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Abstract

The evolution of mechanical and damage fields, and the time to failure of ma-

terial points ahead of a stationary crack in a compact tension specimen are

computed using finite element simulations for a linear elastic/power law creep-

ing material. These are compared with predictions obtained from fields based

on two fracture mechanics based load-parameters: the steady-state C∗, and the

time-corrected C(t). The finite element calculations predict opening stress in

the crack plane that are non-monotonic in the time interval 0 ≤ t ≤ t1, where t1

denotes the time to transition from small-scale creep to extensive creep. This is

in contradiction to the monotonic ‘self-similar’ decay of stress with time given

by the C(t) field. Consequently, damage rates and times to failure of material

points ahead of a crack calculated using the finite element stress-field, and the

C(t)-based stress-field diverge considerably. These observations suggest that the

creep damage rates derived on the basis of self-similarly decaying opening stress

fields may be severely inaccurate.
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1. Introduction

Crack growth in a creeping body has been the subject of a large number of

theoretical, computational and experimental studies extending at least over the
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past five decades [1]. The difficulty of obtaining a predictive model of creep crack

growth owes as much to the complex spatiotemporal mechanical fields associated

with a creep crack, as to the microscopic damage mechanisms underlying creep

crack extension.

A relationship between the creep crack growth rate ȧ and the load parameter

for secondary creep, C∗, was derived by Kubo et al. [2]. Taking the Hutchinson-

Rosengren-Rice (HRR) [3, 4] field to represent the distribution of stress ahead

of a creep crack, and assuming that the damage rate is proportional to power

b1 of the local normal stress, Kubo et al. [2] found that ȧ ∝ C∗b1/(n+1), where

n denotes the Norton exponent. In their model, a material point located a

microstructural distance ρs fails at the time when its damage parameter reaches

a value of 1. A similar scaling was obtained later by Hui and Banthia [5],

including the effect of a critical stress for void nucleation. Using a critical

strain based failure criterion at a microstructural distance ahead of the crack

tip, Riedel and Wagner [6] obtained the scaling ȧ ∝ C∗n/(n+1).

The above scaling has seen mixed success in capturing experimentally mea-

sured dependence of ȧ with C∗. In Cr-Mo steel, Riedel and Wagner [7] found

excellent correlation between ȧ and C∗n/(n+1) over a range of temperatures.

Further experimental evidence of correlation was offered by Riedel and Detam-

pel [8]. Later works, due to Maas and Pineau [9], Bensussan et al. [10], and

Piques et al. [11], however, have reported marked deviation of the experimen-

tally measured ȧ and C∗ from the simple power-law relationship predicted by

the models. Maas and Pineau [9] and Bensussan et al. [10] suggested that

the correlation observed in some preceding works may have been spurious in

tests wherein the C∗ parameter is determined from the experimental load line

displacement. They reasoned that at high crack growth rates, the load line

displacement simply reflects crack propagation, which leaves the experimental

approach erroneously correlating ȧ with itself.

Even when C∗ is not computed from the load line displacement, a number

of reasons may underlie the breakdown of the simple power-law relationship

between ȧ and C∗. The most prominent among them is the deviation of the
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crack-tip mechanical fields from the HRR field. Riedel [12] suggested that the

loading parameter employed must be the stress intensity factorK if the specimen

deformation is predominantly elastic, the J-integral if the specimen deformation

is predominantly plastic with creep confined to a small region, the C∗
h integral

when the bulk of the specimen is under primary or tertiary creep, and the C∗

integral when the specimen is predominantly under secondary creep. Even so,

in the C∗ regime, for short cracks, Riedel and Detampel [8] observed deviations

from the correlation of ȧ with C∗, and attributed them to crack tip blunting [13].

