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Abstract Fracture of three-dimensional unidirectional composites is studied through Monte

Carlo fracture simulations on model composites. Fracture develops in the model compos-

ites by the failure of fibre segments wherein the tensile stress exceeds a Weibull-distributed

random strength, and by the failure of the fibre-matrix interfaces wherein the shear stress

exceeds a deterministic interfacial strength, T0. The size of the weakest-link failure event is

inferred from empirical strength distributions obtained from the simulations. It is found to

diverge or converge with composite size for T0 below or above a threshold value, respec-

tively. The threshold is identified as the tough-brittle fracture mode transition. The mecha-

nistic cause underlying the transition is also identified.
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1 Introduction1

1.1 The fibre-matrix interface2

The fracture surface of unidirectional polymer matrix fibre composites subjected to longi-3

tudinal uniaxial tension can be smooth, step-like, broom-like, or brush-like (Hull and Clyne4

1996; Robinson et al 2012). The nature of the fracture surface is determined by the shear5

strength of the fibre-matrix interface relative to the tensile strength of the fibres (Hull and6

Clyne 1996, Chap. 8). A strong interface results in brittle fracture with a smooth fracture sur-7

face (Hull and Clyne 1996, Fig. 8.10), while a weak interface is associated with a brush-like8

fracture surface (Hull and Clyne 1996, Fig. 8.8). Intermediate interfacial strengths result in9

random variability in the nature of the fracture surface. For example, Ma et al (2016, 2017)10

observed fracture surface variation from step-like to brush-like amongst nominally identical11

specimen. They attributed this variation to fluctuations in the local interfacial strength.12

The fibre-matrix interface derives its strength from two physical mechanisms: adhe-13

sion, or chemical bonding between the fibre and matrix, and friction (Zhandarov and Mäder14

2005). The strength imparted by these mechanisms depends on the fibre and matrix mate-15

rials (Herrera-Franco and Drzal 1992), and on the methods adopted for interphase tailor-16

ing (Karger-Kocsis et al 2015). Banholzer and Brameshuber (2001) have proposed a phe-17

nomenological multilinear model of the interfacial shear stress variation with interfacial18

slip, incorporating these mechanisms. Their model is summarised in Fig. 1. In this model,19

the fibre-matrix interface is assumed chemically adhered (bonded) in region I. The relative20

displacement between fibre and matrix in this region accrues from their elastic deformation.21

Region II describes the regime of an imperfectly bonded interface, and region III, a com-22

pletely debonded interface with relative motion across the interface, and frictional forces on23

such fibre and matrix segments.24
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Fig. 1: Schematic of the multilinear interfacial response model due to Banholzer and

Brameshuber (2001) is depicted by the solid black line. T0, and Tf are the interfacial strength,

and interfacial frictional stress, respectively. Idealised interfacial response assumed by Bey-

erlein and Phoenix (1997), Landis et al (2000), Ibnabdeljalil and Curtin (1997a,b), and the

present work are indicated by broken lines.

1.2 Composite strength distribution1

In a polymer matrix unidirectional composite loaded in tension along the fibre direction, the2

stiff fibres carry almost the entire the applied load (Hull and Clyne 1996). Fibre strengths,3

governed by the presence of flaws, are randomly distributed (Hull and Clyne 1996). The4

ultimate tensile strength depends not only on the strength distribution of the fibres, but also5
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on the load redistribution from broken fibres to intact ones. Load redistribution, in turn,1

depends on the matrix material properties, and on the characteristics of the fibre-matrix2

interface.3

Monte Carlo simulation studies of fracture development in polymer matrix composites4

in the literature have generally assumed a perfectly bonded interface. Fig. 1 places this as-5

sumption in the context of the Banholzer and Brameshuber (2001) model. Beyerlein and6

Phoenix (1997) and Landis et al (2000) studied the fracture of two- and three-dimensional7

model composites respectively, through Monte Carlo fracture simulations. They implemented8

a localised load transfer model, i.e., one which overloads nearby intact neighbours of a bro-9

ken fibre severely, relative to more distant neighbours. They found that model composites10

undergo brittle fracture by the nucleation of a critical cluster of fibre breaks, followed by its11

propagation. They showed that this failure mode results in the composite strength distribu-12

tion obeying weakest-link scaling.13

To the author’s knowledge, a failing interface has not been accounted for in simulation14

studies of polymer matrix composites. However, the influence on composite strength of a15

debonded frictionally sliding interface, which is realised in ceramic matrix composites has16

been well-studied (Ibnabdeljalil and Curtin 1997a,b). The idealised frictional interfacial re-17

sponse is also sketched in Fig. 1. In three-dimensional model specimen, Ibnabdeljalil and18

Curtin (1997a) showed that weakest-link scaling is observed, provided load transfer from19

broken to intact fibres the fibre breaks is highly localised. Also, under the same load trans-20

fer conditions, Ibnabdeljalil and Curtin (1997b) showed that the strength of notched fibre21

composites can be explained by weakest-link failure considerations.22



Tough-brittle fracture mode transition 5

1.3 Fracture mode transition1

On the one hand, the works described in Sec. 1.2 indicate that a strong interface results in2

localised load sharing, which in turn results in a brittle fracture mode. On the other hand, if3

the interfacial strength were negligible, the fibre-matrix interface will fail at each fibre break,4

and the interfacial crack will propagate along the fibre direction indefinitely. Such a compos-5

ite will behave like a loose bundle of threads, wherein the load dropped by the broken fibre is6

distributed equally amongst the intact ones. Fracture develops in a loose bundle by spatially7

uncorrelated fibre breakage, giving it a tough characteristic (Hansen et al 2015). In between,8

there may exist an intermediate value of interfacial shear strength at which the failure mode9

transitions from brittle to tough. Experimentally also, the existence of the tough-brittle tran-10

sition in polymer matrix composites is suggested by the very different modes of fracture11

development in carbon and glass fibre reinforced polymer matrix composites, the former12

characterised by a strong interface, and the latter by a weak one (Scott et al 2011; Sket et al13

2012; Kumar et al 2012).14

1.4 Present work15

In the present work, the fibre-matrix interface in the model polymer matrix composite is16

endowed with a finite shear strength, T0. It remains perfectly bounded as long as the interfa-17

cial shear stress is less than T0 during composite loading. When the interfacial shear stress18

equals T0, the interface is taken to fail. Thereafter, the interface transmits no shear. Thus,19

shear stress transmitted by a debonded interface due to friction is neglected. The assumed20

interfacial characteristic is shown schematically in Fig. 1.21

Monte Carlo simulations of three-dimensional polymer matrix composite fracture are22

performed for various interfacial shear strengths, with the particular aim of identifying the23
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transitional value of T0, and the qualitative differences in fracture development in the brittle1

and tough regimes. These simulations are enabled by a recently developed fast computa-2

tional framework (Mahesh 2020) for performing stress analyses in a simulation cell with3

elastically interacting, arbitrarily distributed fibre breaks, and fibre-matrix interface failures.4

In order to directly capture the fracture mode transition in physically-sized composites,5

fracture in similarly sized computer models must be simulated. However, computational6

complexity limits the simulations to much smaller sizes. Therefore, presently, the size of the7

weakest-link failure event is estimated for various system sizes, and its scaling with system8

size is used to extrapolate to large system sizes. This methodology extends the approach9

developed by Kachhwah and Mahesh (2020).10

2 Model composites11

2.1 Three-dimensional model composite12

The three-dimensional (3D) model composite is comprised of ν2 unidirectional fibers ar-13

ranged in a hexagonal lattice, as shown in Fig. 2. Its cross-section is rhombus-shaped. Fi-14

bres are assumed to be cylindrical with cross-sectional area A, and linear elastic with Youngs15

modulus E. The centre-to-centre distance between adjacent fibres is denoted d. The model16

composite is loaded in tension along the fibre direction. Fibres are assumed to be much17

stiffer in the longitudinal direction than the matrix, and thus carry almost all the tensile load.18

The matrix material is assumed to be loaded predominantly in shear. The shear stiffness of19

the matrix is denoted Gh, where G is the matrix shear modulus, and h is comparable to the20

fibre diameter.21

The transverse distance between fibres is normalised by d, so that the normalised centre-22

to-centre distance between a pair of neighbouring fibres is unity. The normalised position23
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Fig. 2: The 3D periodic model composite comprised of ν×ν fibres of length 2L3D arranged

in a hexagonal lattice. The m–n–ζ coordinate system is shown. The model is longitudinally

divided into 2K blocks, each of length ∆ = L3D/K. Fibre breaks are restricted to the block

boundaries, at ζ = k∆ , k ∈ {−K + 1,−K + 2, . . . ,K}. Matrix failures extend one or more

blocks, and occur due to debonding at the fibre-matrix interface.
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of a fibre is specified with respect to the non-orthogonal (m,n) coordinate system shown in1

Fig. 2. Also, the distance along the fibre direction, z, is non-dimensionalised as2

ζ := z

√
Gh

EAd
, (1)

following Hedgepeth (1961), and Hedgepeth and Van Dyke (1967). The finite 3D model3

composite is taken to extend over z ∈ [−`3D, `3D]. Letting L3D = `3D
√

Gh/(EAd), the non-4

dimensional longitudinal extent is ζ ∈ [−L3D,L3D], according to Eq. (1). It is divided into5

2K blocks, each of normalised length6

∆ := L3D/K, (2)

as shown in Fig. 2. The k-th block, k ∈ {−K+1,−K+2, . . . ,K} extends over ζ ∈ (k∆ ,(k+7

1)∆).8

Periodicity is assumed along the m, n, and ζ axes. Thus, the fibres (m = 0,n) abut

(m = ν−1,n), for all n ∈ {0,1, . . . ,ν−1} and fibres (m,n = 0) abut (m,n = ν−1), for all

m∈{0,1, . . . ,ν−1}. Also, along the ζ direction, the transverse sections ζ =±L3D coincide.

