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Abstract

We present a shear-lag stress analysis methodology which accounts for both matrix
strain-hardening plasticity and interfacial slip in a single fiber metal matrix com-
posite (MMC) subjected to uniaxial tensile loading and unloading along the fiber
direction. The fiber may either be broken or intact. Among other things, the model
predicts residual stress and strain distribution after a cycle in the fiber and matrix.
The development of the model is motivated by the recent measurement (Hanan et
al [1]) of elastic strain evolution with loading in each phase of an AlyO3/Al compos-
ite using neutron diffraction. The model also estimates two crucial in-situ material
parameters using these measurements, which cannot be obtained from bulk tests:
the frictional threshold of the interface, and the in-situ yield point of the matrix.

With these parameters, the predicted elastic strain evolution with loading is in
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excellent agreement with the experimental data.

Key words: metal matrix composites, damage mechanics, shear-lag model,

interfacial slip, matrix plasticity

1 Introduction

Shear-lag models are often used for fast computational stress analysis of large
unidirectional fiber-reinforced composites with partial damage. The superior
computational efficiency of these models relative to e.g., three-dimensional
finite element analysis, stems in part from the simplifying assumption of one-
dimensional displacement and stress fields. Shear-lag models do not provide
detailed information about the spatial variations of stresses and displacement
within the composite. Nevertheless, they capture the average stress field over
fiber and matrix cross-sections accurately enough for purposes of material
failure predictions. An application where shear-lag stress analysis is preferred
over more detailed methods on account of its speed arises in the statistical
study of composite strength distributions through Monte-Carlo simulations
(see Mahesh et al [2] and references therein). In these studies, one simulates
damage evolution in composite specimen containing a few thousand fibers.
Stress analysis, which must be repeated at each incremental damaged state
is the slowest step of this computationally intensive procedure, and shear-lag

models are presently the fastest way to execute it.

Shear-lag models for unidirectional composites vary in their degree of com-
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plexity. Some models pertain to single fiber composites, while others apply
to multi-fiber composites with various fiber arrangements (2D, 3D square /
hexagonal lattice / random arrangement). The material behavior of the com-
posite constituents, viz., fiber, matrix and interface constitutive laws and load-
ing conditions (monotonic / cyclic, mechanical / thermal / thermomechanical)

also distinguish different shear-lag models.

The first single fiber shear-lag model was developed by Cox [3]. He considered
a broken elastic fiber embedded in an elastic matrix with a perfectly bonded
interface and loaded in tension along the fiber direction. Aveston and Kelly [4]
and Budiansky et al [5] extended Cox’s model as a part of their multi-fiber
composite model to the case that the interface may debond and slip if the in-
terfacial shear stress exceeds a certain threshold. More recently, Cox’s model
has been considerably refined by Hsueh [6,7] for bonded, and debonding inter-
faces. In Hsueh’s solution, the displacement and stress fields in the fiber and
matrix show both axial and radial variation and exactly satisfy certain bound-
ary conditions only approximately satisfied by Cox’s solution. The shear-lag
model of Hsueh et al [8] includes the effect of thermal residual stresses in a

composite with an elastic fiber and matrix and a bonded interface.

The case of a multi-fiber unidirectional composite tape with stiff elastic fibers
embedded in a compliant elastic matrix and subjected to tension along the
fiber direction was first analyzed and solved by Hedgepeth [9] in the shear-lag
framework. Hedgepeth’s model, applicable best to a polymer matrix compos-
ite, assumes a perfectly bonded interface and a compliant matrix incapable of
carrying tensile load. Since this pioneering work, shear-lag models have been
developed for a variety of different fiber-matrix-interface constitutive com-

binations, fiber arrangement geometries, and loading conditions. Hedgepeth



and Van Dyke [10] extended the model to account for three-dimensional fiber
composites in which the fibers are arranged in a hexagonal or square lattice.
Landis et al [11] developed a model for the case of a matrix with non-negligible
stiffness and which therefore also carries tensile load. Lagoudas et al [12] and
Beyerlein and Phoenix [13] extended the shear-lag model to the case of a

composite with elastic fibers, viscoelastic matrix and bonded interface.

The present work is motivated by a recent experiment by Hanan et al [1].
They cyclically loaded in tension a single Al,O3 fiber / Al matrix composite
and measured the elastic strain separately in the fiber and the matrix, using
neutron diffraction. The fiber was broken at the mid-point of the composite.
Preliminary analysis reported in [1] suggests that the important damage events
in this experiment are fiber fracture, matrix yielding and strain-hardening,
and interfacial debonding. The primary goal of the present work is to obtain
a deeper understanding through modeling, of the damage evolution in this
composite (especially matrix plasticity and interfacial slip evolution) during
this experiment. It is assumed that an elastic fiber is embedded in a ductile
linear strain-hardening plastic matrix with non-negligible tensile stiffness rel-
ative to the fiber. Frictional slip, with a prescribed shear threshold is assumed
to occur at the interface. The stress response in the course of one load-unload
cycle of axial tension along the fiber direction is described in Sections 2 and 3.
Residual strains are not considered, i.e., further load cycling in the model does
not result in a different stress evolution from the original cycle. Strain predic-
tions of the present model are compared with measured values in Section 4

for model validation.

Despite its approximate nature, we pursue a shear-lag approach rather than

axisymmetric finite element calculation to interpret the Hanan et al experi-



ment for two reasons. First, we anticipate numerical difficulties in the finite
element calculations due to the concurrence of the crack-tip field, extensive
plasticity in a ductile matrix and interfacial slipping near the fiber fracture.
These difficulties, which may need ad-hoc assumptions (e.g., artificial crack
blunting) to overcome in the finite element calculation, can be handled ele-
gantly in the shear-lag model as will be seen in Sections 2 and 3 below. Nev-
ertheless, such a detailed axisymmetric calculation, left to later work, would
be valuable in further validating the shear-lag model presented here. Second,
once developed and validated, it is a conceptually straightforward task to ex-
tend the present single fiber shear-lag model to a multi-fiber composite. The
multi-fiber composite model, will be of greater practical use than a corre-
sponding three-dimensional finite element model, as stated at the beginning

of this section. Such an extension is also left to future work.