Since material creep strains require time to acquire non-zero values, the

stress-state at the instant of loading is purely elastic. Thereafter, small scale

creeping develops near the crack tip, and propagates with time more extensively

into the uncracked ligament [1]. Two of the empirical approaches developed

in the literature to account for the time-dependent evolution of the crack-tip

stress fields are noted here. Saxena [14] and Bassani et al. [15] proposed the

load parameter Ct, which interpolated between the stress-state corresponding

to small-scale yielding and extensive yielding. A simpler closed form time-depen-

dent parameter, C(t), was given by Ehlers and Riedel [16]. Both time-dependent

load parameters approach C∗ in the limit of long times.

Crack tip stress fields ahead of a stationary crack in a power law creeping

material are investigated in the present work. It is convenient to identify a char-

acteristic time, t1, originally proposed by Riedel and Rice [17], which defines

the transition from small scale-creep to extensive creep regimes. A novel find-

ing is that for times 0 ≤ t ≤ t1, the opening stress computed using the finite

element method is non-monotonic, and differs qualitatively from the monotoni-

cally decreasing load parameter based stress-fields. Such a decrease was termed

‘self similar’ by Riedel and Rice [17]. The effect of this discrepancy on the

time to failure of material points ahead of the crack tip is also investigated.

Different process zone sizes are simulated numerically by tuning the value of a

damage parameter in a Kachanov-Rabotnov damage model. A key conclusion is

that except in materials with very small process zones, the finite element model

predicted times to failure differ substantially from those predicted by the load
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parameter based fields.

2. Constitutive Law And Damage Model

2.1. Norton’s Power Law

Norton’s power law [18] relates the inelastic strain rate ε̇ieij to stress in the

secondary creep regime as:

ε̇ieij = (3/2)Bσn−1
e Sij , (1)

where, σe = (3SijSij/2)1/2, and Sij denotes the deviatoric stress. The constants

B and n in Eq. (1) are experimentally determined from uniaxial creep tests after

the onset of secondary creep. In uniaxial tension, S11 = 2σ/3, S22 = S33 =

−σ/3, and S12 = S13 = S23 = 0. SijSij = 2σ/3, and Eq. (1) reduces to

ε̇ie11 = Bσn. (2)

2.2. Short And Long Time Limits

Instantaneously after load application, the stress state in the specimen is

identical to that given by linear elasticity [1]. At this instant, the crack tip

stress fields are completely characterised by the linear elastic stress intensity

factor, K [19]. With time, creep deformation develops to relax the near crack

tip stresses. At long times, the stress fields approach a steady-state, given by

the Hutchinson-Rice-Rosengren field.

σij =

(
C∗

In B r

)1/(n+1)

σ̃ij(θ). (3)

Here, r denotes the distance from the crack tip, and In a parameter dependent

only on n. The intensity of this field is characterised by the C∗ parameter.

Expressions for K and C∗ for compact tension specimens based on their geom-

etry and material properties are given by Tada et al. [19] and Shih et al.[20],

respectively.

Using dimensional considerations, Riedel and Rice [17], proposed that soon

after the instant of load application, the stresses on the crack plane will decay

following σij ∼ 1/(EBt)1/(n−1). Here, E denotes Young’s modulus. Equating
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this ‘self-similarly’ decaying stress field to the long time C∗ field, they obtained

a characteristic time t1, given by

t1 = K2(1− ν2)/[(n+ 1)EC∗]. (4)

They suggested that self-similarly decaying stresses prevail ahead of the crack

tip up to time t1. For time t > t1, they proposed assuming the time independent

C∗ field ahead of the crack tip. A more refined formula is due to Ehlers and

Riedel [16]. Using empirical correlations against finite element results, they

showed that the formulas

C(t) = C∗(1 + t1/t), (5)

and

σij(r, t) =

(
C(t)

In B r

)1/(n+1)

σ̃ij(θ) (6)

capture the time dependence of the stress fields ahead of the crack tip very well.

2.3. Damage Model

A simple and widely used expression for the damage evolution [1] of the

Kachanov-Rabotnov type is presently adopted:

dω

dt
(r, t) =

Dσχnn(r, t)

(1 + φ)(1− ω)φ
. (7)

σnn denotes the opening component of stress acting normal to the fracture plane.

