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Abstract

The small-offset yield surfaces of aluminium deformed in uniaxial tension, and free-end torsion to
various finite strain levels are predicted using a binary tree based polycrystal plasticity model. The
inelastic response of the model grains is taken to obey rate-independent plasticity, and anelasticity. The
substructural state of each grain, comprised of dislocation densities, slip system hardness, backstress,
and friction stresses are evolved during the deformation. Model parameters are algorithmically fitted
to the measured yield surfaces of aluminium 1100 after uniaxial tensile deformation, as reported in
the literature. With the same parameters, the model accurately captures the subsequent yield surfaces
after free-end torsion also. Analysis of the model parameters reveals that coplanar interactions are
mostly responsible for the sharp curvature at the nose of the yield surface. Also, anelastic strains,
aided by backstress, are found to be essential to explain the large experimental Bauschinger effect.
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1 Introduction

Yield surfaces of plastically deformed metallic
materials have been objects of scientific interest
for over a century. It has long been known that
different definitions of yielding lead to qualita-
tively different yield surfaces [1]. On one hand,
if yielding were associated with the departure of
the stress-strain response from linearity [2, 3], the
proportional yield surface is obtained. The propor-
tional yield surface is also called the small-offset
yield surface, as its practical determination neces-
sitates a small excursion of the loading point into
the inelastic regime, of the order of a few micros-
train. On the other hand, the establishment of

widespread plastic flow in the specimen occurs at
a much larger plastic strain offset, which is com-
monly taken to be, 0.2% i.e., 2000 microstrain [4].
The corresponding yield surface is called the large-
offset yield surface. The small-offset yield surface
is typically highly distorted, with a considerably
sharper curvature in the direction of prestraining
than in the opposite direction. It does not enclose
the origin in the stress space after even small
prestrains [5–7]. The large-offset yield surface is
considerably larger, and typically encloses the ori-
gin in the stress space [8]. Its elliptical shape can
be explained on the basis of the crystallographic
texture of the material [9]. Mair and Pugh [1]
pointed out that the small-offset yield surface can
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find application in the study of plastic instabili-
ties, while the large offset yield surface is relevant
to the study of metal forming operations. The
small-offset yield surface also finds application in
modeling the spring-back of formed components,
a subject of much recent interest [10, 11].

Numerous phenomenological models, recently
reviewed by Yang et al. [12], have been proposed
in the literature to predict the large-offset yield
surfaces. In one often adopted approach, surveyed
by Mánik [13], the yield condition is expressed in
terms of a linear transformation of the stress ten-
sor. A second approach involves incorporating a
fourth order anisotropic tensor in the definition of
the yield surface, as in Feigenbaum and Dafalias
[14, 15]. A third approach, employed by Barlat
et al. [16], Mánik et al. [17] and others, represents
the microstructural state using a tensor variable
and distorts the yield surface based on the devia-
tion between the current deviatoric stress and the
microstructural state tensors.

The literature on modeling the small-offset
yield surface is considerably smaller. The phe-
nomenological model of Pietryga et al. [18] aims
to capture the evolution of the subsequent small-
offset yield surfaces, and assumes a Hill-type yield
surface. Their model incorporates isotropic, kine-
matic, and distortional hardening by embedding
an evolving fourth-order tensor within the effec-
tive stress term. In another effort, Liu et al.
[19] represented the polycrystalline aggregate as
a single grain with 30 slip systems, which they
termed slip components. They proposed a phe-
nomenological hardening law with isotropic and
kinematic parts, entailing self and latent harden-
ing amongst the slip components. Recently, Aria
et al. [20] reported full field elastoplastic crystal
plasticity simulations to predict the yield sur-
face of aluminium. The yield surfaces predicted
in these works qualitatively match the shapes
of the experimentally measured yield surfaces,
but are not quantitatively comparable. The phe-
nomenological model of Pietryga et al. [18] seeks
to approximate the microstructural state of the
material well enough to predict the mechanical
response, by coarse-graining the microstructural
behaviour to the scale of the material point. How-
ever, Liu et al. [19] and Aria et al. [20], based
on polycrystal plasticity and full-field simulations,
respectively, represent substructural evolution and
the microstructural response at much finer scales.

Following the latter authors, the present work
develops a model of substructure evolution, imple-
ments it within an existing polycrystal plasticity
modeling framework, and uses it to predict sub-
sequent small-offset yield surfaces. Existing poly-
crystal plasticity-based models [21–24] are able to
predict the anisotropy in the mechanical response
under load-reversal (Bauschinger effect), or load-
crossing, all corresponding to large-offset strains.
The present work, however, focuses on the small-
offset regime. There are three essential differences
between modeling the small-offset yield surfaces,
and the large-offset mechanical response after
strain-path changes: First, because the former
probes over orders of magnitude smaller inelas-
tic strains than the latter, it must account for
deformation mechanisms that dominate at small
inelastic strains (∼ 10−5), but exhaust themselves
at larger strains (∼ 10−3). Second, obtaining
accurate predictions in strain-path change tests
requires capturing the mechanical response along
only a few directions in the stress-space. How-
ever, predicting the small-offset yield surface calls
for capturing the mechanical response along many
more directions in the stress-space. In order to
meet the latter objective a spatially realistic repre-
sentation of the evolving substructure is required.
Third, while the sub-structural state remains
essentially constant during small-offset probing, it
evolves appreciably during large-offset strain-path
changes. It will be shown in the sequel that exist-
ing substructural models, developed in the context
of modeling large-offset strain-path changes, are
not adequate for predicting the small-offset yield
surface.

The present work is structured as follows:
The evolution of the model substructure dur-
ing loading, which involves finite plastic strain,
is described in Sec. 2. The numerical probing of
the yield surface at constant substructural state
reached after loading is then described in Sec. 3.
After describing the algorithm for parameter fit-
ting in Sec. 4, model predictions are compared
with experimental measurements from the lit-
erature in Sec. 5. Insights about substructural
interactions are then obtained from the fitted
parametric values.
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2 Loading

2.1 The binary tree model

The present model regards the material point of
interest as a polycrystalline aggregate. The binary
tree model regards the polycrystalline aggregate
as a collection of sub-aggregates of varying sizes,
interacting through the constraints of velocity and
traction continuity across planar interfaces. The
response of each sub-aggregate is obtained by vol-
ume averaging over its constituent sub-aggregates.
The structure of these interactions are conceptu-
ally represented by the data structure called a
binary tree [25].

A special case of the general binary tree, viz., a
balanced binary tree is used to represent the poly-
crystal model presently. In the balanced binary
tree model, the total number of grains is a power
of 2. Individual grains, g, are associated with the
lowest nodes in the binary tree, termed leaves. The
leaf node of the binary tree that represents grain
g is denoted (ng). Higher nodes of the binary tree
represent larger sub-aggregates of the polycrys-
talline aggregate, each comprised of all the nodes
‘descended’ from it. The top-most node, termed
the root of the tree, and denoted (r), represents
the entire polycrystalline aggregate.

A balanced binary tree representing a 23 =
8 grain polycrystalline aggregate is depicted in
Fig. 1. Nodes are arranged at different levels.
The level of node (n) is denoted ℓ(n); leaf nodes
(ng) have ℓ(ng) = 1. Each node (n), except the
leaf nodes, is connected to a pair of ‘child’ nodes
denoted (ln) and (rn); these nodes are called ‘sib-
lings’ of each other. Similarly, excepting the root
node, each node (n) is also connected to a ‘par-
ent’ node, (pn). The number of nodes halves when
marching up a level toward the root.

Sub-aggregates represented by the sibling
nodes (ln) and (rn) are taken to be separated
by a planar interface, normal to the unit vector

e
(n)
2 . Let the mutually perpendicular unit vectors

e
(n)
1 , and e

(n)
3 be normal to e

(n)
2 , so that e

(n)
1 -

e
(n)
2 -e

(n)
3 form a right handed coordinate system.

The necessary conditions for velocity, and trac-
tion continuity across the interface, expressed in

component form in the e
(n)
1 -e

(n)
2 -e

(n)
3 coordinate

system, are [26, 27]:

D
(ln)
11 = D

(rn)
11 , D

(ln)
33 = D

(rn)
33 , D

(ln)
13 = D

(rn)
13 ,

σ
(ln)
12 = σ

(rn)
12 , and σ

(ln)
32 = σ

(rn)
32 ,

(1)

where D
(n)
ij and σ

(n)
ij denote the components of

the rate of deformation tensor, and the deviatoric

stress in node (n), respectively. D
(n)
ij and σ

(n)
ij are

assumed to be uniform over the domain of the sub-
aggregate represented by the node (n). Traction
continuity normal to the interface takes the form

σ
(ln)
22 + p(ln) = σ

(rn)
22 + p(rn), (2)

where, p(n) denotes the hydrostatic pressure in
node (n). Since it is possible to satisfy Eq. (2) for

arbitrary σ
(ln)
22 , and σ

(rn)
22 , by selecting p(ln), and

p(rn) appropriately, Eq. (2) represents but a trivial

constraint on the σ
(n)
22 -component of the deviatoric

stresses.
Let the volume of grain g represented by the

leaf node (ng) be V (ng). Then, the volume of
the sub-aggregate represented by the node (n) is
defined recursively as:

V (n) = V (l(n)) + V (r(n)). (3)

Let the volume fractions of the left and right
children of node (n) be denoted

ϱ(ln) = V (ln)/V (n), and

ϱ(rn) = V (rn)/V (n).
(4)

It is evident that ϱ(ln) + ϱ(rn) = 1.
The deformation rate, and the deviatoric stress

in an arbitrary node, (n), are obtained by averag-
ing over its children:

D
(n)
ij = ϱ(ln)D

(ln)
ij + ϱ(rn)D

(rn)
ij , and

σ
(n)
ij = ϱ(ln)σ

(ln)
ij + ϱ(rn)σ

(rn)
ij .