Because of the longitudinal and transverse periodicity, fibre coordinates (m,n), and block

indices k are only significant modulo ν , and 2K, respectively. These are denoted [m], [n],

and [k], and defined as

[m] :=m−ν bm/νc ,

[n] :=n−ν bn/νc , and

[k] :=k−2K b(k+K−1)/(2K)c ,

(3)

where b·c denotes the largest integer no greater than its argument.9

Let vmn(z) be the fibrewise displacement in fibre (m,n) at z. The stress at that point is10

given by Edvmn/dz. The average fibre stress at cross-section z is given by11

〈σ〉= E
ν2

ν−1

∑
m=0

ν−1

∑
n=0

dvmn

dz
(z). (4)
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Equilibrium demands that 〈σ〉 be independent of z. Following Hedgepeth (1961, Eq. 6), the1

non-dimensional fibre displacement is defined as2

umn = vmn

√
EGh
Ad

1
〈σ〉

. (5)

Eqs. (1), and (5) together imply3

dumn

dζ
=

E
〈σ〉

dvmn

dz
. (6)

The non-dimensional stress associated with umn, σmn physically represents the stress4

concentration, and is defined as5

σmn(ζ ) :=
dumn

dζ
(ζ ). (7)

The stress overload is defined as the stress concentration less unity:6

σ̃mn(ζ ) := σmn(ζ )−1. (8)

The longitudinal division of the composite into 2K blocks divides each fibre into seg-7

ments of length ∆ . The k-th segment in fibre (m,n) extends ∆/2 either side of ζ = k∆ ,8

i.e., over ζ ∈ (([k−1]+ 1/2)∆ ,k∆)∪ (k∆ ,([k+1]− 1/2)∆). It is assigned a random strength,9

Σ 3D
mnk, drawn from the Weibull (1952) distribution:10

F3D(σ) = Pr{Σ 3D
mnk ≤ σ}= 1− exp

(
−∆

(
σ

σ0

)ρ)
. (9)

Here, ρ is called the Weibull exponent, and σ0 is called the scale factor. Variability of fibre11

segment strength increases with decreasing ρ . Physically, a fibre segment may break any-12

where along its length. However, presently, for reasons of computational efficiency, the fibre13

breaks are restricted to the mid-point of the fibre segment, ζ = k∆ . The consequences of14

this assumption are examined in Sec. 4.15
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The k-th segment in fibre (m,n) is identified by the indices mnk. The stress concentra-

tion, and stress overload at the potential site of fibre breakage are denoted

σmnk := σmn(ζ = k∆), and

σ̃mnk := σ̃mn(ζ = k∆),

(10)

respectively. The fibre segment mnk is assumed to fail if1

Σ
3D
mnk ≤ σmnk〈σ〉. (11)

Matrix bays between adjacent fibres (m,n), and ([m+1],n); (m,n), and (m, [n+1]); and2

(m,n), and ([m−1], [n+1]), are identified by the indices mni, for i= 1, 2, and 3, respectively.3

Following Hedgepeth (1961), the shear flow in the matrix bay mni is defined as4

Tmni =
Gh
d
×



(v[m+1],n− vmn), if i = 1,

(vm,[n+1]− vmn), if i = 2,

(v[m−1],[n+1]− vmn), if i = 3.

(12)

The segment of matrix bay mni contained in the k-th block is identified by the indices5

mnik. Matrix bay segment mnik is taken to fail if the fibre-matrix interface with either of6

its flanking fibres debonds. Debonding is taken to occur if the maximum of the magnitude7

of the shear flow, Tmni, over block k, exceeds a deterministic shear strength, T0. Since fibre8

breaks are restricted to the ends of the blocks, the maximum is realised at one of the ends of9

block k. Thus,10

Tmnik := max(|Tmni(ζ = k∆)| , |Tmni(ζ = [k+1]∆)|) , (13)

and the criterion for the failure of matrix segment, mnik, is11

T0 ≤ Tmnik〈σ〉. (14)
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Let the shear flow Tmni be non-dimensionalised as1

Tmni =

√
GAh
Ed
〈σ〉τmni, (15)

so that2

τmni(ζ ) =



u[m+1],n(ζ )−umn(ζ ), if i = 1,

um,[n+1](ζ )−umn(ζ ), if i = 2,

u[m−1],[n+1](ζ )−umn(ζ ), if i = 3,

(16)

and3

τmnik := max(|τmni(ζ = k∆)| , |τmni(ζ = [k+1]∆)|) . (17)

In terms of τmnik, Eq. (14), the condition for the failure of matrix bay segment, mnik, be-4

comes5

τ0 ≤ τmnik〈σ〉, (18)

where, τ0 = T0
√

Ed/(GAh). It emphasised that matrix bay segment mnik must either be6

failed, or intact. Partial failure is not permitted in order to gain computation speed.7

The average longitudinal strain in the fibres is given by

〈ε〉= (vmn(z = `3D)− vmn(z =−`3D))

2`3D

=
〈σ〉
E

(umn(ζ = L3D)−umn(ζ =−L3D))

2L3D
.

(19)

The second expression follows from the normalising Eqs. (1), and (5). The normalised8

average longitudinal strain is defined as9

〈ε̄〉= E
σ0
〈ε〉 (20)
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2.2 Fracture simulation in 3D composites1

Monte Carlo fracture simulations are performed on Nsim realisations of statistically identical2

specimen. Each simulation begins by assigning random strengths Σ 3D
mnk to the 2Kν2 fibre3

segments drawn from Eq. (9). The form of Eq. (9) also suggests 〈σ〉/σ0 as a convenient4

loading parameter. Model specimens are loaded by monotonically increasing this parameter.5

Also, the failure criteria for fibres, and matrix bays, Eqs. (11), and (18), can be written in6

terms of the loading parameter as7

Σ 3D
mnk
σ0
≤ σmnk

〈σ〉
σ0

, (21)

and8

τ0

σ0
≤ τmnik

〈σ〉
σ0

, (22)

respectively.9

In the first step, 〈σ〉/σ0 is incremented so that the weakest fibre segment fails. The stress10

concentration in all the fibre segments, σmnk, and normalised shear stress in all the matrix11

bays, τmnik is calculated. This is the most computationally intensive step of the simulation,12

and is done using the fast Fourier transform based algorithm given by Mahesh (2020). If13

any more fibre breaks or matrix failures occur, following the criteria in Eq. (11), and (22),14

respectively, the corresponding elements are failed. The process of recomputing the stress15

concentrations, and failing fibre and matrix bay segments at the same 〈σ〉/σ0 is continued16

until no more elements fail. At this point, 〈σ〉/σ0 is incremented so that exactly one addi-17

tional fibre or matrix bay segment fails. Additional failures at the same stress level, induced18

by stress concentrations are also generated, as described above.19

The process of incrementing 〈σ〉/σ0, and determining the set of failed elements is con-20

tinued until a crack that traverses the specimen forms. The crack may be comprised of fibre21
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breaks, and matrix failures, and will typically not be confined to a single transverse plane. A1

graph-based algorithm to detect the formation of the contiguous crack was given by Mahesh2

(2020).3

The value of 〈σ〉 at which the model specimen i fractures is its ultimate strength, and is4

denoted 〈σ〉ult
i , for i ∈ {1,2, . . . ,Nsim}. Let the ultimate strengths be sorted in ascending or-5

der, 〈σ〉ult
(1) ≤ 〈σ〉

ult
(2) ≤ . . .≤ 〈σ〉ult

(Nsim). Then, the empirical 3D strength distribution is defined6

as:7

H3D

(
〈σ〉ult

(i)