The damage variable ω evolves toward 1 under the applied stress. However, ω

does not correspond to a physically measurable quantity. r denotes the distance

from the stationary crack tip. Integrating Eq. (7) at a fixed r yields∫ t

0

σχ22(r, τ)dτ =
1

D
[(1− ω1)1+φ − (1− ω2)1+φ]. (8)

Letting ω1 = 0 and ω2 = 1 and correspondingly letting t = tf , where tf specifies

the time to failure of the material point r ahead of the crack tip yields:∫ tf (r)

0

σχ22(r, τ)dτ =
1

D
. (9)
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For a given spatiotemporal variation of opening stress σnn(r, t), Eq. (9) identifies

tf(r).

Damage evolution based on Eq. (7) leads to mesh-dependence of the numer-

ical results [21]. An alternative inelastic strain based damage evolution law, due

to Nikbin et al. [22], states:
dω

dt
=
ε̇ienn
εf
, (10)

where εf denotes the limiting creep strain, or creep ductility of the material.

εf also depends on the creep exponent and triaxiality. Again, ω evolves with

deformation from 0 to 1; local failure is implied when ω = 1. Integrating Eq. (10)

in time, the local failure criterion is obtained as

εienn(tf) = εf . (11)

Material continuity ahead of the crack-tip breaks down due to the formation

of significant damage in so-called process zones. Smaller values of D or 1/εf cor-

respond to smaller process-zones. While the present finite-element simulations

take no account of the break-down of material continuity, the interpretation

of these parameters in terms of process-zone sizes proves useful in interpreting

predictions.

3. Results

(a)
(b)

Figure 1: Finite element (a) specimen and (b) crack-tip meshes. Specimen geometry and
loading is identical to that of specimen #10 of Maas and Pineau [9].
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Simulations are performed on a compact tension specimen, whose geometry

and loading are exactly identical to that of compact tension specimen #10 in

the experimental study of Maas and Pineau [9]. The specimen and near-crack

tip mesh are shown in Fig. 1. The ratio of the crack length to total length in

this specimen is 0.34, and the specimen is crept at an applied load of 12070 N.

Plane strain conditions are assumed. Large deformations are accounted for.

The material parameters assumed correspond to 21⁄4 Cr-1 Mo steel, given by

Robinson [23]: µ0 = 3×107 MPa h, H = 0.001 /h, R = 0.0001 /h, k = 10 MPa,

G0 = 0.1 MPa, and n = 4. Equivalent Norton law material parameters are

determined by matching the secondary creep response of the Robinson material

with Norton’s material in uniaxial tension. It is determined that B = 3.467 ×

10−14 MPa−n/h and n = 4 in Eqs. (1) and (2). ABAQUS’ in-built Norton

law implementation is used. Also, following Riedel [1], it is assumed that the

damage exponent χ = 6.2 for 21⁄4 Cr-1 Mo steel.

For the present specimen, the mode I linear elastic stress intensity, as given

by Tada et al. [19] works out to K = 1189 MPa
√

mm, and the steady state

C∗ = 0.0532 MPa mm/h according to Shih et al. [20]. Eq. (4) then yields

t1 ≈ 30 h. The bulk of the time interval presently considered (0 ≤ t ≤ 2000 h)

thus falls well within the ductile regime according to the criterion of Riedel and

Rice [17].

3.1. Mechanical Fields

Let n be the normal to the crack plane. The spatiotemporal variation of

the opening stress σnn predicted by various models is presented in Figs. 2 and

3. Figs. 2a and 2b show the time-independent short-time and long-time stress

responses, as described in Sec. 2.2. These correspond to the stress states in the

instant after load application and after an infinite time past load application,

respectively.