(5)

Let N (n) be the set of all the descendants of node
(n) that are leaves. Then, Eq. (5) can also be
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Fig. 1: A balanced binary tree model of an eight-grain polycrystal.

written as:

D
(n)
ij =

∑
(ng)∈N (n)

V (ng)

V (n)
D

(ng)
ij , and

σ
(n)
ij =

∑
(ng)∈N (n)

V (ng)

V (n)
σ
(ng)
ij .

(6)

Let L
(n)
ij denote the velocity gradient of node

(n). Let e1-e2-e3 be a sample-fixed orthogonal
coordinate system, and let

A := {11, 22, 33, 12, 21, 13, 31, 23, 32}

be the set of all the components of 2-tensors in this
coordinate system. Let the macroscopic velocity
gradient components, L̄ij , where ij ∈ L ⊆ A be
imposed:

L
(r)
ij = L̄ij , for ij ∈ L . (7)

Let D be the set of subscripts for which both L̄ij ,
and L̄ji are imposed:

D = {ij : ij ∈ L , and ji ∈ L }, (8)

and let

D̄ij =
L̄ij + L̄ji

2
, for ij ∈ D . (9)

The components ij ̸∈ D are said to be relaxed
[28]. The macroscopic constraints imposed upon

the root node, (r), are [27]:

D
(r)
ij = D̄ij , if ij ∈ D , and

σ
(r)
ij = 0, if ij ∈ A \ D .

(10)

In the present work, the e1-e2-e3 axes are
taken to be directed along the axial, circumferen-
tial, and radial directions in the tubular specimens
of Khan et al. [29], respectively. Uniaxial tension
along x1 corresponds to D = {11}, and D̄11 = 1.
σ̄ij = 0, for ij ̸∈ D . Similarly, for loading in free-
end torsion, D = {12, 21}, and D̄12 = D̄21 = 1.
σ̄ij = 0, for ij ̸∈ D . The imposed non-zero
components of the velocity gradient are indicated
schematically in Figs. 2a, and 2b for tension, and
torsion, respectively.

2.2 The rate-independent plastic
grain

Metallic grains deform elasto-plastically during
loading. However, the elastic stretch is typically
very small [30]. During loading to finite strains,
plasticity is well-developed within the grains [31].
As considerable computational advantage can be
gained by neglecting the elastic stretch in model
grains undergoing well-developed plastic flow [32],
model grains are taken to deform rigid-plastically.

Also, the present work is focused on yielding,
which is realised microscopically by the activation
of slip systems. In the rate-independent model of
plastic slip [33], slip system activation unequiv-
ocally occurs at a definite resolved shear stress
(RSS). This is in contrast to, e.g., the rate-
sensitive viscoplastic model [34], wherein, any
small non-zero RSS induces a non-zero slip rate.
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(a) Element deformation in uniaxial tension
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tor,k
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L̄21

loading probing

(b) Element deformation in free-end torsion
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√

3
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2
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(c) Yield surface after tensile deformation

σ11

√

3σ12

A

B

C1

C2

D1

D2

E1

E2

(d) Yield surface after torsional deformation

Fig. 2: Schematic deformation of a material point during loading and probing under (a) uniaxial tension,
and (b) free-end torsion. The respective yield surfaces in the σ11-

√
3σ12 space are shown in (c) and (d).

To identify slip activation, a threshold slip-rate
must then be prescribed. Rate-independent plas-
ticity is presently preferred as it avoids the artifice
of selecting a threshold slip-rate.

Each rigid-plastic and rate-independent grain,
g, is assumed to accommodate the imposed defor-
mation through rate-independent dislocation glide
on slip systems s ∈ {1, 2, . . . , S}. The unit slip
direction, and slip plane normal of slip system (s)
are denoted b(s),g and n(s),g, respectively, which
obey b(s),g ⊥ n(s),g. The non-negative slip-rate in

slip system (s) is denoted γ̇(s),g. Slip systems with
the same n(s),g, and positive and negative senses
of b(s),g, or vice-versa, are treated as distinct slip
systems.

The rate of deformation tensor of a grain is
then given by [35]

D
(ng)
ij =

S∑
s=1

m
(s),g
ij γ̇(s),g, (11)
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where the symmetric Schmid tensor is

m
(s),g
ij :=

(
b
(s),g
i n

(s),g
j + n

(s),g
i b

(s),g
j

)
/2. (12)

Slip systems (s) and (s′) with m
(s),g
ij = −m(s′),g

ij

are called reverse slip systems of each other.
Let τ (s),g denote the critical resolved shear

stress (CRSS) of slip system (s) in grain g. It is

recalled that σ
(ng)
ij are the components of the devi-

atoric stress in it. The resolved shear stress (RSS)
in slip system (s), r(s),g is then

r(s),g = σ
(ng)
ij m

(s),g
ij , (13)

where summation over the repeated Latin indices
is implied. Schmid’s law [35] holds that

γ̇(s),g

{
= 0, if r(s),g < τ (s),g,

≥ 0, if r(s),g = τ (s),g.
(14)

In the rate-independent model, the case r(s),g >
τ (s),g is unphysical, and the material response in
that case is undefined.

Substituting Eq. (11) into first equation in
Eq. (6),

D
(n)
ij =

∑
(ng)∈N (n)

V (ng)

V (n)

S∑
s=1

m
(s),g
ij γ̇(s),g. (15)

Using Eq. (15), the velocity continuity conditions
across the sub-aggregate interfaces in Eq. (1) can
be written as

∑
(ng)∈N (ln)

V (ng)

V (ln)

S∑
s=1

m
(s),g
ij γ̇(s),g =

∑
(ng)∈N (rn)

V (ng)

V (rn)

S∑
s=1

m
(s),g
ij γ̇(s),g,

(16)

for ij ∈ {11, 33, 13}. Similarly, the imposed rate
of macroscopic deformation in Eq. (10) can be
written as

∑
(ng)∈N (r)

V (ng)

V (r)

S∑
s=1

m
(s),g
ij γ̇(s),g = D̄ij , if ij ∈ D .

(17)

Mahesh [27] showed that the problem of find-
ing the slip rates, γ̇(s),g, in all the grains, and the

deviatoric stress components σ
(n)
ij in all the nodes

can be expressed as the minimisation:

min
γ̇(s),g≥0

∑
(ng)∈N (r)

V (ng)τ (s),gγ̇(s),g, (18)

subject to the constraints given by Eqs. (16)
and (17). In this minimisation problem, both the
objective function, Eq. (18), and the constraints
are linear in γ̇(s),g; it is thus a linear programming
problem [36]. In the framework of linear program-
ming, γ̇(s),g represent the primal variables, and

σ
(n)
ij are found to be directly related to the dual

variables. The solution of this problem satisfies
Eqs. (1), (10), and Eq. (14). Physically, Eq. (18)
expresses the condition of minimum internal plas-
tic dissipation, which is equivalent to the principle
of maximum external plastic dissipation [37]. The
minimisation is presently performed using the effi-
cient simplex algorithm [36], as implemented by
the GLPK package [38].

With the slip rates, γ̇(s),g, determined in each
grain, the plastic part of the velocity gradient of
each leaf node, (ng), is obtained as:

L
p,(ng)
ij =

S∑
s=1

γ̇(s),gb
(s),g
i n

(s),g
j . (19)

In analogy with Eq. (5), the plastic part of the
velocity gradient in the higher nodes of the binary
tree is obtained as:

L
p,(n)
ij = ϱ(ln)L

p,(ln)
ij + ϱ(rn)L

p,(rn)
ij . (20)

For compatibility between sibling nodes, skew lat-

tice spins,W
p,(n)
ij = −W p,(n)

ji , must be superposed
on each node of the binary tree:

L
(n)
ij = L

p,(n)
ij +W

p,(n)
ij . (21)

A closed form expression for W
p,(n)
ij may be found

in Mahesh [26, 27, 39], and is not reproduced here.
The lattice spins cause texture evolution during
loading. At the root node, (r), Eq. (7) becomes:

L
(r)
ij =W

p,(r)
ij + L

p,(r)
ij = L̄ij , for ij ∈ L , (22)
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which can be solved to obtain the macroscopically
imposed spin,

W
p,(r)
ij = −W p,(r)

ji (23)

=

{
0, if i = j,

L̄ij − L
p,(r)
ij , if i ̸= j, and ij ∈ L .

2.3 Substructure

The model of substructure evolution given below
is divided into the evolution of forest hardening,
backstress, and friction stress, with plastic defor-
mation. Forest hardening, and backstress con-

tribute components τ
(s),g
a , and τ

(s),g
b , respectively,

to the CRSS:

τ (s),g = τ (s),ga + τ
(s),g
b , (24)

It is recalled that the CRSS determines the acti-
vation of slip system (s) through Schmid’s law,

Eq. (14). The friction stress, τ
(s),g
c , determines

the bowing or unbowing of pinned dislocation seg-
ments, and hence its anelastic response. It does
not enter Schmid’s law.