σ0

)
=

i− 1/2

Nsim
, (23)

for i∈ {1,2, . . . ,Nsim}. The 3D model of Fig. 2 is comprised of 2L3Dν2 fibre segments, each8

of unit length. Therefore, the empirical weakest-link distribution associated with one fibre9

segment of unit length is given by:10

W3D

(
〈σ〉ult

(i)

σ0

)
= 1−

(
1−H3D

(
〈σ〉ult

(i)

σ0

)) 1
2L3Dν2

. (24)

In the sequel, wherever it is convenient to regard the empirical weakest-link distribution as11

a continuous function of the stress level, the subscript (i) is dropped, and the expression12

W3D
(
〈σ〉ult/σ0

)
is used.13

2.3 Two-dimensional model composite14

Theories of 3D composite strength, e.g., Epstein (1948), Gücer and Gurland (1962), and15

Smith et al (1983), regard the 3D composite as a chain of mechanically non-interacting16

two-dimensional (2D) links arranged along the ζ direction. They identify the failure of the17

weakest 2D link with the failure of the 3D composite. A common feature of these models is18

that they assume the length of the 2D composites to be determined a priori, on the basis of19

mechanical considerations only. Furthermore, they restrict fibre breaks to a common trans-20

verse plane. It will be shown later in Sec. 4.4 that the aforementioned assumptions are too21



14 Sivasambu Mahesh

ζ

2L2D 2t

Fig. 3: Two-dimensional composite. Fibre breaks are assumed to be confined within ζ ∈

(−t, t), and matrix failures are assumed to extend over ζ ∈ (−t, t) in all the matrix bays

abutting the broken fibres. Two fibre breaks in neighbouring fibres are shown. Although the

common case of 2t < 2L2D is depicted, there is no such restriction in general.

restrictive to accurately capture the size of the weakest-link failure event. This necessitates1

the definition of a broader class of 2D model composites.2

The present 2D model composite is shown in Fig. 3. Fibre breaks are not restricted to3

a transverse plane. Instead, they may lie within ζ ∈ (−t, t). Matrix failures are assumed to4

extend over ζ ∈ (−t, t) in all the six matrix bays abutting each fibre break. A fibre break,5

and its abutting matrix failures, together are considered an aggregate failure event in the6

2D composite. The aggregate failure is termed a 2D break. Two 2D breaks in neighbour-7

ing fibres are shown in Fig. 3. The traction-free boundary conditions associated with fibre8

breaks, and matrix failures imply that if there is a break in fibre (m,n), σmn(ζ ) = 0, for all9

ζ ∈ (−t, t), thereby making the precise location of the break within ζ ∈ (−t, t) immaterial.10
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The transverse section of the 2D composite is identical to that of the 3D composite.1

However, fibres (m,n) in the 2D composite are assumed infinitely long. The segment ζ ∈2

(−L2D,L2D) of fibre (m,n) is assigned a random Weibull (1952) distributed strength, Σ 2D
mn :3

F2D(σ) = Pr{Σ 2D
mn ≤ σ}= 1− exp

(
−2L2D

(
σ

σ0

)ρ)
. (25)

The remainder of the infinitely long fibre is assumed to be infinitely strong.4

It is recalled from Sec. 2.1 that the 3D model yields stress concentrations, σmnk, for5

arbitrary configurations of failed fibre and matrix elements. Consider a 3D composite with6

a broken fibre at (m,n,ζ ) = (0,0,0), and with matrix failures extending up to ζ =±t in all7

the six abutting matrix bays. In the notation of Eq. 10, the stress overload induced in the8

fibre at (m,n) in the ζ = 0 transverse plane is σ̃mn0. σ̃mn0 is taken to be the influence of9

the 2D break at (m,n) = (0,0) Weighted superposition of the influences due to an arbitrary10

set of 2D breaks, following Hedgepeth (1961), yields the stress concentrations σmn in all11

the fibres. Presently, weighted influence superposition is done using the Fourier accelerated12

algorithm given by Gupta et al (2018).13

2.4 Fracture simulation in 2D composites14

Fracture simulations in 2D composites follow the procedure given in Sec. 2.2, barring three15

significant differences. First, in 2D, σmn increases monotonically with the number of 2D16

breaks, while in 3D, σmnk may vary non-monotonically. This property is exploited in the17

fast fracture simulation algorithm of Mahesh et al (2019), which is employed presently for18

2D simulations. The second difference is that fracture simulations are performed assuming19

2L2D = 1. The empirical strength distributions so obtained are denoted Ĥ2D(〈σ〉ult
(i)/σ0).20

Using Eq. (25), the empirical strength distribution of a 2D composite of arbitrary length21
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2L2D is then obtained by scaling Ĥ2D as1

H2D

(
〈σ〉ult

(i)

σ0

)
= Ĥ2D

(
(2L2D)

1
ρ

〈σ〉ult
(i)

σ0

)
. (26)

Thirdly, the condition for the occurrence of a 2D break in fibre (m,n) is taken as2

Σ 2D
mn

σ0
≤ σmn

〈σ〉
σ0

. (27)

Paralleling Eq. (24), the empirical weakest-link distribution of a 2D composite of length

2L2D, associated with one fibre segment of unit length is

W2D

(
〈σ〉ult

(i)

σ0

)
= 1−

(
1−H2D

(
〈σ〉ult

(i)

σ0

)) 1
2L2Dν2

,

= 1−

(
1− Ĥ2D

(
(2L2D)

1
ρ

〈σ〉ult
(i)

σ0

)) 1
2L2Dν2

.

(28)

As in the 3D case, it is often simpler to regard the loading parameter, 〈σ〉ult/σ0, as a contin-3

uous variable, and drop the subscript (i) in Eq. (28).4

2.5 Longitudinal weakest linking5

In accord with the classical theories of 3D composite strength, (Epstein 1948; Gücer and6

Gurland 1962; Smith et al 1983), it will be be shown in the sequel that the 2L3D long 3D7

composite can be regarded as a chain of L3D/L2D links, each link representing a 2L2D-long8

2D composite. Identifying the failure of the chain with that of the weakest link, it follows9

that10

H3D(〈σ〉ult/σ0) = 1−
(

1−H2D(〈σ〉ult/σ0)
)L3D/L2D

. (29)

Substituting Eqs. (24), and (28) into Eq. (29) gives11

W3D(〈σ〉ult/σ0) =W2D(〈σ〉ult/σ0). (30)

In the sequel, Eq. (30) will be found to offer a convenient way to verify the validity of12

Eq. (29).13
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3 Probabilistic models of fracture1

Probabilistic models of fracture help to interpret empirical strength distributions obtained2

from Monte Carlo fracture simulations. Three models developed in the literature, relevant3

to the present work, are summarised below.4

3.1 Equal load sharing model5

In an equal load sharing bundle of ν2 fibres, of which b are broken (Hansen et al 2015),6

σmn(ζ ) =


0, in the broken fibres, and

ν2

ν2−b , in the intact fibres.

(31)

The 3D model composite of Fig. 2 represents an equal load sharing bundle if all the fibre-7

matrix interfaces were failed a priori, i.e., if τ0/σ0 = 0. Similarly, in the limit of t→ ∞, the8

2D model composite of Fig. 3 also represents an equal load sharing bundle. Thus, an equal9

load sharing bundle is defined irrespective of model dimensionality.10

The strength distribution of an equal load sharing bundle comprised of ν2 fibres is de-11

noted HELS,ν2 . In the limit ν2→ ∞, the classical result of Daniels (1945) holds that12

HELS,ν2

(
〈σ〉ult

σ0

)
ν2→∞−−−→Φ

(
〈σ〉ult/σ0−µν2/σ0

ςν2/σ0

)
, (32)

where,13

Φ(x) =

√
1

2π

∫ x

0
e−x2/2dx, (33)

is the Gaussian distribution with zero mean, and unit variance. The parameters of the Gaus-14

sian distribution, µν2 , and ςν2 , given by Daniels (1945) converge slowly with increasing ν2.15

McCartney and Smith (1983) have proposed corrections that improve the rate of conver-16

gence. The corrected expressions for mean and variance, specialised to the case of Weibull17
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distributed fibre strengths are1

(2Lx)
1/ρ µν2

σ0
=

(
1
ρ

) 1
ρ

exp
(
− 1

ρ

){
1+

0.996
ν

4/3

1

2+ρ
2
ρ (ρ−2)

}
, (34)

and2

(2Lx)
1/ρ

ς
2
ν2 =

(
1
ρ

) 2
ρ exp

(
− 1

ρ

)(
1− exp

(
− 1

ρ

))
ν2 − 0.317

ν8/3


(

1
ρ

)− 3
ρ

exp(− 1
ρ
)