Comparing the stress contours shown in Fig. 2a corresponding to the asymp-

totic K field given by Tada et al. [19] with those obtained from a finite element

simulation assuming a linear elastic material (not shown), reveals that the re-
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Figure 2: Spatiotemporal variation of stress σnn in the crack plane, as predicted by the: (a)
K-field [19], and (b) C∗-field [20].
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(a) Ehlers-Riedel C(t)-field
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(b) Finite element implementing Norton’s law

Figure 3: Spatiotemporal variation of stress σnn in the crack plane, as predicted by the: (a)
C(t)-field [16], and (b) finite element implementing Norton’s law [18].
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gion of K-dominance is limited to 0 mm ≤ r ≤ 2 mm. The steady-state

asymptotic solution given by Shih et al. [20], plotted in Fig. 2b, is also accurate

over 0 mm ≤ r ≤ 2 mm. The spatiotemporal variation of the stress field given

by Ehlers and Riedel [16] in Eq. (5) and (6) is shown in Fig. 3a. Finally, σnn(r, t)

predicted by the finite element analysis implementing Norton’s law is shown in

Fig. 3b. It is clear that the stresses predicted by the finite element simulations

evolve from that predicted by the linear elastic model of Fig. 2a to that of the

steady state solution shown in Fig. 2b at long times within the regime of validity

of the K- and C∗-fields. It is also clear that in the K- and C∗-field dominant

regimes, and in the regime corresponding approximately to t > t1, the Ehlers-

Riedel formula, Eq. (6), plotted in Fig. 3a closely matches that predicted by the

finite element simulations, shown in Fig. 3b. Outside the region of dominance

of the K and C∗-fields, however, the stress evolution is quite complex, as it is

influenced by both specimen geometry and load distribution in the nett section.
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Figure 4: Spatiotemporal variation of stresses ahead of a stationary crack in the time interval
0 h≤ t ≤ 100 h revealing the non-monotonicity of normal stresses. This evolution is in contrast
to the asymptotic monotonic decay proposed by Riedel and Rice [17].

In order to pay closer attention to the temporal regime t < t1, a zoomed-in

version of Fig. 3b focussing on the time interval 0 h ≤ t ≤ 100 h is shown in

Fig. 4. It is clear that material points ahead of the stationary crack experience

non-monotonic variation of their stress state with time soon after loading, indeed
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over times t ≤ t1. The amplitude of the non-monotonic variation increases as

the crack tip is approached. This is in contrast to the self-similar monotonic

decrease of stress fields with time, σ ∼ 1/(EBt)1/(n−1), assumed by Riedel and

Rice [17]. To our knowledge, the break down of the self-similar time scaling of

stress is reported here for the first time. In this regime, t < t1, no agreement

between the finite element calculated and the C(t)-based stress fields can be

expected, as the latter strictly decay monotonically with time.
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Figure 5: Stress field σnn(r, t) ahead of the crack tip at (a) t = 10 h, and (b) t = 100 h. Note
the logarithmic scaling of axes.
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Fig. 5 shows the spatial distribution of stresses ahead of the crack at two

fixed instants of time: t = 10 h< t1, and t = 100 h> t1. It is clear that the slope

of the finite element predicted stress decay already matches that of the C∗-field

at t = 10 h. The stress therefore decays as ∼ 1/r1/(n+1) already at t = 10 h

in accord with Eq. (6). Only the amplitude of stress intensity is greater. It is

clear that the spatial distribution of stresses at this time is qualitatively more

similar to the long-time limit than to the short-time limit, whereat the stress

decay goes as 1/r1/2. The blunting with time of the singular stress field, from

∼ 1/r1/2 to ∼ 1/r1/(n+1) will entail stress redistribution away from the crack

tip. This redistribution appears to underlie the non-self similar temporal stress-

decay observed in Fig. 4. At t = 100 h, the steady-state appears to have been

nearly achieved and the stress field asymptotically near the crack tip is nearly

equal to the C∗-field.

The spatiotemporal variation of the total (εnn) and creep (εcnn) strains ahead

of the finite element model crack tip are shown in Figs. 6a and 6b, respectively.