2.3.1 Forest hardening

Let ρ(s),g denote the forest dislocation density in
slip system (s) in grain g. A storage-annihilation
model of the dislocation density, due to Kocks [40],
has been extended to individual slip systems by
Rauch et al. [41]:

ρ̇(s),g =
γ̇(s),g

bΛ
− fρ(s),g

S∑
t=1

γ̇(t),g, (25)

where b is the magnitude of the Burgers vector of
the gliding dislocations, and K and f are fitting
parameters that govern the rates of dislocation
storage, and annihilation, respectively, and where
the dislocation mean free-path Λ is given by:

1

Λ
=

√∑S
s=1 ρ

(s),g

K
+

1

D
, (26)

where D is the grain diameter. In terms of the
dislocation densities ρ(s),g, the forest hardening

contribution to the CRSS is given by the extended
Taylor relation [42]

τ (s),ga = τa0 + µb

√√√√ S∑
t=1

astρ(t),g, (27)

where τa0 denotes the CRSS in the absence of any
substructure, µ the shear modulus, and ast the
dislocation interaction parameters. While there
are, in principle, S2 distinct ast, crystallographic
symmetries considerably reduce this number. In
fcc grains deforming by {111}⟨110⟩ slip, although
S = 24, there are only 6 distinct ast correspond-
ing to only 6 distinct types of interactions between
pairs of slip systems. These interactions are self-
hardening (SH), coplanar (Copl), cross-slip (CS),
Hirth lock (HL) forming, glissile junction forming
(GJ), and Lomer-Cottrell (LC) lock forming [42].
Kubin et al. [43] have determined the values of ast
for fcc crystals for typical values of the dislocation
density through dislocation dynamics simulations.
Their values for ast are listed in Table 1, and
adopted presently.

The notation for denoting the reverse slip sys-
tem (s′) of slip system (s) is recalled from Sec. 2.2.
(s) and (s′) are treated as distinct slip systems

presently. τ
(s),g
a must be independent of their

sense, positive or negative:

τ (s),ga = τ (s
′),g

a . (28)

To enforce this physical condition, it is required
that

ast = as′t = ast′ = as′t′ . (29)

2.3.2 Backstress

The present model of backstress visualises the
substructure as being divided into regions of
low, and high dislocation density, as shown in
Fig. 3a. These may be associated, e.g., with the
cell interiors, and dense dislocation walls (DDW),
respectively, as observed in plastically deformed
aluminium [44]. Sessile dislocations in the DDW
are modeled as a stacked pile-up [45, 46], with a
highly localised internal stress field that decays
exponentially over a length scale equal to the
spacing of the stacked dislocations [47, Sec. 19.5].
Thus, dislocation segments approaching a DDW
from the cell interior will experience a backstress,
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Fig. 3: (a) A schematic visualisation of the substructure underlying the backstress model. The hatched
regions represent dislocation-rich regions, or DDW. The shaded region is the localised region of signifi-
cant backstress. There is negligible backstress in the dislocation-poor cell interior. (b) RSS, and CRSS
components on dislocations α, and β during forward and backward slip.
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which is localised near the DDW, in the shaded
region in Fig. 3a. The backstress is taken to be
negligible outside the shaded region.

Consider two dislocation loops, α, and β, glid-
ing in the same slip plane. At a certain instant, let
loop α lie entirely within the cell interior and let
the leading segments of loop β lie within the back-
stressed region, as shown schematically in Fig. 3a.
Let the CRSS and RSS in this slip system be
uniform, as shown in Fig. 3b. Loop α faces no
backstress, while the leading segments of loop β
experience backstress due to their proximity to the
DDW.

First, consider the scenario depicted in the top
half of Fig. 3b, labeled ‘forward slip’. Suppose the
applied RSS on the leading segments of loop α
in the forward direction equals the CRSS, with a
contribution from the forest hardening only. These
segments will glide, and the loop will expand to
produce slip. The leading segments of loop β expe-
rience the CRSS, with contributions from both
forest hardening, and backstress. Thus, their glide
is resisted by a larger CRSS than loop α. As the
RSS on loops α and β are assumed equal, the
leading segments of dislocation loop β will not
glide. Thus, slip in the forward direction will be
restricted to the backstress-free cell interior.

Next, consider the condition wherein the direc-
tion of the RSS is in the backward direction, so
as to cause slip in (s′), as shown in the lower half
of Fig. 3b. In this condition, the backstress coun-
teracts the forest hardening, and thereby reduces
the CRSS on loop β. If RSS equal to the CRSS
were applied, loop β will contract. Under the
same imposed RSS, loop α will not contract,
unaided as it is by the backstress. Thus, disloca-
tion glide in the reverse direction occurs only in
the localised backstressed region near the DDW.
As these simple considerations show, a localised
region of backstress can cause yielding at a smaller
applied stress in the reverse direction, than in the
forward direction, i.e., a Bauschinger effect.

A model of backstress, due to Wen et al. [24],
reduces to a simple form when applied to mono-
tonic plastic deformation. It is now recalled in
that form. Let ρ(s),g in Eq. (25) correspond to the
reversible dislocation density in Wen et al. [24].
Let slip system (s) in grain g be activated dur-
ing the monotonic deformation. According to Wen
et al. [24], the backstress in slip system (s′) is given

by:

τ
(s′),g
b = −τ (s),ga fsB , (30)

where, fsB is a fitting parameter. The simple

proportionality between τ
(s′),g
b , and τ

(s),g
a given

by Eq. (30) was adequate to explain a num-
ber of experiments measuring the large-offset flow
stress in Wen et al. [24]. It will be shown in the
sequel that it is inadequate for the predicting
the small-offset yield surfaces. This motivates its
modification presently.

It is noted that Eq. (30) does not account for
two physical features: (i) It assumes that back-
stress in (s′) arises from dislocation pile-ups in
slip system (s) only. Experimental studies [48, 49]
have found that DDW are comprised of disloca-
tions of all the slip systems that are activated
during plastic deformation. A dislocation segment
approaching a DDW will experience back-stresses
not only from itself or its reverse slip system, but
also from all the slip systems that contribute dis-
locations to the DDW. Also, the magnitude of
the backstress will depend on the slip system of
the approaching dislocation. (ii) The CRSS of slip
system (s′), given by Eq. (24),

τ (s
′),g = τ (s

′),g
a + τ

(s′),g
b

= τ (s),ga + τ
(s′),g
b

= τ (s),ga [1− fsB ] ,

(31)

will become negative for fsB > 1, potentially trig-
gering the plastic instability in the grain. The
second equality in Eq. (31) follows from Eq. (28),
and the third from Eq. (30). The present model
addresses these two issues.

The backstress experienced by a dislocation
segment near the DDW will depend upon the
interaction between (i) the slip systems of the ses-
sile stacked pile-up in the DDW, comprised of
dislocations from all the activated slip systems
[48, 49], and (ii) the slip system of the gliding for-
est dislocation. The structure of the dislocation
interactions that affect the backstress resembles
that underlying the ast matrix of Sec. 2.3.1. This
motivates the use of a similar matrix to capture
the localised backstress developed. Paralleling ast
in Sec. 2.3.1, pairs of slip systems in the present
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fcc lattice are associated with 6 interaction coeffi-
cients:

bi ∈ {bSH, bCopl, bCS, bGJ, bHL, bLC}, (32)

for the purpose of backstress computation. How-
ever, a key difference between hardening, and
backstress is that the latter is sensitive to the
direction of slip. Thus, (i) the coefficients, bi, i ∈
{SH,Copl, . . . ,LC} are signed material constants,
and (ii) the interaction coefficient bst between slip
systems (s), and (t), and bst′ , between (s), and
(t′), where (t′) is the reverse slip system of (t)
(Sec. 2.3.1) will generally be different: bst ̸= bst′ .
However, reversing both s and t, bst = bs′t′ .

The Schmid tensors of slip systems (s), and
(t) are recalled from Eq. (12). The value of bst is
taken to be

bst =

{
0, if m

(s)
ij m

(t)
ij ≥ 0, and

−bim(s)
ij m

(t)
ij , if m

(s)
ij m

(t)
ij < 0.

(33)

The choice of i in Eq. (33) depends on the crys-
tallographic relationship between slip systems (s),
and (t). It must also be noted that the backstress
induced by a slip system (s) on itself, bss = 0,
according to Eq. (33). However, bss′ = −bSH/2.

Let ρann denote the dislocation density in the
annealed material, and let the set T g denote
the set of slip systems with a sizable dislocation
density:

T g = {t : ρ(t),g > ρann} ⊂ {1, 2, . . . , S}. (34)

In analogy with Eq. (30), the backstress induced
in slip system (s) may be taken as

τ
(s),g
b = −τ (s),ga

∑
t∈T g

bst. (35)

This formulation will then suffer from the same
deficiency as Eq. (31): Plastic instability may arise
if
∑

t∈T g bst > 1. Therefore, the form of the
backstress is taken as:

τ
(s),g
b =

{
−τ (s),ga

(
1− exp

[
−
∑

t∈T g bst
])
, r(s),g ≤ 0,

0, r(s),g > 0.

(36)

Thus, backstress are only accounted for in slip
systems (s′) that satisfy:

r(s
′),g ≤ 0. (37)

τ
(s),g
a in Eq. (36) is given by Eq. (27). Substituting
Eq. (36) into Eq. (24), the CRSS is given by:

τ (s),g =

{
τ
(s),g
a exp

[
−
∑

t∈T g bst
]
, if r(s),g ≤ 0

τ
(s),g
a , if r(s),g > 0.

(38)

It is interesting to note that the branches of the
right side in Eq. (38) correspond to different phys-
ical locations in the idealised substructural model
of Fig. 3: The first to the localised regions near
DDW, and the second to the cell interiors. It is
also evident from Eq. (38) that the CRSS in all
slip systems remains positive for any bst:

τ (s),g > 0. (39)

This condition is sufficient to avoid instabilities
during plastic deformation [35], and thus, essen-
tial for a general numerical implementation of
the model. Finally, for small

∑
t∈T g bst, Eq. (36)

approaches Eq. (35), which in turn reduces to
Eq. (30), due to Wen et al. [24], if all the bi except
bSH were set to zero.