2 Shear-Lag Model of Monotonic Loading

2.1 Geometric and Kinematic Assumptions

The model composite of length 2¢ consists of a single cylindrical fiber of radius
a encased in a cylindrical matrix of radius b as shown in Figure 1a and is loaded
in tension along the fiber (z) direction. Load is applied to the matrix at z = +/.
For purposes of modeling, we follow Aveston and Kelly [4] and Budiansky et
al [5] and separate the matrix into distinct parts. We term these the tensile
matriz and shear matriz as shown in Figure 1b, and assume they are loaded
in pure axial stress and pure shear stress, respectively. The tensile matrix has

a cross-sectional area of 7(b? — a?) and is assumed to be situated at radial



coordinate r = R, a < R < b. The two works cited above assign different
meanings to the quantity R: Aveston and Kelly [4] regard it as the radius
where the matrix z-displacement equals the average z-displacement of the
cross-section, while Budiansky et al [5] give it an energy interpretation. In the
present model, we will take R = (a+b)/2, since the results are not sensitive to
its precise value except when R/a ~ 1. This value for R corresponds to Aveston
and Kelly’s prescription if we assume the matrix z-displacement varies linearly

In a cross-section.

As stated in the introduction, shear-lag models typically treat displacements
as one-dimensional fields. Accordingly, let ws(z), and wyy,(z) denote the dis-
placement of the fiber and the tensile matrix, respectively. We will assume
small displacements throughout. Then, we may define the strain field in the

fiber and tensile matrix respectively as

ei(s) = D),
duw, (1)
e (2) = dzm (2).

Furthermore, the tensile matrix strain field may be separated into elastic and
plastic parts,
1 1
Etm(2) = €n (2) + €l (2), (2)

and corresponding displacement fields defined as

(3)

Since the fiber is assumed always elastic, such a decomposition is not carried
out for its elastostatic fields. Another displacement field of interest is the
slip displacement w,(z) which occurs at the interface between the fiber and

the shear matrix. The slip displacement w,(z) is the relative displacement



in the between the fiber and the shear matrix at their interface as depicted

schematically in Figure 2c.

Let wgy,(r, 2z) be the displacement field in the shear matrix. Then, the shear

strain field in the shear matrix 74, (r, z) may be defined as

We immediately note an important relation concerning 7y, (r, 2):

R R
/ Ysm (T, 2) dr = / 81;;771 (r,z) dr

= Wep (R, 2) — wsm(a, 2) (5)

= Wi (2) — wy(2) — wa(2)

to be used in Sections 2.3 and 3.2 below. The last equality in Eq. (5) comes
from assuming displacement continuity across the shear/tensile matrix inter-
face, and the discontinuity to the extent w, across the fiber/shear matrix

interface as shown in Figure 2.

Obviously, all of these stress and displacement fields are also a function of the
applied composite stress o, = f./(7b?) where f, is the axial force applied to
the composite. This dependence is however left to be tacitly assumed for the

sake of notational brevity.

2.2 Constitutive Assumptions

The fiber is assumed to deform linear elastically following the one-dimensional

Hooke’s law:

or(2) = Epeg(z) (6)



where Ey is the elastic stiffness of the fiber, and oy denotes the fiber stress.
On the other hand, the uniaxial stress-strain (o,—¢,) curve of the matrix in a
tension test is approximated as consisting of a linear elastic part and a linear

hardening part. That is,

Eie,, if o, < oUA,

Oy = (7)
Eyey + (BEy — Ep)eV®, if o, > oyh,
where
ey = oy /By, (8)
and o{* is the matrix yield stress under uniaxial tension, F; the matrix elastic
stiffness, and E, its hardening rate. Extending an idea of Prager (see Hill [14,

pp 49]), Eq. (7) can be regularized as

, E, — Ey)e,
oy = oy tanh (%) + Esey. (9)
Oy
With
USAI = UgA (1—-Ey/E), (10)

the two branches of Eq. (7) are asymptotic limits of Eq. (9). The differen-
tiability of Eq. (9), not available in the form Eq. (7) will prove valuable in
the numerical solution of the governing equations in Section 2.4 by gradient

methods.

Figure 3 shows the measured uniaxial stress-strain curve for bulk (monolithic)
Al 6061 together with the two branches of Eq. (7) whose parameters E;, Ey
and OE,A,, are appropriately fit. It is seen that the measured curve is well approx-
imated by Eq. (7). As can also be seen, Eq. (9) is an even better approximation
of the measured stress-strain curve. We emphasize that 0’37Ab denotes the yield

point of the monolithic matrix material, which in general will differ from the



yield point on the in-situ matrix material in uniaxial tension denoted by o2,

Typically, ay b < oU2 if the composite manufacturing process involves heat

treatment which may yield and harden the matrix.

We next deduce the pure shear stress-strain (7,-7,) response from Eq. (7)
using Nadai’s deformation theory (see Budiansky [15]) for a matrix material

point deforming under pure shear. According to Nadai’s theory,

E.(0) (11)

in uniaxial tension from which, comparing with Eq. (7) we find for the modulus
Es

E, if o, <oY?
Eq(o.) = (12)
e 1 B
05E1—JU¥‘§(E21—E2)’

if o, > oyA.
Here o, denotes the equivalent stress. o, = o, in uniaxial tension. In a state
of pure shear with shear stress 7,, 0. = /37,. Also, the yield point in the case

UA

of pure shear, 774 is related to the yield point in uniaxial tension, oU# by the

von Mises criterion as
=yt /V3. (13)

Now, Nadai’s theory, specialized to the case of pure shear gives

3 /T T, T,
_ 2 (T _Tu)  Tu 14
T Q(ES E1>+G1 (14)

where G is the elastic shear modulus. Since o, = /37, in the case of pure

shear, this can be written using Eq. (12) as

& if 7, <A

Yu = (15)
Tw _ ~UA _ 1 : UA
o — Ty (G2 Gl) , it T > Ty



where
1 1 371 1
— =+ = - = 16
G2 G1 + 2 (E2 El) ( )
denotes the reciprocal hardening of the shear response. Inverting Eq. (15), we

obtain in parallel with Eq. (7),

GV, if 7, < T4,

Ty = (17)
Goyu + (G1 — Go)wh, if 7 > 194,
where
wh=1"/Gr. (18)

Regularizing this expression exactly as before in Eq. (9), we have

r = " tanh <7(GITJA,G2)%> +Gov (19)
Y

where 70 = 704 (1 — G2 /G1).