2+ρ
2
ρ (ρ−2)


2/3

,

(35)

respectively. Here, Lx = L3D for 3D and Lx = L2D for 2D equal load sharing bundles.3

3.2 Localised load sharing models4

While the fracture of an equal load sharing model composite is independent of its dimen-5

sionality, the localised load sharing models apply to transverse crack growth in 2D model6

composites only. The two models of present interest are the Curtin (1998) model, and the7

tight cluster growth model (Habeeb and Mahesh 2015; Gupta et al 2017; Kachhwah and8

Mahesh 2020).9

3.2.1 The Curtin model10

The Curtin (1998) model regards the 2D composite as a collection of ν2/Nc bundles, each11

of which contains Nc ≤ ν2 fibres. It assumes equal load sharing within each bundle. It12

associates composite failure with the failure of the weakest of the ν2/Nc bundles. Let13

HNc

(
〈σ〉ult/σ0

)
denote the strength distribution of an Nc bundle. Curtin (1998) observed14

that there is an Nc such that15

HNc

(
〈σ〉ult

σ0

)
= 1−

(
1−H2D

(
〈σ〉ult

σ0

)) 1
Nc

= Φ

(
〈σ〉ult/σ0−µ ′Nc

/σ0

ςNc/σ0

)
, (36)
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where, H2D(〈σ〉ult/σ0) is defined in Sec. 2.4, and µ ′Nc
is considered an arbitrary parameter,1

different from µNc in Eq. (32). Two conditions must be satisfied if Eq. (36) were to hold: (i)2

HNc must Gaussian distributed, and (ii) Its standard deviation must coincide with that of an3

Nc fibre equal load sharing bundle. The following procedure for fitting Nc, and µ ′Nc
attempts4

to optimally satisfy these conditions independently.5

Given an empirical 2D strength distribution, H2D(〈σ〉ult/σ0), trial HNc are calculated6

using Eq. (36) for each Nc ∈ {1,2, . . . ,ν2}. H2D(〈σ〉ult/σ0) is then plotted on normal proba-7

bility paper, wherein Gaussian distributions plot as straight lines. A straight line is fit to the8

plot of H2D(〈σ〉ult/σ0) using linear least squares. The root mean squared (RMS) deviation9

between the empirical H2D(〈σ〉ult/σ0), and the straight line is used to quantify normality of10

H2D(〈σ〉ult/σ0). The Nc for which the smallest RMS deviation results is taken to be the best11

fit parameter according to condition (i) above, and denoted N(i)
c . The reciprocal of the slope12

of the best fit straight line gives the standard deviation of the normal distribution. Its absolute13

deviation from the standard deviation given by Eq. (35), quantifies the satisfaction of condi-14

tion (ii). The Nc for which absolute deviation is minimum is taken to be the best fit parameter15

according to condition (ii) above, and denoted N(ii)
c . Curtin (1998) observed that N(i)

c ≈N(ii)
c .16

Finally, the parameter µ ′Nc
is set by determining the horizontal shift in normal probability17

paper required to bring H2D(〈σ〉ult/σ0), and Φ((〈σ〉ult/σ0)−µ ′Nc
/σ0)/(ςNc/σ0)) into best18

alignment with each other.19

3.2.2 The tight cluster growth model20

The tight cluster growth model (Habeeb and Mahesh 2015; Gupta et al 2017; Kachhwah and21

Mahesh 2020) regards the 2D composite as a collection of ν2/M bundles, each of which22

contains M ≤ ν2 fibres. Like the Curtin (1998) model, it assumes equal load sharing within23
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➊ ➋

➌➍

➎
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➑

➒

➓

Fig. 4: Schematic representation of the failure event in the tight cluster growth model. The

failure of a bundle, labelled Ê, causes an overload in its six neighbours. Under this overload,

one of them, say Ë fails. The overloads due to a pair of failed bundles leads to the failure of,

say Ì, and so on.

each bundle. However, following Smith et al (1983), and Mahesh et al (2002), it assumes1

that brittle fracture develops by tight cluster growth.2

Tight cluster growth is taken to begin from a state of uniformly randomly distributed3

fibre breaks. The random distribution is taken to increase the mean stress in every trans-4

verse section by a factor Krand ' 1. Cluster growth begins with the failure of one bundle,5

the nucleus under stress per fibre Krand〈σ〉ult/σ0. This induces stress concentrations on the6

neighbours of the bundle, causing at least one of them to fail. Tight cluster growth propa-7

gates by the failure of at least one its most overloaded neighbours of the current set of failed8

bundles. One of the possible routes of fracture development is shown in Fig. 4. The prob-9

ability of tight cluster growth starting from a given M-bundle nucleus is (Kachhwah and10

Mahesh 2020)11

HM

(
〈σ〉ult

σ0

)
=
bν2/Mc−1

∏
j=0

{
1−
(

1−HELS,M

(
Krandσ

∗
j
〈σ〉ult

σ0

))n j}
. (37)
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Here, HELS,M is given by Eq. (32) with ν2 = M, and Lx = 2L2D, and σ∗j and n j denote the1

maximum stress concentration and the number of nearest neighbours of a tight cluster of j2

M-bundles, respectively. The computation of σ∗j and n j is described in detail in Kachhwah3

and Mahesh (2020, § II.B.2). σ∗0 = n0 = 1. The weakest-link model strength distribution4

referred to one fibre segment of unit length is:5

WM

(
〈σ〉ult

σ0

)
= 1−

(
1−HM

(
〈σ〉ult

σ0

)) 1
2L2DM

. (38)

The parameters of the tight cluster growth model are M, and Krand. Given an empirical6

2D strength distribution, H2D(〈σ〉ult/σ0), Eq. (28) is used to obtain the weakest-link distri-7

bution, W2D(〈σ〉ult/σ0). For each M ∈ {1,2, . . . ,ν2}, trial WM are calculated using Eq. (38).8

For each M, Krand is fit using successive bisection so as to minimise the RMS error between9

WM and W2D. The (M,Krand) for which the least RMS error is obtained are taken to be the10

best fit parameters.11

4 Results and discussion12

Monte Carlo simulations of the fracture of three-dimensional model composites are per-13

formed for specimen sizes ν2 ∈{28,210,212}, Weibull exponents, ρ ∈{10,20}, and for vari-14

ous deterministic normalised matrix strengths, 0≤ τ0/σ0≤∞. For each (ν2,ρ,2L3D,τ0/σ0),15

3D fracture simulations are repeated on Nsim,3D = 256 statistically identical model specimen.16

Using the ultimate tensile strengths, 〈σ〉ult
(i), obtained from these simulations, the empirical17

weakest-link strength distribution, W3D(〈σ〉ult
(i)/σ0), is calculated from Eqs. (23) and (24).18

Monte Carlo simulations of the fracture of two-dimensional composite specimen with19

2L2D = 1, ν2 ∈ {28,210,212}, and ρ ∈ {10,20} are also performed. Empirical 2D strength20

distributions, Ĥ2D(〈σ〉ult
(i)/σ0), are obtained for21

t ∈ {0,0.05,0.10, . . . ,1.20,1.25}. (39)
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As 2D simulations are typically much faster than the 3D ones, Nsim,2D = 1024 statistically1

identical 2D realisations are tested in the computer for each (ν2,ρ,2L2D, t). Eq. (28) is used2

to obtain the empirical weakest-link strength distribution, W2D(〈σ〉ult
(i)/σ0).3

Below, the empirical strength distributions from the 3D simulations are interpreted using4

those from the 2D simulations, and those from the 2D simulations are interpreted in terms5

of the stochastic models of Sec. 3.2. For logical development, the latter is presented first.6

4.1 Transverse size of the weakest-link in 2D model composites7

The parameters Nc, and M, of the Curtin (1998), and tight cluster growth models, sum-8

marised in Sec. 3.2, respectively, represent the transverse size of the weakest-link in the9

2D model composites. Presently, these parameters are estimated from 2D simulations of10

2L2D = 1 specimen.11

4.1.1 Curtin’s model12

The algorithmic procedure for obtaining the best fit parameters (Nc,µ
′
Nc
) of the Curtin13

(1998) model is given in Sec. 3.2.1. It produces two values of Nc, viz., N(i)
c , and N(ii)

c , de-14

pending on the criterion used for selecting the best fit.15

Consider the (ν2,ρ,2L2D, t) = (210,10,1,0.3) 2D model specimen. Fig. 5a shows the16

errors calculated according to conditions (i) and (ii). The best fit values are N(i)
c = 254, and17