2.3.3 Friction stress

Inequality (39) implies that the direction of the
applied stress must be reversed, as shown in
Fig. 3b, in order to obtain the reverse yield point.
However, in the experiments of Khan et al. [29],
and in a number of other experimental studies,
the reverse yield point has the same sign as the
forward yield point. In other words, the material
yields in reverse even before it is fully unloaded
from the forward yield point. This suggests that
another physical mechanism must be responsible
for reverse yielding.

It is proposed that anelasticity, aided by back-
stress, is the physical mechanism underlying the
early onset of reverse yielding. Anelastic defor-
mation is caused by the bowing and unbowing of
segments of existing dislocations pinned at hard
pinning points [50]. This is in contrast to plastic
deformation, which is characterised by the motion
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Fig. 4: (a) A schematic visualisation of the substructure and its influence on dislocation bowing and
unbowing. The hatched, shaded, and clear regions have the same meanings as in Fig. 3. (b) Bowing state,
RSS, backstress, and friction stress components on dislocations α, and β during inelastic dislocation
bowing, and unbowing.

11



of dislocation segments surmounting obstacles,
and dislocation multiplication.

The resistance to the bowing and unbow-
ing of dislocations varies with the prestrain in
the specimen. After a survey of several materi-
als deformed in tension to various prestrains, Li
and Wagoner [50] found that the applied stress
at which anelastic deformation begins, termed the
elastic-anelastic transition stress, depends non-
monotonically on the prestrain. To account for the
elastic-anelastic transition stress in their model,
they introduced the notion of a friction stress: A
necessary condition for anelastic deformation is
that the applied stress must differ from the anelas-
tic state by at least the friction stress. Although
the term ‘friction stress’ usually refers to the lat-
tice resistance in a defect-free lattice, in Li and
Wagoner [50], this term also encompasses the drag
experienced by bowing and unbowing dislocation
segments due to weak obstacles in the form of dis-
location debris. The term ‘friction stress’ is used
in the latter sense presently.

The notion of a prestrain dependent friction
stress is presently extended to the slip systems.

Let τ
(s),g
c denote the friction stress in slip system

(s) in grain g. In analogy with Eq. (27), the friction
stress is taken to depend on dislocation density as

τ (s),gc = τc0 + µb

√√√√ S∑
t=1

cstρ(t),g, (40)

where τc0 denotes the friction stress of the defect-
free lattice, and cst denotes the interaction param-
eter between slip systems (s), and (t), obeying the
crystallographic symmetries that underlie ast in
Eq. (27), viz., cst = cs′t = cst′ = cs′t′ . Paralleling
Eq. (28), these conditions ensure that

τ (s),gc = τ (s
′),g

c . (41)

The bowing state, τ
(s),g
state , of the pinned disloca-

tion segments in slip system (s), in grain g depends
on both the prior history of RSS applied to the slip

system, and the friction stress, τ
(s),g
c . Following Li

and Wagoner [50], a pinned dislocation segments
is taken to bow further if

r
(s),g
eff ≥ τ

(s),g
state + τ (s),gc , (42)

where the effective RSS in the slip system is
obtained by adding the backstress to the actual
imposed RSS:

r
(s),g
eff = r(s),g + τ

(s),g
b . (43)

After bowing, the bowing state increases to

τ
(s),g
state = r

(s),g
eff − τ (s),gc . (44)

Similarly, pinned dislocation segments are taken
to unbow if

r
(s),g
eff ≤ τ

(s),g
state − τ (s),gc , (45)

whereupon their bowing state decreases to

τ
(s),g
state = r

(s),g
eff + τ (s),gc . (46)

The bowing of dislocation segments of slip
system (s) is equivalent to their unbowing when
described in terms of the reverse slip system (s′),
and vice-versa. For consistency of the conditions
given by Eqs. (42)–(46), it necessary that

τ
(s),g
state = −τ (s

′),g
state . (47)

The dislocation loops of Fig. 3a are shown
in the view looking down upon the slip plane in
Fig. 4a. The leading segments of both the loops

are shown in the same bowed state, τ
(s),g
state > 0, say.

The RSS, r(s),g, required for incepting additional
dislocation bowing in the cell interior, following
Eq. (42) is shown in the top half of Fig. 4b, labeled
‘bowing’. Let the same RSS be imposed in the
near-DDW region also. There, the imposed RSS

is counteracted by the backstress, τ
(s),g
b , result-

ing in a smaller effective RSS, which is inadequate
to incept bowing. Thus, when subjected to grad-
ually increasing RSS, dislocation bowing in the
cell interiors will precede that in the near-DDW
backstressed regions.

Next, consider dislocation unbowing under
gradually decreasing RSS, following Eq. (45). This
condition is depicted in the lower half of Fig. 4b,
labeled ‘unbowing’. Counteracted by the back-

stress, τ
(s),g
b , the effective RSS in the backstressed

region is seen to satisfy Eq. (45), and thereby
incept unbowing. Unaided by backstress, the RSS
in the cell interior cannot incept unbowing. Thus,
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under decreasing RSS, unbowing in the back-
stressed near-DDW regions precedes that in the
cell interior.

In the initial annealed state, it is reasonable
to assume that dislocations are not bowed, i.e.,

τ
(s),g
state = 0. During plastic deformation accompany-

ing loading, τ
(s),g
state is evolved according to Eq. (40),

and Eqs. (44), or (46), following Li and Wagoner
[50]. Besides plastic deformation, heat treatment,
and stress relaxation steps also affect the state

of the microstructure, and hence, τ
(s),g
state . Hart

and Solomon [59] observed that the mechanical
response of plastically deformed Al specimen sub-
jected to strain-hold experiments revealed a large
but transient anelastic deformation component. If
this anelastic deformation were associated with
the unbowing of dislocation segments between pin-
ning points, it would correspond to a reduction of

|τ (s),gstate |.

3 Yield surface probing

The internal state of the substructure of each grain
in the polycrystal model is established during
loading. It is revealed during probing. Experi-
mentally probing the yield surface requires small
transgressions into the inelastic regime, whose
effect on the substructural state is neglected in the
model.

3.1 Plastic probing

After loading in either uniaxial tension, or free-end
torsion, and holding the sample at constant strain
for stress relaxation, Khan et al. [29] probed the
yield surfaces, which are depicted schematically
in Figs. 2c, and 2d. They found that the forward
yield point in the direction of loading, labeled A in
Figs. 2c, and 2d, coincided with the stress-relaxed
loading point. They obtained the reverse yield
point, labeled B, by decreasing the applied stress.
Under the application of various stresses along the
loading path, Ck, bounded by the forward and
reverse yield points, they probed orthogonal to
the direction of applied loading, and obtained the
cross-directional yield stresses, Dk, and Ek. The
computational simulation of the probing process
is presently described.

It is physically reasonable and computationally
advantageous to model unloading from the plas-
tic loaded state assuming elastic material response
[32]. During elastic unloading, the anisotropic
stiffness of the grains will cause the build up
of residual stresses. The stiffness matrix of the
present Al grains, however, is nearly elastically
isotropic [51]. Therefore, the residual stresses
developed due to elastic incompatibility during
unloading can also be neglected, and the model
grains can be approximated as rigid plastic dur-
ing yield surface probing. The error introduced by
this assumption is bounded in Sec. 5.

The present assumption of elastic isotropy
at the crystal level limits the present model to
predicting the yield surfaces of nearly isotropic
materials such as Al. In its present form, the
probing scheme is not applicable to crystalline
materials with greater elastic anisotropy, such as
steel [52].

The binary tree model can also capture the
onset of plasticity in the model polycrystal, i.e.,
the first activation of slip. If the continuity condi-
tions in Eq. (1) were replaced by

σ
(ln)
11 = σ

(rn)
11 , σ

(ln)
33 = σ

(rn)
33 , σ

(ln)
13 = σ

(rn)
13 ,

σ
(ln)
12 = σ

(rn)
12 , and σ

(ln)
32 = σ

(rn)
32 ,

(48)

the Sachs [53] iso-stress model is obtained. Impos-
ing Eq. (10) at the root node, (r), and enforcing
Eq. (48) between the sub-aggregates predicts the
stress state at onset of yielding. Microstructurally,
the onset of yielding corresponds to activation of
the weakest slip system in the polycrystal [35].
Computationally, this problem can be solved as a
linear program minimising Eq. (18) subject only
to the constraints given by Eq. (17).

Imposing Eq. (10) determines the yield stresses
along the forward and reverse directions of loading
in Fig. 2c, and Fig. 2d. Determining the lateral
faces requires imposing mixed conditions of the
form:

D
(r)
ij = D̄ij , if ij ∈ D , and

σ
(r)
ij = σ̄ij , if ij ∈ A \ D ,

(49)

upon the root node, (r).
The predicted yield stress obtained by impos-

ing Eq. (49) at the root node, (r), and Eq. (48)
at all the sub-aggregate interfaces corresponds to
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the activation of slip in the weakest slip system(s).
However, experimentally, Khan et al. [29] have
associated yielding with a small, but non-zero
inelastic strain of 10−5. At the point of yield-
ing in the experiment, a fraction of the grains in
the polycrystal is expected to deform plastically
through slip, while their neighbours maintain com-
patibility by deforming elastically [31]. In order
to capture this physical feature of the deforma-
tion, the computational definition of yielding must
be modified so that yielding is identified with slip
activation in a fixed fraction of grains, and not in
the weakest slip system of one grain only.