The creep strains are smaller, but by no means negligible compared to the total

strain. This shows that the specimen is undergoing extensive creep deformation

by time t = t1. According to Riedel and Rice [17], this means that C∗ can be

used as a load parameter at the crack tip. Furthermore, according to Riedel

and Wagner [6], the present case must produce excellent correlations between

C∗ and crack growth rate ȧ, in contrast to the experimental observations of

Maas and Pineau [9].

3.2. Time to Failure

The times to failure ahead of a stationary crack, tf , given by Eqs. (9) and

(11), as predicted by the finite element model are shown in Figs. 7 and 8,

respectively. Also shown are the times to failure predicted assuming the C∗ and

C(t) fields of Sec. 2.2.

In Fig. 7, the damage parameter D has been normalised by D0 = 1.425 ×

10−21 MPa−χ /h, for convenience. For the smallest D/D0 = 1 considered, the

C(t) predicted tf matches the finite element predictions well. For larger values
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Figure 6: Spatiotemporal variation of (a) total strain, εnn and (b) creep strain, εcnn ahead of
the crack tip predicted assuming Norton’s law.
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Figure 7: Spatiotemporal variation of time to failure tf ahead of a stationary crack, following
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of D/D0, however, the agreement between the C(t) field and finite element

predicted tf progressively worsens, even though the C(t) field predicted tf is

always conservative. In all cases, the tf predicted by the C∗ field is a non-

conservative over-estimate.

Similar observations and conclusions apply to the inelastic strain-based time

to failure predictions shown in Fig. 8, provided D/D0 is replaced by the recipro-

cal of the critical inelastic strain to failure, 1/εf . Again, reasonable agreement

between the predicted times to failure using the finite element model, and the

C(t)-field is obtained for small 1/εf , corresponding to the most localised damage

ahead of the crack tip. More wide-spread damage corresponding to larger 1/εf

leads to dramatic disagreements, as shown. At r = 1 mm, which is well within

the K-dominant zone, tf obtained from the finite element fields, and from the

C(t) fields are 6 h, and 54 h, respectively for εf = 0.0001. The C(t) fields thus

overestimate tf by almost a factor of 10. The relative disagreement is smaller

with εf = 0.001. In this case, again at r = 1 mm, tf obtained from the finite

elements and C(t) fields are 694 h, and 1110 h, which amounts to a ratio of

about 2. Unlike in the stress-based model, predictions based on C∗ and C(t) do

not bound the finite element results in the case of a creep-strain based damage

criterion.

It is important to notice here that larger D or 1/εf corresponds to larger

process zones, i.e., ones that extend further ahead of the crack tip. Reasonable

agreement between the finite element predictions of tf with that based on C(t)

is only obtained in the case of highly localised damage ahead of the crack tip.

In creep ductile materials such as the present 21⁄4 Cr-1 Mo steel, significant

damage occurs ahead of the crack tip. For this material, Riedel [1, p. 350] gives

D = 2.7× 10−17 MPaχ/h, which corresponds to D/D0 ≈ e10 under conditions

that were similar, but not identical to those of Mass and Pineau’s [9] tests.

The large value of D/D0 suggests an extensive process zone. Furthermore, the

large extent of the damage zone was experimentally verified by Bensussan et

al. [10]. In light of the C∗ or even the C(t)-based stress fields failing to be

remain accurate over this extensive range, it is not surprising that the C∗ does
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not correlate with the crack propagation rate, as observed experimentally [9, 10].