N(ii)
c = 111, respectively. Clearly, N(i)

c 6≈ N(ii)
c , contrary to the observation of Curtin (1998).18

Fig. 5b shows H
N(i)

c
for N(i)

c = 254 on normal probability paper, and the best fit straight19

line passing through the empirical distribution. Also shown is H
ELS,N(i)

c
, given by Eq. (32).20

It is evident that H
N(i)

c
6≈ H

ELS,N(i)
c

. Also shown in this figure are H
N(ii)

c
, and the H

ELS,N(ii)
c

21
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Fig. 5: For 2D composites with (ν2,ρ,2L2D, t) = (210,10,1,0.3), (a) selection of the op-

timal Nc that satisfies Eq. (36). Two optima, N(i)
c , and N(ii)

c , are obtained corresponding to

the two criteria in Sec. 3.2.1, and (b) comparison of HNc with HELS,Nc on normal probability

paper.
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that has been brought into alignment with it by choosing an appropriate µ ′
N(ii)

c
. Although1

H
ELS],N(ii)

c
is not the normal distribution that best fits H

N(ii)
c

, this is not visually perceptible.2

Thus, H
N(i)

c
optimally satisfies criterion (i) associated with Eq. (36), but violates criterion3

(ii) by a large margin. H
N(ii)

c
optimally satisfies criterion (ii), and also acceptably satisfies4

criterion (i). This is found to be generally true for all (ν2,ρ,2L2D, t). Therefore, Nc is taken5

to be N(ii)
c hereafter.6

4.1.2 Tight cluster growth model7

Fig. 6 shows the empirical weakest-link strength distributions, W2D, for model 2D compos-8

ites, with ρ = 10, and 2L2D = 1. Tight cluster growth model predictions, WM , are obtained9

by fitting Eq. (38), as described in Sec. 3.2.2.10

Fig. 6 shows the good agreement between the model predicted WM, and W2D for t = 0.3,11

and t = 0.7. In general, for all (ν2,ρ,2L2D, t), the model predictions are found to fit W2D12

very well.13

4.2 The effect of fibrewise discretisation length, ∆14

Attention is henceforth directed toward 3D model composites. The fibrewise discretisation15

length, ∆ , shown in Fig. 2, influences the 3D empirical strength distributions W3D(〈σ〉ult
(i)/σ0).16

Curtin (2000) has discussed the effect of restricting the fibre breaks to a discrete set of trans-17

verse planes spaced one load recovery length apart for the case of frictional load transfer18

across the fibre-matrix interface. He found that the restriction made the model compos-19

ites significantly weaker, and increased their strength variability. However, Curtin (2000)20

did not investigate the effect of decreasing the spacing, ∆ , between the transverse planes.21

Landis et al (2000) studied the effect of decreasing ∆ in model composites with perfect22
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Fig. 6: Comparison of the 2D empirical weakest-link distribution, Eq. (28), obtained for

2L2D = 1.0 with the best fit tight cluster growth model predictions given by Eq. (38), for (a)

t = 0.3, and (b) t = 0.7.
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Fig. 7: Weakest-link empirical strength distributions obtained for (ν2,ρ,2L3D,τ0/σ0) =

(28,10,5,∞) composites. Successively halving the fibre-wise discretisation length, ∆ , even-

tually leads to convergence of the empirical distributions.

interfacial bonding. They found that as ∆ decreases, the predicted empirical strengths con-1

verge in distribution. They obtained a slower convergence rate for fibre breaks restricted to2

evenly-spaced transverse planes than for arbitrarily located breaks.3

The fast stress redistribution algorithm developed in Mahesh (2020) requires the fibre4

breaks to be located in a regular grid, so that positioning fibre breaks arbitrarily is infeasi-5

ble. Therefore, convergence of the empirical distributions with decreasing ∆ , with the fibre6

breaks restricted to a regular grid is now considered.7

Consider a (ν2,ρ,2L3D,τ0/σ0) = (28,10,5,∞) composite with a perfect interface, as in8

Landis et al (2000). Fig. 7 shows the effect of decreasing ∆ from 2−1 to 2−5 in multiplicative9
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Fig. 8: Weakest-link empirical strength distributions for 3D model composites

W3D(〈σ〉ult
(i)/σ0), Eq. (24), obtained for (ν2,2L3D) = (28,5) composites, with interfacial

strength τ0/σ0 ∈ {0.1,0.3,∞}. The distributions converge more rapidly with decreasing

τ0/σ0.

steps of 2−1 on the weakest-link distribution. In accord with the observations of Curtin1

(2000), and Landis et al (2000) the model composite strengthens with decreasing ∆ . The2

weakest-link distributions approach each other with decreasing ∆ , indicating convergence3

in distribution.4

The strengthening of the composite with decreasing ∆ can be understood as follows.5

Consider two model composites with fibrewise discretisation lengths ∆1, and ∆2, obeying6

∆1 > ∆2. Let there be the same number of arbitrarily located breaks in both. In the present7

computational scheme these breaks are relocated to the block boundaries. In the ∆1 com-8
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posite, the average number of breaks on a block boundary will be greater than in the ∆21

composite. Therefore, stress concentrations in the former will be greater, which increases2

the likelihood of crack propagation. Conversely, the greater fibrewise staggering of breaks3

in the ∆2 composite diminishes the stress overloads they produce on the intact fibres. This4

renders the ∆1 model composite weaker than the ∆2 composite.5

Fig. 8 shows the 3D empirical weakest-link distributions obtained for (ν2,ρ,2L3D) =6

(28,10,5) composites corresponding to τ0/σ0 ∈ {0.1,0.3,∞}, and ∆ ∈ {2−1,2−2,2−3}. It7

is seen that the rate of distributional convergence increases with decreasing τ0/σ0. This is8

consistent with the limiting case of equal load sharing, τ0/σ0 = 0, wherein the fibrewise9

position of the fibre breaks, and therefore, ∆ , is immaterial.10

Figs. 7, and 8 suggest performing simulations with small enough ∆(τ0/σ0) at which11

the weakest-link distribution has converged. This varies from ∆ = 2−4 for τ0/σ0 = ∞ to12

∆ = 2−1 for τ0/σ0 = 0.1. However, the fine discretisation required at larger τ0/σ0 increases13

the computational cost of the larger ν2 simulations prohibitively. In order to complete the14

simulations with the available computational resources, all the simulations discussed here-15

after are performed keeping ∆ = 2−2 fixed. This implies that the composite strengths so ob-16

tained are conservative underestimates, with the degree of underestimation increasing with17

increasing τ0/σ0.18

4.3 Weakest link scaling19

In Fig. 9 the empirical W3D(〈σ〉ult
(i)/σ0), for (ν2,ρ,2L3D) = (ν2,10,5) model composites20

for ν2 ∈ {28,210,212}, and τ0/σ0 ∈ {0.0,0.3,0.5,0.7,∞} are shown. The empirical strength21

distributions corresponding to τ0/σ0 = 0.7, and τ0/σ0 = ∞ coincide exactly. τ0/σ0 = 0, and22

τ0/σ0 = ∞ correspond to equal load sharing, and perfect interfacial bonding, respectively.23
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Fig. 9: Weakest-link 3D empirical strength distributions, W3D, obtained for (ρ,2L3D) =

(10,5) composites with ν2 ∈{28,210,212} fibres, and various τ0/σ0. W3D for all τ0/σ0≥ 0.7

coincide. τ0/σ0 = 0 refers to equal load sharing.

Composite strength is seen to decrease monotonically with decreasing τ0. W3D correspond-1

ing to ν2 ∈ {28,210,212} for τ0/σ0 ≥ 0.5 collapse onto a common curve, while those for2

τ0/σ0 ∈ {0,0.3} do not. The collapse for τ0/σ0 ≥ 0.5 indicates the validity of weakest-3

link scaling (Smith 1980). It suggests that brittle fracture develops by the occurrence of a4

localised weakest-link failure event, and its almost sure propagation (Harlow and Phoenix5

1981a,b). However, non-coincidence of W3D for τ0/σ0 ∈ {0,0.3} does not unequivocally6

indicate the tough failure mode, because apparent toughness may also arise from the lim-7

ited size of the model composites. It is known that brittle fracture from a weakest-link can8

be suppressed in fracture simulations if the model composite size were comparable to, or9
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Fig. 10: Attempts to match the 3D and 2D empirical weakest-link strength distributions for

ν2 = 28 fibre, ρ = 10 model composites with a perfect interface. The 2D empirical weakest-

link strength distribution assuming no interfacial debonding does not match the 3D one.