To this end, Eq. (49) is replaced with:

D
(nimp)
ij = D̄ij , if ij ∈ D , and

σ
(nimp)
ij = σ̄ij , if ij ∈ A \ D ,

(50)

where the nodes (nimp) satisfy

ℓ(n
imp) = ℓimp, (51)

with ℓimp ∈ {1, 2, . . . , ℓ(r)} itself now regarded as a
fitting parameter. This condition states that dur-
ing probing, the macroscopic conditions must be
imposed upon all the nodes of level ℓimp, instead
of the root node, (r). As before, the Sachs iso-
stress continuity conditions, Eq. (48), must be
imposed upon all the nodes below the level ℓimp:
i.e., {(n) : ℓ(n) < ℓimp}. This amounts to regard-

ing the original polycrystal as 2ℓ
imp−1 iso-stress

sub-polycrystals. The yield stress of each of these
sub-polycrystals must be determined. At the onset
of yielding, the weakest slip system in each of these
sub-polycrystals will activate. By this device, it is
ensured that plastic slip occurs in a fixed fraction,
2−(ℓimp−1), of model grains at the onset of yielding,
just as in the experiment. As before the macro-

scopic yield stress is σ
(r)
ij , and can be calculated

as before using Eq. (5), or (6).
For illustration, consider the 8-grain model

polycrystal of Fig. 1. If ℓimp = 4, Eq. (50) is
imposed on the root node of this tree. The Sachs
analysis will calculate the macroscopic stress at
which plasticity incepts in 1 of the 8 grains
(fraction: 2−3) in the model polycrystal.

Suppose ℓimp = 3, instead. The conditions,
Eq. (50) must now be imposed on the nodes
labeled A, and B in Fig. 1. Performing the Sachs

analysis on the sub-tree rooted at node A will

determine σ
(A)
ij at node A corresponding to plastic

inception in 1 out of the 4 grains of the sub-tree
below node A. Similarly, Sachs analysis on the

sub-tree rooted at node B will determine σ
(B)
ij at

node B corresponding to plastic inception in 1 out
of the 4 grains of the sub-tree below node B. The

macroscopic stress at the root node, σ
(r)
ij , can be

calculated from the known σ
(A)
ij , and σ

(B)
ij , using

Eq. (5), or (6). This σ
(r)
ij will correspond to the

inception of plasticity in 2 out of 8 grains (frac-
tion: 2−2) in the model polycrystal. Similarly, the
yield stress corresponding to slip inception in 4
out of 8 grains (fraction: 2−1) can be determined
by imposing Eq. (50) on the nodes C, D, E, and
F corresponding to ℓimp = 2 in Fig. 1.

Examples of D̄ij , and σ̄ij appearing in
Eq. (50), and relevant to yield surface probing, are
now given. To probe the reverse yield point, B,
after uniaxial tension in Fig. 2c,

D̄11 = −1, and σ̄22 = σ̄33 = σ̄12 = σ̄23 = σ̄13 = 0.
(52)

Similarly, the yield points Dk and Ek in Fig. 2c
can be probed by imposing

D̄12 = ±1, σ̄11 = σten,k
11 , and

σ̄22 = σ̄33 = σ̄23 = σ̄13 = 0,
(53)

respectively. Let σA
11, and σB

11 denote the for-
ward and reverse yield points in uniaxial tension.
σten,k
11 appearing in Eq. (53) are taken to be the

Chebyshev points [54] in the intervening interval:

σ̄ten,k
11 =

σA
11 + σB

11

2
+
σA
11 − σB

11

2
cos

(
(n− k)π

n− 1

)
,

(54)

for k ∈ {1, 2, . . . , n}, where n is chosen sufficiently
large to unambiguously draw the yield surface.
Presently, n = 25. The Chebyshev points are
clustered near the edges of the interval to better
capture the curvature of the yield surface therein.
The reverse and forward yield points are them-
selves included amongst the σ̄ten,k

11 . Likewise, the
yield points Dk and Ek in Fig. 2d can be probed
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by imposing

D̄11 = ∓1, σ̄12 = σ̄tor,k
12 , and

σ̄22 = σ̄33 = σ̄23 = σ̄13 = 0,
(55)

respectively. Again, let σA
12, and σ

B
12 denote the for-

ward and reverse yield points in free-end torsion.
σ̄tor,k
12 appearing in Eq. (55) are

σ̄tor,k
12 =

σA
12 + σB

12

2
+
σA
12 − σB

12

2
cos

(
(n− k)π

n− 1

)
,

(56)

for k, and n as in Eq. (54).
The present problem of finding the slip rates,

γ̇(s),g in all the grains, and the stresses, σ
(n)
ij in all

the nodes of the binary tree that satisfy Eqs. (6),
(14), (48), and (50), is similar to the problem
solved in Eq. (18). The key difference between
them is that the macroscopically imposed stress
condition is not homogeneous: In Eq. (50), σ̄ij is
not necessarily zero, unlike in Eq. (10).

The minimisation in Eq. (18) can be read-
ily extended to accommodate the inhomogeneous
boundary condition in Eq. (50). To this end, let

τ̂ (s),g := τ (s),g −
∑

ij∈A \D

σ̄ijm
(s),g
ij . (57)

Physically, this is equivalent to regarding σ̄ij , ij ∈
A \ D , as components of the uniform residual
stress in all the grains. Consider the minimisation

min
γ̇(s),g

∑
(ng)∈N (nimp)

V (ng)τ̂ (s),gγ̇(s),g, (58)

subject to the constraints

∑
(ng)∈N (nimp)

V (ng)

V (nimp)

S∑
s=1

m
(s),g
ij γ̇(s),g = D̄ij , (59)

if ij ∈ D . In Eqs. (58), and (59), (nimp) is given

by Eq. (51). Let σ̂
(n)
ij be the stress components

obtained from the dual variables, which represent
the Lagrange multipliers that enforce the con-
straints. Then, the stress components in node (n)

are given by

σ
(n)
ij =

{
σ̂
(n)
ij , if ij ̸∈ A \ D , and

σ̂
(n)
ij + σ̄ij , if ij ∈ A \ D .

(60)

3.2 Anelastic probing

The present formulation for the onset of anelas-
tic deformation of the model polycrystal is based
on that given for a continuum material point by
Li and Wagoner [50] and van Liempt and Sietsma
[55]. Only the onset of anelastic strain is of inter-
est for probing; the development of finite anelastic
strain is not. The polycrystal is probed for anelas-
tic strain in stress space. As with plastic probing,
a state of iso-stress obeying Eq. (48) is assumed
in the polycrystal during anelastic probing. The
onset of anelastic strain is probed along a line in
stress space, beginning at σ̄0

ij , and running in the
direction ∆σ̄ij . Along this line, the applied prob-

ing stress σ
(n)
ij in all the nodes (n) of the binary

tree model is given by

σ̄ij(u) = σ̄0
ij + u∆σ̄ij , for u ≥ 0. (61)

For example, anelastic probing for the reverse
yield point, B, starting from the forward yield
point A in Fig. 2c would correspond to σ̄0

11 = σA
11,

σ̄0
22 = σ̄0

33 = σ̄0
23 = σ̄0

13 = σ̄0
12 = 0, and ∆σ̄0

11 =
−1, ∆σ̄0

22 = ∆σ̄0
33 = ∆σ̄0

23 = ∆σ̄0
13 = ∆σ̄0

12 = 0.
Similarly, for probing the point Dk starting from
the point Ck located on the tensile axis, in Fig. 2c,
σ̄0
11 = σten,k

11 , σ̄0
22 = σ̄0

33 = σ̄0
23 = σ̄0

13 = σ̄0
12 = 0,

and ∆σ̄0
12 = 1, ∆σ̄0

11 = ∆σ̄0
22 = ∆σ̄0

33 = ∆σ̄0
23 =

∆σ̄0
13 = 0, where σten,k

11 is given by Eq. (54).
As reasoned in connection with Fig. 4, unbow-

ing of the dislocation segments in the loaded
slip systems within the near-DDW regions is the
principal contribution to anelasticity during prob-
ing. This is equivalent to dislocation bowing in
the reverse slip system (s′) that satisfy Eq. (37).
Anelastic strain is proportional to the disloca-
tion density [55]. Therefore, only slip systems
with a sizable dislocation density can contribute
significant anelastic strain. Dislocation bowing is
therefore checked only in those slip systems (s′)
that satisfy

ρ(s),g + ρ(s
′),g ≥ ε

[
max

(t)∈{1,2,...,S}
ρ(t),g + ρ(t

′),g

]
,

(62)
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where ε is a cut-off parameter. It is found that the
results of the anelastic calculations are insensitive
to ε; presently, ε = 0.1 is assumed. Dislocations
can bow in slip system (s′) only if the effective
RSS therein increases with increasing u, i.e., if

∆σ̄ijm
(s′),g
ij > 0. (63)

Let S g denote the set of slip systems in grain
g that satisfy Eqs. (37), (62), and (63). Let (s′) ∈
S g, and let the state of bowing of the dislocation

segments therein be given by τ
(s′),g
state . The RSS in

slip system (s′), due to the applied stress σ̄ij(u)

given by Eq. (61) is σ̄ij(u)m
(s′),g
ij . Additionally,

backstress τ
(s′),g
b given by Eq. (36) acts on (s′), so

that the effective RSS given by Eq. (43) is r
(s′),g
eff =

σ̄ij(u)m
(s′),g
ij + τ

(s′),g
b . Following Eq. (42), bowing

occurs if

σ̄ij(u
(s′),g
∗ )m

(s′),g
ij + τ

(s′),g
b = τ

(s′),g
state + τ (s

′),g
c . (64)

Substituting Eq. (61) into Eq. (64),

u
(s′),g
∗ = max

(
0,
τ
(s′),g
state + τ

(s′),g
c − τ

(s′),g
b − σ̄0

ijm
(s′),g
ij

∆σ̄ijm
(s′),g
ij

)
,

(65)

where max(·) is introduced to ensure u
(s),g
∗ ≥ 0.