We now turn from the uniaxial response of the matrix material either in pure
tension, Eq. (9) or pure shear, Eq. (19) to its in-situ response in the composite.
In the composite model of Figure 1la, even assuming only z-displacements
everywhere, matrix material points deform in a combined state of tension and
shear. If the tensile and shear stress at a certain fixed material point are ¢ and
7, then the equivalent stress at that point is given by /62 + 372. To similarly
couple yielding in both the tensile and shear matrix at each cross-section of

Figure 1b, we define the equivalent stress at a cross-section z as

0 (2) = /0l (2) + 372, (7, 2), (20)

where a < 7 < R denotes a characteristic radial distance representative of the
shear stress state in the shear matrix, and will be defined below in Eq. (44).

Otm(2) and Tgy(r, 2) denote the in-situ stress fields in the tensile and shear

10



matrices respectively. We then take the yield criterion for the cross-section z

as

0e(2) = /0hu(2) + 372 (7, 2) = oP* = VBRI, (21)
The value of oy, (2) and 7, (7, z) which meet this criterion will be labeled as
oy(z) and 7y (z). For use in the regularized constitutive laws, we also define

oy (2) = oy (2)(1 — Ey/E,), and
(22)

Ty (2) = v (2)(1 — G2/G1)
With this adjustment for the yield point at each cross-section, we assume the
in-situ response of the tensile and shear matrix material points to be identical
in form to Eq. (9) and Eq. (19):

(E1 — Ey)em(2)

oy (2)

im(2) = 0 (2) tanh ( ) + By (2), (23)

and
(Gl - G2)’Ysm(’r> Z)

v (2)

ram (1, 2) = 7 (2) tanh ( ) (7). (24

Since it will prove convenient for algebraic manipulations later, we also record
here the bilinear form of the approximation Eq. (24):

G1Ysm(r, 2), if Tom < 1v(2),
Tom (T, 2) = (25)

GoYsm + (1 — g—f)Ty(z), if Tom > 1v(2).
oy(z) and 7y (z) must be calculated using an iterative incremental analysis,
in each step of which the matrix yield zone and the stress field are adjusted
until the yield condition o.(z) > oV is satisfied for z within the yield zone
and not outside. For simplicity however, we follow the following approximate
procedure for estimating them a priori. Suppose the stress field in the tensile

and shear matrices for a linear elastic matrix and a perfect interface are known

11



to be 0,(z) and 7,(r, z) respectively. We assume that

oy(2) _ op(2)
v (7, 2)  T(F,2) (26)

i.e., the actual stress state at a cross-section on the verge of yielding is the
same as it would be if the rest of the matrix were elastic and the interface
perfectly bonded. Qualitatively speaking, the matrix constitutive assumptions
made here will be valid so long as the composite loading is confined to a level
such that the strain in every matrix material point is only a few times the
yield strain, and the yielded length of the matrix is small (comparable to the
fiber diameter). Precisely quantifying these limits will take a more detailed

calculation, and is not done here.

Combining Eq. (26) and Eq. (21), we then have for each z,

oy (2) = J?A =, and
J1+ 3(71;(5;»2)/ ap(2)) (27)
Ty (2) =

\/3 + (0p(2) /75(T, 2))?
Eq. (23) and Eq. (24), together with Eq. (27) completely specify the consti-
tutive law of the tension and shear matrices in-situ for each cross-section z

provided the elastic fields 0, and ¢, can be determined.

We next turn to a slipping criterion for the interface. A frequently used model
assumes that the interface slips an indeterminate amount at a certain cross-
section z if the shear stress exceeds a frictional threshold 7* at that cross-

section z, i.e.,

0, if 7;(2) < 1%,
we(z) = (28)

c sign(r(z)) if 7i(z) =77,

where c is determined only to the extent that ¢ > 0 and 7* defines a frictional

12



slip threshold. In the present work, we use a regularized form of Eq. (28), viz.,

n

i(2) sign(7;(2)). (29)

Wy (Z) = Wy pan

The exponent n determines the rapidity of the stick-to-slip transition. As
seen in Figure 4 the constitutive law Eq. (29) approaches that expressed by
Eq. (28) as n — oo and is a good approximation for even n = 30. Choosing n
much larger than this typically leads to difficulties associated with the floating
point representation of numbers in computers. n is not a parameter of the
present model; it should be chosen to be large enough so that Eq. (29) well
approximates Eq. (28), but not so large as to cause floating point underflow
problems. Also, for a fixed n, the model is unaffected by the individual values
of wye and 7* and only depends upon wyo/7*". Anticipating the order of
magnitude of w, in Section 4, we take w,o = 0.01 mm and treat 7* as the only
parameter to facilitate explanation. Obviously, any arbitrary w,, would do
equally well and the corresponding 7* would scale accordingly. The regularized
Eq. (29), being differentiable for |7;(z)| > 0, is amenable to a gradient-based

numerical solution scheme for the governing equations below.

2.3  Governing Equations

The governing equations of the present problem consist of two differential
equations: one expressing equilibrium of the fiber, and the other the equilib-
rium of each composite cross-section, and one algebraic equation expressing
the slip condition Eq. (29). In formulating these, we ignore any pre-strains in

the composite.

Based on the free body diagram for the fiber shown in Figure 1c, we write

13



the one-dimensional equilibrium condition for the fiber along the z-direction

as follows:

m2%(z) + 9rar(z) = 0, (30)
z

where ma? is the fiber cross-sectional area, 27a its circumference and 7;(2) is
the interfacial shear stress at coordinate z in the fiber direction. Simplifying,
we get

do 2
d—zf(z) + aTi(z) =0. (31)

Since tensile force must be conserved in every z cross-section, and the shear

matrix transmits no tension, we have

d
%[mfaf(z) +7(* — a*)oym(2)] = 0, (32)
or,
doy b? — a? doy,y, _
7 (z) + 4, (z) =0. (33)

Here, 7(b* — a?) is the cross-sectional area of the matrix (Figure 1a).

We next express the equilibrium equations Eq. (31) and Eq. (33) in terms
of the displacements fields wy(z), wy,(2) and w,(z) using the constitutive
assumptions for the fiber and matrix materials. For the fiber, we readily have
o; = Erdwy/dz from Eq. (6). Thus,

de d2wf
—I_F .
dz I dz2

(34)

Differentiating the constitutive law Eq. (23) for the tensile matrix, and using

Eq. (1), we also have

d;;m (2) = (Sech2 (%dﬁm (z)> (B, — Ey) + E2> @(z)- (35)

The representation of 7;(z) in terms of the displacement fields is somewhat

14



more involved. Solving the equilibrium equation of the shear matrix,

OTsm Tem(1,2)
By (ry2z) + — = 0 (36)

with the interfacial boundary condition 7(r = a, 2z) = 7;(2), we obtain

at;(2) . (37)

Tem (T, 2) = .