However, good agreement between the 2D and 3D distributions is obtained for non-zero

t = 0.45.

smaller than the size of the weakest-link failure event (Mahesh et al 2002, 2019). A novel1

method that unequivocally determines the fracture mode for all τ0/σ0 is now developed. It is2

based on estimating the size of the weakest-link failure event, and its scaling with composite3

size.4
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4.4 Fibrewise length of the weakest link1

Consider a 3D composite with a perfect interface. Smith (1980) and Smith et al (1983)2

proposed that the composite could be regarded as a chain of 2D composite ‘links’, each of3

unit length. They assumed that the 2D composite links fail independently, and associated4

the failure of the 3D composite with that of the weakest 2D link.5

Fig. 10 shows the empirical 3D weakest-link strength distribution W3D(〈σ〉ult
(i)/σ0) of6

(ν2,ρ,2L3D) = (28,10,5) composites with perfect interfaces. Also shown are the empirical7

weakest-link strength distributions, W2D, corresponding to 2D (ν2,ρ,2L2D, t)= (28,10,1,0)8

model composites. These 2D model composites were proposed by Smith et al (1983) as9

the longitudinal weakest-link. If indeed they were, W3D, and W2D must coincide, obeying10

Eq. (30). However, the 2D weakest-link is clearly weaker than that of the 3D composite.11

This indicates that 2D weakest link proposed by Smith et al. is too conservative.12

It is now attempted to satisfy Eq. (30) by allowing arbitrary 2L2D ≥ 0, and t ≥ 0 in the13

2D model, as described in Sec. 2.3. In fact, for a given (ν2,ρ,2L3D,τ0/σ0) 3D model com-14

posite, the (ν2,ρ,2L2D, t) 2D model composite that best satisfies Eq. (30) can be determined15

algorithmically follows. For each t given by Eq. (39), and 2L2D = 1, smooth model fits of16

W2D are already available from Sec. 4.1. Either of these model fits can be scaled to arbitrary17

2L2D using Eq. (26). For fixed t, the RMS error between the scaled distribution and W3D18

can be minimised efficiently using successive bisection over 2L2D, starting with the initial19

bracket 2L2D ∈ [0,2L3D] to obtain the optimal length, 2L∗2D(t). Repeating the minimisation20

for all t in Eq. (39) and choosing the t∗, and 2L∗2D(t
∗) which yield minimum RMS error21

between W3D, the (ν2,ρ,2L∗2D, t
∗) parameters of the 2D composite ‘link’ that best satisfies22

Eq. (30) are determined.23
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Applying this procedure to the W3D of Fig. 10 yields the optimal parameters t∗ = 0.45,1

and 2L∗2D = 0.81. The resulting W2D ≈W3D, in accord with Eq. (30). This confirms the2

longitudinal weakest-link scaling of Eq. (29). Although matrix failure does not occur in the3

3D model composites of Fig. 10 with perfect fibre-matrix interfaces, W3D is fit well by a W2D4

that assumes matrix failure. Thus, t∗ in the 2D model does not represent a physical feature in5

the fracture of the 3D model. Instead, t∗ effectively captures the reduced stress concentration6

in the 3D model due to longitudinally staggered breaks, as discussed in connection with7

Fig. 7. The present result also makes clear that the conservative character of the predictions8

from the Smith et al (1983) model arises from underestimating the fibrewise staggering of9

the fibre breaks, or overestimating the stress overloads.10

For all (ν2,ρ,2L3D,τ0/σ0) 3D composites presently considered, it is found that the al-11

gorithm given above results in (ν2,ρ,2L∗2D, t
∗) 2D ‘link’ parameters that satisfy Eq. (30).12

Fig. 11 shows the fits obtained for (ρ,2L3D)= (10,5) 3D simulations with ν2 ∈{28,210,212},13

and τ0/σ0 ∈ {0.3,0.5}. It is seen that the fits are very good, irrespective of whether W3D14

obeys weakest-link scaling. The parameter t∗ in these fits captures two effects: that of fibre-15

wise fibre break staggering, and of physical matrix failure. The parameter 2L∗2D represents16

the longitudinal size of the weakest-link failure event.17

4.5 Tough-brittle transition18

The weakest-link failure event has transverse size, Nc, or M, determined in Sec. 4.1, and19

longitudinal size, 2L∗2D, determined in Sec. 4.4. The scaling of these sizes with the number20

of fibres, ν2, is presently examined in order to infer whether the fracture mode is tough or21

brittle. The fractional size of the fracture nucleus according to the Curtin (1998), and tight22

cluster growth models, are Nc/ν2, and M/ν2. If the fracture mode were brittle, Nc, and M23
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Fig. 11: Fits of the 2D weakest link distributions, W2D, to the 3D weakest-link strength

distributions, W3D, for (a) τ0/σ0 = 0.3, and (b) τ0/σ0 = 0.5. ρ = 10, and 2L3D = 5. The

characteristic parameters (2L∗2D, t
∗) of the best fitting 2D model are listed in the legend.
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curves are marked on the left side of the plot. Those of d(2L∗2D/2L3D)/d(log2 ν2), and

d(2t∗/2L3D)/d(log2 ν2) are marked on the right side.

will approach a constant that is independent of system size, with increasing ν2. In this case,1

Nc/ν2, and M/ν2 will be decreasing functions of ν2. On the other hand, if Nc/ν2 and M/ν2
2

scales with or increases with system size, ν2, it indicates that Nc,M→ ν2 as ν2→ ∞. This3

points to a tough fracture mode (Kachhwah and Mahesh 2020).4

Similarly, limν2→∞
2L∗2D/2L3D determines the longitudinal extent of the weakest-link in5

a physical composite. A longitudinally localised weakest-link is indicated only if 2L∗2D/2L3D6

decreases, or approaches a constant with increasing ν2. In this case, the fracture surface will7

be transverse and smooth. However, if 2L∗2D/2L3D increases with increasing ν2, the weakest-8
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link becomes delocalised longitudinally. In this case, the fracture surface will be step, broom1

or brush-like (Hull and Clyne 1996).2

Figs. 12a, and 12b show the variation of Nc/ν2, and M/ν2 with ν2 for ρ = 10 com-3

posites. Similarly, Figs. 12c and 12d show the variation of the fractional length of the4

weakest-link, 2L∗2D/2L3D, and the effective fractional debond length, 2t∗/2L3D with ν2.5

Straight lines, obtained by fitting the points using linear least squares are also drawn. These6

lines are drawn with solid lines if they have a negative slope, and with dashed lines if they7

have a positive slope. The variation with τ0/σ0 of the slopes, d(log2 M/ν2)/d(log2 ν2), and8

d(log2 Nc/ν2)/d(log2 ν2) of the straight lines in Figs. 12a, and 12b is shown as solid lines in9

Fig. 13. The slopes of the lines fitting Figs. 12c and 12d, which represent d(2t∗/2L3D)/d(log2 ν2),10

and d(2L∗2D/2L3D)/d(log2 ν2), respectively, are shown as dashed lines.11

It is seen in Figs. 12a, 12b that for τ0/σ0 ≥ 0.4, both Nc/ν2, and M/ν2, decrease12

with increasing ν2. This points to the brittle fracture mode. However, for τ0/σ0 ≤ 0.3,13

both Nc/ν2, and M/ν2 increase with ν2, indicating the tough mode of fracture. Thus the14

tough brittle transition for ρ = 10 composites can be constrained to 0.3 ≤ τ0/σ0 ≤ 0.4.15

The tough-brittle transition reveals itself as a change of sign of d(log2 Nc/ν2)/d(log2 ν2),16

and d(log2 M/ν2)/d(log2 ν2) in Fig. 13. In Figs. 12c and 12d, 2L∗2D/2L3D, and 2t∗/2L3D,17

are seen to slightly decrease with increasing ν2 only for τ0/σ0 ≥ 0.7. In Fig. 13, it is seen18

that d(2L∗2D/2L3D)/d(log2 ν2)≤ 0 for τ0/σ0 ≥ 0.7. This indicates a longitudinally localised19

weakest-link, which will produce smooth transverse fracture surfaces.20

In the regime τ0/σ0 ≤ 0.5, both 2L∗2D/2L3D, and 2t∗/2L3D, are seen to increase with21

