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Abstract. A model of damage evolution in austenitic stainless steels under creep
loading at elevated temperatures is proposed. The initial microstructure is idealized
as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo
power law creep deformation. Damage evolution in the form of cavitation and wedge-
cracking on grain boundary facets is considered. Both diffusion- and deformation-
driven grain boundary cavity growth are treated. Cavity and wedge-crack length
evolution is derived from an energy balance argument that combines and extends the
models of Cottrell [1], Williams [2] and Evans [3]. The time to rupture predicted by the
model is in good agreement with published experimental data for a type 316 austenitic
stainless steel under uniaxial creep loading. Deformation and damage evolution at the
microscale predicted by the present model are also discussed.
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1. Introduction

Under service conditions in high temperature applications, austenitic stainless

steel components suffer creep damage leading to eventual creep rupture. In

the technologically important homologous temperature range of 0.3–0.5, the creep

micromechanism transitions from diffusion-controlled cavitation in the low applied stress
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range, through cavitation and wedge cracking in the presence of grain-boundary sliding

in the intermediate stress range to transgranular fracture at high applied stresses [4, 5].

The low-stress regime has been extensively investigated, both experimentally

and through theory and modeling. Cavities, also called r-type voids, grow by a

mechanism of diffusion in this regime. Detailed models of cavity nucleation and

growth (e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14]) that capture the effect of lattice diffusion,

surface diffusion, boundary diffusion, grain creep and the competition between these

mechanisms have been proposed. These models are successful in explaining quantitative

experimental data both in pure metals and complex alloys [15]. Constrained cavity

growth [16], wherein spatially heterogeneous cavitation must be accommodated by

diffusion or creep processes in the surrounding grains, has also been extensively

studied [8, 9, 17]. The vast literature concerning diffusion-contolled cavitation, dominant

at low stresses, has been reviewed by Kassner and Hayes [18].

In the intermediate stress regime, which is the focus of the present work,

deformation-based micromechanisms of creep damage become significant. This has been

recognized since the 1950s [19, 20, 21]. Wedge cracks caused by grain boundary sliding

were observed and classified by Chang and Grant [19] into types (a), (b) and (c) in

coarse-grained aluminum. A relation between grain boundary sliding displacement and

wedge-crack length was obtained by Cottrell [1] for type (b) wedge-cracks using energy

considerations. Identifying creep rupture with the propagation of a Cottrell wedge-crack

across a grain boundary facet, Williams [2] obtained a relation between time to creep-

rupture and the minimum creep rate. Evans [3], also using an energy based reasoning,

developed a model for cavitation in grain boundaries undergoing grain boundary sliding

and used it to compute time to rupture by the mechanism of cavitation. Evans’ model

does not specify the physical mechanisms underlying cavity nucleation and growth and

is therefore not mechanistically rigorous. Developments until about 1980 have been

surveyed by Evans [22, Chaps. 3 and 6].

Since then, the works of Lai and Wickens [23], Chen and Argon [24], Zauter et

al [25] and others have revealed that at least in AISI types 304 and 316 austenitic

stainless steels, wedge cracks form by accelerated growth and linkage of elongated

cavities, previously called w-type voids, near triple lines. These authors thus established

that cavitation underlies the formation of both cavities and wedge cracks. Voiding of

grain boundaries is found to be distinctly heterogeneous with high void concentrations

observed near triple lines and carbide particles. At intermediate stresses, voids were

found to be extended in shape [24], with the extension direction coinciding with the

grain boundary sliding direction. These observations strongly suggest the central role

of grain boundary sliding in inducing damage.

Creep processes governed by mechanisms of deformation such as grain boundary

sliding are, however, not as well-understood as those controlled purely by diffusional

micromechanisms. A mechanistically rigorous model that accounts for the role of grain

boundary sliding on the unconstrained growth of r-type voids is due to Chen [26].

Chen’s model assumes homogeneous distribution of cavities on the grain boundary and is
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based on balancing surface and grain boundary diffusional atomic fluxes in the presence

of a stress enhancement at the cavity tip. This model however does not specify the

volumetric growth rate of the cavity, and neglects the effect of local creep processes in

cavity growth [12]. The effect of Dyson [16] constraints on Chen-like cavity growth is also

not clear: Riedel [27] predicted diffusional cavitation to be faster than that introduced by

constrained grain boundary sliding, whereas Chakraborty and Earthman [28] observed

the opposite effect in their numerical simulations.

In a series of works incorporating grain boundary sliding and heterogeneous

cavitation by diffusion and creep, Tvergaard, Van der Giessen and Onck [12, 13, 14,

29, 30, 31, 32] have computationally studied cavity growth in a two-dimensional finite

element model of a polycrystal comprised of initially hexagonal grains undergoing plane

strain creep. The requirement of compatibility between neighboring finite elements

automatically enforces Dyson [16] constraints on cavity growth in these models. Both r-

type and w-type voids are represented in these models in smeared out form. The failure

simulations of Van der Giessen and Tvergaard [13] capture damage development in the

form of both cavitation and wedge cracking. Onck and Van der Giessen [29, 30, 32] have

developed special finite elements to represent the creeping grain and cavitating grain

boundary regions. They have then used these elements to simulate creep failure of both

initially undamaged material and material ahead of a dominant crack. A limitation

of these works is that acceleration of cavity growth on a grain boundary undergoing

rapid sliding, although observed experimentally [24], is not accounted for, because of

the limitations of Chen’s model noted previously [12]. A lesser limitation of these studies

stems from their two dimensional character; constraints are known to be weaker in this

case than in three dimensional microstructures [9].

Interest in the intermediate stress regime where deformation-based micromecha-

nisms become significant relative to diffusion-based micromechanisms, has been renewed

by the material requirements of the core and structural components of fast breeder nu-

clear reactors presently under development [33]. Under operating conditions in this ap-

plication, the stress and temperature in certain components fall within the intermediate

stress-regime where the creep micromechanism is grain boundary sliding induced cavita-

tion and wedge-cracking (e.g., see [4, Figure 6]). The microstructural evolution and its

influence on the time to creep rupture of nuclear grade austenitic stainless steels, partic-

ularly AISI type 316, type 316 LN and alloy D9 has been experimentally characterized

extensively [34, 35, 36, 37, 38]. The present work is an effort toward complementing the

foregoing experimental work with a micromechanical model of creep damage evolution

leading up to creep-rupture in the intermediate stress regime.

In the present work, a model of microscopic creep damage evolution and growth in

the form of wedge cracks and cavities is developed. Grains undergo Norton power-

law creep deformation. Constrained grain boundary sliding is accounted for using

Horton’s [39] empirical law. Three micromechanisms of creep damage are explicitly

represented in the model. These are cavitation by the mechanism of diffusion, cavitation

due to grain boundary sliding and wedge cracking. A mechanistically rigorous well-
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developed theory [6, 7, 8, 10, 12] is available for diffusional cavitation and is incorporated

into the present model. As noted above, a mechanistically rigorous theory for cavitation

by a mechanism of deformation caused by grain boundary sliding is not presently

available [12]. In order to account for this mechanism in the intermediate stress regime,

cavity and wedge crack growth rates are derived from a free energy argument obtained

by unifying and extending those of Cottrell [1], Williams [2] and Evans [3]. In this

approach, the free-energy changes caused by diffusional and plastic micromechanisms

accompanying cavity or wedge-crack growth are subsumed into the effective surface

energy of the cavity or wedge-crack. Analytical expressions are obtained for the damage

evolution rates while accounting for their mutual interaction. Time integration of

damage evolution rates until pre-defined conditions for macroscopic rupture are satisfied

yield the time to rupture.