Minimising u
(s′),g
∗ over all the allowable bowing

slip systems in all the grains yields the u at the
inception of anelastic strain in the polycrystal:

u∗∗ = min
g

min
(s)∈S g

u
(s′),g
∗ . (66)

The stress at the inception of anelastic deforma-
tion is then

σanel
ij = σ̄0

ij + u∗∗∆σ̄ij . (67)

The considerations leading up to Eq. (50) in
the case of plastic probing are also applied to
anelastic probing. Thus, σanel

ij is computed individ-
ually for each sub-polycrystal rooted at nodes of
level ℓimp as in Sec. 3.1. Also as before in Sec. 3.1,
these stresses are volume averaged to obtain the
σanel
ij for the entire polycrystal.
The plastic and anelastic phenomena responsi-

ble for the small-offset yield surface in the present
model occur within the interior of the grain

volume. Contributions from the grain bound-
ary regions through the development of strain-
gradients, slip transmission, or grain boundary
sliding have not been modeled [56]. This is a
limitation of the present model.

4 Parameter fitting

Parameter fitting proceeds in two steps: First, the
backstress parameters {bSH, bCopl, . . . , bLC} are fit
to the measured experimental yield surface after
uniaxial tension, excluding the reverse yield point.
Second, the parameters governing the evolution of
the friction stress τF0 and {cSH, cCopl, . . . , cLC} are
fit to match the reverse yield point. This two-step
approach is taken because it is found impossi-
ble to fit the reverse yield point without invoking
anelasticity.

The first step of fitting is performed using
the Nelder and Mead [57] algorithm. The algo-
rithm starts with an initial guess of the back-
stress parameters, with each bi in Eq. (32) being
drawn from a uniform distribution over the inter-
val [−1, 1]. Within each iteration, the dislocation
evolution parameters, K, and f of the storage-
annihilation Eq. (25), and τa0 of Eq. (27) are
fitted to the post-relaxatic stress-strain curve, also
using the Nelder-Mead algorithm. The cost func-
tion is the r.m.s. error between the experimentally
measured post-relaxatic forward yield stress, and
the predicted one after the tensile loading. With
the K, and f fitted, the yield surface is plasti-
cally probed, and the r.m.s. error between the
measured and predicted yield surfaces is calcu-
lated. The reverse yield point is not included
in the r.m.s. error computation. By translating,
rotating, and distorting a six-vertex simplex in
the six-dimensional space of {bSH, bCopl, . . . , bLC},
the Nelder-Mead iterations attempt to decrease
the cost function. The six-dimensional space of
{bSH, bCopl, . . . , bLC} has multiple local minima,
each with its basin of attraction [58]. When a ver-
tex of the Nelder-Mead simplex enters a basin
of attraction, the remaining vertices follow suit,
causing the simplex volume to decrease with each
additional iteration. The algorithm terminates
when the volume of the simplex becomes smaller
than a pre-set threshold. The foregoing process is
repeated for a number of ℓimp.

In order to minimise the cost function, it is
desirable to sample a number of local minima.
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To that end, several (thirty two, presently) inde-
pendent instances of the Nelder-Mead program
each starting with randomly drawn initial guesses,
bi ∈ [−1, 1], are run in parallel. The set of param-
eters that yield the smallest r.m.s. error amongst
all the instances is taken to be the best-fitting set
of parameters.

Fitting is performed on the yield surfaces mea-
sured after tensile deformation only. With the
same parameters, yield surfaces after torsion are
predicted, and compared with the experimental
yield surfaces of Khan et al. [29]. This provides
a test of the generality of the model, and of the
material parameters.

Fitting the friction stress parameters τc0, and
{cSH, cCopl, . . . , cLC} that appear in Eq. (40) is
considerably more straightforward. The interac-
tion parameters are required to take the form

{cSH, cCopl, . . . , cLC} = ψc{ι1, ι2, . . . , ι6}, (68)

where each ιi ∈ {0, 1, . . . , I}, and ψc is a posi-
tive real parameter to be determined. Presently,
I = 3. According to Eq. (68), (I + 1)6 forms of
the friction stress interaction parameters must be
probed. For each of these forms, τc0 ≥ 0, and
ψc ≥ 0 are determined using Nelder-Mead mini-
mization of the cost function. The cost function is
the r.m.s. error between the predicted and exper-
imental reverse yield point at the all the strain
levels studied experimentally. Once ψc is obtained,
the best fit {cSH, cCopl, . . . , cLC} can be inferred
using Eq. (68).

It is noted that interaction coefficients gov-
erning the backstress and the friction stress are
not amenable to fitting by hand. This is because
the rate-independence of the present model makes
the variation of the cost function non-smooth
over the parameter space. For this same reason,
the automated fitting procedure outline above
uses the derivative-free Nelder-Mead algorithm
extensively.

5 Results and discussion

Khan et al. [29] experimentally probed the yield
surface of an Al 1100 tubular specimen after sub-
jecting it to prestrain ϵpre11 = 2%, ϵpre11 = 8%,
and ϵpre11 = 16% strain in uniaxial tension. They
also obtained the yield surface after imposing

γpre12 = 4%, γpre12 = 10%, and γpre12 = 20% engi-
neering shear strain through free-end torsion. It
is aimed presently to replicate their yield surface
measurements computationally.

Khan et al. [29] stress-relaxed the specimen at
constant strain after loading, and before probing
for the yield surface. It was noted in Sec. 2.3.3 that

|τ (s),gstate | diminishes during strain-holding. Since it is
presently not possible to estimate the magnitude
of its reduction [59], it is assumed that

τ
(s),g
state = 0. (69)

In words, it is assumed that the dislocation seg-
ments between pinning points become straight
after strain-holding.

5.1 Loading

The balanced binary tree model of Sec. 2.1 rep-
resenting a polycrystalline aggregate comprised
of 210 = 1024 grains, each of volume fraction
2−10, is used to simulate loading in uniaxial ten-
sion, and free-end torsion. The balanced binary
tree has ℓ(r) = 11 levels. As the initial texture
of the Khan et al. [29] specimen is not avail-
able, the simulations start with grains assigned
lattice orientations drawn from the uniformly ran-
dom texture. This assumption is supported by
the observation that the initial yield surface of
the experimental material is well-fitted by the
isotropic von Mises criterion [29]. Also, assum-
ing the tubular specimen were extruded, the grain
boundaries can be expected to align preferentially
with the radial direction. To reflect this, the ini-
tial planar interfaces between sibling nodes in the
binary tree are randomly assigned normals ori-
ented within a right circular cone of apex angle
30◦, whose axis is aligned with the radial direction.

The parametric fitting procedure of Sec. 4 was
run to fit the three subsequent yield surfaces mea-
sured by Khan et al. [29] after tensile prestrains
of 2%, 8%, and 16%. Standard values assumed for
the well-known material parameters of aluminium
are shear modulus, µ = 26.32GPa, and the magni-
tude of the Burgers vector, b = 2.8622Å. The grain
size in Eq. (25) was taken to be D = 36 µm. In
Eq. (34), ρann was taken to be 106 /m2. The values
of the initial hardness, and interaction parameters
corresponding to hardening, backstress, and fric-
tion stress, obtained from the fitting algorithm,
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Hardening, Backstress, Friction stress,

Eq. (27) Eq. (36) Eq. (40)

Initial hardness τa0 = 19.3 MPa τc0 = 6.10 MPa

In
te
ra
ct
io
n
p
ar
a
m
et
er
s SH aSH = 0.122 bSH = 0.7193 cSH = 0

Copl aCopl = 0.122 bCopl = 1.3868 cCopl = 2.5418

CS aCS = 0.625 bCS = 0.8203 cCS = 0.8473

HL aGJ = 0.070 bGJ = 0.4163 cGJ = 0

GJ aHL = 0.137 bHL = 1.6267 cHL = 0.8473

LC aLC = 0.122 bLC = −0.8511 cLC = 1.6945

Table 1: Parameters quantifying the physical mechanisms of slip system hardening, backstress, and
friction stresses in the present model. The interaction parameters for slip system hardening, ai, are taken
from Kubin et al. [43].

are given in Table 1. The optimal values of param-
eters appearing in Eq. (25) were found to be
K = 26.226, and f = 11.276. The probing level in
Eq. (51) is taken to be ℓimp = 6.

Fig. 5 shows the evolution of the total disloca-
tion density, averaged over all the grains,

⟨ρ⟩ =
∑

g

∑S
s=1 ρ

(s),g∑
g 1

, (70)

during tensile and torsional loading. In Eq. (70),
and henceforth, ⟨·⟩ denotes averaging over all the
slip systems in all the grains. The average dislo-
cation density evolves remarkably similarly along
both loading paths. The scatter in dislocation den-
sity evolution is also small relative to the average
value.

Fig. 6 shows the average forest hardening,
average backstress, and average friction stress
for loading along both the tensile and torsional
loading paths. The standard deviation of the
corresponding quantities amongst grains is also
indicated by error bars. In the case of the back-
stress, ⟨−τb⟩, the average is taken only over the
unloaded slip systems. Roughly, the average neg-
ative backstress is about half of the average forest
hardness. The friction stress is, however, consider-
ably greater than the forest hardness, and shows
considerably greater scatter from grain to grain.
This is because the friction stress in Fig. 6 per-
tains to the localised region near the DDWs, as

anelastic effects are confined to that region only.
The friction stress in the cell interiors is expected
to be considerably smaller.