ν2. This indicates that the weakest-link failure event extends longitudinally with increas-22

ing ν2, producing a broom-like or brush-like fracture surface (Hull and Clyne 1996). At23

two points in this parameter regime, τ0/σ0 ∈ {0.4,0.5}, the brittle fracture mode prevails,24

i.e., the weakest-link failure event is localised in the transverse direction. Nevertheless, the25
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weakest-link event is found to be longitudinally delocalised. This suggests that longitudi-1

nal and transverse localisation of the weakest-link failure event are governed by distinct2

phenomena.3

As seen in Fig. 13, both d(2L∗2D/2L3D)/d(log2 ν2), and d(2t∗/2L3D)/d(log2 ν2) are4

maximal in the tough regime, τ0/σ0 ≤ 0.3. In this regime, the weakest-link failure event5

is localised neither longitudinally, nor transversely. Physically, a brush-like fracture surface6

with extensive fibre pull-out will be realised.7

The dependence of the tough-brittle transitional τ0/σ0 on fibre strength variability, quan-8

tified by ρ is next examined. The foregoing simulations, and computations are repeated for9

the case of (ρ,2L3D) = (20,5) model composites. The scaling of Nc/ν2, and M/ν2 with ν2
10

so obtained is shown in Fig. 14, for τ0/σ0 ∈ {0.1,0.3,0.5}. It is seen that according to both11

the Curtin (1998), and tight cluster growth models, the fracture mode remains brittle over12

this range. The tough-brittle transition thus occurs at τ0/σ0 < 0.1 for ρ = 20 composites.13

This indicates that the tough-brittle transitional τ0/σ0 decreases with increasing ρ , i.e., with14

decreasing fibre strength variability.15

In the foregoing analysis, it has been tacitly assumed that the trends observed over the16

composite size range, ν2 ∈ {28,210,212} can be extrapolated to much larger sizes. It is infea-17

sible to test the validity of this assumption computationally, at present. This is a limitation18

of the present study.19

4.6 Fracture development in the tough and brittle regimes20

Fracture development in the model composites proceeds through a complex succession of21

fibre breaks, and matrix failures. In the fracture simulation algorithm described in Sec. 2.1,22

the average load per fibre, 〈σ〉, is incremented monotonically. At the last increment, 〈σ〉=23
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〈σ〉ult. The configuration of fibre breaks and matrix failures just prior to the last increment1

of the applied stress is termed the critical configuration. Thus, an infinitesimal increment in2

the stress applied to the critical configuration will create a running catastrophic crack that3

causes specimen fracture.4

Corresponding to the Nsim,3D = 256 statistically identical model specimens simulated for5

each (ν2,ρ,2L3D,τ0/σ0), there are two median specimens. Fig. 15 shows the normalised av-6

erage stress-strain curve obtained for the weaker of the two median (ν2,ρ,2L3D) = (212,10,5)7

specimen. Curves for τ0/σ0 = 0.3 in the tough regime, and for τ0/σ0 = 0.5 in the brittle8

regime are plotted. The critical load is marked in each case. It is seen that in the brittle speci-9

men, the stress-strain curve remains nearly straight until the critical load, while in the ductile10

specimen the stress-strain graph curves substantially before the critical load is reached.11
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Fig. 16: Accumulation of fibre breaks and matrix failures with applied stress in the weaker

median (ν2,ρ,2L3D) = (212,10,5) specimen with (a) τ0/σ0 = 0.5 (brittle regime), and (b)

τ0/σ0 = 0.3 (tough regime).
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Fig. 17: Critical configuration of the weaker median ρ = 10, ν2 = 212 specimen, with

τ0/σ0 = 0.5. Fibre breaks are depicted by red dots, and failed matrix bays by blue lines.

Only eight matrix bays are failed. They are in the k ∈ {−8,−7,−2,10} blocks.

Figs. 16a, and 16b show the accumulation of fibre breaks and matrix failures with ap-1

plied stress, 〈σ〉/σ0, in the weaker median (ν2,ρ,2L3D) = (212,10,5) brittle and tough2

specimen with τ0/σ0 = 0.5, and 0.3, respectively. The ordinate scale in these plots is loga-3

rithmic.4

In both the brittle (Fig. 16a) and tough specimens (Fig. 16b), the accumulated number of5

fibre breaks scales approximately exponentially up to the critical configuration, with applied6

stress, 〈σ〉. The number of fibre breaks in the critical configuration is only slightly larger7
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Fig. 18: Critical configuration of the weaker median ρ = 10, ν2 = 212 tough specimen, with

τ0/σ0 = 0.3. Fibre breaks are depicted by red dots, and failed matrix bays by blue lines.

in the brittle specimen of Fig. 16a than that in the tough specimen of Fig. 16b. The key1

difference between the tough and brittle specimens is the number of matrix failures: Very2

few matrix segments are failed at the critical configuration in the brittle specimen, as seen in3

Fig. 16a. However, profuse matrix failure, which outstrips the rate of fibre breakage, occurs4

just before the critical configuration is reached in the tough specimen, as shown in Fig. 16b.5

This points to a central role for matrix failure in the transition from the brittle mode to the6

tough mode.7
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Fig. 19: Histograms of the length of matrix failures at the critical configuration for the

weaker median (ν2,ρ,2L3D) = (212,10,5) specimen with (a) τ0/σ0 = 0.5 (brittle regime),

and (a) τ0/σ0 = 0.3 (tough regime).
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In experimental studies of composite fracture on both sides of the tough-brittle transi-1

tion, Dzenis and Qian (2001), Sket et al (2012), and Scott et al (2011) have noted that most2

failure events occur just prior to composite fracture. The present observation of exponential3

scaling of fibre breakage, and matrix failure events is consistent with these experimental4

observations.5

Figs. 17, and 18 show the fibre breaks, and matrix failures in the critical configurations of6

the weaker median (ν2,ρ,2L3D,τ0/σ0)= (212,10,5,0.5) (brittle), and (ν2,ρ,2L3D,τ0/σ0)=7

(212,10,5,0.3) (tough), specimen, respectively. Fibre breaks at each of the 2K = 20 block8

boundaries are indicated by red dots. Failed matrix segments in the k-th block, for k ∈9

{−K + 1,−K + 2, . . . ,K}, are depicted by a blue line segment. In both Figs. 17, and 18,10

the fibre breaks at the critical configuration are dispersed throughout the model composite.11

Very few clusters of fibre breaks are seen. In computed tomographic studies of composite12

damage, Sket et al (2012) and Scott et al (2011), also noted the absence of large clusters of13

breaks. The present observations are consistent with the experimental ones.14

Only eight failed matrix bay segments are seen in the brittle specimen of Fig. 17. These15

matrix failures link fibre breaks in neighbouring fibres in adjacent blocks. However, in the16

tough specimen of Fig. 17, a number of matrix bays are failed. Matrix failures are seen to17

issue from fibre breaks, and extend several blocks in the longitudinal direction.18

Fig. 19 shows histograms of the length of matrix failures at the critical configuration19

for the two median specimen. Fig. 19a shows that in the brittle specimen with τ0/σ0 = 0.5,20

every matrix failure is of length ∆ . These matrix failures typically link up fibre breaks in21

neighbouring fibres ∆ apart in the longitudinal direction. On the other hand, as seen in22

Fig. 19b, in the tough specimen with τ0/σ0 = 0.3, a number of long matrix failures of23

length 2t� ∆ are seen to develop.24
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It is concluded from Figs. 17, 18, and 19 that while in the brittle regime, matrix failures1

only connect fibre breaks in adjacent block boundaries, in the tough regime, matrix bay2

failures originate at fibre breaks, and propagate extensively in the longitudinal direction.3

4.7 Mechanistic cause of the fracture mode transition4

Section 4.6 shows that fracture development in the tough regime is qualitatively different5

from that in the brittle regime. The tough regime is characterised by long matrix tears, which6

are nearly absent in the brittle regime. Presently, the mechanistic cause for this difference7

is identified by examining the stress redistribution from a single broken fibre, and from8

clusters of fibre breaks, with failed abutting matrix bays. Attention is particularly focused9

on the effect of long failed matrix bays.10

First, the maximum stress overload due to a single fibre break surrounded by matrix11

failures in all the abutting matrix bays is considered. Let the fibre break be located at12

(m,n,ζ ) = (0,0,0), and let the matrix bays abutting the broken fibre be failed up to ζ =±t.13

Maximum stress concentration is realised at (m,n,ζ ) = (1,0,0). Following the notation of14

Sec. 2.1, the stress overload is denoted σ̃10(ζ = 0). The inset of Fig. 20 shows the fibre15

break, and matrix failures schematically.16

Fig. 20 shows the variation of σ̃10(ζ = 0), with debond half-length, t in ν2 = 28, and 212
17

model 3D composites of length 2L3D = 5. For t� 2L3D, the variation is seen to be exponen-18

tial: σ̃m0 ∼ exp(−t/50). The exponential decrease of σ̃10(t) with increasing t implies that19

matrix failure severely delocalises stress overloads near fibre breaks, and thereby inhibits20

the brittle fracture mode.21

As the debond length 2t approaches the length of the simulation cell, 2L3D = 5, the22

variation deviates from exponential dependence. This can be understood by noting that in23
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Fig. 20: Stress overload in the nearest neighbour of a single break flanked by debonds of

variable length. The fibre break is located at m = n = ζ = 0. 2L3D = 5.

the limit of t → L2D, σ̃10 must approach the overload given by equal load sharing Eq. (31).1

The deviation from exponential decay is thus an artefact of finite fibrewise length of the2

model composite.3

In order to understand the growth of matrix failures around clusters of fibre breaks,4

the shear stresses induced in the matrix are next considered. Fig. 21 plots the variation of5

the maximum shear stress, maxτmnik, developed in (ν2,2L3D) = (212,5) model composites6

with penny-shaped clusters of fibre breaks located in the ζ = 0 plane, and matrix failures7

extending over ζ ∈ (−t, t) in all the matrix bays between all intact fibres and broken fibres.8

Matrix failures are thus confined to the edge of the penny-shaped clusters, as shown in9

the inset of Fig. 21. The maximum shear stress, maxτmnik, develops at the tip of the failed10
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Fig. 21: Variation of the maximum shear stress, maxτmnik, developed in the matrix bays

with debond length, 2t, induced by penny-shaped transverse clusters comprised of 1, 7, and

367 fibre breaks. The normalised radii, R of these clusters are 0, 1, and 10, respectively.