Section 2 describes the idealized microstructure assumed in the present work,

followed by the constitutive assumptions underlying creep deformation of individual

grains and grain boundary sliding. Damage evolution rates in the form of wedge cracking

and cavitation are then derived. Section 3 compares the model predictions with the

experimental measurements of Mathew et al [34] and Sasikala et al [35] in a nuclear

grade AISI type 316 stainless steel. The creep lifetime, stretch at rupture and the

microscopic failure mode are found to agree well with experimental observations.

2. Creep damage evolution

2.1. Idealized undeformed microstructure

2.1.1. Tiling by identical grains The undeformed polycrystal microstructure is

idealized following Drucker [40] and Dryden [41]. Drucker employed this idealization

to study creep of sintered carbides in two-dimensions and Dryden extended it to three-

dimensional microstructures. The ideal undeformed microstructure is comprised of an

aggregate of rhombic dodecahedral grains, one of which is shown in Fig. 1(a). The

rhombic dodecahedron is one of two isohedral Fedorov solids (the other being the

cube) capable of tiling three-dimensional space [42]. A part of the space-filling tiling is

illustrated in Fig. 1(b). In the tiled configuration, centers of neighboring the rhombic

dodecahedra describe a face-centered cubic lattice. Following Dryden [41], we denote

the distance between the centers of two neighboring grains by 2κ. It can then be shown

that each edge of the polyhedron has a length of

κ1 =

√
3

2
κ, (1)

marked in Fig. 1(a) and that the lengths of the diagonals of each rhombus-shaped facet

of the polyhedron are 2κ and
√

2κ.

Fig. 2 shows a development of the rhombic dodecahedron of Fig. 1(a), together with

the facet numbering convention used throughout. The numbering scheme of Fig. 2 is

consistent with the numbering scheme of the visible facets of Fig. 1(a). Nf denotes the
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Figure 1. (a) The orientation of a single rhombic dodecahedral ‘grain’ in relation
to the tensile loading at constant nominal stress S̄. (b) Part of an infinite space-
filling tiling by rhombic dodecahedral grains, which represents the undeformed
microstructure.
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1 [110] 3
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4 [11̄0] 2
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Figure 2. Developed view showing the facets of a rhombic dodecahedron with the
facet numbering. Neighbors of a facet that were disconnected during development are
indicated outside each facet. Facet normal vector Nf in Miller-index notation and the
number of the opposite facet, ϑf are also indicated.
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unit outward normal of facet f and ϑf denotes the facet that has the opposite outward

normal as facet f : Nϑf
= −Nf . Facet f of a rhombic dodecahedron meets facet ϑf of its

neighboring rhombic dodecahedron. For later use, we also define the set Nf comprised

of the four facets with which facet f shares an edge. Thus, N1 = {5, 6, 9, 10}, etc.

Figure 3. Interpenetration of rigid grains after grain boundary sliding. The region of
interpenetration is encircled.

2.1.2. Creep constraints In Dryden’s [41] model of creep deformation of sintered

ceramics, separation of two grains perpendicular to their common facet is accommodated

by the flow of the intergranular fluid phase into the region between the separating

grains and grain boundary sliding. In the present material system, however, there

is no fluid phase. Therefore, separation of two grains perpendicular to their

common facet necessarily entails cavitation or wedge-cracking at the grain boundary

between the separating grains. Also, sliding of grains parallel to the common

grain boundary is an important mode of damage and deformation in the present

material system. Anderson and Rice [9] recognized that grain boundary sliding in a

three-dimensional microstructure comprised of rigid grains must entail intergranular

interpenetration, as shown in Fig. 3. Grain interpenetration can only be avoided

if the interpenetrating volumes could be accommodated by the creep deformation of

grains. Local accommodation in the form of fold formation at triple lines [43] or sub-

grain formation near grain boundaries [44] has been observed experimentally. In a

three-dimensional microstructure, therefore, grain boundary sliding is necessarily creep-

constrained [16, 17].

2.1.3. Brittle rupture condition The assumption that the idealized microstructure is

comprised of indistinguishable grains yields a geometric rupture condition. An infinitely

long macroscopic crack forms when any two facets of the rhombic dodecahedron sharing

an edge, e.g., 1 and 5, or 1 and 9, but not 1 and 4 in Figure 1(a) or Figure 2 fail, i.e.,

become fully damaged. In the present work, we identify the formation of the macroscopic

crack with rupture. For instance, suppose facets 1 and 5 fail. This implies the failure

of facets ϑ1 = 3 and ϑ5 = 11 also in all the grains of the microstructure. The infinite

crack can be traversed by repeatedly moving from facet 1 of one grain to facet 3 of
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its neighboring grain through facet 5 of the first grain which overlaps facet 11 of the

neighbor, and so on.

2.2. Creep deformation

2.2.1. Kinematics The evolution of the reference or undeformed state of the idealized

polycrystal into the deformed state is treated using standard continuum mechanics

described e.g., in Gurtin [45]. Grains are assumed to deform homogeneously with

uniform deformation gradient F g. Assuming zero spin of a representative material

point within a grain, which is appropriate to the symmetrical microstructure and loading

shown in Fig. 1(a), F g evolves following

Ḟ g = ε̇gF g, (2)

where ε̇g denotes the Eulerian rate of deformation of grains.

Because in addition to the processes underlying grain deformation, damage and

grain boundary sliding processes also contribute to the macroscopic deformation, the

macroscopic strain rate ε̇ will generally differ from the grain strain-rate, ε̇g. The

macroscopic shape will be characterized by the macroscopic deformation gradient F ,

which, paralleling (2) evolves according to

Ḟ = ε̇F . (3)

2.2.2. Ductile failure condition The eigenvalues of the stretch tensor, U =
√

F T F are

denoted λ1, λ2 and λ3 and ordered as λ1 ≥ λ2 ≥ λ3. Following Hoff [46], ductile rupture

is associated with λ1 ↑ ∞ and λ2λ3 ↓ 0.

Since it is not numerically possible to let λ1 ↑ ∞, the model microstructure is taken

to have ruptured in a ductile manner when

λ1 ≥ Cλ3, (4)

for sufficiently large C.

2.2.3. Loading and stresses Creep tests based on the widely used ASTM standard E-

139 [47] are performed at constant load, i.e., at constant nominal stress. The nominal or

Piola-Kirchhoff stress S̄ imposed macroscopically is related to the macroscopic Cauchy

stress σ̄ through [45]

S̄ = det(F )σ̄F−T , (5)

where F , introduced in Section 2.2.1 denotes the macroscopic deformation gradient.