From Eq. (25), we have for the constitutive equation of material points in the
shear matrix,

ati(z G1Ym (1, 2), if T (7, 2) < 1y (2)
Tsm(T, 2) = (2) = ! (38)

”
GoYm (1, 2) + Glc;lGZTY(z), if 7o (7, 2) > v (2).

Integrating both sides from r = a to R, and using Eq. (5), we obtain

(

Gr(wim(2) —wyp(2) —wy(2)), if Tem(F, 2) < v (2),

a7i(z) log <§) =\ Ga(wim(2) — wy(2) — wa(2))

"rGlG;lG?Ty(Z)(R —a), if Tom(7,2) > 1y (2)-

(39)

Suppose z* is such that 7, (7, 2*) = 7v(2%), i.e.,

at;(2*)

= 1y (2%) (40)

,F
and the switch occurs from one branch to the other in Eq. (39) at z = 2*.
z = z* thus is the axial location of the boundary between the plastic and
elastic regions of the matrix. Now, 7; must be a continuous function of z for

equilibrium of the shear matrix at z = z*. This implies the continuity of the

right side branches of Eq. (39), i.e.,
Wi (27) — wy(2") = we(2") = 7y (") (R — a) /G, (41)

15



Condition Eq. (41), together with the equality with first of the branches of

Eq. (39)
ati(2") log(R/a)/G1 = wim(2") — wy(2") — ws(2") (42)
implies )
7i(z") = %. (43)

Comparing Eq. (43) and Eq. (40), we find

R-a

= log(R/a) “

1l

It is easily verified that a < 7 < R. Setting 7 according to Eq. (44) thus ensures
continuity of the right side of Eq. (39) at the boundary z = 2* between the
yielded and elastic cross-sections of the matrix defined according to Eq. (21).

We may now rewrite Eq. (39) as

’

oty (Wim (2) — wy(2) — we(2)), Til(z) < HETS,

7i(2) = 5 (wim (2) — wy(2) — wa(2)) (45)
G1=G» Ty (2)(B—a) 7y (2)(R—a)
{ G alog(Rja) Ti(2) 2 aloa(F/a) -

Regularizing this expression along the same lines as Eq. (9), we finally obtain

T'Z:wan &;—02’11) Z) —WeZ) — Wi\ Z

G
b O i (2) — wr(2) — w2

Thus, we have expressed all the terms in the equilibrium equations Eq. (31)
and Eq. (33) in terms of displacement fields. Resubstituting, we can write a

pair of governing differential equations:

Pwg v 2B oa) TG =G N (s
i) dz2 (2) + aﬂog(R/a)t h T}I/(R_a)( tm (2) f( ) (%)) ()
2G,

o1 b/ N\ m — Wg| = 0
Zlog(fija) Wim ~Wr ]

16



obtained using Eq. (46) and Eq. (31), and

dPPwp bV — a® d*wyy
dz? + a? dz? (2)x
E{—F
lsech2 < L 2 dwtm(z)) (Ey — Ey) + EQ] =0

oy (2) dz

Ey
(48)

obtained using Eq. (35) and Eq. (33). The slip constitutive equation Eq. (29)

supplies an algebraic governing equation:

_Wa (R Gi=G
alog(R/a) v (R a)tanh(T{/(R_a)(wtm wy ww)>

(49)

n

+ Go(wpm — wy — wy)| sign(r(z)) —wy(2) =0

upon substituting 7;(z) from Eq. (46). The three governing equations Eqs. (47)
— (49) in three variables wy,(2), ws(z), and w,(z) must be solved subject to

the following four boundary conditions:

(7 =0)=0 if the fiber is broken,

we(z =0) =0 if the fiber is intact,
L&, b2o, < Jy(g),
d/lcli];m (Z — g) — b2 —q2 F1 22 = (51)
2 2
prass — (= m) ov(0, 2% > ov(0),
wim(z = 0) =0, (52)
and
dwf
—(z=1£)=0. 53
dz (z=1) (53)

Note that the loading boundary condition Eq. (51) prescribes the strain in the
matrix at z = £ with reference to stress o.b*/(b? — a®) which is the local stress
in the matrix assuming all the load is applied to it uniformly. Note also the
matrix strain is prescribed depending on whether or not the tensile matrix

has yielded at z = /.

17



2.4 Numerical Solution

The two differential equations Eq. (47), Eq. (48) and the one algebraic gov-
erning equation Eq. (49) are non-linear and a full analytical solution for them
subject to the boundary conditions Eq. (50) — Eq. (53) is not possible. The
numerical shooting method (Roberts and Shipman [16]) becomes unstable
when the matrix yields and is therefore unsuited for their solution. The finite
difference method (Collatz [17]) however does not suffer this deficiency, and is
used here. Following this method, we replace the non-linear differential equa-
tions with non-linear algebraic equations by approximating the differential
coefficients using the lowest order central differences, which are then solved.
We discretize the domain of the problem 0 < z < /¢ using nodes 2z = h,
t=0,1,2,...,N. We also form two “boundary nodes” at z==1) = —h, and
2(=N+1) = ¢ + h. Denoting the function values of w¢(z), Wy, (2), and w,(2) at
z = 2 also with the superscript (i), the approximate form of Eq. (47) can

be written as

w;ﬁ-l) _ Qw(L) + w;Lfl)_i_
QhZT{/(R —a) Gi1 -Gy , @)
_ h L M2 L) L) (L)
o log(Bja) P \ 7 (7 = gy (Wom — 0" — ) (54)
2G, I W0
FEra?log(R/a) <wtm A ) =0

This approximation will improve with decreasing h. Similarly, Eq. (48) is ap-

proximately
[2 L — b2 —a? L L L=
o = 2 ol Bl 20l ul )
L _ (55)
E, - E, w7§ ) _ wt( K
Ey — E»)sech? - - By =0
{( | 9)sec ( =y 5T + ks

18



and Eq. (49)

Gy — Gs

T}’/(R — a) tanh (m(w;ﬂ% _ wgf) _ wJ(;)))

W0

T*alog(R/a)

) — ) — )"

T

sign(r4(2)) — w = 0.

