result implies that the crack speed at the end of the initiation time in the
Robinson specimen can be captured by a Norton specimen simply by a change
of the damage parameter. If Robinson’s law is taken to accurately describe the
creep law of the physical material, this means that equal predictive accuracy is
possible with the simpler history-independent Norton’s law.

The present stationary crack may also be regarded as the limiting case of slow
creep crack propagation, wherein the time scale of crack propagation is much
larger than the time scale for the establishment of steady-state creep ahead of
the crack tip [29, 30]. Consider the limit, opposite to that of the present study,
of fast crack growth. In this limiting case, the time scale associated with crack
growth will be much smaller than that associated with creep deformation. Crack
growth will occur in a predominantly linear elastic specimen, with creep strains
being appreciable only near the crack tip [29]. In this case, the specific creep
constitutive model will cease to be important. Therefore, no adjustment will be
needed in the damage parameter D or 1/εf to match predictions obtained from
the Robinson and Norton specimens.
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Next, consider the case of a crack propagating at any non-zero speed. In this
case, the mechanical fields ahead of the crack tip will depend on the prior history
of crack growth. It is interesting to ask if the present result will also apply to this
case. That is, can the damage evolution predicted ahead of a propagating crack
in a Robinson material also be captured by Norton’s law by adjusting the dam-
age parameters? While the present work does not directly address this question,
the foregoing considerations suggest an affirmative answer in both limiting cases
of slow and fast crack growth. This suggests that it may be possible to obtain
equivalent damage parameters for any intermediate crack speed. However, the
adjusted damage parameters may vary with crack speed. If this variation were
significant, the damage parameters used in the aforementioned works may need
modification in order to be applicable to other loading conditions producing
markedly different crack speeds.

In the single loading condition studied, Oh et al. [10] and Wen et al. [11],
obtained excellent agreement between experiment and model predictions using
history-independent constitutive laws. This further suggests the existence of a
valid damage parameter adjustment corresponding to their loading condition.
However, if the variation in the adjusted damage parameters with crack speed
were significant, the damage parameters used in the aforementioned works may
need modification in order to be applicable to other loading conditions produc-
ing markedly different crack speeds.

As noted in Sec. 3.3, for the stationary crack, which is the limiting case of
slow crack growth, only small values of the damage parameters D or 1/εf are
physically meaningful. This regime corresponds to significant damage accumu-
lation only near the crack-tip. In the case of fast crack propagation too, the
zone of significant damage, i.e., the process zone, will be confined well within
the ‘small scale yielding zone’, defined by Riedel and Rice [29]. The smallness
of the process zone in both limiting cases suggests that the same will be true
for any crack propagation speed. This implies that the load point displacement
must only be slightly affected by the damage evolution; the bulk of its contribu-
tion must arise from crack opening and material creep deformation. During the
initiation period for creep crack growth, the latter contribution will dominate,
and as shown in Fig. 3, will be sensitive to the creep constitutive law. The ac-
curacy of the assumed creep constitutive law can be judged by comparing the
predicted and measured load point displacements at small times. At long times,
creep deformation of both Robinson and Norton specimens approach each other,
and in any case, the dominant contribution to the load point displacement is
from the crack opening. Therefore, load point displacements will not be sensitive
to the creep constitutive law at long times.
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Appendix A. Numerical implementation of Robinson’s law

Appendix A.1. Implicit time integration
Numerical integration must be used to solve the ordinary differential equa-

tions in the constitutive model. The backward Euler method is used for numeri-
cal integration due to its unconditional stability [31]. The generalized backward
(implicit) Euler equation for the evolution of an arbitrary variable X between
time steps m and m+ 1 follows:

Xm+1 = Xm +∆tẊm+1 (A.1)

The inelastic strain rate in Robinson’s model, Eq. (2), may be expressed as:

ε̇ie = γn̂ (A.2)

where, γ =
[

F
n−1
2 /2µ0

]

∥ξij∥ represents the equivalent plastic strain rate, and

n̂ = ξ/∥ξ∥ is the normal to the yield surface. Applying the backward Euler
method, Eq. (A.1), to Eq. (A.2) yields:

εiem+1 = εiem +∆γm+1n̂m+1 (A.3)

where,

∆γm+1 = γm+1∆t =

⎡

⎣

F
n−1
2

m+1

2µ0

⎤

⎦ ∥ξm+1∥∆t. (A.4)

Similarly, one can also apply backward Euler method for the internal stress
evolution, given by Eq. (3):

αm+1 = αm +

[

2µ0H

Gβ/2
ε̇ie −RG

n−β−1
2 α

]

m+1

∆t. (A.5)

This can be simplified as

αm+1 = αm +K1n̂m+1 −K2αm+1, (A.6)

where,

K1 =
2µ0H∆γm+1

[αm+1:αm+1

2k2

]β/2
, and K2 = R∆t

[αm+1 : αm+1

2k2

]

n−β−1
2

.

The classical radial return mapping algorithm [31] is used to estimate un-
known stress tensor and the internal stress tensor at time step m+1. Following
this method, a trial stress tensor ∥ξtrialm+1∥ is estimated assuming that the strain
increment is purely elastic. The trial stress and radial return are depicted in
Fig. (A.9). Following the standard procedure, the effective stress tensor at time
m+ 1 is obtained as

∥ξm+1∥ = ∥ξtrialm+1∥ − [K3 + 2µ]∆γm+1 +K2αm+1 : n̂m+1. (A.7)
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Figure A.9: Geometric interpretation of the return mapping algorithm with kinematic hard-
ening [31]

Appendix A.2. Consistent tangent modulus

In computing the material response, ABAQUS imposes a strain-increment
at each element integration point [31]. The user-material, or UMAT subroutine
fed into ABAQUS must update the stress tensor, internal variables and also
the tangent modulus to the end of the imposed strain increment. The tangent
modulus is the rate of change of incremental Cauchy stress tensor σ with respect
to the incremental strain tensor ε.

The consistent tangent modulus [31, 32] accounts for the algorithmic proce-
dure of determining the stress-state at the end of the imposed strain increment,
in contrast to the elastoplastic tangent modulus which does not account for the
radial return algorithm and depends only on the constitutive law.

Assuming a Hookean elastic material, the expression for stress tensor at the
end of the strain-increment m+ 1 can written as:

σm+1 = κ(trace[εm+1]) + 2µ(em+1 −∆γn̂m+1), (A.8)

where e is the deviatoric strain, and where κ and µ denote the bulk and shear
moduli, respectively. Differentiating Eq. (A.8) with respect to strain tensor
εm+1 and by using the chain rule,

dσm+1

dεm+1
= κ1⊗1+2µ[I−

1

3
1⊗1]− 2µn̂m+1⊗

∂∆γm+1

∂εm+1
− 2µ∆γ

∂n̂m+1

∂εm+1
(A.9)

is obtained. Here, 1 and I denote identity tensors of rank 2 and 4, respectively.
Substituting Eq. (A.4) and Eq. (A.5) into Eq. (A.9, and performing algebraic

manipulations yields the final form of consistent tangent modulus tensor as

∂σm+1

∂εm+1
=

[

3κ− 2µD1

3

]

1⊗ 1+ 2µD1I − 2µD2n̂m+1 ⊗ n̂m+1 (A.10)

where,

D1 = 1−
2µ∆γm+1

∥ξtrialm+1∥
,
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D2 =

[

C2 −
2µ∆γm+1

∥ξtrialm+1∥

]

,

C1 =
∂∆γm+1

∂∥ξm+1∥
, and

C2 =
2µC1

1−K4C1
.
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