Because of the similarity of all grains in the idealized microstructure, the stess-

distribution in all grains must be identical and therefore, the average stress in a grain

must equal the macroscopic stress imposed upon the polycrystal. In the following

analysis, for simplicity, we assume that stress is distributed uniformly in each grain.
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If Sg and σg are the uniform nominal and Cauchy stress in a grain, respectively, we

then have

Sg = S̄, and σg = σ̄ (6)

in view of the indistinguishability of grains.

2.2.4. Creep constitutive law of grains Under a general state of stress, following

Odqvist [48], we assume that each grain deforms by power-law Norton creep [49]

according to

ε̇g =
3

2

(
σe

σc

)n−1
sg

σc
, (7)

where ε̇g and sg denote the strain-rate and deviatoric Cauchy stress tensors in a grain,

respectively, σc is a scalar stress reference, σe = (3sg
ijs

g
ij/2)1/2 is the equivalent stress

and n is the creep exponent.

Equation (7) describes the creep deformation of a grain. It makes no allowance for

grain boundary sliding, which will be considered next.

B1 = −D1B2 = −D2

B3 = −D3 B4 = −D4

Figure 4. Sliding and cracking systems associated with a facet of the rhombic
dodecahedron. Relative sliding between two neighboring grains in the present model
can occur along one of four directions B1, . . . , B4 that are parallel to the edges of the
common facet. D1, . . . , D4 are the assumed directions of propagation of wedge-cracks.

2.2.5. Grain-boundary sliding For simplicity and modeling convenience, rather than

attempting to exactly capture the complex and somewhat incompletely understood
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physical phenomena underlying grain boundary processes, grain boundary sliding is

described in terms of four grain boundary sliding ‘systems’ associated with each facet

f . The set of all sliding systems associated with facet f are denoted Sf and the facet of

sliding system s by fs. Each sliding system s ∈ Sf is comprised of a sliding direction,

Bs, parallel to an edge of the facet f in the undeformed grain (Figure 4) and a sliding

plane normal, Ns, parallel to the facet normal, Nf . Bs and Ns are unit vectors. These

vectors map to the unit vectors

bs = F gBs/‖F gBs‖
ns = F g−T Ns/‖F g−T Ns‖

(8)

in the deformed grain. It easily follows from (8) that bs ·ns = Bs ·Ns = 0. The sliding

displacement in sliding system s is denoted by Ss. In order to obtain the evolution rate

of Ss, it must be recognized that Ss evolves due to both grain deformation and grain

boundary sliding. Denoting these separate contributions by Ṡdef
s and Ṡslid

s , respectively,

we have

Ṡs = Ṡdef
s + Ṡslid

s . (9)

Standard continuum mechanics considerations [45] yield

Ṡdef
s = (ε̇gbs · bs)Ss. (10)

To obtain Ṡslid
s , the empirical constitutive law of Horton [39], which accounts for the

effect of creep constraints (Section 2.1.2) on grain boundary sliding will be followed.

Horton’s constitutive law decomposes the resolved shear stress in sliding system s, τs,

defined as [50]

τs = max(0, tr (σgns ⊗ bs)) (11)

into two parts,

τs = τ s
s + τ a

s . (12)

τ s
s and τ a

s are considered to drive the basic grain boundary sliding process and the

accommodation process at triple lines, respectively. This implies that τ s
s Ṡ

slid
s and τ a

s Ṡ
slid
s

represent the power expended in grain boundary sliding and triple line accommodation,

respectively. Using an approximation for the triple line stress concentration due to

Zener [51], Horton’s [39] final expression written in the present notation is

τs = T s

(
Ṡslid

s

Ṡ0

)1/ns

+ T a

[
1

K0

(κ0

κ

)m
](

Ṡslid
s

Ṡ0

)1/na

, (13)

where Ṡ0 denotes a reference sliding rate, K0 denotes the stress-concentration at triple

lines due to sliding and κ0 denotes a reference grain size. Reference stresses T s and T a

determine the critical resolved shear stresses needed to overcome basic grain boundary

sliding and accommodation processes, respectively. T s � T a corresponds to free sliding

grain boundaries, assumed in the analyses of Anderson and Rice [9]. The other limit,

T a � T s, corresponds to unconstrained grain boundary sliding and is perhaps not

physical in three dimensional microstructures [9].
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Exponents ns and na in (13) are associated with the basic grain boundary sliding

process and the accommodation process, respectively. It is well-established [52] that

grain boundary sliding is caused by the motion of grain boundary dislocations. Many

experimental bicrystal studies [53, 52] and theoretical models [54, 55] suggest that ns = 1

for pure grain boundary sliding and ns = 2 for stimulated grain boundary sliding in

pure metals. In austenitic stainless steels, however, carbide precipitates form at grain

boundaries during creep deformation, which may lead to ns > 2 [56]. On the other

hand, since the accommodation process is power-law creep driven, na = n, the Norton

exponent of (7).

In addition to Norton creep within grains (7), grain boundary sliding also

contributes to the macroscopic strain-rate, ε̇g. The latter contribution can be estimated

by approximating grain boundary sliding as a simple shear deformation smeared over

the entire grain with shearing rate,

γ̇s = Ṡslid
s /κ, (14)

with shear direction bs and shear plane normal ns. Such deformation is familiar from

crystallographic slip. Crystal plasticity theory [50] then gives the contribution of grain

boundary sliding to the overall rate of deformation as
∑

s γ̇sms, where

ms = (bs ⊗ ns + ns ⊗ bs)/2, (15)

denotes the Schmid tensor of sliding system s. The effect of smearing out localized

grain boundary sliding over the entire domain of the grain is that whereas grain

boundary sliding entails specimen volume increase, the strain-rate obtained by smearing

grain boundary sliding Ṡslid
s into a homogeneous bulk shear,

∑
s γ̇sms, is volume

conserving. Superposing the strain-rate due to grain boundary sliding on all sliding

systems s ∈ ∪12
f=1Sf with that due to creep deformation of the grain, given by (7), we

obtain

ε̇ = ε̇g +
12∑

f=1

∑

s∈Sf

γ̇sms. (16)

2.3. Damage micromechanisms

2.3.1. Wedge cracking Wedge-cracks are known to form in AISI type 304 and 316

austenitic stainless steels by the rapid growth and coalescence of cavities (w-type voids)

near triple lines [24, 37, 23, 25] in the intermediate stress regime [22]. The rapid growth

of such cavities is attributed to tensile stress concentration near the triple lines [24].

The present model for wedge cracking is derived from the models of Cottrell [1]

and Williams [2]. Cottrell [1] treated the opening displacement induced by sliding grain

boundaries, S1, S2 and S3, S4 in Figure 5, as a pair of hollow dislocations. Free energy

considerations then yield the stable wedge crack length. Using an estimate of the sliding

rate of grain boundaries in terms of the minimum creep rate, Williams [2] obtained the

time to rupture of a grain boundary facet, which he regarded as a conservative estimate

of the time to macroscopic rupture. Although neither model explicitly accounts for the



A creep model for austenitic stainless steels 11

ψc̃3 + ψc̃4

Lc

S1

S2 S3

S4

wedge cracks

Figure 5. Cracking along a grain boundary facet is induced by grain boundary sliding.
Shown here is a type (b) crack in the classification of Chang and Grant [19].

diffusion-assisted cavity growth mechanism for the extension of wedge-cracks, diffusion

effects are approximately considered in terms of an effective free surface energy, Γ,

associated with forming new wedge-crack surfaces.