The finite difference equations Eqgs. (54), (55), and (56) apply for c = 0,..., N,

i.e., do not apply at the boundary nodes and thus represent 3N + 3 equations.

The four boundary conditions Egs. (50) — (53) can also be expressed in differ-

ence form using the boundary nodes:

wi) —w{™ =0 if the fiber is broken,

(57)

wgeo) =0 if the fiber is intact,
w§ﬁ+1) _ wgﬁ_l) _ b2b_2a2 g_cl’ bgz_a—gg S O-Y(E), (58)

2h N b2 o 1 1 b20,

b2—aZ By (E_z - E_l) O-Y(g)a b2 _q2 > O'y(ﬁ),
wip =0, (59)
and

wch—H) B w;zv—u —0 (60)

(¢)

Y

The 3N + 7 non-linear equations are then solved for as many unknowns: w
wiﬁ,l, t =-1,...,N +1, and wg), t = 0,..., N using the Newton-Raphson
iterative procedure which sets up a banded linear system for solution. We
calculate the displacement solution in applied stress increments / decrements
of Ao, = 1 MPa, and use the solution obtained at a certain o, as the initial

guess for the Newton-Raphson scheme at 0.+ Ao.. We pick the rule of mixtures

solution [1] as the initial guess for o, = 1 MPa.
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3 Shear-Lag Model of Unloading

We now consider the evolution of stresses and displacements in the composite

as it is unloaded monotonically from the maximum stress during the loading

max

half cycle, o, = o7**.

3.1 Assumptions

The geometric and kinematic assumptions of Section 2.1 still apply in the
unloading model. As in the loading model, the fiber is assumed to deform
linear elastically. However, both the tensile and shear matrices are assumed
to deform linear elastically as well. That is, the equivalent stress which each
matrix material point faces during unloading is assumed to lie inside its yield

envelope formed after loading, with strain hardening. Thus,

_ pl
Otm = E1(5tm - 8tm)a and,

(61)
— pl
Tom = G1(Vsm — Vom)5

where sf,ln and P! denote, respectively the plastic set at a tensile and shear
matrix material point. Both parts of the matrix are assumed not to yield in
reverse, so that the plastic set in each part remains constant during unloading.
Thus €2, (z) and, by Eq. (3) w?,(2) remain constant in the tensile matrix. In
particular, if 0]7®(2) and £'®(2) denote the stress and strain fields in the

tensile matrix when o, = 07"®*, then

max
cBh(e) = ep(a) - T )

- (62)

As in the loading model (see text after Eq. (5)) the calculation of P! (r, 2)

will be unnecessary in the shear-lag model; only faR APL (7, 2) dr will be needed,
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which we will deduce indirectly in Section 3.2 below.

3.2 Governing Equations

The differential equations expressing equilibrium of the fiber, tensile matrix,
and shear matrix, Egs. (31,33,36) remain applicable during unloading since
they do not depend upon the material constitutive law. Following the devel-
opment of Eq. (38)-Eq. (46), we now express 7;(z) during unloading in terms

of the solution displacement fields. From Eq. (61), we have

ati(z)

= G1(Ysm(r,2) = 7o (7, 2)). (63)

Tem(T, 2) = .

Integrating both sides from r = a to 7 = R, and using Eqs. (5) and (3),

R R
aT; log (—) = Gl(wf,ln + wf,ln — Wy — Wy) — Gl/ yffn dr. (64)
a a

Now, defining the shear matrix plastic displacement as

uth(2) =~ [ o8 (63
we may write
rm O (ufh + wll — wy — w4 ) (66)
alog(R/a)
This implies that 7; = 0, when w§l 4+ wh, —w; —w, = —wP. | i.e., the relaxed

state of the shear matrix corresponds to a relatively displaced fiber and tensile

matrix. wP thus quantifies the plastic displacement of the shear matrix.

max

As the applied stress is lowered from o, = o7,

, We expect continuous variation
with o) of stress fields o¢(2), oun(2), and 74,(2), for each z. By Egs. (31
f

and (33), this continuity follows if the interfacial shear stress, 7;(z) varies
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continuously with the applied stress o, for all 0 < z < /. The continuity of

max

max furnishes

the interfacial shear stress field 7;(z) with applied load at o, = o

a criterion to determine wP! (z) which remains constant during the unloading

max
C

half-cycle. Equating the expressions of Eq. (46) and Eq. (66), when 0. = o

we get
T)I/(R — a) G1 — G2
YAV o (L2 e —
alog(F/a) " (n@(fz — gy (e —0r m ) |
Go
2 _ — = 67
alog(R/a) (Wim = wy = w,) (67)
G, ol
alog(R/a) (wtm W~ We t wsm) ’
or,

wh () = (G2~ 1) (i (2) — ws(2) ~ wal))+

7_Y(R —a) G — Gy
——  “ tanh (m(wtm(z) —wy(z) — ww(z))> .

(68)

Fiber equilibrium Eq. (31) together with Eq. (66) gives one governing equation

during unloading

d2’wf 2G1

L el pl _ _ pl =0 69
! dz2 +a210g(R/a)(wtm+wtm wg wm+wsm) ( )

while the consideration of cross-sectional equilibrium Eq. (33) gives another

dZ,wf b2 _ CL2 d2,we1
E E m — (. 70
I dz2 o a? dz? (70)

In writing the second term, we have used Egs. (61), (2), and (3). As during
loading, a third algebraic governing equation is obtained from the assumed

slip constitutive equation Eq. (28) as
G n
L (el Pl — pl ign(7;(2)) — we(2) = 0.
Wao Talog(R/a) (Wi, + Wiy — Wy — wy + wE )| sign(r;(2)) — wy(2)

(71)

The solution wy(z), w§,(z), and w,(z) for this set of governing equations
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must be determined subject to boundary conditions which are identical to
those during the loading half-cycle, except that the loading boundary condition
Eq. (51) must now be replaced with

dws ¥ o,
t ( — 6) = IR
dz b? —a? By

(72)

since the matrix is always assumed linear elastic. Numerical solution using
the finite difference method of this set of equations follows the same general

scheme as during loading (Section 2.4), and will not be detailed here.