Since the deviations between the finite element predicted stresses and those

obtained from C(t) or C∗-fields is largest at times t ≤ t1, it is interesting to

compare the damage state obtained from these models at time t = t1. This is

shown in Fig. 9. Corresponding to the stress-based damage model, Fig. 9a

shows that the damage state at t = t1 predicted by the C(t) field is significantly

larger than that predicted by the finite element field. The opposite is true for

the strain-based damage model, with the finite element field predicting consid-

erably more creep strain than the C(t) field, as shown in Fig. 9b. It must be

emphasised that these differences will persistently be carried forward even for

t > t1, even though in the latter regime, the finite element predicted stresses

are in much better agreement with the C(t)-based stress fields, as shown previ-

ously in Sec. 3.1. In other words, the disagreement between the damage states

predicted based on the finite element, and the C(t) fields will not diminish in

the time regime, t > t1.

4. Discussion

It has been shown by means of a finite element calculation that the stress-

state ahead of stationary crack-tip does not decay with time in a self-similar

manner, as assumed by Riedel and Rice [17]. Material points in the K- or C∗-

dominant zone experience a non-monotonic stress field, with the amplitude of

the opening stress fluctuation increasing with approach to the crack-tip. This

happens soon after specimen loading, within the time interval t ≤ t1, where t1

is the characteristic time to transition from small scale creeping to extensive

creeping in the specimen.

This observation has consequences for creep crack growth predictions, which

are now enumerated. First, the crack-tip field is often obtained by interpolation

between the small scale creeping field and the long-term C∗-field, e.g., Bassani

et al. [15]. The present result suggests that such interpolation may be invalid as

interpolation can only yield opening stresses that are monotonically decreasing

in time. Furthermore, any correlations obtained between crack speed and the
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interpolated load parameter may be coincidental. Second, nucleation of creep

voids in the crack plane is a precursor for creep crack growth. This process

is very sensitive to the crack plane opening stress [5]. Since the finite element

predicted peak opening stress is greater in general than that predicted by the

C∗ or C(t) fields, rapider creep void nucleation can generally be expected under

the former field than the latter. Third, the rates of damage processes within

the process zone, modelled assuming the asymptotic validity of the C∗ or C(t)

fields, are most likely erroneous. This is because they do not accurately account

for the damage evolution within the time t ≤ t1. The prediction error in the

damage field carries over beyond t = t1, as damage accumulation is cumulative.

In short, inaccuracies associated with the load parameter based stress fields

appear to be significant enough to significantly degrade the accuracy of any

creep crack growth models based upon them, e.g., [6, 5, 24]. It is therefore

scarcely surprising that model correlations between crack growth rates and load

parameters, discussed in Sec. 1, are often found violated.

5. Conclusions

In a pioneering paper analysing the stress field ahead of a creep crack, Riedel

and Rice [17] assumed that the stress state decays in a self-similar manner soon

after loading. Based on this assumption, and dimensional analysis, they sug-

gested that the stress scales as ∼ t1/(n−1), where t denotes time, and n is the

creep exponent. Using finite element analysis, the present work has shown that

the assumption of self-similar decay does not hold. The stress-state at a typical

material point ahead of the stationary crack increases with time before decreas-

ing, as the load distribution ahead of the crack tip goes from the sharper 1/r1/2

elastic singularity to the blunter 1/r1/(n+1) HRR singularity. Temporally, this

transition spans the time period 0 ≤ t ≤ t1, where, t1 is the characteristic time

at which the small scale creeping at the crack tip may be regarded to transition

to extensive creeping, following Riedel and Rice [17]. Since creep void nucle-

ation and growth are highly sensitive to stress, these observations imply that

18



load parameter based stress fields may not be suitable for predicting creep crack

growth.

[1] H. Riedel, Fracture at high temperatures, Materials research and engineer-

ing, Springer-Verlag, Berlin, 1987.

[2] K. Shiro, O. Kiyotsugu, O. Keiji, An analysis of creep crack propagation

on the basis of the plastic singular stress field, Eng. Fracture Mech. 11 (2)

(1979) 315–329.

[3] J. Hutchinson, Singular behaviour at the end of a tensile crack in a hard-

ening material, J. Mech. Phys. Solids 16 (1) (1968) 13–31.

[4] J. Rice, G. Rosengren, Plane strain deformation near a crack tip in a power-

law hardening material, J. Mech. Phys. Solids 16 (1) (1968) 1–12.