In the present model, sliding can occur in any of 48 sliding systems on the 12 facets

of the rhombic dodecahedral grain. In parallel with the structure of the sliding systems,

four cracking systems are associated with each facet f . The set of all cracking systems

associated with facet f are denoted by Cf and the facet containing cracking system c

by fc. Each cracking system c ∈ Cf is comprised of a crack propagation direction, Dc

in the reference configuration, chosen in the opposite sense of the corresponding sliding

direction shown in Figure 4. As with Bs in (8), Dc evolves with the shape of the grain

to dc = F gDc/‖F gDc‖ in the deformed configuration. We also assign a normal to

cracking system c in the reference configuration Nc that is parallel to the facet normal

and evolve it with deformation according to nc = F g−T Nc/‖F g−T Nc‖ as in (8). Wedge

cracks are assumed to open in pure mode I with the opening displacement parallel to

Nc.

Figure 5 schematically shows two wedge-cracks formed in a grain boundary. Si,

i = 1, . . . , 4 denote sliding displacements in the sliding systems that cause the wedge-

cracks. For S1 > 0, S2 > 0, S3 > 0 and S4 > 0, as shown in Figure 5, two type (b)

wedge-cracks in the nomenclature of Chang and Grant [19] form. The structure of the

cracking systems assumed above, however, can represent all three Chang-Grant wedge-

cracking modes. Thus, if S1 = S4 = 0 and S2 > 0, S3 > 0, or if S2 = S3 = 0 and

S1 > 0, S4 > 0, we would have two type (a) wedge-cracks in Figure 5. Finally, if the

directions of all sliding motions were reversed, we would obtain two type (c) cracks in

the Chang-Grant nomenclature.
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As shown in Figure 5, an active sliding system s ∈ Sf on facet f with Ṡs > 0

can activate a cracking system c ∈ Cf1 in one of the neighboring facets, f1 ∈ Nf . The

geometry of the rhombic dodecahedron and that of the sliding and cracking systems

associated with it enable us to uniquely identify the cracking system c̃s activated by

sliding system s ∈ Sf as

c̃s = {c ∈ Cf1 : f1 ∈ Nfs, Bs · Nc > 0}. (17)

Furthermore, we denote the crack opening displacement in cracking system c̃s caused

by sliding displacement Ss by ψc̃s and define

ψc̃s = Ss bs · nc̃s. (18)

For later use, we also associate each cracking system c in facet f , c ∈ Cf with a cracking

system ϑc on the opposite facet ϑf , i.e., ϑc ∈ Cϑf
such that Dc = Dϑc. Thus, cracking

systems c and ϑc are associated with essentially the same wedge-crack in the periodic

microstructure. In Figure 5, cracking systems c̃1 and c̃2 are opposites of each other, i.e.,

ϑc̃1 = c̃2. Similarly, ϑc̃3 = c̃4. As shown, ψc + ψϑc gives the total wedge-crack opening

displacement.

2.3.2. Cavitation In addition to wedge cracks formed by coalescence of rapidly growing

voids near triple lines, cavities (r-type voids) are observed to develop on grain boundary

facets [24, 25, 57, 58] away from triple lines, particularly in areas with a concentration of

carbide particles. Cavity shape and growth rate depend on the dislocation structure of

the grain boundary, presence of particles at the grain boundary and the grain boundary

sliding rate.

Cavities in the present model are associated with sliding systems, s ∈ ∪12
f=1Sf .

Although they are known to nucleate throughout the creep process and grow into either

a spherical shape or a crack-like shape depending on the relative rates of diffusional

and grain boundary sliding processes, in the present model, following Evans [3, 22],

cavity nuclei are idealized to form at the outset with density N per unit grain boundary

surface area and develop into cuboidal cavities of constant width w and height h. Cavity

growth can thus occur only by extending the cavity length ls along the sliding direction

bs. Following Evans [3], it is also assumed that w � ls and h � ls. The effective

cavity surface energy is denoted by γ. Because they are smaller and more numerous

than wedge-cracks, cavities are assumed not to induce a stress-intensity, unlike wedge-

cracks [22, Section 3.2.2]. The load dropped by the cavitated area in a facet is assumed

to uniformly overload the uncavitated area of that facet.

As noted in Section 1 cavity extension in the present model can occur either by

a mechanism of diffusion or by a mechanism of deformation. Cavity extension rates

obtained assuming the former mechanism are denoted l̇Ds and those obtained assuming

the latter are denoted l̇Es .

In the absence of grain boundary sliding, cavities grow by a mechanism of diffusion

and creep. A well-developed theory for cavity growth that accounts for diffusive and

creep contributions in an unconstrained facet is available [6, 7, 10, 12]. By idealizing
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a cavitated facet as a bridged crack, Rice [17] has obtained constrained cavity growth

rates when cavitated facets are widely separated. Cocks and Ashby [8] and Anderson

and Rice [9] have considered the case of interacting facets. In this work, we assume that

diffusion dominates creep as the mechanism for constrained cavity growth and follow

the treatment of Cocks and Ashby [8] to obtain cavity growth rates. Letting Ff denote

the cavitated area fraction of a grain boundary facet f , they obtain

Ḟf = − Φ1√
Ff logFf

σcav
f , (19)

where, σcav
f , the normal stress experienced by the cavity is determined by the creep

constraints [8],

Ff =
∑

s∈Sf

Nwls, (20)

and

Φ1 =
8DBδBΩ

3kT`3
. (21)

Here, DB is the grain boundary diffusion coefficient, δB is the grain boundary thickness,

Ω is the atomic volume, k is the Boltzmann constant, T is the absolute temperature,

and ` is half the intercavity spacing.

Using considerations of load sharing between the cavitating facet and the bulk of

the neighboring grains, Cocks and Ashby [8] have derived an expression for σcav
f in (19)

according to which, σcav
f ≤ σs = σgns · ns, the resolved normal traction on facet f ,

for s ∈ Sf . The limiting case σcav
f = σs for s ∈ Sf corresponds to cavity growth by a

mechanism of unconstrained diffusion. In the present work, for simplicity, we assume

that σcav
f = σs for s ∈ Sf . This assumption is conservative as it overestimates the cavity

growth rate.

The growth rate of a cavity by a diffusional mechanism is denoted l̇Ds . On a grain

boundary devoid of sliding, according to (20),

Ḟf = Nw
∑

s∈Sf

l̇Ds . (22)

Now, since the normal stress experienced by a cavity on grain boundary facet f , σcav
f ,

is independent of s, the diffusional extension rate of cavities associated with all four

sliding systems must be identical. Thus, Ḟf = 4Nwl̇Ds if s ∈ Sf . Combining this with

(19), we have

Nwl̇Ds = − Φ1/4√∑
s∈Sf

Nwls log(
∑

s∈Sf
Nwls)

σs (23)

for the rate of cavity extension by a mechanism of diffusion on a grain boundary facet

devoid of sliding.