As in Fig. 5, the evolution of ⟨τa⟩, ⟨τb⟩, and
⟨τc⟩ with von Mises strain is remarkably similar for
both tensile and torsional loading. It is known that
textural and substructural effects cause the ten-
sile, compressive, and torsional plastic responses
to diverge from each other with increasing von
Mises strain [22, 60]. It follows that the present
strain levels are small enough for this divergence
to be insignificant.

Fig. 7 shows the texture evolution during ten-
sile and torsional loading through {111} pole
figures. The initial texture is random. Under ten-
sile loading, grains are seen to rotate to align
the tensile axis x1 with {111}, or {100} poles,
consistent with the observations in the literature
[61]. Under torsional loading also, the developed
texture is consistent with observations in the lit-
erature [62]. Thus, qualitatively distinct, albeit
relatively weak textures develop in the tensile and
torsional loading modes over the strain range of
present interest. The weakness of the developed
texture is consistent with the similar evolution of
state seen in Figs. 5, and 6 during both tension
and torsional loading.

5.2 Yield surface probing

Fig. 8a shows the points on the yield surface of
Al 1100 measured by Khan et al. [29] after 2%,
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Tension Torsion
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Fig. 7: Predicted {111} pole figures during tensile (left column) and torsional (right column) deforma-
tion beginning with a random initial texture. x1 denotes the axial direction, and x2 the circumferential
direction. The levels are {0.5, 1.0, 1.5, 2.0}× m.r.o.̇ Regions with texture intensity smaller than 0.5 are
indicated by dots.
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Fig. 8: Subsequent yield surfaces of Al1100 predicted by the present plastic, and anelastic computations
after various (a) tensile, and (b) torsional prestrains. The experimental measurements of Khan et al. [29]
are indicated by points.
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8%, and 16% tensile prestrains. It also shows the
yield surfaces predicted through plastic probing,
as described in Sec. 3.1. At all the three prestrain
levels, the predictions capture both the forward
yield stress, and the yield surface curvature satis-
factorily. The predicted yield surface has a blunt
nose, showing that the model polycrystal requires
a non-zero shear stress to yield in shear even when
loaded to the tensile yield point.

The reverse yield point as predicted by plastic
probing does show a Bauschinger effect: For all the
three prestrains, the reverse yield point is greater
than the negative of the forward yield point. Even
so, the predicted reverse yield point misses the
experimentally measured reverse yield point by a
large margin. In fact, the predicted reverse yield
point has the opposite sign as the measured one.
This is a consequence of Eq. (39): Since the effec-
tive CRSS of all the slip systems remains positive,
yielding in the forward and reverse directions will
necessarily require applied stresses of opposite
sign. It is therefore not possible to capture the
reverse yield point through plastic probing.

Fig. 8a also shows the yield surface obtained
from anelastic probing. It is seen that the anelastic
yield surface captures the reverse yield point after
the three prestrains very well. It even captures the
experimental observation that the reverse yield
point moves non-monotonically with the prestrain
level: increasing from 2% to 8%, and then decreas-
ing. Elsewhere along the tensile axis, i.e., for other
σten,k
11 given by Eq. (54), anelastic probing results

in a much larger yield surface than the plastically
probed yield surface.

The non-monotonicity of the predicted reverse
yield point is surprising since the friction stress,

τ
(s),g
c , given by Eq. (40), monotonically increases
with dislocation density, which increases with
plastic strain. This shows that the slip system
interactions, cst, are responsible for the non-
monotonicity. On the basis of this observation, it
is speculated that slip system interactions under-
lie the non-monotonic elastic-anelastic transition
stress reported in a number of materials by Li and
Wagoner [50].

As noted in Sec. 1, previous studies have mea-
sured forward and reverse yield points of opposite
sign, and even predicted them using polycrys-
tal plasticity models. The key difference between
those measurements, and that of Khan et al. [29]

is that the magnitude of the strain offset used to
define yielding in the former is many orders of
magnitude greater than that in the latter. It thus
appears that when probing for the reverse yield
point, the initial deviation from linearity in the
stress-strain response, within the range of small-
offset probing, is caused by anelastic deformation.
This mechanism then gives way to plasticity,
which underlies the large-offset regime.

Keeping all the material parameters listed in
Table 1, and elsewhere unchanged, the plastic and
anelastic yield surfaces are predicted after three
levels of torsional prestrain. These predictions are
compared with the experimental measurements of
Khan et al. [29] in Fig. 8b. Again, the forward
yield point, and the lateral surfaces of the yield
surface are satisfactorily captured by the plastic
probing simulations. Again, the reverse yield point
is not captured by plastic probing, but is reason-
ably captured by anelastic probing. Although the
model parameters are fit to the yield surfaces of
the tensile prestrained specimen, the model cap-
tures the subsequent yield surfaces of torsionally
prestrained specimen also.

The inner envelope formed by the plastically
and anelastically probed yield surfaces is com-
pared with the experimental measurements in
specimen subjected to both tensile and torsional
prestrains in Fig. 9. A satisfactory fit of the mea-
surements is observed. It is concluded that the
deviation from linearity during yield surface prob-
ing in the experiment can be attributed to two
distinct physical mechanisms: At the forward yield
point, and along the lateral surfaces, plasticity
causes the inelastic deviation from linearity. At
the reverse yield point, anelasticity is responsible
for the same effect.

It is recalled from Sec. 2.2 that the present
model grains are assumed rigid plastic, whereas
physical aluminium grains obey anisotropic elas-
ticity before yielding. Using the anisotropic elastic
moduli measured at room temperature for Al
crystals by Vallin et al. [63], and the analytical
formulae derived by Cazzani and Rovat [64], the
maximum and minimum Young’s moduli for Al
are obtained as 75.6 GPa, and 63.3 GPa, along
the ⟨111⟩, and ⟨100⟩ directions, respectively. The
directional variation of Young’s modulus of an Al
crystal is thus about 69.4 GPa ±9%. Assuming
that the grains of the polycrystal subjected to
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Fig. 9: Inner envelope of the predicted subsequent plastic and anelastic yield surfaces of Fig. 8 after
imposing various prestrains in uniaxial tension (solid), and free-end torsion (dashed). The experimental
measurements of Khan et al. [29] are also indicated.

uniaxial tension obey the limiting iso-strain condi-
tion, the tensile stress variation is thus bounded by
9%. A comparably small scatter is also expected
for the shear modulus, and therefore, shear stress
fluctuation in the grains. Thus, the error due to
neglecting the anisotropic elasticity of Al grains is
small.

The algorithmic procedure of Sec. 4 finds
multiple local minima. The parameters listed in
Table 1 correspond to the best local minimum
with the smallest r.m.s. error. Yield surfaces deter-
mined using the parameter sets corresponding to
the second, third, fourth, and fifth best local min-
ima have been computed, and compared with the
measured yield surfaces. These latter predictions

resulted in qualitatively poorer fits of the exper-
imental yield surface measurements than that
shown in Fig. 9. Thus, within the scope of the
parameter fitting procedure, the parameters listed
in Table 1 represent unique values.

5.3 Role of backstress, and
anelasticity

The role of backstress, and anelasticity are
presently assessed. Fig. 10 shows the yield sur-
faces computed by setting bst = 0 in Eq. (38),
and cst = ∞ in Eq. (40), after prestraining in
tension, and torsion. These parameter choices cor-
respond to completely suppressing the backstress
and anelastic effects.
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Fig. 10: Comparison of the yield surfaces predicted by the plasticity model without backstress after
tensile and torsional prestrains.

The yield surfaces predicted in the absence of
backstress and anelasticity are elliptical, with the
major axis of the ellipse aligned with the pre-
straining direction, and the minor axis transverse
to it: The yield surfaces obtained after tensile pre-
strain are elongated along the σ11 axis, while those
obtained after torsional prestrain are elongated
along the

√
3σ12 axis. This anisotropy between the

loading and transverse directions is a consequence
only of the texture, and of the forest hardening.
They predict a symmetric response in the pre-
straining, and opposite directions. This implies
that the different curvatures of the yield surface
in the prestrain, and opposite directions must be
entirely attributed to backstress, and anelasticity
effects.

It is next sought to determine the individual
contribution of each bi in Eq. (32) to the shape of
the yield surface. This is done by considering two

extreme scenarios. First, bi is set to its value in
Table 1, and all bj, j ̸= i are set to zero. The yield
surfaces so predicted are shown in the left col-
umn of Fig. 11. Second, bi is set to zero, while the
other parameters bj, j ̸= i are assigned values from
Table 1. The resulting predictions are shown in the
right column of Fig. 11. It is expected that if a par-
ticular bi were especially important, the predicted
yield surfaces in the left column will qualitatively
agree with the experimentally measured ones. On
the other hand, if bi were unimportant, i.e., if the
effect of its omission were small, it is expected that
the predicted yield surfaces in the right column
will resemble the experimental measurements.

Consider the predicted plastic yield surfaces
shown in Fig. 11c, which are obtained by retain-
ing the value of bCopl from Table 1, while setting
all other bi, i ∈ {SH,CS,HL,GJ,LC} to zero. It
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(a) bSH from Table 1, other bi = 0
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(b) bSH = 0, other bi from Table 1
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(c) bCopl from Table 1, other bi = 0
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(d) bCopl = 0, other bi from Table 1
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(e) bCS from Table 1, other bi = 0
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(f) bCS = 0, other bi from Table 1

is seen that the curvature of the nose is qual-
itatively captured. The predictions obtained by
omitting bCopl, while retaining the other bi, are
shown in Fig. 11d. The predicted yield surfaces
in Fig. 11d are much blunter at the nose. They
compare poorly with the measurements. These

observations indicate that bCopl plays a central
role in capturing the shape of the plastic yield
surface.