4 Experimental Verification

As stated at the outset, the present model is motivated by an experiment
by Hanan et al [1]. Before comparing their measurements to the predictions
of the present model, we pause to summarize the relevant aspects of their
experiment. Hanan et al’s experiment consisted of cyclic tensile loading of an
alumina fiber/aluminum matrix composite with a single embedded fiber. The
stress-strain response of the monolithic matrix material is shown in Figure 3.
The specimen was manufactured by casting the aluminum 6061 alloy around
a notched fiber to assure its fracture upon loading. It was considered likely
that the in-situ properties of the matrix, especially its yield stress, may have
changed during specimen manufacture. An X-ray radiograph taken at the
end of load cycling revealed that the fiber did indeed fracture although the
fracture load could not be experimentally determined. The specimen ends
were screwed into the testing machine, i.e., all the load was applied to the
matrix. During the first cycle of loading at room temperature, the composite

was tensioned to o{!) = 80 MPa. The second and later load cycles consisted
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of loading to o® = 100 MPa and unloading back to 0. = 0 MPa. At load
intervals of 20 MPa or smaller during these cycles, the load was held fixed
for about an hour, and the elastic arial strain in the fiber and matrix were
separately measured using neutron diffraction. Hanan et al observe that the
residual strain in the fiber is tensile and that in the matrix is compressive
after each of the cycles. They qualitatively reason this to arise from matrix
plastic deformation during loading. For compatible deformation between fiber
and matrix during the subsequent unloading, they reason that the fiber must
counteract some of the matrix plastic strain by compressing it elastically, while
the fiber tensile strain itself arises as the reaction to this action. The present

model lends quantitative form and detail to this qualitative argument.

It is important to note that the axial strain measured in each phase was a
volume average over the neutron gage volume depicted in Figure 5. In order
to compare the model predictions with the measured strain, we must therefore
average the axial strain field ¢! (z) calculated by the model over the neutron
gage volume. For this purpose we develop the calculated one-dimensional fields
e7(2), and €5 (2) into axisymmetric fields €;(r,z) = ¢4(z), 0 < r < a, and
e, (r,z) = €5.(2), a < r < b. We then average the fields €; and €, over the
volume of the fiber and the matrix probed by the neutron beam to obtain

¢ and €,

repsectively. Also, since it is unknown experimentally when the
fiber failed, in the model we assume the fiber fractured prior to any loading
at z = 0 mm. This assumption will be borne out shortly by the predictions
it yields. Also, since the present model does not account for residual strains
from previous cycles (although it does calculate residual strains at the end of

each cycle), we model cycle 2 as loading the composite directly to o, = 100

MPa. We expect the model load path to reasonably follow the experimental
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one in the range ¢{!) < o, < 0 during the loading half of cycle 2 and
throughout the subsequent unloading, provided interfacial slip was limited
during cycle 1 unloading. We do not model cycles 3 and above because the
predicted evolution of all stress and displacement fields during these cycles
will trivially coincide with those of cycle 2 as residual strains are ignored by
the model. While the experimental data shows evolution of strains between
cycle 2 and cycle 3, cycle 4 onward retrace the same strain evolution as cycle 3

with loading.

Figure 6 compares the measured average axial strain evolution in the fiber
and matrix during cycle 1 with those calculated using the present model. Two
scalar parameters: the in-situ yield point oU* (different from og’Ab in Figure 3;
see text below Eq. (10)), and the frictional threshold of the interface 7, are fit
so as to obtain these comparisons. Their values, together with those of other
constants of the model are listed in Table 1. As can be seen, the in-situ yield
point of the matrix seems to have increased from its bulk value of 93 MPa to

108 MPa.

The success of the model in capturing the measured strain evolution in cycle 1
with these parameters suggests that despite the numerous simplifying geomet-
ric and constitutive assumptions made, the errors committed in approximating
the elastic strain field in the present one-dimensional model average out over
the neutron gage volume. This, and a similar observation to be made regard-
ing cycle 2 below, a posteriori justify the use of the shear-lag approach in

modeling the stress field in a damaged metal matrix composite.

Several observations follow from the model-data comparisons in Figure 6 for

cycle 1. The excellent agreement of the model predictions at small o, with
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those experimentally observed suggests that in the specimen, the fiber frac-
tured at the notch either during specimen manufacture, or at a very small load
(say 0. < 5 MPa) during cycle 1. As o, is increased to about 35 MPa, the model
predictions for both fiber and matrix strain evolutions show qualitatively dif-
ferent behavior which signals the onset of matrix yielding. It arises because of
the increased compliance of the matrix due to plasticity, which transfers more
of the applied axial stress to the fiber. This transition is missed by the experi-
ment on account of its large load step size between strain measurements. The
agreement of the predicted and measured strains deteriorates somewhat with
increasing load. At o, = 80 MPa, the model overpredicts both €; (measured:
350 x 107°, calculated: 410 x 10~¢) and €  (measured: 590 x 109, calculated:
740 x 107%). If the model were erring in the magnitude of load transfer from
the matrix to the fiber through interfacial shear, it would underpredict one
of these while overpredicting the other. The observed discrepancy must there-
fore be due to the discrepancy between the actual and calculated interfacial
shear profiles. During unloading the model accurately reproduces the slope of
the unloading curves near o, = 0 MPa, while overestimating the fiber residual
strain (measured: 170 x 1079, calculated: 200 x 10~°®) and underestimating that
in the matrix (measured: —380 x 107, calculated: —470 x 107°) unlike the sit-
uation at the peak load. This suggests that the model may not be calculating
the actual load transfer from matrix to fiber correctly in this case. The model
is also unable to capture the kink — the curious decrease and followed by a

slight increase in fiber strain — at o, = 40 MPa and 20 MPa during unloading.

The deterioration of the model at higher 0., and the kink may have several
causes among which we are unable to discriminate with the available infor-

mation. We however strongly suspect the following two possibilities: (i) A

26



gradual breakdown of the assumed constitutive laws with increasing loading.
This may take the form of increasing inapplicability of the frictional criterion
Eq. (29) at the interface, especially since the model calculates a sizable in-
crease in the slip displacement between o, = 60 and 80 MPa during loading
(wz(z = 0,0, = 60MPa) = —0.008 mm, w;(z = 0,0, = 80MPa) = —0.023
mm). Also, the constitutive assumption Eq. (26) which led to the a priori
determined form for the tensile and shear matrix constitutive laws may be
increasingly violated at larger o.. (ii) A peculiarity of the interface in this
particular specimen. In reality, we expect the frictional threshold of the inter-
face 7" to show statistical variation along the interface. If large, this variation
can cause the observed kinks in the measured elastic strain response by sig-
nificantly perturbing the interfacial shear field. The extent and significance
of this variability can only be known by repeating the experiment with nom-
inally identical specimens and studying the scatter in the measured strains.
Scatter comparable to the observed kink in this experiment would support the

hypothesis that the kinks arise from this variability.