The foregoing considerations do not apply when significant grain boundary sliding

also occurs on the cavitating facet. A mechanistically rigorous model for diffusion

assisted cavity growth in a sliding grain boundary is due to Chen [26]. By balancing
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Figure 6. Rate of cavitation predicted on a sliding grain boundary facet by Chen [26]
compared with that predicted by Evans [22], l̇Es and that predicted by Chuang [7], l̇Ds
by unconstrained diffusion in the absence of grain boundary sliding.

the atomic flux at the tip of a non-equilibrium crack-like cavity, Chen [26] derived the

relation between the normalized grain boundary sliding rate Ṡs/v0 and the normalized

cavity extension rate l̇s/v0 as

2 sin(ψ/2)

(
l̇s
v0

)2
3

+ tan(ψ/2)

(
l̇s − Ṡs

v0

)
=

3

M


Σ̃ − 2 sin(ψ/2)

(
l̇s
v0

) 1
3


 . (24)

Here v0 is a reference speed, Σ̃ is the normalized applied stress and M contains

diffusion constants and geometric factors. ψ denotes the dihedral angle between the

two intersecting surfaces at the cavity tip. We refer to Chen [26] for the derivation of

(24) and the normalization scheme. Equation (24) is an implicit equation for l̇s/v0 in

terms of Ṡs/v0. Fig. 6 shows the dependence of l̇s/v0 on Ṡs/v0 for typical values of the

various parameters used by Chen [26, Fig. 3]: ψ = 80◦, Σ̃ = 10 and M = 5. It is seen

that for grain boundary sliding speeds that satisfy, Ṡs/v0 ≥ 10, Chen’s model predicts

that Ṡs ≈ l̇s. For small Ṡs, however, Chen’s model asymptotes to the cavity growth

rate of Chuang and Rice [6] and Chuang et al [7] in the absence of grain boundary

sliding. As noted in Section 1, however, Chen’s model requires further development to

obtain the cavity opening rate and to include the effects of localized grain creep and

constraints.

Evans [3, 22] has treated cavity growth on sliding grain boundaries on the basis of

quite different considerations. Evans’ model does not explicitly represent diffusional

processes. Rather, by balancing the free energy changes that accompany cavity
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extension, i.e., added surface energy, reduced strain energy and reduced potential energy

of the loading mechanism, it predicts a cavity extension rate, l̇Es . Diffusional processes,

in Evans’ model [3, 22], are treated as complex microscopic processes whose role is

represented by suitably augmenting the cavity surface energy, γ. Such treatment of

complex microscopic mechanisms is familiar in the fracture mechanics of all but ideally

brittle materials.

For steady state cavitation during grain boundary sliding, as seen from Fig. 6,

Evans’ model [3, 22] predicts l̇Es = Ṡs and thus agrees with Chen’s model in the

intermediate stress range Ṡs/v0 ≥ 10. For small Ṡs, however, the two models diverge and

Chen’s model predicts a much higher rate of cavity growth. Physically, this is because

Evans’ model only applies when cavity growth is controlled solely by grain boundary

sliding whereas, Chen’s model correctly recognizes that even without any grain boundary

sliding, Ṡs = 0, cavity growth can proceed by diffusional mechanisms alone at non-zero

rate, l̇Ds . In the present work, we therefore take cavity growth to follow

l̇s = max( l̇Es , l̇
D
s ). (25)

As seen from Fig. 6, this suffices to bring both models into reasonable coincidence over

both low and intermediate grain boundary sliding rates. Although Chen’s model [26] is

more mechanistically rigorous, we follow Evans’ model with the correction given by (25)

in the present work as it is more amenable for incorporation into the energy argument

to be developed in Section 2.4 below.

2.4. Energy considerations and damage evolution

The damage variables in the present model are the wedge-crack lengths Lc ≥ 0,

associated with the various cracking systems, c ∈ ∪12
f=1Cf and cavity lengths ls ≥ 0

associated with the various sliding systems s ∈ ∪12
f=1Sf . Lc and ls are defined in the

current or deformed configuration. For later use, we also define quantities L∗
c and l∗s

representing the pull-back of Lc and ls to the reference configuration as [59]

L∗
c = Lc‖F g−1bc‖, and (26)

l∗s = ls‖F g−1bs‖. (27)

The approach taken below to obtain evolution equations for these damage variables

extends and unifies the analyses of Williams [2, 60] for wedge-crack growth and

Evans [3, 22] for cavitation due to grain boundary sliding by (i) coupling the cavitation

and wedge-cracking modes of damage accumulation, (ii) simultaneously treating the

damage evolution processes occurring on all facets of the grain, (iii) including a

treatment of accommodation processes that must necessarily accompany grain boundary

sliding as discussed in Section 2.2.5 and (iv) allowing for grain deformation during

damage evolution.

The expression for the change in free energy, ∆G associated with the damage

variables changing from 0 to Lc for each cracking system c ∈ ∪12
f=1Cf and from 0 to ls for

each sliding system s ∈ ∪12
f=1Sf are derived subject to two restrictions. First, damage
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evolution is effected keeping the grain shape, F g, fixed in the current configuration,

thereby physically decoupling the homogeneous grain deformation processes from the

damage processes at the grain boundaries. Grain deformation near triple lines that

accommodate grain boundary sliding as explained in Section 2.2.5 is, however, treated

as a grain boundary process that evolves during the virtual damage evolution. Second,

cavitation is assumed to occur due to grain boundary sliding. In the notation of

Sec. 2.3.2, cavity lengths given by this calculation correspond to lEs and not lDs .

Correction terms that serve to relax these restrictions will be derived at the end of

this section.

The change in free energy of a grain in going from the undamaged state to a

damaged state is obtained by summing over the change in free energy associated with

each of its sliding and cracking modes:

∆G =
12∑

f=1


∑

s∈Sf

∆Gs +
∑

c∈Cf

∆Gc


 . (28)

Strain-energy contributions to the free-energy depend on elastic properties of the grains.

We assume the grains to have Hookean elastic properties with Young’s modulus E,

Poisson’s ratio ν and shear modulus µ = E/(2(1 + ν)).

∆Gs in (28) in going from lEs = 0 to the damaged state lEs ≥ 0 is given by

∆Gs =
κ2

1

2

[
Nw

(
2γlEs − σshl

E
s − σ2

s

E
lEs h

)
− τ s

sSs

]
. (29)

Here, σs = σgns · ns is the normal traction acting on the sliding system s and γ is the

surface energy per unit area associated with cavity formation. The term 2κ2
1Nwγl

E
s on

the right side of (29) corresponds to the increase in surface energy, the term −κ2
1Nwσshl

E
s

corresponds to the decrease in the potential energy due to lowering of the loading point

and the term −κ2
1Nwσ

2
s l

E
s h/E corresponds to the decrease in elastic strain energy if

the stress dropped by the cavitated area on a grain boundary is assumed uniformly

distributed over the uncavitated area, all due to cavity formation. −τ s
sSs is the work

done on the grain by the external loading agency to effect sliding through distance

Ss. Internally, this energy will be partially dissipated in the course of grain boundary

dislocation motion and partially utilized to cause grain boundary ledge motion for cavity

growth [3, 52]. Since two grains meet at the facet containing sliding system s, the change

in free energy per grain is only half the term in square brackets in the right side of (29).