[5] C. Y. Hui, V. Banthia, The extension of cracks at high temperature by

growth and coalescence of voids, Int. J. Fracture 25 (1) (1984) 53–67.

[6] H. Riedel, W. Wagner, The growth of macroscopic cracks in creeping ma-

terials, in: D. F. et al. (Ed.), Advances in fracture research. Proc. fifth

international conference on fracture, 683–690, 1981.

[7] H. Riedel, W. Wagner, Creep Crack Growth in Nimonic 80A and in a Cr-

Mo Steel, in: S. R. V. et al. (Ed.), Advances in fracture research. Proc.

sixth international conference on fracture, vol. 3, 2199–2206, 1984.

[8] H. Riedel, V. Detampel, Creep crack growth in ductile, creep-resistant

steels, Int. J. Fracture 33 (4) (1987) 239–262.

[9] E. Maas, A. Pineau, Creep crack growth behavior of type 316L steel, Eng.

Fract. Mech. 22 (2) (1985) 307–325.

[10] P. Bensussan, E. Maas, R. Pelloux, A. Pineau, Creep crack initiation and

propagation: fracture mechanics and local approach, J. Pressure Vessel

Tech. 110 (1) (1988) 42–50.

19



[11] R. Piques, P. Bensussan, A. Pineau, Application of fracture mechanics and

local approach to creep crack initiation and growth, in: ECF6, Amsterdam

1986, 91–100, 2013.

[12] H. Riedel, Creep deformation at crack tips in elastic-viscoplastic solids, J.

Mech. Phys. Solids 29 (1) (1981) 35–49.

[13] H. Riedel, Creep crack growth, in: R. P. Wei, R. P. Gangloff (Eds.), Frac-

ture Mechanics: Perspectives and Directions, vol. ASTM STP 1020, ASTM,

Philadephia, 101–126, 1989.

[14] A. Saxena, Creep crack growth under non-steady-state conditions, in: Frac-

ture Mechanics: Seventeenth Volume, ASTM International, 185–201, 1986.

[15] J. L. Bassani, D. E. Hawk, A. Saxena, Evaluation of the Ct parameter for

characterizing creep crack growth rate in the transient regime, in: Non-

linear Fracture Mechanics: Volume I Time-Dependent Fracture, ASTM

International, 7–26, 1988.

[16] R. Ehlers, H. Riedel, A finite element analysis of creep deformation in a

specimen containing macroscopic crack, in: ICF5, Cannes (France), 691–

698, 1981.

[17] H. Riedel, J. R. Rice, Tensile cracks in creeping solids, in: Fracture Me-

chanics: 12th Conference, ASTM International, 112, 1980.

[18] F. H. Norton, Creep of steel at high temperatures, McGraw Hill, 1929.

[19] H. Tada, P. C. Paris, G. R. Irwin, The Stress Analysis of Cracks Handbook.

The American Society of Mechanical Engineers, New York .

[20] C. Shih, V. Kumar, M. German, An engineering approach for elastic-plastic

fracture analysis, EPRI NP-1931, RP1237-1 (July 1981) .

[21] S. Murakami, Y. Liu, M. Mizuno, Computational methods for creep frac-

ture analysis by damage mechanics, Comput. Method. Appl. M. 183 (1)

(2000) 15–33.

20



[22] K. Nikbin, D. Smith, G. Webster, Prediction of creep crack growth from

uniaxial creep data, Proc. R. Soc. Lond. A. 396 (1810) (1984) 183–197.

[23] D. N. Robinson, A Unified Creep-Plasticity Model for Structural Metals

at High Temperature, Tech. Rep. ORNL/TM-5969, Oak Ridge National

Laboratory, 1978.

[24] J. L. Bassani, D. E. Hawk, Influence of damage on crack-tip fields under

small-scale-creep conditions, International Journal of Fracture 42 (2) (1990)

157–172.

21