As stated already, the incapacity of the model to accommodate residual strains
necessitates that we model cycle 2 as loading starting from a strain-free com-
posite to 052) = 100 MPa. In comparing the calculated and measured strains
during cycle 2 shown in Figure 7, we must therefore only compare the part
of the loading curve between o, = 80 and 100 MPa, and the entire unloading
curve. With the constants of the model the same as those used in predicting
cycle 1, as listed in Table 1, the model predicts very accurately the peak strain
at o, = 100 MPa (measured: 430 x 107%, calculated: 450 x 107°) and residual
strain (measured: 290 x 10, calculated: 290 x 107%) in the fiber and also the

residual matrix strain (measured: —630 x 107%, calculated: —650 x 107°). The
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model peak stress however overestimates the peak matrix strain (measured:
900 x 1075, calculated: 1060 x 10~°). Although capturing the peak and residual
strain values the model and the experiment do not coincide even qualitatively
in the interim. Indeed, the experimental data shows many kinks: Upon unload-
ing from the peak load, the measured fiber strain is lower than its value during
loading at the same o, until about o, = 40 MPa at which point it abruptly
starts to increase until o, = 10 MPa and thereafter decreases. In contradistinc-
tion, the model predicts a monotonic decrease in fiber strains upon unloading
whose values always exceed the corresponding fiber strain value during load-
ing. The observed non-monotonicity in the experimental data lends further
support to our suggestion above that the actual interfacial frictional threshold
is much more complicated than the constant function 7* assumed and local

stick-slip processes are affecting the strain measurements.

Figure 7 also gives a sense of the sensitivity of the model to the parameters 7*
and oV by plotting the peak and residual strains in cycle 2 calculated with
slightly perturbed parameters. The peak and residual strains hardly change
when o is increased from 108 to 118 MPa, keeping all other parameters as
in Table 1. Although not shown, this perturbation postpones the widespread
matrix yielding hitherto at o, = 35 MPa, to about o, = 38 MPa. The model
however is more sensitive to 7* which governs the load transfer from matrix to
fiber. When increased from 51 to 56 MPa, keeping all other parameters as in
Table 1, the peak fiber strain increases by 23 x 1075, while that in the matrix
decreases by 50 x 107%. We caution against deducing from this observation
that 7 = 56 MPa represents a better parametric value than 7* = 51 MPa

since it misses the measured peak strain in the fiber less than the improvement

it brings to the matrix strain. For, due to the large fiber-matrix stiffness ratio,
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the discrepancy of 23 x 1076 corresponds to a much larger error in fiber stresses,
than the 50 x 10~% improvement does in the matrix. The residual strains are

still quite insensitive to this perturbation.

We may thus be justified in claiming that statistical variations from specimen
to specimen apart, the present model is a good representation of the average
behavior among nominally identical single fiber alumina/aluminum compos-
ite specimens. Given this, the stress and displacement fields predicted by the
model may be regarded as representative of the actual fields in the experi-
mental specimen. We therefore plot these calculated fields at the two most
interesting stages of the experiment in cycle 2: (i) At the peak load 0. = 100
MPa, in Figures 8 and 9 and (ii) after unloading to o, = 0 MPa from the peak

load, in Figures 10 and 11.

Figure 8 shows the calculated stress field in the fiber, tensile matrix and inter-
face at 0. = 100 MPa. In keeping with the boundary conditions of the model,
the fiber (o7(2)) and matrix (ou,(2)) axial stress fields are symmetric about
z = £/2, while the interfacial shear stress field is anti-symmetric about this
point; in particular 7;(¢/2) = 0. The roundedness of the fiber stress profile seen
in this figure suggests incomplete load transfer from the matrix to the fiber.
If repeated with a sufficiently long composite load transfer from the matrix to
the fiber may be complete, and the slope doy/dz(z = ¢/2) will approach zero.
The saturation of 7;(z) near both traction free ends of the fiber at z = 0 and

z =/ is also seen and indicates slipping in these regions.

Figure 10, which corresponds to the unloaded condition of the composite is
more complicated than Figure 8 since the residual fields here are a product of

competition between elastic recovery on the one hand and plastic deformation
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and slip on the other. The observed profiles are qualitatively best understood
by beginning with 7;(z). As seen, near z = 0 and z = ¢, the interfacial shear
stress remains unchanged from the stress state at the peak load. This is because
compatible deformation between the elastic fiber and the matrix with a large
plastic deformation is being imposed by compressing the matrix and tensioning
the fiber elastically. The shear stresses thus imposed near z = 0 and z = / set
up a strain field which causes incompatibility at about 3.5 mm from each end,
and to enforce compatibility there, a balancing shear stress of the opposite
sense is needed. This stress induces slight reverse slip. As can be seen, the
end result of the complex stress-transfer across the interface is that matrix is

almost entirely in compression and the fiber in tension at o. = 0.

Figures 9 and 11 show respectively the calculated displacement field in the
composite at o, = 100 MPa, and after unloading to o, = 0 MPa. As can
be seen in both figures, w’ far exceeds the elastic part ws . and near the
middle (e.g., 6.5 mm < z < 12.5 mm) the tensile matrix displacement almost
coincides with that of the fiber (does so exactly at z = ¢/2). When o, = 100
MPa, we observe a crack opening displacement of about 0.048 mm, which is
not much diminished upon unloading (0.039 mm). The key difference between

the two cases is that the matrix is in compression at o. = 0, as opposed to

the case at o, = 100 MPa when it is in tension.

Finally, as stated below Eq. (29), in fitting the parameters of the model we
arbitrarily assumed w,o = 0.01 mm and obtained 7* = 51 MPa as the best fit
value. From Figures 9 and 11, we see that the actual slip displacements are
indeed of the order of w,y = 0.01 mm. The physical meaning of 7 is directly
seen from Eq. (29): 7" represents the interfacial shear stress needed to cause a

slip displacement of w,, = 0.01 mm. It can also be readily seen that 7* = 51
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MPa is approximately the saturation value of 7;(z) in Figures 8 and 10.