The part of the work done by the external loading agency, −τ a
sSs to overcome the

geometric constraint to sliding in the idealized microstructure described in Secs. 2.1 and

2.2.5 is not available to the cavitation process, as it is dissipated in the course of the

accommodative deformation processes near the triple lines in the grain. It is therefore

not included in the expression of (29).

If τ s
s were replaced by τs in (29), the free energy expression given there would

coincide with that of Evans [22]. Evans[3, 22] thus regarded the work of accommodation

at triple lines as part of the surface energy of a cavity and obtained values of the surface
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energy two or three orders of magnitude larger than reasonable. He attributed the excess

surface energy to the inelastic processes that must accompany grain boundary sliding

and cavity growth. Removal of the energy corresponding to constraint accommodation

in (29), as done presently, should reduce the overestimation of the effective surface

energy. However, even in the present form, the surface energy will be overestimated, as

it must account for the diffusional and creep processes accompanying cavity extension

in ductile materials.

Prior to obtaining the expression for the change in free energy of a cracking system,

we define the total damage in facet f ,

φf =


∑

s∈Sf

κ2
1Nwl

∗
s +

∑

s∈Cf

κ1L
∗
c



/

κ2
1. (30)

The two terms in the numerator of (30) are the facet areas in the reference configuration

covered by cavities and wedge-cracks, respectively. Overgrowth of a cavity by a wedge-

crack, overgrowth of cavities of multiple sliding systems or overgrowth of cracks from

multiple cracking systems on the same facet has been neglected. Also, the area of the

facet
√

2κ2 has been approximated by κ2
1 = 1.5κ2, which constitutes the denominator

of (30). In terms of φf , the change in free energy of cracking system c in going from

Lc = 0 to Lc > 0 is

∆Gc =
1

2

[
µκ1

4π(1 − ν)
(ψc + ψϑc)

2 ln

(
4R

Lc

)
1[φfc<1] + 2κ1ΓLc

− κ1
πKc(1 − ν)σ2

c

4µ
L2

c − κ1
σc(ψc + ψϑc)

2
Lc

]
.

(31)

This equation is a modification of one due to Cottrell [1]. The first term represents the

energy of a hollow dislocation of Burgers vector length ψc + ψϑc . Physically, the hollow

dislocation is created by grain boundary sliding. R denotes a cut-off length at which the

integration to obtain the dislocation strain-energy is stopped. Evans [22, Section 6.3.2]

has argued that the energy contribution from the hollow dislocation must be included

only if the facet fc resists grain boundary sliding. Thus, the first term is to be included

only if the facet of cracking c itself is not completely damaged (φfc < 1). The second

term in the right side of (31) is the effective surface energy of the crack. The third term

is the change in elastic energy caused by wedge-cracking. Since by the geometry of the

microstrucure, cracks form in a periodic pattern, stress fields of different wedge-cracks

may interact. Kc is a parameter in the third term to account for this interaction. With

Kc = 1, the third term represents the reduction in strain-energy caused by extension to

length Lc of an interaction-free crack. Finally, the fourth term is the loss of potential

energy of the loading mechanism due to crack opening. As noted in connection with

(29) for the effective surface energy γ, Γ in (31) too includes not only the true surface

energy of the grain boundary material, but also the energy dissipated in the inelastic

processes that accompany crack extension.
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Normalizing length-like quantities as

l̂s = Nwls,

l̂∗s = Nwl∗s,

l̂E = Nwl̂E,

ĥ = h/κ1,

Ŝs = Ss/κ1,

ψ̂c = ψc/κ1,

L̂c = Lc/κ1,

L̂∗
c = L∗

c/κ1,

r̂c = 4R/κ1,

(32)

stress-like quantities as

τ̂ s
s = τ s

sκ1/γ,

σ̂c = σcκ1/γ

σ̂s = σsκ1/γ,

(33)

elastic moduli as

Ê = Eκ1/γ,

µ̂ = µκ1/(8π(1 − ν)γ),
(34)

and the effective surface energy associated with cracking systems as

Γ̂ = Γ/γ, (35)

we obtain the normalized free energy change associated with sliding system s, ∆Ĝs =

∆Gs/(κ
2
1γ) as

∆Ĝs = l̂s

(
1 − σ̂sĥ

2
− σ̂2

s ĥ

2Ê

)
− τ̂ s

s Ŝs

2
(36)

and the normalized free energy associated with cracking system c, ∆Ĝc = ∆Gc/(κ
2
1γ)

as

∆Ĝc = µ̂(ψ̂c + ψ̂ϑc)
2 ln

(
r̂

L̂c

)
1[φfc<1] + Γ̂L̂c −

σ̂2
cKc

64µ̂
L̂2

c −
σ̂c(ψ̂c + ψ̂ϑc)

4
L̂c. (37)

Further, in terms of the normalized variables, the damage associated with facet f , given

by (30), takes the simple form

φf =
∑

s∈Sf

l̂∗s +
∑

c∈Cf

L̂∗
c . (38)

Also, in terms of the normalized free-energies associated with the sliding and cracking

systems, we may write the total free energy change from the undamaged to the damaged

state, given by (28) as

∆Ĝ =
∆G

κ2
1γ

=
12∑

f=1


∑

s∈Sf

∆Ĝs +
∑

c∈Cf

∆Ĝc


 . (39)
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Steady-state damage evolution requires that(
∂∆Ĝ

∂L̂c

)
= 0, for all c ∈ ∪12

f=1Cf and (40)

(
∂∆Ĝ

∂l̂s

)
= 0, for all s ∈ ∪12

f=1Sf . (41)

In performing the partial differentiation of (40) all damage variables of the model, except

Lc are kept fixed. Upon substituting the preceding equations in (40) we obtain
(
∂∆Ĝ

∂L̂c

)
=

(
Γ̂ − σ̂c

4
(ψ̂c + ψ̂ϑc)

)
− L̂c

(
σ̂2

cKc

32µ̂

)
− 1[φf<1]

µ̂

L̂c

(ψ̂c + ψ̂ϑc)
2 = 0, (42)

which results in a linear or quadratic equation

L̂2
c

(
σ̂2

cKc

32µ̂

)
− L̂c

(
Γ̂ − σ̂c

4
(ψ̂c + ψ̂ϑc)

)
+ 1[φf<1]µ̂(ψ̂c + ψ̂ϑc)

2 = 0, (43)

according as φfc = 1, or φfc < 1. For fixed crack-opening displacements ψc (43)

determines the crack length Lc. In performing the partial differentiation of (41) all

damage variables excepting l̂Es are fixed. Accounting for the dependence of l̂Es on Ŝs [3],

(41) yields
(
∂∆Ĝ

∂l̂Es

)
=

(
1 − σ̂sĥ

2
− σ̂2

s ĥ

2Ê

)
−
(
∂Ŝs

∂l̂Es

)
×

{
τ̂s
2
− (bs · nc̃s)

[
1[φfc̃s

<1]2µ̂(ψ̂c̃s + ψ̂ϑc̃s
) ln

(
r̂

L̂c̃s

)
− σ̂c̃s

4
L̂c̃s

]}

= 0.