Barring the second row in Fig. 11 correspond-
ing to bCopl, it is seen that in all the other rows,
a poor comparison between the predictions and
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(g) bHL from Table 1, other bi = 0
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(h) bHL = 0, other bi from Table 1
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(i) bGJ from Table 1, other bi = 0
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(j) bGJ = 0, other bi from Table 1
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(k) bLC from Table 1, other bi = 0
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(l) bLC = 0, other bi from Table 1

Fig. 11: To gauge the individual effect of each bi on the predicted yield surfaces, two types of parametric
variations are considered. In the figures of the left column, one interaction, bi, is retained, while setting
all the others to zero. In the right column, bi = 0, while retaining all the other interactions.
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measurements is obtained in the left column, and
a qualitatively reasonable comparison is obtained
in the right column. This also indicates that bi, i ∈
{SH,CS,HL,GJ,LC} contribute less than bCopl to
the shape of the predicted plastic yield surfaces.
Of these contributions, the one shown in Fig. 11f
is noteworthy. It shows that setting bCS = 0, while
retaining the values of the other bi leads to prac-
tically the same predictions as in Fig. 8a. This
points to the negligible contribution of bCS to the
plastic yield surfaces. In summary, the predicted
plastic yield surfaces are determined principally
by bCopl, followed by bSH, bHL, bGJ, and bLC. They
are almost insensitive to bCS.

The backstress, controlled by bi, also partly
governs the anelastic response, and hence the pre-
dicted reverse yield point. The left column of
Fig. 11 shows the predicted anelastic yield surfaces
obtained by imposing each bi individually. None of
these predictions agree with the measured reverse
yield points. Thus, the anelastic response, unlike
the plastic response, is not dictated by any of the
bi individually. In the right column, it is seen that
omitting bSH, bCopl, and bHL results in a larger
gap between the predicted and measured reverse
yield points, as seen in Figs. 11b, 11d, and 11h,
respectively, than that obtained by omitting bGJ,
and bLC, as seen in Figs. 11j, and 11l, respectively.
Fig. 11f shows that omitting bCS hardly disturbs
the quantitative agreement between the predicted
and experimental reverse yield points. Thus, the
anelastic reverse yield point predictions are deter-
mined by bSH, bCopl, and bHL principally, followed
by bGJ, and bLC. They are nearly insensitive to
bCS.

Although not shown, the above observations
apply also to specimen subjected to torsional pre-
strain. Further, a similar exercise to determine
the important interaction parameters ci that sig-
nificantly affect the predicted reverse yield point
reveals that all the ci, except cCS, are comparably
important.

The insensitivity of the predicted plastic and
anelastic yield surfaces to bCS, and cCS derives
from the much larger value of aCS compared to
the other ai, as seen in Table 1. Let (s) and (t) be
slip systems such that ast = aCS, and let (t′) be
the reverse slip system of (t). Let slip system (s)
activate during the loading stage. Then, according
to Eq. (27), slip systems (t), and (t′) will experi-
ence rapid forest hardening. This will suppress slip

activity, dislocation density build up (Eq. (25)),
and hence, anelastic strains (Eq. (62)) in the slip
systems (t), and (t′). The large forest hardness of
the slip systems (t), and (t′) will also result in a
large CRSS (Eq. (38)), which will suppress their
activation during plastic probing. They will thus
not participate in determining either the anelastic
response or the plastic response during probing,
making the predicted yield surfaces independent
of bCS, and cCS.

Finally, it is noted from Table 1 that coplanar
and Lomer-Cottrell interactions are the largest
contributors to the hardening of the friction stress.
This suggests that slip activity in the coplanar and
Lomer-Cottrell slip systems of a given slip sys-
tem (s) produce the most dislocation debris that
serve to oppose dislocation bowing and unbowing.
Notably, the self hardening interaction coefficient,
cSH, is zero, indicating negligible friction stress
hardening in a slip system due to its own slip
activity.

5.4 Comparison with previous works

Experimental analyses of the dislocation content
of DDW in fcc copper [48] and fcc aluminium
[49] have found sets of dislocations from copla-
nar slip systems, and Lomer-Cottrell (LC) locks.
According to the present results, however, the
LC contribution to the backstress appears to be
smaller than that of Copl. A plausible cause for
this observation is that the edge part of the
Lomer-Cottrell junction does not react elastically
with the screw part of incoming dislocations. This
reduces the stand-off distance, i.e., reduces the
range of the backstress [47]. The reduced range
may be reflected in bLC < bCopl.

The case bSH ̸= 0 and bi = 0, for i ̸= SH, shown
in Fig. 11a is of interest also because it corre-
sponds approximately to the substructural model
of Wen et al. [24] after monotonic loading. To see
this, it is recalled that the backstress in the Wen
et al. [24] model is given by Eq. (30). At the end of
monotonic loading, assuming bSH ̸= 0 and bi = 0,
for i ̸= SH, Eq. (36) becomes

τ
(s′),g
b = −τ (s),ga (1− exp(−bSH)) , (71)

where (s), and (s′) have the same meanings as in
Eq. (30). By identifying fsB with (1− exp(−bSH)),
it is clear that when slip system interactions are
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taken away, the present backstress formulation
reduces to that of Wen et al. [24]. Further, sub-
stituting bSH = 0.7193 from Table 1 results in
1−exp(−bSH) ≈ 0.51, which is almost equal to the
parametric value fsB = 0.5 fit by Wen et al. [24].
It is thus seen that in the limiting case of back-
stress governed by self-hardening only, the present
model replicates the Wen et al. [24] model in the
special case of monotonic loading. However, as
Fig. 11a shows, the predicted yield surface in this
limit does not compare even qualitatively with the
experimental one.

The present predictions of the yield surface of
annealed 1100 Al are now compared with those
of two modeling works in the literature. As noted
in Sec. 1, Liu et al. [19] model the polycrys-
tal as a single grain with 30 slip components,
whose interactions determine their hardening. In
their work, self and latent hardening contribu-
tions are governed by the projection of the Schmid

tensors of the slip components, m
(s)
ij m

(t)
ij , in the

present notation. This factor also appears in the
present Eq. (33). By suitable choice of the hard-
ening parameters for annealed 1100 Al, Liu et al.
[19] reasonably captured the advancing forward
yield point with increasing strain, and the increas-
ing cross-effect with increasing strain in tension.
However, their predicted forward and reverse yield
points in torsion underestimate, and overestimate
the experimental values, respectively. Also, while
their predictions capture the sharp curvature near
the forward yield point, their model predicts a less
blunt yield surface than the measurements near
the reverse yield point, both in tension and in tor-
sion. Their predictions also do not capture the
order of reverse yielding with prestrain.

The phenomenological model of Pietryga et al.
[18], discussed in Sec. 1, also captures all the
aspects of the yield surfaces after tensile prestrain.
However, their torsional yield surfaces overesti-
mate the reverse yield point by large margins. A
common feature of the aforementioned works is
that they explain reverse yielding through plas-
ticity. On the contrary, in the present work,
anelasticity determines the reverse yield point.
If the present model were to capture the large
Bauschinger effect though plasticity alone, a large
backstress would be required, resulting in the
violation of Eq. (39). This would jeopardise the
stability of the resulting material model.

The models of Liu et al. [19] and Pietryga
et al. [18] do suffer from stability issues. Liu et al.
[19] do not enforce any conditions for plastic sta-
bility, and the present Eq. (39) may be violated
in at least some of the their slip components.
Nevertheless, Liu et al. [19] do not detect insta-
bility because, in their computations, only the
elastic and damage components bear the applied
stress. Plastic deformation is calculated in an
uncoupled way: While the plastic deformation is
determined by stress, plastic deformation does
not influence stress. Pietryga et al. [18] noted
that their predicted subsequent yield surfaces are
not necessarily convex, which may impact the
stability of numerical simulations. In summary,
the present formulation invoking two mechanisms,
plasticity, and anelasticity, captures the measured
yield surface while also guaranteeing the stability
of inelastic deformation. This guarantee is absent
in the aforementioned works.

6 Conclusions

A novel physical model of substructural evo-
lution has been proposed. The model accounts
for two modes of inelastic deformation, viz.,
rate-independent plasticity, and anelasticity. It
accounts for hardening, backstress, and friction
stress evolution in the substructure, all while
accounting for slip system interactions. An algo-
rithm for fitting the model parameters is also
proposed.

The model has been used to computationally
simulate the loading and probing of the small-
offset yield surface. Model parameters are fitted
to the experimental yield surfaces reported in the
literature for Al 1100 specimen subjected to ten-
sile pre-strain. With the same parameters, the
model satisfactorily captures the yield surfaces
after torsional pre-strain also. Further:

1. In annealed 1100 Al, two inelastic mecha-
nisms: plasticity and anelasticity, underlie the
small-offset yield surface. The experimentally
observed yield surface coincides with the inner
envelope of the yield surfaces predicted by these
mechanisms.The part of yield surface around
the forward yield point is governed by plastic-
ity, and that around the reverse yield point by
anelasticity.
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2. Backstress arising from the substructure are
responsible for the sharp curvature of the sub-
sequent yield surfaces near the forward yield
point. In the absence of such large backstress,
the yield surface would be considerably more
rounded near the forward yield point. While
coplanar interactions amongst dislocations is
principally responsible for the backstress, it is
important to also capture the other weaker
interactions in order to accurately predict the
yield surfaces.

3. Anelastic bowing and unbowing of dislocations
are responsible for the large Bauschinger effect
observed in the small-offset yield surface. The
backstress plays an important supporting role
in activating anelastic deformation.
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