5 Conclusions

By accounting for matrix elasto-plasticity and interfacial slip in a metal-matrix
composite, the present shear lag model succeeds quite well in reproducing the
measured strain evolution with applied stress in both phases of an Al,O3/Al
composite. The model is successful in capturing the general trend of the mea-
sured strain evolution while being incapable of capturing the kinks (far larger
than experimental error bars) observed in the strain measurements. It is also
seen to perform better predictively in o, < 80 MPa, than it does at higher

stress levels.

The fitting success of the model is undoubtedly determined to a large extent
by its assumptions. To explain its inability to capture the observed kinks in the
strain measurements, we hypothesize that they have their origins in the sta-
tistical variation of the frictional threshold along the interface, which if large
enough may cause localized stick-slip relative motions across the interface in
regions of marked interfacial weakness. These may in turn severely perturb
the interfacial shear stress profile, and therefore, the measurements. This is
contrary to the assumption of a constant frictional threshold of the interface
7* in the model. This hypothesis may be confirmed by comparing the available
measurements with another test on a nominally identical specimen. Scatter
between the two measurements, comparable to the kinks observed would indi-
cate correctness of the hypothesis. While the present model may be adapted
to include large variations in the strength of the interface, doing so may be

uninteresting from a practical standpoint. For, in a large multi-fiber composite
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the effect of such variability will likely be averaged out unless it is so strong as
to initiate damage that propagates (Mahesh et al [2]). As for the deterioration
of the model’s predictions for o, > 80 MPa, we attribute it to the elasto-
plastic constitutive model assumed. A flow theory [14] based model of matrix
plasticity may need to be incorporated if the errors committed by the present
model are judged excessive at the highest load for a particular application.
This modification, which will considerably increase the computational cost of
the model, will be needed if the maximum applied load is such that matrix

elements in the composite go far into the plastic regime.

We have attributed the prediction errors of the present model largely to the
constitutive assumptions of its constituents and not so much to its essential
one-dimensional character. This assertion represents our untested intuition,
and will require an axisymmetric numerical calculation such as that described
in Section 1 for verification. Also as mentioned in Section 1, extension of
the ideas presented here to a multi-fiber composite model analogous to the

extension of Cox’s [3] model to Hedgepeth’s [9] represents another future goal.
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Fig. 1. Geometry of the single fiber shear lag model (after Budiansky et al [5]). (a)
The composite cylinder, (b) the idealized model composite with the matrix divided
into distinct tensile and shear parts, and (c) axial and shear stresses in representative
elements of the fiber, shear matrix and tensile matrix.
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Fig. 2. Schematic depicting the notion of the slip displacement w,(z). (a) The fiber,
shear matrix and the tensile matrix in the undeformed configuration. The tensile
matrix is shown with finite width for clarity. A “scratch” along z = constant is also
shown as a dotted line. (b) The displacement of the model composite constituents
upon loading with a perfect non-debonding interface shows the continuity of the
“scratch” across the fiber/shear matrix interface. (c) When the interface slips how-
ever, the scratch becomes discontinuous, and the discontinuity as shown is taken as

wg(2).
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Fig. 3. The bulk (monolithic) stress-strain (op-¢3) curve of A16061 used as the matrix
material in the experiment described in Section 4. The two branches of the bilinear
approximation Eq. (7) and the smooth approximation Eq. (9) are also shown.
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Fig. 4. Comparison of the usual (e.g., Budiansky et al [5]) interfacial slip condition
Eq. (28) with the regularized form Eq. (29) assumed in this work.
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Fig. 5. Geometry of the test specimen and the neutron gage volume. a and b denote
the fiber and composite radii, respectively. Stress is applied only to the matrix as
shown.
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Fig. 6. Comparison of the predicted fiber and matrix average strains with those
measured during cycle 1 of the cyclic tension test described by Hanan et al [1]. A
25 x 1076 error bar is shown around each of the experimental points.
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Fig. 7. Comparison of the predicted fiber and matrix average strains with those
measured during cycle 2 of the cyclic tension test described by Hanan et al [1]. A
25 x 107 error bar is shown around each of the experimental points. The sensitivity
of the model to each of the parameters GEA and 7* is also shown by plotting the
peak and residual strains calculated by slightly increasing only that parameter over
its value (Table 1) used in the main fit. oV* is increased from 108 to 118 MPa, and
7* from 51 to 56 MPa.
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Fig. 8. Calculated axial stress profile in the fiber (of(2)), tensile matrix (o4, (2)),
and interfacial shear (7;(z)) at the peak load 0. = 100 MPa.
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Fig. 9. Calculated axial displacement profiles of the fiber (wg(z)), of the tensile

matrix (elastic (w§h,(z)), plastic (wf,ln (2)) and total (w4y,(z))), and the interfacial

slip displacement (w,(z)) at the peak load o, = 100 MPa.
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0. = 0 MPa unloaded from o,

100 MPa
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Fig. 10. Calculated axial stress profile in the fiber (o/(z)), tensile matrix (o4, (2)),
and interfacial shear (7;(z)) upon unloading to o, = 0 MPa from a peak load of

0. = 100 MPa.
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0. = 0 MPa unloaded from o, = 100 MPa
0-1 T T T T T T T T T
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Fig. 11. Calculated axial displacement profiles of the fiber (w¢(z)), of the tensile

matrix (elastic (w§h, (2)), plastic (wf,ln (2)) and total (wy,(z)), and the interfacial slip
displacement (w;(z)) upon unloading to o, = 0 MPa from a peak load of o, = 100

MPa.
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E; 330 GPa | oJA 108 MPa
E, 70 GPa | 7* 51 MPa
FEy; 5 GPa wgzo  0.01 mm
G1 27 GPa a 2375 mm
Gy 3.2 GPa b 4.125 mm

n 30 R 3.25 mm

Table 1

Constants used in the model. Only 7%, and a}gA are fitting parameters which were
not measured. The material parameters F, Ey, Fy were measured on bulk samples
of the fiber and matrix materials (see Hanan et al [1]), G1, and G2 were deduced
therefrom in Section 2.2, and wy;p and n were chosen based on computational con-
siderations.
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