(44)

Since
˙̂
lEs = (∂l̂Es /∂Ŝs)

˙̂
Ss, this implies

˙̂
lEs =

˙̂
Ss

[
τ̂s

2
− (bs · nc̃s)

{
1[φc̃s<1]2µ̂(ψ̂c̃s + ψ̂ϑc̃s

) ln
(

r̂
L̂c̃s

)
− σ̂c̃s

4
L̂c̃s

}]

(
1 − σ̂sĥ

2
− σ̂2

s ĥ

2Ê

) . (45)

Equation (45) gives the cavity extension rate assuming the grain shape is frozen

and that cavity growth is caused by grain boundary sliding. As noted in Section 2.3.2,

at low grain boundary sliding speeds, cavity growth can proceed by a purely diffusional

mechanism at the rate l̇Ds . It is assumed that wedge cracking does not accompany

diffusional cavitation in the absence of significant grain boundary sliding. Thus, lDs
is taken to evolve uncoupled with Lc following (23), which, in terms of normalized

variables,

l̂Ds = NwlDs ,

Φ̂ = Φγ/4κ1,
(46)

can be written as

˙̂
lDs = − Φ̂1√∑

s∈Sf
l̂s log(

∑
s∈Sf

l̂s)
σ̂s. (47)
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The normalized cavitation rate then follows from (25) as

˙̂
ls = max(

˙̂
lDs ,

˙̂
lEs ). (48)

As stated at the outset of the present Section 2.4, the foregoing expression was

obtained by freezing the evolution of grain deformation F g. Freezing the damage

processes described above and letting the cavity length lEs vary only with the grain

deformation, we find from standard continuum mechanics that
˙̂
ls = (ε̇gbs · bs)l̂s.

Superposing these two rates, we find that the nett rate of cavity elongation is

˙̂
ls = (ε̇gbs · bs)l̂s + max

(
˙̂
lDs ,

˙̂
lEs

)
. (49)

2.5. Simulation of creep damage evolution and rupture

Time integration of the grain boundary sliding and damage equations, (13), (49) and

(43) until either the brittle rupture condition of Section 2.1.3 or the ductile rupture

condition of Section 2.2.2 is satisfied gives the entire creep damage history and time to

rupture. Over some parts of the creep deformation history, the evolution equations are

stiff. In the present implementation, a standard subroutine suitable for stiff equations,

lsode [61], was used with an analytically calculated Jacobian of the evolution equations.

3. Results and discussion

We now discuss the results obtained from simulating creep damage evolution leading

up to creep rupture. Uniaxial creep-rupture tests following ASTM standard E-139 [47]

are conducted at constant load. Accordingly, the simulation specimen is subjected to

constant imposed nominal stress following

S̄ = ΣaN1 ⊗ N1 = ΣaN3 ⊗ N3. (50)

Here, the tensile axis is normal to facets 1 and 3 of the rhombic dodecahedral grain

oriented as shown in Figure 1(a). We compare the time to rupture and failure mode in

these simulations with the experimental observations of Mathew et al [34] and Sasikala

et al [35].

Material parameters used for obtaining the present model predictions are listed

in Table 1. A number of model variables, e.g., N and w of (22), do not appear

in this table because they are normalized away in (32) and (46). Five of the listed

values are fitting parameters; others are taken from the literature. Two of the fitting

parameters, γ and Γ are the surface energies of cavites and cracks, respectively. The

model predictions are insensitive to these in that variations upto 10% in these parameters

do not alter the predicted lifetime appreciably. On the other hand, two other fitting

parameters, T s and T a, determine the rate of constrained grain boundary sliding. The

model prediction sensitively depends on them. Φ1 determines cavity growth purely by

constrained diffusion. The model predictions are significantly sensitive to Φ1 at low

stresses where the damage mechanism is diffusion dominated.



A creep model for austenitic stainless steels 21

Parameter Reference Value

κ (1); [34, 35] 35 µm

C (4); numerical considerations 2

σc (7); [34] 166 MPa

n (7); [34] 11

Ṡ0 (13); arbitrary 10−9 s−1

ns (13); [39] 3.3

na (13); [39] 11

T s (13); fitting parameter 50 MPa

T a (13); fitting parameter 27 MPa

Φ1 (21); fitting parameter 6 × 10−17 Pa−1

γ (29); fitting parameter 150 Jm−2

R (31);[22] 20 µm

E (31); standard value 200 GPa

ν (31); standard value 0.3

Γ (31); fitting parameter 200 Jm−2

Table 1. Material constants used to fit the time to rupture of the nuclear grade AISI
type 316 steel of [34, 35]. Five of the listed values are fitting parameters; others are
taken from the literature. Two of those, γ and Γ are the surface energies of cavites
and cracks, respectively. The other two fitting parameters, T s and T a determine the
rate of constrained grain boundary sliding. Φ1 determines cavity growth purely by
constrained diffusion.

Figure 7 shows the experimental times to rupture, tr, under uniaxial creep loading

for the nuclear grade type 316 stainless steel studied by Mathew et al [34] and Sasikala et

al [35]. Considerable variation in the experimental times to rupture is observed because

the rupture process is intrinsically stochastic. The predicted time to rupture obtained

from the present deterministic model is also shown. The predictions are generally in

good agreement with the experimentally measured times to rupture except at the highest

nominal stress level, Σa = 295 MPa. The overestimation of tr at Σa = 295 MPa possibly

points to incipient transition of the dominant rupture mechanism from homogeneous

ductile rupture to transgranular cracking [4], which is not accounted for in the present

model. In the latter mode, the stress concentration at matrix inclusions determines the

rate of damage accumulation.

Creep simulations at each load level are terminated when either the brittle

(Section 2.1.3) or ductile (Section 2.2.2) rupture conditions are satisfied. As indicated in

Figure 7, rupture is by the brittle mode for Σa < 170 MPa and by the ductile mode for

for Σa > 170 MPa. The observed transition in the failure mode from brittle to ductile

agrees with the experimental observations of Sasikala et al [35], who observed a dimpled

morphology of the fracture surface corresponding to ductile fracture at Σa = 295 MPa

and round cavities signifying brittle fracture separated by regions of ductile fracture of
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Figure 7. Comparison of the time to rupture under uniaxial creep loading for a type
316 stainless steel obtained experimentally (+) by [34, 35] and computation based on
the present model (line).

ligaments at Σa = 145 MPa. The transition of the failure mode from brittle to ductile

is, however, not sharp in that considerable damage in the form of wedge-cracking and

cavitation occur even in the ductile stress range for Σa ' 170 MPa. Similarly, for

Σa / 170 MPa, considerable macroscopic specimen extension occurs even in the brittle

stress range, as will be shown below. It may therefore be more meaningful to refer to

a transitional stress range where the failure mode switches gradually from brittle to

ductile.