ν2 = 212, and 2L3D = 5.

interface, labelled C in the inset. It decreases monotonically with increasing t. However,1

the rate of decrease depends on the size of the cluster of breaks. For a single fibre break,2

maxτmnik decreases only about 4% as t increases from t = 0, to t = 1.25. This suggests that3

matrix failure, once initiated round a single break will readily propagate in the fibrewise4

direction, with only a slight increment in the applied stress, 〈σ〉.5

For larger clusters, however, maxτmnik decreases more with t. For example, for the6

penny-shaped clusters comprised of 7, and 367 breaks, τmnik decreases by 11%, and 44%,7

respectively from t = 0 to t = 1.25. Thus, matrix failures initiated around larger clusters8

propagate less readily in the fibrewise direction than those around smaller clusters.9
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Fig. 22: Variation of the maximum shear stress, τmni(C), developed in the matrix bay be-

tween a pair of breaks in neighbouring fibres, located 2t apart in the fibrewise direction.

maxτ
(a)
mnik and maxτ

(b)
mnik represent the maximum shear stress developed in the matrix when

(a) all the matrix bays are intact, and (b) with the intervening matrix bay failed.

It is recalled that the critical configuration of the tough specimen shown in Fig. 18 con-1

tained numerous long matrix failures around small clusters of breaks. According to Fig. 21,2

these are the matrix failures that will propagate most readily. Once propagated, the matrix3

failures, will reduce the stress overload on neighbouring fibres exponentially, according to4

Fig. 20. Thus, the mechanistic cause for the transition to the tough mode from the brittle5

mode is identified as the formation of matrix failures, around single fibre breaks, or small6

clusters of breaks, and their longitudinal propagation.7

In the brittle regime, matrix failure does not accompany single fibre breaks, as seen in8

Fig. 17. However, a few matrix bay segments of length ∆ fail. To understand their origin,9
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the maximum shear stress induced by two fibre breaks in neighbouring fibres, vertically1

staggered by distance 2t is now considered. Two cases are considered: (a) where all the2

matrix bays in the model are intact, and (b) where the single matrix bay between the two3

breaks is failed. The two cases are schematically shown in the inset of Fig. 22.4

Fig. 22 shows that as the breaks approach each other, the maximum shear stress maxτ
(a)
mnik5

that develops in the intervening intact matrix bay increases. If the intervening matrix bay be-6

tween the two breaks fails, the shear stress in the failed bay becomes zero, and the maximum7

shear stress maxτ
(b)
mnik, is realised in the other matrix bays abutting the fibre breaks. It is seen8

that maxτ
(b)
mnik is nearly independent of the longitudinal spacing 2t between the breaks. Also9

for small 2t, maxτ
(b)
mnik is significantly smaller than maxτ

(a)
mnik. Matrix bay failure between10

breaks in neighbouring fibres thus relieves the shear stress in the matrix. This mechanism is11

responsible for the small number of short matrix failures in the brittle mode.12

In summary, the tough fracture mode is realised if the interfacial strength, τ0/σ0, is13

small enough that matrix failure occurs in the matrix bay segments abutting single breaks,14

or small clusters of breaks. Such matrix failures propagate readily in the fibrewise direction.15

However, if the interface is strong enough to suppress the failure of matrix bay segments16

around single breaks, or small clusters of breaks, the brittle fracture mode results. The oc-17

currence of short matrix bay failures between staggered fibre breaks for stress relief in the18

matrix does not affect the brittle mode.19

He et al (1993) and Curtin (1993) have proposed mechanisms underlying the tough-20

brittle transition in ceramic matrix composites with frictionally sliding interfaces. He et al21

(1993) have shown that load transfer from a broken fibre to its neighbours varies contin-22

uously with the frictional strength of the interface. They have proposed that the fracture23

mode will be tough if the probability of survival of the nearest neighbours of a broken fibre24

exceeds that of more distant neighbours.25
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In the present model polymer matrix composites, load sharing from a broken fibre to its1

neighbours varies discontinuously across the tough-brittle transition. On the brittle side, the2

absence of long failed matrix bays produces localised load sharing, while on the tough side,3

their presence severely delocalises the load sharing. The transition in the present model4

arises from discontinuity in the load sharing at the transitionalτ0/σ0. It is thus a stronger5

transition than that in the model of He et al (1993).6

Curtin (1993) proposed that composite failure occurs by the failure of the weakest spher-7

ical region within it following global load sharing. He took its radius to be the length over8

which load is recovered in a broken fibre through frictional sliding. With decreasing inter-9

facial strength, enlargement of the spherical region results in a crossover from the brittle to10

tough fracture modes. This ansatz results in a smooth cross-over from the tough to brittle11

mode.12

In the present model composite, the fracture mode is found to localise differently in the13

longitudinal and transverse directions, as noted in Sec. 4.5. Also, the model exhibits a sharp14

transition in the transverse direction.15

4.8 Limitations16

Computational limitations associated with small simulation cell sizes, and coarse fibre wise17

discretisation have been noted previously in Sec. 4.2, and 4.5. Other limitations of the18

present study are now enumerated.19

First, the assumption that interface failure occurs only due to shear stresses is admittedly20

simplistic. Cook and Gordon (1964) showed that interfacial debonding is also determined21

by normal stresses transverse to the fibre direction. In principle, it is possible to account for22

transverse normal stresses using the shear-lag model of Goree and Gross (1980). However,23
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this will double the size of the already computationally intensive stress analysis problem.1

Second, the assumption that a debonded interface transmits no shear may be unreasonable2

if large transverse compressive stresses are locked into the matrix when the composite is3

cooled from the curing temperature. In this case, the frictional stresses across the interface4

may be considerable. Again, it seems possible to extend the present shear-lag model to ac-5

count for this, albeit at greater computational cost. Third, the interfacial strength has been6

assumed deterministic. Ma et al (2017) have reported variability in the interfacial strength7

itself, which introduces variability into the nature of the fracture surface itself. Fourth, the8

transitional value of the ratio of the interfacial strength to the fibre strength has only been9

evaluated for the case of Weibull exponent 10, which represents relatively low fibre strength10

variability. Attempts to capture the transitional value for Weibull exponent 5 have not been11

successful, since the size of the 2D weakest link exceeds the presently feasible largest simu-12

lation cell comprised of 212 fibres. Fifth, fracture simulations must necessarily be performed13

on finite sized simulation cells. The periodic images will therefore necessarily influence the14

estimated characteristic sizes of the weakest-link failure event. Even if fracture could be sim-15

ulated in much larger periodic cells than the present ones, the simulations based approach16

can at best only bound the transitional value (Nishimori and Ortiz 2010; Binder 2003), and17

not obtain it exactly. Fifth, fracture mechanisms not accounted for presently have been ob-18

served experimentally. For example, Sket et al (2012) and Scott et al (2011) observed fibre19

splitting, and matrix splitting in glass- and carbon-epoxy laminates, respectively, through in-20

situ computed tomography studies, while Dzenis and Qian (2001) observed extensive matrix21

splitting through acoustic emission, and direct observations.22
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5 Conclusion1

With decreasing interfacial strength, a tough-brittle transition occurs in model polymer ma-2

trix composites. The interfacial strength at which the transition occurs depends on the fibre3

strength variability. In the brittle regime, the developing transverse crack becomes catas-4

trophic before long interfacial failures can form at its front. In the tough regime, long inter-5

facial failures form even around single fibre breaks, or small clusters of fibre breaks. These6

delocalise the stress overloads dramatically, and cause global fracture development.7
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