The maximum principal stretch of the representative grain in the present model,

λ1, defined in Section 2.2.2 at rupture is shown in Figure 8. Because by definition,

λ1 ↑ ∞ in the ductile rupture regime, the maximum principal stretch is meaningful only

in the brittle regime. The applied stress range, Σa (abscissa) in Figure 8 is therefore

restricted to the brittle regime, Σa < 170 MPa. Figure 8 shows that the principal stretch

increases drastically as the ductile regime is approached. The experimental elongations

observed by Sasikala et al [35] at 873 K are too noisy for quantitative comparison with

the present predictions. However, the increasing trend of λ1 with Σa observed here is

qualitatively confirmed by their measurements.

We now turn to the predicted evolution of microscopic damage. As shown in

Figure 1, the orientation of the idealized grain relative to the applied loading is such

that facets 5 – 12 are symmetrically disposed relative to the loading. Since facets 1

and 3 are normal to the applied load, no sliding systems are activated in these facets.

Therefore, no sliding induced cavitation occurs in them. Any cavitation in these facets
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Figure 8. The maximum principal stretch of the representative grain in the present
model, λ1 at rupture. Since λ1 ↑ ∞ in the ductile regime, the applied stress range, Σa

(abscissa) in Figure 8 is confined to the brittle regime.

must occur by a mechanism of diffusion only. Grain boundary sliding, however, occurs

in facets 5 – 12 and induces both diffusional and grain boundary induced cavitation

therein. It also induces wedge cracking in facets 1 and 3. Facets 2 and 4 are oriented

such that neither grain boundary sliding nor wedge cracking occurs in them.

Damage evolution of facets 1 and 3 and that on facets 5 to 12 are equivalent. Facets

2 and 4 remain undamaged throughout. It therefore suffices to study damage evolution

on a representative facet from each of the two damaging groups, chosen as facets 1 and

5. Figures 9 (a) – (d) show the damage evolution in facet 1 and Figures 9 (e) – (h) show

the same in facet 5. Rows correspond to applied stress Σa = 225 MPa, 175 MPa, 125

MPa and 85 MPa, respectively. The first two stress levels considered fall in the ductile

rupture regime, while the last two stress levels fall in the brittle rupture regime.

As noted above, facet 1, lacking any grain boundary sliding, undergoes creep

damage by diffusional cavitation and by wedge cracking. The former is indicated by the

curves labeled
∑

s∈S1
l̂s and the latter by the curves labeled

∑
c∈C1

L̂c, in Figures 9 (a) –

(d). The total damage in facet 1, φ1, which is the sum of these two contributions pulled

back into the reference configuration is also shown. Similarly, facet 5 undergoes cavity

extension by mechanisms of diffusional growth and grain boundary sliding. Normalized

sliding displacement is labeled
∑

s∈S5
Ŝs and normalized cavity length by

∑
s∈S5

l̂s,

regardless of whether cavity growth occurs due to diffusion or sliding in Figures 9 (e) –

(h).
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Ŝs

∑
s∈S5

Ŝs
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Figure 9. Damage evolution in the form of cavitation and wedge cracking on facets
normal (a) – (d) and inclined (e) – (h) to the tensile direction. Rows correspond to
different applied normal stresses, Σa = 225 MPa, 175 MPa, 125 MPa and 85 MPa.
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The relative contribution of the two damage mechanisms – diffusional cavitation

and wedge cracking – varies with applied stress Σa. At Σa = 225 MPa and 175 MPa, as

seen from Figures 9 (a) and (b), damage caused by wedge cracking dominates that due

to diffusional cavitation at the time of rupture of facet 1. At Σa = 125 MPa, as seen

from Figure 9 (c), the contribution from both mechanisms is nearly equal and at Σa = 85

MPa, the contribution from diffusional cavitation far exceeds that from wedge cracking.

In qualitative agreement with experimental observations [35], the present model predicts

an increasing prominence of wedge cracks with increasing applied stress Σa.

The last part of each curve in Figures 9 (a) – (d) is flat. This portion corresponds

to the time range wherein facets 1 and 3 are fully damaged but facets 5 – 12 are not.

The presence of the flat portion in all three plots indicates that the facet normal to the

applied load damages fully before any of the inclined facets. Damage evolution of facet

5 does not go to completion in Figures 9 (e) and (f) because creep rupture in this case

occurs by the ductile mode.

Facets 5 – 12 are inclined to the tensile direction and undergo grain boundary

sliding. The extent of grain boundary sliding at rupture decreases with decreasing

stress in the cases depicted in Figures 9 (f) – (h). Creep damage in these facets occurs

by diffusional and grain boundary sliding induced cavitation. Wedge cracking does not

occur in these facets.

Curves depicting the evolution of cavities in facet 5,
∑

s∈S5
l̂s in Figures 9 (e)

– (g) show a kink at the time that facet 1 becomes fully damaged. The kink is

caused by a pronounced reduction in cavity growth rate on the sliding facets prior

to complete rupture of the facets 1 and 3. During this period, according to (45),

the energy associated with the hollow dislocation at the triple junction suppresses

cavity growth. Once the facets normal to the loading direction are fully damaged, the

hollow dislocation vanishes [22]. Grain boundary sliding induced cavitation becomes

considerably accelerated thereafter. The transition from cavity suppression to cavity

growth acceleration is abrupt and produces the kinks in Figures 9 (e) – (g). Figure 9 (h)

showing damage evolution on facet 5, however, shows no kink in the
∑

s∈S5
l̂s curve. This

is because, at this low stress level, cavity growth occurs exclusively by the mechanism

of diffusion, which, as noted in Section 2.3.2, is uncoupled from wedge cracking.

4. Conclusion

A model of high temperature creep deformation and damage in an austenitic stainless

steel polycrystal accounting for creep deformation of grains and simultaneous and

coupled damage evolution in the form of cavitation and wedge-cracking at grain

boundaries is proposed. Cavitation occurs by a diffusional process at low stress and

is driven by grain boundary sliding at intermediate stresses. The model accurately

captures the time to rupture of a type 316 stainless steel.

Often in practice, creep-lifetime under service conditions, even if located within

the low stress regime dominated by diffusional mechanisms and r-type voiding, is
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extrapolated from lifetime data generated by accelerated tests conducted at stress levels

extending well into the intermediate stress regime [62], where grain boundary sliding

and wedge cracking are dominant. Frequently, extrapolation is based on an empirical

time-temperature parameter [63].

The present model based extrapolation scheme offers important advantages over

the empirical approach. The model based scheme explicitly represents three damage

micromechanisms and predicts their evolution with time. Therefore, in addition to

validation against macroscopic creep measures such as the creep curve or time to rupture

data, the present model can be validated against microscopic damage measures obtained

from quantitative metallographic studies of creep specimen. Model validation can thus

be performed at both the macroscale and microscale. Also, once validated, the present

model can be used for lifetime predictions in the course of arbitrarily complex loading

histories without further approximations or assumptions.
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